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1 INTRODUCTION
Amin and Tate [2016] showed that Java’s and Scala’s type systems are unsound in the presence

of null values. Somewhat remarkably, this discovery appears to have been rooted in research on

Java’s wildcards, rather than nullness, even though nullness has been the subject of both academic

and industry attention for quite some time. Nonetheless, Scala is reportedly using the nullness

awareness being introduced into its type system to avoid the discovered unsoundness [Nieto et al.

2020].

While Amin and Tate [2016] informally suggest that restrictions on wildcards could address the

issue, to the best of our knowledge, no comprehensive proposal or formal proof of a suggested fix

for Java exist. Moreover, as we will see, restrictions on wildcards would likely have occasional false

positives in existing Java code (i.e., would occasionally rule out code occurring in practice that is

in fact safe). And while it seems plausible that an approach similar to Scala’s could be taken for

Java, introducing a statically checked nullness typing discipline into Java is clearly a monumental

undertaking with potentially wide-ranging implications for existing code. Java’s unsoundness also

raises the question whether Kotlin’s mixed-site variance [Tate 2013], which allows patterns akin to

Java wildcards, might be vulnerable to similar threats to soundness.

In this paper, we show that the discovered unsoundness in Java’s wildcards is avoidable, even in

the absence of a nullness-aware type system and with fewer restrictions than previous proposals.

The key insight of this paper is that soundness in type systems that implicitly introduce exis-

tential types through subtyping hinges on still making sure there are suitable witness types when

introducing existentially quantified type variables, even when the expression being typed is the

null literal. This can be achieved in at least 3 ways: (1) by making sure that all existential types
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1 public class UnsoundDerived {

2 static class Constrain <Y extends CharSequence > {}

3 static <Y extends CharSequence >

4 CharSequence upcast(Constrain <Y> c, Y y) {

5 return y;

6 }

7 static <X> CharSequence coerce(X x) {

8 Constrain <? super X> c = null;

9 return upcast(c, x);

10 }

11 public static void main(String [] args) {

12 CharSequence zero = coerce (0);

13 }

14 }

Fig. 1. Unsound Java program derived from Amin and Tate [2016, fig. 4]

allowed in the system are guaranteed to have witness types by construction, (2) by leveraging a

nullness type system to restrict nullable existential types, or (3) by placing restrictions on how

null literals can be typed so that they can only introduce valid existential types. As we shall see,

Kotlin is in the first camp, suggesting that Kotlin does not suffer from the same unsoundness as

Java. Scala is as mentioned taking the second route. But as we will see, it’s surprisingly simple to

restrict the typing of null values such that only valid existential types can be introduced, which

would allow taking the third option for Java.

To show that this approach is viable, this paper formalizes a core calculus similar to FGJ [Igarashi

et al. 2001] and TameFJ [Cameron et al. 2008] enriched with null values. The type system restricts

the typing of null values (and imposes a few related restrictions) to guarantee that existential

types always have witness types. We prove type safety to demonstrate that the imposed restrictions

are sufficient to guarantee soundness.

We implemented a static analysis suggested by our formalization as a linear AST scan that runs

after typechecking. We used it to look for potential issues stemming from Java’s unsoundness in a

vast corpus of several hundred million lines of Java code. We found a single false positive and no

actual issues stemming from Java’s unsoundness in the code we analyzed. This suggests that the

tweaks needed to avoid Java’s unsoundness have minimal impact on existing code. In our view,

that’s a very promising result compared to potential alternative fixes through the introduction of

nullness types or through banning of potentially problematic wildcard types, whose occurrence in

practice this paper shows to be rare but frequent enough to be concerning considering the vast

amount of Java code in existence.

The remainder of this paper is organized as follows: Section 2 reviews Java’s unsoundness and

wildcards. Section 3 gives a high-level intuition for what goes wrong in Java’s type system and a

proposal for how to fix it. Section 4 formalizes the proposed solution in a core calculus that’s proven

sound. Relevant proofs are included as supplemental material. Section 5 evaluates implications for

real-world Java code and Kotlin. Section 6 summarizes related work and Section 7 concludes.

2 BACKGROUND
Java’s unsoundness was discovered several years ago by Amin and Tate [2016]. Figure 1 shows an

example derived from theirs. This particular example is valid Java, but it’s worth noting that recent

versions of the Java compiler, javac, nonetheless reject it. However, Amin and Tate [2016] present
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a series of more complicated variations on this program, some of which the Java 17 compiler still

accepts. We will stick with the basic example to simplify the exposition and return to why the

compiler rejects the basic example—but not slight variations of it—later.

The program in figure 1 ends up typing the boxed 0 given in line 12 as both Integer and, once

returned as-is from the coerce function, as CharSequence. When executing this program (or rather,

one of the dressed-up versions javac accepts), it fails with a ClassCastException on line 12. But

that shouldn’t be possible! There are no explicit casts in this program, hence why this example

demonstrates Java’s unsoundness.

Before we dive into how this example—to Java’s chagrin—"works", we’ll briefly review the feature

this example critically relies on, Java’s wildcards. Wildcards and their challenges have been studied

extensively [Cameron et al. 2008; Smith and Cartwright 2008; Tate et al. 2011], so we’ll focus on

the features relevant for this paper here. We’ll also review existential types and how they relate to

wildcards, since we’ll use existential types throughout this paper.

2.1 Wildcards and Existential Types
Wildcards are Java’s way of encoding variance in parametric types. Java doesn’t consider List<Integer>
to be a subtype of List<Number>, because it treats type arguments as invariant by default. But

that’s inconvenient when wanting to write a function that iterates any list of numbers, for in-

stance. Enter wildcards: the type List<? extends Number> stands for some parametric type

List<...> where we additionally know that the elided type argument is a subtype of Number.
Thus, List<Integer>, List<Double>, and List<Number> are all considered subtypes of List<?
extends Number>, which therefore encodes covariance in the type argument.

Similarly, List<? super Number> stands for lists of some supertype of Number, encoding
contravariance, which is of course convenient when implementing a function that appends numbers

to a list, for instance.

This however presents new challenges. For one, the compiler has to keep in mind that two

expressions typed List<? extends Number> may represent different types even though they’re

syntactically the same. That is to say, each wildcard (?) that occurs in the program text must be

considered distinct from all others. Additionally, we want to pass our List<? extends Number>
to generic functions, such as sorted, that, when given a List<T>, return a list of the same type.

Java provides a mechanism called capture conversion [Gosling et al. 2021, ch. 5.1.10] that allows

invoking sorted with a List<? extends Number> and knowing that the returned list has the

same unknown type (allowing argument and result to be concatenated next, for instance). Capture

conversion for our purposesmeans that the Java typechecker internally allocates fresh type variables

for each wildcard being captured and then equates them with the type parameters of the method

being invoked. That allows (1) calling sorted in the first place and (2) knowing that the call’s

argument and result types are the same.

Wildcard types are typically seen as akin to existential types in the literature [Cameron et al.

2008]. For instance, in the 𝐹<:-like calculus presented by Pierce [2002, ch. 26.5], the covariant list

type from above would be written as something like ∃𝑋 <: Number.List⟨𝑋 ⟩. Unlike Java wildcards,
conventional existential types have explicit introduction and elimination forms, often called pack
and unpack, respectively. The former explicitly specifies awitness type to be abstracted. For instance,
we’d specify Integer as the witness type when packing a value of type List⟨Integer⟩ to the

existential type above. The elimination form, written something like unpack 𝑋, 𝑥 = . . . in . . ., gives
access to the wrapped value using 𝑥 and also allows referring to the witness type using the declared

type variable, 𝑋 , in its body.

Java wildcards, by contrast, have neither explicit introduction nor elimination forms. Instead,

wildcards are introduced implicitly through subtyping as alluded to above and eliminated implicitly
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through capture conversion. The latter as mentioned introduces fresh type variables, but unlike

in unpack expressions, the program text can’t refer to the type variables that result from Java’s

capture conversion.

Another difference to existential types in 𝐹<: as Pierce [2002] presents them is that Java wildcards

have both an upper bound and a lower bound. Very commonly, one or both of these bounds are

trivial, i.e., Object and ⊥ ("bottom"), respectively. For instance, the wildcard in List<? super
Number> has the (non-trivial) lower bound Number and the (trivial) upper bound Object, and
List<?> has both trivial upper and lower bounds.

It’s worth noting that Java wildcards with non-trivial lower bound, as the previous example,

cannot explicitly also declare an upper bound. But all wildcards implicitly inherit any upper bounds

declared on the type parameter they stand in for (called "implicit constraint" in Tate et al. [2011]).

For instance, if we assume that SortedSet’s type parameter is declared to have the upper bound

Comparable then the wildcard in SortedSet<? super Number> also has that upper bound, and

additionally the explicitly declared lower bound, Number.
In this last example, the explicit lower bound, Number, is a known subtype of the implicit upper

bound, Comparable. But it raises the question: can we encode wildcards in Java where the lower

bound isn’t apriori known to be subtype of the upper bound? Indeed this is possible, though

(because of various restrictions enforced in the Java compiler that we detail in Section 5.1) only if

the lower bound is a type variable. For instance, the type Constrain<? super X> in figure 1 (line

8) is such a type: the type variable, X, is not known to be a subtype of the wildcard’s implicit upper

bound, CharSequence (declared in line 2).

We will refer to such a wildcard as subtype-asserting: the wildcard establishes a subtype relation-

ship between its lower and upper bounds that is not otherwise known in the context where the

wildcard appears. Critically, capture conversion makes the asserted subtyping relationship available

during subsequent typechecking, by assuming appropriate constraints between the introduced fresh

type variables and their bounds. Assumably, Java allows this because subtype-asserting wildcards

can still stand in for valid types. In this example, String as well as CharSequence itself are such
types. As we will see, subtype-asserting wildcards are not unsound per se, but their presence is

necessary to run afoul of Java’s unsoundness.

2.2 Java’s Unsoundness
With these preliminaries in mind we can turn our attention to how the program in figure 1 is able

to trick the Java type system. As already discussed, the wildcard in line 8 implicitly claims a subtype

relationship between the method’s type parameter, X, and CharSequence. The clever use of a null
literal to initialize the wildcard type makes it possible for the code not to have to "prove" that X is

actually a subtype of CharSequence, since Java allows assigning null to any class type [Gosling

et al. 2021, ch. 4.10.2] (as do many programming languages).

The code on line 9 makes the illusion complete: Java performs capture conversion of the wildcard

type to call upcast. Doing so introduces a fresh type variable, let’s say, W, which, critically, is

assumed to be a supertype of X. Therefore, we can upcast coerce’s parameter x from its declared

type X to W to call upcast. But because W is also assumed to be a subtype of CharSequence as
discussed, upcast’s method body is now able to upcast the given value to CharSequence.

Note that the wildcard-typed variable, c, is never dereferenced, but its mere presence suffices to

confuse Java: calling coerce with an Integer object as in line 12 of figure 1 allows assigning the

given number to a CharSequence, which causes an unexpected ClassCastException at runtime.

Of course, if we called coerce with a String object, everything would be fine.

As mentioned, recent versions of javac would reject the program in figure 1. The reason is that

javac’s typechecking of wildcards is incomplete. Amin and Tate [2016] discuss this issue at length
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and provide variants of the basic example shown here that are accepted by recent versions of the

Java compiler. One of the examples [Amin and Tate 2016, fig. 3] is still accepted by the compiler

included in the latest LTS release of Java, Java 17, according to our manual experiments.
1

Potential solutions informally discussed in previous papers include:

(1) Amin and Tate [2016, sect. 7] themselves informally discuss several ideas. One concrete idea

they mention is to ban wildcards where both lower and (implicitly inherited) upper bounds

are non-trivial. This approach appears sound, as it in particular rules out subtype-asserting

wildcards as a special case (Section 5). However, the data presented in Section 5.1 shows that

this approach would unnecessarily break existing code with worrisome frequency.

(2) Nieto et al. [2020] indicate that they intend to address Scala’s unsoundness by relying on

the nullness type system for Scala they describe. They give no proof or further details of

any restrictions they intend to impose. While we believe a similar approach could be taken

for Java, it would clearly be a monumental effort to introduce sound nullness checking into

Java. Even leaving that aside, the details might matter. For instance, requiring non-null types

wherever wildcards are used would, based on our data, likely be quite disruptive in practice

(see Section 5.1). As we will see shortly, our approach not only doesn’t need nullness types

but is also technically more precise than using nullness types.

We’re not aware of previous soundness proofs for either approach. As we will discuss in more

detail, it appears that TameFJ (possibly "by accident") employs a more targeted variant of the

former approach—ruling out subtype-asserting wildcards specifically instead of all wildcards with

non-trivial upper and lower bounds—but TameFJ didn’t consider null [Cameron et al. 2008].

3 AVOIDING JAVA’S UNSOUNDNESS
In this section we give a high-level intuition for the solution proposed in this paper. The previously

proposed approaches discussed above make intuitive sense. But they don’t really seem to explain

what’s going wrong in Java’s type system, arguably treating symptoms instead of addressing the

root cause of the problem.

In this paper we argue that Java’s unsoundness is rooted in its subtyping rules. As alluded to in

the previous section, Java assigns null literals the non-denotable "null type", which Java defines

to be a subtype of all reference types [Gosling et al. 2021, ch. 4.10.2], including types containing

wildcards, making the "null type" synonymous to ⊥.
The key insight of this paper is that the "null type" shouldn’t automatically be thought of as a

direct subtype of types containing subtype-asserting wildcards. In other words, Java shouldn’t type

null as ⊥.
We arrive at this conclusion by likening wildcard types to existential types [Pierce 2002]. Specifi-

cally, we observe that in Java, introduction and elimination of wildcard types happen implicitly

through subtyping [Gosling et al. 2021, ch. 4.10.2]:

• Wildcards are introduced by wildcard type arguments "containing" the subtype’s type ar-

guments [Gosling et al. 2021, ch. 4.5.1]. For instance, Java considers List<Integer> to be

a subtype of List<? extends Number> transitively in two steps: first, ? extends Number
"contains" ? extends Integer by virtue of Integer being a subclass of Number. Second,
? extends Integer contains Integer because wildcards are defined to contain their own

bounds.

• Wildcards are eliminated by capture conversion [Gosling et al. 2021, ch. 5.1.10] as discussed

in the previous section.

1
We used Oracle’s jdk-17.0.1 release for Mac to test how javac handles prolematic inputs such as figure 1.
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These observations lead us to comparing Java’s subtyping rules to how existential types are

explicitly introduced and eliminated in traditional type theory. In particular, we would write

something like the following in a hypothetical calculus that enriches FGJ [Igarashi et al. 2001] with

an explicit introduction form for existential types [Pierce 2002, ch. 26.5]:

{∗Integer, new List⟨Integer⟩()} as ∃𝑋 <: Number.List⟨𝑋 ⟩

Here, we explicitly tell the typechecker that the desired existential type, ∃𝑋 <: Number.List⟨𝑋 ⟩,
"hides" the specified witness type, Integer. This gives the typechecker the opportunity to check

that the witness type satisfies the type variable’s specified bound. Here, the typechecker would

verify that Integer <: Number.
Java’s containment rules forwildcard type arguments can be thought of as an algorithm that, given

a parameterized type—such as List<Integer>—and a desired supertype that includes wildcards,

automatically makes sure there’s a witness type for each wildcard type argument in the supertype.

But by making the "null type" a subtype of any type, wildcards can essentially also be introduced

"through the back door", without making sure there are valid witness types.

Let’s consider the example from line 8 in figure 1 again, Constrain<? super X> c = null. If
we required a check that made sure there’s a witness type for ? super X, that check would fail,

because there is no witness type in scope that we could use. In particular, 𝑋 itself can’t be a witness:

given its declaration in coerce it doesn’t have the needed upper bound, CharSequence.
The "fix", then, is to make sure that wildcards are always properly introduced through subtyping,

even when assigning null. This makes sure that all wildcards have witnesses. With this fix,

Constrain<? super X> c = null in our example no longer type-checks, since as discussed above

there is no witness type we could use. In the next section we show that this "fix" can indeed achieve

soundness. We will revisit the examples from Amin and Tate [2016] with this calculus in figure 7.

It’s instructive to realize that with this approach, assigning null to types containing wildcards

is allowed where sound even if there are subtype-asserting wildcards. To see that, let’s consider a
slightly modified example where coerce declares the variable c as a second formal parameter,

Constrain<? super T> c, instead of a local variable. Java would (correctly) allow invoking

this modified method with coerce("foo", new Constrain<String>()) (and would reject new
Constrain<Integer>() outright because Integer isn’t a subtype of CharSequence and hence

not a valid type argument for Constrain). Now consider invocations where the second argument

is null (which Java as-is permits regardless of the type of the first argument for the same reasons

as before):

• coerce("foo", null) is fine, by the same reasoning as for coerce("foo", new Constrain<String>()).
Specifically, String is a valid witness for the parameter c’s wildcard type argument. More-

over, as we noted before, c is never dereferenced, so this code would execute without error,

and deservedly so.

• coerce(0, null) on the other hand is not fine, as it would result in the same ClassCastException
as before, and should therefore be rejected. Crucially, our approach does reject this invocation
by reasoning similar to where c was a local variable as in figure 1: there is no witness type

for c’s wildcard that is both a supertype of Integer and a subtype of CharSequence. Which

is of course the reason why the code in figure 1 demonstrates that Java is unsound in the

first place.

These examples have implications for systems with nullness types: nullable types containing
subtype-asserting wildcards can be sound! Meaning, proposals to fix Java’s unsoundness using

nullness types (similar to what’s being done to Scala, cf. Nieto et al. [2020]), even if limited to

subtype-asserting wildcards, would be unnecessarily conservative and rule out correct programs
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Table 1. Syntax

Parameterized classes N ::= 𝐶 ⟨𝑇 ⟩
Types S, T, U ::= 𝑋 | ∃Δ.𝑁
Lower bounds K, L ::= T | ⊥
Class declarations D ::= class 𝐶 ⟨𝑋 ◁ 𝑇 ⟩ ◁ 𝑁 {𝑇 𝑓 ; 𝑀}
Method declarations M ::= ⟨𝑋 ◁ 𝑇 ⟩ 𝑇 𝑚(𝑇 𝑥) = 𝑡
Terms s, t ::= x | null

| new 𝐶 ⟨𝑇 ⟩(𝑡)
| 𝑡 .𝑓

| 𝑡 .⟨𝑇 ⟩𝑚(𝑡)
| let 𝑥 : ∃Δ.𝑁 = 𝑡 in 𝑡
| 𝑡 ? : 𝑡

Values V ::= null | new 𝐶 ⟨𝑇 ⟩(𝑉 )
Type variable contexts Δ ::= 𝑋 : 𝐿..𝑇

Variable contexts Γ ::= 𝑥 : 𝑇

permitted by our approach. Simply put, the reason for this difference is that nullable types can be

null or non-null at runtime, while our approach focuses on restricting definitely-null values.

Thus, our approach not only doesn’t require a nullness type system—which we consider a key

advantage in itself—but is also strictly more precise than restricting which types can be nullable.

To summarize, Java is unsound because Java’s subtyping rules allow invalid wildcards to be

introduced, namely, wildcards without witnesses. In the remainder of this paper we show that the

issue is fixable by restricting the typing of null values. As we will see, it’s additionally necessary

for soundness to place restrictions on type arguments used in object instantiation and generic

method calls, to avoid problems stemming from null values typed using a type variable. Our data

suggests that these restrictions would have minimal impact on existing Java code: we only found a

single (false positive) violation of these restrictions in several hundred million lines of Java code,

despite use of subtype-asserting wildcards in the analyzed corpus (see Section 5.1).

4 FORMAL SYSTEM
In this section we formalize a calculus that adds Java-style existential types (with upper and lower

bounds) and null to FGJ [Igarashi et al. 2001] and prove it sound. While technically complex, due to

the combination of generics, existentials, and null, our typing rules are ultimately mostly standard

and mostly identical to the existing literature, except for the typing of null and type arguments in

object instantiations and generic method calls. Specifically, we require these types to be witnessed
(cf. figure 5), which formalizes types known to have a witness type.

4.1 Syntax
The abstract syntax of our system is given in table 1 and similar to TameFJ [Cameron et al. 2008]

and FGJ [Igarashi et al. 2001]. As usual, we abbreviate Java’s extends keyword to ◁. C ranges

over class names including the distinguished Object. f and g range over field names, and m over

method names. x, y, and z range over variable names including this, and X, Y, and Z range over

type variables. We write 𝑇 and similar for possibly-empty sequences 𝑇1, . . . ,𝑇𝑛 .

Metavariables S, T, and U range over types; K and L range over lower bounds, which can be

types or ⊥. Variable contexts Γ are standard, while type variable contexts Δ assign type variables a
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lower and an upper bound, written 𝑋 : 𝐿..𝑈 (which is comparable to the notation 𝑋 → [𝐿 𝑈 ] in
Cameron et al. [2008]). Class types are written ∃Δ.𝐶 ⟨𝑇 ⟩, which bind additional type variables in Δ
in 𝐶 ⟨𝑇 ⟩’s type arguments, 𝑇 . At times we’ll use 𝑁 to range over 𝐶 ⟨𝑇 ⟩ constructs. For notational
convenience we write all class types as existential types that bind a possibly-empty type variable

context. We will refer to existential types that bind a non-empty set of type variables as proper or
non-trivial existential types.
Metavariables s and t range over terms. Terms include variables x, the null literal, new con-

structions, field dereferences, and method calls. Method calls include a possibly-empty list of type

arguments to instantiate the method’s type parameters. Additionally, terms include a let construct
and Kotlin’s "Elvis" operator, written 𝑡1? : 𝑡2, which can be used to discriminate null values from
objects. For simplicity we don’t include other similar operators such as safe calls (often written

?.) or if-null-else-like constructs, but we believe they could be added without difficulty. Values V

include null as well as objects, i.e., new terms whose arguments are themselves values.

Our let 𝑥 : ∃Δ.𝑁 = 𝑡1 in 𝑡2 binds additional type variables Δ and a variable 𝑥 in 𝑡2 and is

therefore similar to unpack expressions in conventional formulations of existential types [Pierce

2002]. Note that ∃Δ.𝑁 is a user-written type that would appear in the surface language. This

construct makes explicit what the JLS calls "capture conversion" [Gosling et al. 2021, ch. 5.1.10]: the

binding of a wildcard type to fresh type variables. Unlike TameFJ, our calculus consequently doesn’t

need to include the notion of polymorphic method type arguments (written * in TameFJ) that

have to be inferred by the type system, and there’s also no need to unpack and capture existential

types on the fly. This not only simplifies the formalization but also isolates soundness concerns

stemming from wildcards to let bindings where 𝑡1 evaluates to null. Note we allow the bound

variable context Δ to be empty, which recovers conventional variable bindings: while they could be

encoded as in FGJ, they’re convenient to have around.

As in FGJ, programs in this calculus consist of a fixed class table—a list of class declarations
𝐷—and a "main" expression 𝑡 that is type-checked under empty variable context. Class and method

declarations are standard. We also require the conventional well-formedness conditions on the

class table, including that all class names 𝐶—except Object—are uniquely defined in the class table

and no class is transitively declared to extend itself.

We will use the notations [𝑡/𝑥] and [𝑇 /𝑋 ] for customary capture-avoiding substitution of

possibly-empty lists of terms and types, respectively. The following sections additionally rely on

the helper functions summarized in figure 2 that formalize field lookup, method type, and method

body lookup (leveraging type substitution) as in FGJ. For instance, mtype(𝑚,𝐶 ⟨𝑇 ⟩) either returns
𝑚’s type as declared in 𝐶 or forwards the lookup to 𝐶’s declared superclass. Either way, mtype
determines𝑚’s declared type variables and their upper bounds as well as method parameter and

return types that may refer to the declared type variables, with all types adjusted for the provided

type arguments 𝑇 by substituting them for 𝐶’s declared type variables.

4.2 Dynamic Semantics
Figure 3 summarizes the small-step evaluation judgment, 𝑡 ↦−→ 𝑡 ′. The Read and Invoke rules

are standard from FGJ [Igarashi et al. 2001], and the congruence rules formalize conventional

call-by-value semantics. Present and Absent give meaning to the "Elvis" operator by evaluating

𝑉 ? : 𝑡 to 𝑡 if 𝑉 = null and to 𝑉 otherwise.

Unpack is possibly the most interesting rule in our calculus. Given a let binding for existential

type ∃𝑋 : 𝐿..𝑈 .𝑁 whose first subterm is an object value, new𝑁 ′(𝑉 ), the rule "guesses" a substitution
𝑇 for the bound type variables𝑋 that satisfies the specified bounds as well as the subtyping condition

⊢ ∃.𝑁 ′ <: [𝑇 /𝑋 ]∃.𝑁 . Evaluation then continues by substituting the unpacked object as well as the

8
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M-Class

class 𝐶 ⟨𝑋 ◁ _⟩ ◁ 𝑁 {𝑆 𝑓 ; 𝑀} ⟨𝑌 ◁ 𝑈 ′⟩ 𝑈 𝑚(𝑈 𝑥) = 𝑡 ∈ 𝑀
mtype(𝑚,𝐶 ⟨𝑇 ⟩) = [𝑇 /𝑋 ]⟨𝑌 ◁ 𝑈 ′⟩𝑈 → 𝑈 mbody(𝑚⟨𝑇 ′⟩,𝐶 ⟨𝑇 ⟩) = 𝑥 .[𝑇 ′/𝑌 ] [𝑇 /𝑋 ]𝑡

M-Super

class 𝐶 ⟨𝑋 ◁ _⟩ ◁ 𝑁 {𝑆 𝑓 ; 𝑀} 𝑚 ∉ 𝑀

mtype(𝑚,𝐶 ⟨𝑇 ⟩) = mtype(𝑚, [𝑇 /𝑋 ]𝑁 ) mbody(𝑚⟨𝑇 ′⟩,𝐶 ⟨𝑇 ⟩) = mbody(𝑚⟨𝑇 ′⟩, [𝑇 /𝑋 ]𝑁 )

fields(Object⟨⟩) = ∅

F-Class

class 𝐶 ⟨𝑋 ◁ _⟩ ◁ 𝑁 {𝑆 𝑓 ; 𝑀} fields( [𝑇 /𝑋 ]𝑁 ) = 𝑈 𝑔

fields(𝐶 ⟨𝑇 ⟩) = 𝑈 𝑔, [𝑇 /𝑋 ]𝑆 𝑓

Fig. 2. Lookup Functions

Read

fields(𝑁 ) = 𝑇 𝑓
new 𝑁 (𝑉 ).𝑓𝑖 ↦−→ 𝑉𝑖

Present

new 𝑁 (𝑉 ) ? : 𝑡 ↦−→ new 𝑁 (𝑉 )
Absent

null ? : 𝑡 ↦−→ 𝑡

Invoke

mbody(𝑚⟨𝑇 ⟩, 𝑁 ) = 𝑥 .𝑡0
new 𝑁 (𝑉 ).⟨𝑇 ⟩𝑚(𝑉 ′) ↦−→ [𝑉 ′/𝑥, new 𝑁 (𝑉 )/this]𝑡0

Unpack

⊢ ∃.𝑁 ′ <: [𝑇 /𝑋 ]∃.𝑁
⊢ [𝑇 /𝑋 ]𝐿 <: 𝑇 ⊢ 𝑇 <: [𝑇 /𝑋 ]𝑈 ⊢ 𝑇 witnessed

let 𝑥 : ∃𝑋 : 𝐿..𝑈 .𝑁 = new 𝑁 ′(𝑉 ) in 𝑡2 ↦−→ [new 𝑁 ′(𝑉 )/𝑥] [𝑇 /𝑋 ]𝑡2

Stub

⊢ ∃.𝑁 ′ <: [𝑇 /𝑋 ]∃.𝑁
⊢ [𝑇 /𝑋 ]𝐿 <: 𝑇 ⊢ 𝑇 <: [𝑇 /𝑋 ]𝑈 ⊢ ∃.𝑁 ′,𝑇 witnessed

let 𝑥 : ∃𝑋 : 𝐿..𝑈 .𝑁 = null in 𝑡2 ↦−→ [null/𝑥] [𝑇 /𝑋 ]𝑡2

C-Field

𝑡 ↦−→ 𝑡 ′

𝑡 .𝑓 ↦−→ 𝑡 ′.𝑓

C-New

𝑡 ↦−→ 𝑡 ′

new 𝑁 (𝑉 , 𝑡, 𝑡) ↦−→ new 𝑁 (𝑉 , 𝑡 ′, 𝑡)

C-Receiver

𝑡 ↦−→ 𝑡 ′

𝑡 .⟨𝑇 ⟩𝑚(𝑡) ↦−→ 𝑡 ′.⟨𝑇 ⟩𝑚(𝑡)

C-Arg

𝑡 ↦−→ 𝑡 ′

𝑉 .⟨𝑇 ⟩𝑚(𝑉 , 𝑡, 𝑡) ↦−→ 𝑉 .⟨𝑇 ⟩𝑚(𝑉 , 𝑡 ′, 𝑡)

C-Let

𝑡 ↦−→ 𝑡 ′

let 𝑥 : 𝑇 = 𝑡 in 𝑡2 ↦−→ let 𝑥 : 𝑇 = 𝑡 ′ in 𝑡2

C-Elvis

𝑡 ↦−→ 𝑡 ′

𝑡 ? : 𝑡2 ↦−→ 𝑡 ′ ? : 𝑡2

Fig. 3. Evaluation Rules
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Err-Read

null.𝑓 err
Err-Invoke

null.⟨𝑇 ⟩𝑚(𝑉 ) err

Err-Field

𝑡 err

𝑡 .𝑓 err

Err-New

𝑡 err

new 𝑁 (𝑉 , 𝑡, 𝑡) err

Err-Receiver

𝑡 err

𝑡 .⟨𝑇 ⟩𝑚(𝑡) err

Err-Arg

𝑡 err

𝑉 .⟨𝑇 ⟩𝑚(𝑉 , 𝑡, 𝑡) err

Err-Let

𝑡 err

let 𝑥 : 𝑇 = 𝑡 in 𝑡2 err

Err-Elvis

𝑡 err

𝑡 ? : 𝑡2 err

Fig. 4. Null Pointer Errors

inferred types in the second subterm. Stub does the same thing given a null value. Unpack’s and

Stub’s premises are needed for the proof of preservation. The subtyping and witnessed judgments

can be found in figure 5 and will be discussed in the next section.

It’s useful to compare our Unpack rule to conventional formulations of existential types [Pierce

2002]. Those calculi include a pack operation that wraps a value, 𝑉 , and a witness type, 𝑈 , into
a new value that represents the packed existential, written {∗𝑈 ,𝑉 }. An unpack 𝑋, 𝑥 = 𝑡1 in 𝑡2
expression then unwraps the existential value by binding the witness type and the wrapped value

to the given variables 𝑋 and 𝑥 , respectively.

Our calculus, like Java, doesn’t include an explicit pack. Instead, non-trivial existential types are
introduced implicitly by the subtyping judgment. Java also implicitly eliminates wildcards using

capture conversion, but our calculus instead makes existential elimination explicit. And during

that existential elimination we now have to synthesize the witness type(s) that would normally

have been provided by the programmer using an explicit pack.
Note that our evaluation judgment doesn’t handle null pointer dereferences, i.e., null.𝑓 and

null.⟨𝑇 ⟩𝑚(. . .) expressions. Following Harper [2016] we instead define a judgment 𝑡 err that—
largely analogously to 𝑡 ↦−→ 𝑡 ′—in essence formalizes the occurrence of null pointer exceptions

(figure 4). We’ll use this judgment in the proof of progress.

Of course, this formulation is impractical: we wouldn’t want to synthesize witness types during

evaluation in a practical programming language. This calculus merely serves to study implicitly

packed existential types in the presence of null values while drawing analogies to conventional

existential types with explicit pack operations. We’ll return to this point when discussing progress

as well.

4.3 Type System
Rules for typechecking terms as well as class and method declarations are summarized in figure 6.

They rely on subtyping and well-formedness rules in figure 5.

The subtyping and well-formedness rules are for the most part adapted from Cameron et al.

[2008], with an important difference: While WF-Class requires that upper and lower bounds of the

existentially quantified type variables be well-formed as in TameFJ [Cameron et al. 2008], we do

not require that 𝐿 <: 𝑈 . Unpack and Stub do effectively require that property at runtime. However,

omitting the property fromWF-Class makes subtype-asserting wildcards expressible in our system.

That’s critical for our system’s expressiveness because subtype-asserting wildcards are not only

possible to specify with Java wildcards [Tate et al. 2011], but as discussed also lie at the heart of

Java’s unsoundness. We’ll return to this point shortly.

Note that even though ⊥ is not a type in our system, we "lift" the subtyping and well-formedness

judgments to include ⊥ so we can use them on lower bounds 𝐿 as well as types.

10
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S-Refl

Δ ⊢ 𝐿 <: 𝐿

S-Bot

Δ ⊢ ⊥ <: 𝐿

S-Trans

Δ ⊢ 𝐾 <: 𝐿′ Δ ⊢ 𝐿′ <: 𝐿
Δ ⊢ 𝐾 <: 𝐿

S-VarLeft

𝑋 : 𝐿..𝑈 ∈ Δ

Δ ⊢ 𝑋 <: 𝑈

S-VarRight

𝑋 : 𝐿..𝑈 ∈ Δ

Δ ⊢ 𝐿 <: 𝑋

S-Extends

class 𝐶 ⟨𝑋 ◁ 𝑈 ⟩ ◁ 𝑁 {. . .}
𝑋 ∩ dom(Δ,Δ′) = ∅

Δ ⊢ ∃Δ′.𝐶 ⟨𝑇 ⟩ <: ∃Δ′.[𝑇 /𝑋 ]𝑁

S-Exists

Δ,Δ′ ⊢ [𝑇 /𝑋 ]𝐿 <: 𝑇 Δ,Δ′ ⊢ 𝑇 <: [𝑇 /𝑋 ]𝑈
fv(𝑇 ) ⊆ dom(Δ,Δ′) dom(Δ′) ∩ fv(∃𝑋 : 𝐿..𝑈 .𝑁 ) = ∅

Δ ⊢ ∃Δ′.[𝑇 /𝑋 ]𝑁 <: ∃𝑋 : 𝐿..𝑈 .𝑁

WF-Bot

Δ ⊢ ⊥ ok

WF-Top

Δ, 𝑌 : 𝐿..𝑈 ⊢ 𝐿,𝑈 ok

Δ ⊢ ∃𝑌 : 𝐿..𝑈 .Object⟨⟩ ok

WF-Var

𝑋 : 𝐿..𝑈 ∈ Δ Δ ⊢ 𝐿,𝑈 ok

Δ ⊢ 𝑋 ok

WF-Class

Δ′ = 𝑌 : 𝐿..𝑈 Δ,Δ′ ⊢ 𝑇, 𝐿,𝑈 ok Δ,Δ′ ⊢ 𝑇 <: [𝑇 /𝑋 ]𝑈 ′ class 𝐶 ⟨𝑋 ◁ 𝑈 ′⟩ ◁ 𝑁 {. . .}
Δ ⊢ ∃Δ′.𝐶 ⟨𝑇 ⟩ ok

W-Var

Δ ⊢ 𝑋 ok

Δ ⊢ 𝑋 witnessed

W-Direct

Δ ⊢ ∃.𝐶 ⟨𝑇 ⟩ ok Δ ⊢ 𝑇 witnessed

Δ ⊢ ∃.𝐶 ⟨𝑇 ⟩ witnessed

W-Wildcard

Δ′ = 𝑌 : 𝐿..𝑈 ≠ ∅ Δ,Δ′ ⊢ 𝑇, 𝐿,𝑈 witnessed
Δ ⊢ ∃.𝑁 <: ∃Δ′.𝐶 ⟨𝑇 ⟩ Δ ⊢ ∃Δ′.𝐶 ⟨𝑇 ⟩ ok Δ ⊢ ∃.𝑁 witnessed

Δ ⊢ ∃Δ′.𝐶 ⟨𝑇 ⟩ witnessed

mtype(𝑚, 𝑁 ) = ⟨𝑌 ◁ 𝑈 ⟩𝑇 → 𝑇

override(𝑚, 𝑁, ⟨𝑌 ◁ 𝑈 ⟩𝑇 → 𝑇 )
mtype(𝑚, 𝑁 ) undefined

override(𝑚, 𝑁, ⟨𝑌 ◁ 𝑈 ⟩𝑇 → 𝑇 )

Fig. 5. Subtyping and Well-Formedness

Compared to the previous literature, our calculus includes an additional judgment, 𝑇 witnessed,
which in essence formalizes well-formed types known to have a witness type (see figure 5):

• W-Var postulates all type variables as witnessed. This will allow typing null using type

variables, which is commonly needed in generic data structures such as maps.

• W-Direct considers any trivially existential type ∃.𝐶 ⟨𝑇 ⟩ as witnessed as long as the type

parameters 𝑇 are witnessed.

• W-Wildcard admits proper existential types as witnessed if they (1) have witnessed type

arguments and type variable bounds and (2) have a witnessed, trivially existential subtype.

This judgment is stronger than and separate from the well-formedness judgment,𝑇 ok, so we can
apply it selectively, and specifically, so we can admit existential types encoding subtype-asserting

wildcards in WF-Class as mentioned above.

We’ll now discuss each typing rule in turn.

T-Null. We require null literals be typed with a witnessed type. This premise is a departure

from Java’s type system and—as innocuous as it may seem—ultimately allows proving soundness

11
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of our calculus. The JLS assigns null literals the non-denotable "null type" which it specifies to be a

subtype of all reference types (including types containing wildcard type arguments, [Gosling et al.

2021, ch. 4.10.2]). But we deliberately do not and cannot type null using ⊥: for one, that would
require ⊥ to be a type, i.e., its use not be limited to type variable bounds. While that introduces

unpleasant technical complications into 𝐹<:-like systems, they are surmountable [Pierce 2002, ch.

28.8]. The second reason though is that ⊥ is defined to be a subtype of any type, and specifically

also of existential types.

The key insight of this paper is that it is unsound to type null literals as ⊥ in a type system that

features subtype-asserting existential types, as ours (and Java) does. Limiting null to witnessed

types, as shown in T-Null, avoids this problem. Intuitively that’s because our rule forces that

existential types be properly introduced using S-Exists, instead of "through the backdoor" using

S-Bot. Note that null can still be typed with a type variable, as long as we take appropriate

precautions in T-New and T-Call as explained next.

T-Var, T-New, T-Field, and T-Call are similar to FGJ [Igarashi et al. 2001], except that we restrict

type arguments in T-New and T-Call to be witnessed. This restriction enables safely typing null
using type variables, as it makes sure that substituting type variables with provided type arguments

still results in witnessed types. By only restricting type arguments in T-New and T-Call, as opposed

to all types, we also allow most uses of subtype-asserting wildcards, e.g., in variable and field types,

in the vast corpus of Java code we analyzed (see Section 5.1).

A restriction like this is intuitively needed to prevent programs from introducing existential types

without witnesses in nested type arguments, e.g., in new ArrayList<Constrain<? super X>>().
That could be just as problematic as the type Constrain<? super X> from figure 1! Nonetheless,

this restriction causes the one false positive warning our approach raised in the Java corpus we

analyzed. Section 5.1 provides details about this false positive and discusses possible ways of further

relaxing the restriction.

Note that thanks to W-Wildcard, known-safe existential types such as ∃𝑋 : ⊥..Number.List⟨𝑋 ⟩
(the equivalent of List<? extends Number> in our calculus) that don’t encode subtype-asserting

wildcards are permitted as type arguments in T-New and T-Call.

T-Let. While elaborate, this rule mostly formalizes conventional unpacking of existential types

[Pierce 2002]. The somewhat unusual condition that all bound type variables are free in the unpacked

type is needed in the proof of preservation. It rules out examples such as ∃𝑋 .Object⟨⟩, where 𝑋
goes unused. This is not a limitation in practice: we simply ask that the user-written types in let
bindinds only define type variables that are used. Java wildcard types such as List<?>, where
existentially bound type variables are implicit, can always be encoded to satisfy this condition,

here, with ∃𝑋 : ⊥..Object.List⟨𝑋 ⟩.
Our approach to preventing free type variables from appearing in the let expression’s overall

type is to allow the second subterm’s type to be a subtype of the expression’s overall type, but require

the overall type to be well-formed without the type variables bound by let. This in particular allows
two important idioms: repacking the unpacked value as-is (by relying on S-Exists to re-introduce

the unpacked existential type) and subterms whose type is one of the bound type variables, which

can be abstracted to the type variable’s bound in the overall type.

T-Elvis. This rule types "Elvis" expressions in the obvious way, by requiring both subterms’

types to have a common supertype.

Finally, T-Class and T-Method check well-formedness of class and method declarations, respec-

tively, and are mostly standard from FGJ [Igarashi et al. 2001]. For reasons similar to T-New and

T-Call, the class’s declared supertype is required to be witnessed.

12
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T-Var

𝑥 : 𝑇 ∈ Γ

Δ|Γ ⊢ 𝑥 : 𝑇

T-Null

Δ ⊢ 𝑇 witnessed

Δ|Γ ⊢ null : 𝑇

T-New

Δ ⊢ ∃.𝐶 ⟨𝑇 ⟩ witnessed fields(𝐶 ⟨𝑇 ⟩) = 𝑈 𝑓 Δ|Γ ⊢ 𝑡 : 𝑆 Δ ⊢ 𝑆 <: 𝑈

Δ|Γ ⊢ new 𝐶 ⟨𝑇 ⟩(𝑡) : ∃.𝐶 ⟨𝑇 ⟩

T-Field

Δ|Γ ⊢ 𝑡 : 𝑇 Δ ⊢ 𝑇 <: ∃.𝑁 fields(𝑁 ) = 𝑇 𝑓
Δ|Γ ⊢ 𝑡 .𝑓𝑖 : 𝑇𝑖

T-Call

Δ ⊢ 𝑇 witnessed Δ|Γ ⊢ 𝑡 : 𝑇 Δ|Γ ⊢ 𝑡 : 𝑆 Δ ⊢ 𝑇 <: ∃.𝑁
mtype(𝑚, 𝑁 ) = ⟨𝑋 ◁ 𝑈 ′⟩𝑈 → 𝑈 Δ ⊢ 𝑆 <: [𝑇 /𝑋 ]𝑈 Δ ⊢ 𝑇 <: [𝑇 /𝑋 ]𝑈 ′

Δ|Γ ⊢ 𝑡 .⟨𝑇 ⟩𝑚(𝑡) : [𝑇 /𝑋 ]𝑈

T-Let

Δ|Γ ⊢ 𝑡1 : 𝑇1 Δ ⊢ 𝑇1 <: ∃Δ′.𝑁
Δ,Δ′ |Γ, 𝑥 : ∃.𝑁 ⊢ 𝑡2 : 𝑇2 Δ,Δ′ ⊢ 𝑇2 <: 𝑇 dom(Δ′) ⊆ fv(𝑁 ) Δ ⊢ 𝑇, ∃Δ′.𝑁 ok

Δ|Γ ⊢ let 𝑥 : ∃Δ′.𝑁 = 𝑡1 in 𝑡2 : 𝑇

T-Elvis

Δ|Γ ⊢ 𝑡1 : 𝑇1 Δ|Γ ⊢ 𝑡2 : 𝑇2 Δ ⊢ 𝑇1 <: 𝑇 Δ ⊢ 𝑇2 <: 𝑇
Δ|Γ ⊢ 𝑡1 ? : 𝑡2 : 𝑇

T-Method

dom(Δ) = 𝑋 Δ′ = 𝑌 : ⊥..𝑈 Δ,Δ′ ⊢ 𝑈 ,𝑇 ,𝑇 ok class 𝐶 ⟨𝑋 ◁ _⟩ ◁ 𝑁 {. . .}
Δ,Δ′ |𝑥 : 𝑇, this : ∃.𝐶 ⟨𝑋 ⟩ ⊢ 𝑡 : 𝑆 Δ,Δ′ ⊢ 𝑆 <: 𝑇 override(𝑚, 𝑁, ⟨𝑌 ◁ 𝑈 ⟩𝑇 → 𝑇 )

Δ ⊢ ⟨𝑌 ◁ 𝑈 ⟩𝑇 𝑚(𝑇 𝑥) = 𝑡 ok in 𝐶

T-Class

Δ = 𝑋 : ⊥..𝑈 Δ ⊢ 𝑈 ,𝑇 ok Δ ⊢ ∃.𝑁 witnessed Δ ⊢ 𝑀 ok in 𝐶

class 𝐶 ⟨𝑋 ◁ 𝑈 ⟩ ◁ 𝑁 {𝑇 𝑓 ; 𝑀} ok

Fig. 6. Typing Rules

4.4 Type Safety
We’re now ready to prove type safety using the familiar preservation and progress theorems. While

we can state preservation in the usual way, the progress theorem has to account for the possibility

of null pointer exceptions. We do so using the judgment 𝑡 err from figure 4, following Harper [2016,

ch. 6.3], instead of expecting "stuck" terms as was done to handle invalid casts in FGJ [Igarashi et al.

2001].
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Note that we could enrich our system to statically avoid the possibility of null pointer exceptions.

But in this paper we’re specifically intending to show that static nullness checking isn’t needed to

avoid the unsoundness discovered in Java.

Theorem 1 (Preservation). If ⊢ 𝑡 : 𝑇 and 𝑡 ↦−→ 𝑡 ′ then ⊢ 𝑡 ′ : 𝑇 ′ and ⊢ 𝑇 ′ <: 𝑇 for some 𝑇 ′.

Proof. By induction on 𝑡 ↦−→ 𝑡 ′, see appendix A. □

Theorem 2 (Progress). If ⊢ 𝑡 : 𝑇 then either (1) 𝑡 is a value or (2) 𝑡 err or (3) 𝑡 ↦−→ 𝑡 ′ for some 𝑡 ′.

Proof. By induction on ⊢ 𝑡 : 𝑇 , see appendix B. □

The proof of preservation is lengthy but mostly standard. Even Unpack and Stub are ultimately

straightforward to handle because their premises give us types that can be substituted safely.

Instead, the progress property is arguably the one in jeopardy, essentially because it needs to

come up with a suitable type substitution when wanting to appeal to Unpack or Stub.

We’re able to do so thanks to a lemma we call "witness lemma", which states that, given

⊢ ∃.𝑁 witnessed and ⊢ ∃.𝑁 <: ∃𝑌 : 𝐿′..𝑈 ′.𝑁 ′
, there exists a substitution 𝑇 such that ∃.𝑁 <:

[𝑇 /𝑌 ]∃.𝑁 ′
and ⊢ [𝑇 /𝑌 ]𝐿′ <: 𝑇 <: [𝑇 /𝑌 ]𝑈 ′

and ⊢ [𝑇 /𝑌 ]∃.𝑁 ′ witnessed. That is to say, if we have

a witnessed type that’s a subtype of an existential type then there exist types 𝑇 we can use to

substitute the free type variables in 𝑁 ′
and get another witnessed type. The lemma’s conclusions

then enable us to appeal to Unpack or Stub as needed to make progress, including making sure

that null’s substituted type remains witnessed.

At this point, the seemingly odd premise we use in T-Null comes into focus: it guarantees us

that even when unpacking null, we can appeal to the witness lemma.

The intuition behind proving the witness lemma is surprisingly simple: we can more or less read

the needed substitution off the subtyping judgment. Specifically, S-Exists establishes the existence

of such a substitution, and we then simply need to propagate it through other subtyping rules

and combine substitutions when encountering more uses of S-Exists. Of course, the subtyping

judgment still synthesizes the needed substitution in our calculus. A formalization and proof of the

witness lemma can be found as lemma 13 in appendix B.

Instead of having to "guess" witness types, an implementation of this system could store them

where null and object values are introduced, and then look them up when applying Stub and

Unpack, respectively. This would avoid the runtime overhead of synthesizing witness types in our

system to make progress. In Java, generic types including wildcards are of course erased at runtime

instead [Igarashi et al. 2001].

4.5 Java’s Unsoundness Revisited
It’s instructive to check that our system indeed rejects programs like the ones in Amin and Tate

[2016] that demonstrate Java’s unsoundness, not just to make sure our system rejects them, but

also to make sure they are rejected for the right reasons.

Figure 7 shows the simplest example from Amin and Tate [2016]—a generalized form of what

we saw in figure 1—written in our calculus, simplified by omitting trivial bounds and ∃.s. The
critical line is the let binding of null to the existential type ∃𝑊 : 𝑋 ..𝑌 .Constrain⟨𝑌,𝑊 ⟩ on line

6. Our type system statically rejects that binding. To see that, consider that we would need to derive

𝑋,𝑌 |𝑥 : 𝑋 ⊢ null : 𝑆 for some type 𝑆 such that

𝑋,𝑌 ⊢ 𝑆 <: ∃𝑊 : 𝑋 ..𝑌 .Constrain⟨𝑌,𝑊 ⟩ (1)

(per T-Let) and additionally 𝑋,𝑌 ⊢ 𝑆 witnessed (per T-Null). But there is no such type! Specifi-

cally, we can’t use the needed type, ∃𝑊 : 𝑋 ..𝑌 .Constrain⟨𝑌,𝑊 ⟩, because we can’t derive that it’s
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1 class Constrain <A, B ◁ A> {}

2 class UnsoundSpec {

3 <A, B ◁ A> A upcast(Constrain <A, B> constrain , B b) = b

4

5 <X, Y> Y coerce(X x) =

6 let c : ∃𝑊 : 𝑋 ..𝑌 . Constrain <Y, W> = null

7 in upcast(c, x)

8 }

Fig. 7. Unsound program after Amin and Tate [2016, fig. 4] that our calculus rejects

witnessed, and ∃.Constrain⟨𝑌,𝑋 ⟩ doesn’t satisfy Constrain’s second type parameter’s declared

bound—since we don’t know whether 𝑋 is a subtype of 𝑌—and is therefore ill-formed. Finally,

∃.Constrain⟨𝑌,𝑌 ⟩ isn’t a subtype of ∃𝑊 : 𝑋 ..𝑌 .Constrain⟨𝑌,𝑊 ⟩: the only subtype rule we could

apply is S-Exists, but appealing to S-Exists would require𝑋,𝑌 ⊢ 𝑋 <: 𝑌 and since that relationship

isn’t assumed we can’t derive it.

Let’s compare to how other systems would reason about equivalent programs.

Java 17 [Gosling et al. 2021]. As detailed by Amin and Tate [2016] and Section 2, programs

equivalent to figure 7 represent valid Java because Java effectively types null literals as ⊥. While

recent versions of javac reject this particular example because of the incompleteness of its type-

checking algorithm where wildcards are involved, the same versions of javac accept variations of

the problematic program [Amin and Tate 2016]. Thus, javac rejects some problematic programs,

but for the wrong reasons, and accepts others.

TameFJ [Cameron et al. 2008]. TameFJ doesn’t include null literals. But somewhat interestingly,

we believe even if enhanced with null, the system presented in Cameron et al. [2008] could

be proven sound, and would reject the equivalent of the program in figure 7. That’s because

in TameFJ, in order for existential types such as the one needed here to be well-formed, bound

type variables’ lower bounds are required to be known subtypes of their corresponding upper

bounds [Cameron et al. 2008, fig. 3]. But that is not the case with our needed existential type,

∃𝑊 : 𝑋 ..𝑌 .Constrain⟨𝑌,𝑊 ⟩, given the type environment 𝑋,𝑌 that defines 𝑋 and 𝑌 with only

trivial bounds.

While TameFJ therefore seems protected from Java’s unsoundness, these rules mean that exis-

tential types such as the above, i.e., existential types encoding subtype-asserting wildcards, simply

aren’t expressible. Our system does allow the introduction of existential types like this where they’re

backed by valid witnesses, while TameFJ would reject them outright as ill-formed. As we will see,

that makes TameFJ akin to Kotlin, whereas the JLS specifically allows subtype-asserting wildcards

by materializing them during capture conversion [Gosling et al. 2021, ch. 5.1.10].

Nullness types (e.g., [Fähndrich and Leino 2003; Papi et al. 2008]). Nullness-aware type systems,

such as Scala’s, could be used to rule out programs such as the one in figure 7, for instance

by requiring proper existential types be non-null. But similar to TameFJ, requiring potentially

"dangerous" existential types to be non-null arguably rejects the program in figure 7 for the wrong

reason: the existential type isn’t problematic per se as a nullable type; instead, the issue is that it

can be unsoundly introduced by considering null a subtype of any (nullable) type.

Conventional existential types in 𝐹<:, e.g., as presented in Pierce [2002], include a pack operation

that specifies a witness type for each existential variable. This witness type is then checked against

the type variable’s declared bounds. It seems plausible that such a system could be extended to

allow packing null values, and it would reject any such packing where the provided witness type
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doesn’t validate the existential type’s declared bounds. In other words, packing null values would

be rejected when the existential type being introduced doesn’t have a witness. Such a system would

therefore reject the program in figure 7, and would arguably do so for the right reasons. However,

in such a system, a packed existential is a different value than its contents, i.e., a packed null value

is not the same thing as null itself. It’s then fine to type null literals as ⊥ as long as unpacking

them fails with a null pointer exception, which it presumably would, since unpack would expect a

packed null value, not null itself.

Thus, languages that have an explicit introduction form ("pack") for existential types can type

null values as ⊥, but systems like ours—where existential types are introduced implicitly through

subtyping—cannot always soundly do so, simply because null values are indistinguishable from a

packed existential containing null. We speculate that this subtle difference is at least partially the

reason why the unsoundness discussed here made it into Java’s specification in the first place and

then remained undiscovered for over a decade.

5 WILDCARDS IN THEWILD
In this section we report a number of empirical results around wildcards, including statistics

gathered by analyzing several hundred million lines of Java code in Google’s monorepo. These

results support the following conclusions:

(1) Java’s unsoundness is of limited practical consequence: we didn’t find any code affected by it.

(2) Java developers could realistically use the static analysis we developed to keep their code

safe from Java’s unsoundness: we only found a single, easily fixed false positive in the vast

amount of Java code we analyzed.

(3) our statistics suggest that alternative fixes would more frequently unnecessarily break the

code we analyzed.

(4) Kotlin’s type system isn’t susceptible to the source of unsoundness plaguing Java.

5.1 Problematic Wildcards in Java Code
In the previous sections we showed that by limiting the typing of null literals to types guaranteed

to have a witness, we get a sound system, suggesting we can repair Java’s unsoundness.

The direct way of doing so following the formal system presented in the previous section would

be to modify the Java compiler’s typechecker to find witness types where required. But that is

inconvenient when wanting to analyze existing code, and finding witness types is non-trivial as

well.

Instead, to evaluate our approach on real-world Java code, we created a static analysis using the

Error-Prone framework
2
that plugs into javac and scans ASTs after typechecking is done to look

for problematic types "after the fact". Because Error-Prone is integrated into Google’s build system,

Bazel
3
, this enabled us to look for instances where Java code in Google’s vast internal monorepo

might run afoul of Java’s unsoundness.

To determine whether a given type is witnessed without synthesizing witness types, our analysis

leverages the following property that is straightforward to prove in our system:

Corollary 1. If Δ ⊢ 𝐿 <: 𝑈 and Δ ⊢ 𝐿,𝑈 witnessed and Δ ⊢ ∃𝑋 : 𝐿..𝑈 .𝐶 ⟨𝑇 ⟩ ok and Δ, 𝑋 : 𝐿..𝑈 ⊢
𝑇 witnessed then Δ ⊢ ∃𝑋 : 𝐿..𝑈 .𝐶 ⟨𝑇 ⟩ witnessed.

Proof. If 𝑋 = ∅ then the conclusion follows immediately from W-Direct. Otherwise, observe

that Δ ⊢ [𝑈 /𝑋 ]∃.𝐶 ⟨𝑇 ⟩ <: ∃𝑋 : 𝐿..𝑈 .𝐶 ⟨𝑇 ⟩ by S-Exists. Moreover, Δ ⊢ [𝑈 /𝑋 ]𝑇 witnessed by lemma

2
https://errorprone.info

3
https://bazel.build
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7 and Δ ⊢ [𝑈 /𝑋 ]∃.𝐶 ⟨𝑇 ⟩ ok by lemma 6, and thus Δ ⊢ [𝑈 /𝑋 ]∃.𝐶 ⟨𝑇 ⟩ witnessed by W-Direct. Now

the conclusion follows from lemma 2 and W-Wildcard. □

This means that any wildcard whose lower bound is known to be a subtype of its upper bound

(without assuming that relationship, as Java does during capture conversion) is guaranteed to

have a witness, namely the upper bound. Thus, to check whether a given type definitely has a

witness, it suffices to recursively check whether the type is free of subtype-asserting wildcards,

i.e., only contains wildcards whose lower bound is a known subtype of the respective wildcard’s

upper bound. While this approach is an incomplete (but sound per corollary 1) approximation, it

is sufficient for our purposes because the Java compiler already rules out most subtype-asserting

wildcards as we will discuss below.

Note that a wildcard can never be subtype-asserting if its lower bound is trivial (⊥). That means

we can limit ourselves to wildcards with explicit lower bounds, i.e., ? super wildcards, and then

compare the declared lower bound to any implicit upper bound. (Recall the upper bound is "implicit"

because it is inherited from the type parameter that the wildcard stands in for.)

Then, to find existing code that might suffer from Java’s unsoundness, it suffices to check

cases where our formal system requires witnessed types and making sure they don’t contain

subtype-asserting wildcards. Specifically, our static analysis checks the following for occurrences

of subtype-asserting wildcards:
4

• types that null literals are assigned to, and similar with other expressions of "null type",

such as parenthesized "(null)". This broadly covers null values flowing through the pro-

gram, including initialization and assignment (incl. mutation) of fields and variables, method

arguments, method returns, etc.

• type arguments𝑇 in expressions new𝐶 ⟨𝑇 ⟩(. . .) and 𝑡0 .⟨𝑇 ⟩𝑚(. . .), whether they are explicitly

provided in the program text or inferred by the compiler.

• type arguments 𝑇 in "extends" (and "implements") clauses, written . . . ◁ 𝐶 ⟨𝑇 ⟩{. . .} in our

formal system.

• types of non-final fields without initializer, since these fields implicitly start out as null
and may not be otherwise checked by any of the above. This is to account for Java’s field

initialization semantics.

Our static analysis recursively searches parameterized types for nested subtype-asserting wild-

cards, as stipulated by the witnessed judgment. We treat array types Foo[] like a parameterized

type Box<Foo>, i.e., we recursively look through array types as well.

We ran this analysis over a corpus of several hundred million lines of Java code, consisting

of about 20% open-source and 80% proprietary software, as archived in Google’s vast internal

monorepo. The proprietary portion included Java code written for Android as well as frontend

and backend server applications by thousands of Googlers over many years. The analyzed corpus

also included tens of millions of lines of open-source Java code stemming from hundreds of open-

source repositories, including repositories commonly used for corpus analysis in the literature,

such as PMD and various Apache projects. Some of the analyzed open-source repositories, such as

Guava, are being primarily maintained by Google, but many are not. (For comparison, our corpus’s

open-source portion alone was several times larger than the corpus considered in a previous

wildcard-related study [Tate et al. 2011, sect. 9].)

Our analysis found no assignment of null to a type containing a subtype-asserting wildcard in

the entire analyzed corpus. However, we found a (single) file containing a call to a generic method

4
Our static analysis is open-source as part of https://errorprone.info here: https://github.com/google/error-prone/blob/

master/core/src/main/java/com/google/errorprone/bugpatterns/nullness/UnsafeWildcard.java.
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Table 2. <? super ...> wildcard occurrences per 100 million lines of analyzed Java code (approximate). "Null
assignments" count assignments of null-typed expressions to a type containing a wildcard. "Any assignments"
count any assignments to such a type. "Inferred type arguments" count wildcards in generic class and method
type arguments that the compiler inferred, without appearing explicitly in source. Conversely, "declarations
in source" count wildcards that appear in source code. Row A only considers wildcards whose given lower
bound is not a known subtype of its implicit upper bound. Row B considers wildcards with given lower bound
and an implicit upper bound other than Object. Row C considers all <? super . . . > wildcards regardless
of their upper bound. The entry marked * represents a single file in the entire analyzed corpus.

Wildcards with non-trivial Null Inferred type Any Declarations

lower bounds (? super wildcards) . . . assignment arguments assignment in source

A . . . that are subtype-asserting None found <.5* 2 3

B . . . and non-trivial implicit upper bound 14 230 6,900 1,100

C . . . and any upper bound 230 1,300 740,000 11,000

1 import java.util.List;

2 import java.util.function.Function;

3 import java.util.stream .*;

4

5 public class GenericMethod {

6 public interface Marker {}

7 public interface Converter <T extends Marker > { List <?> convert(T input); }

8

9 public <T extends Marker > Function <? super T, List <?>>

10 transformerFor(Iterable <Converter <? super T>> cs) { return new Impl <T>(cs); }

11

12 // Error below can be avoided here with "class Impl <T extends Marker > ..."

13 private static class Impl <T> implements Function <T, List <?>> {

14 private final Iterable <Converter <? super T>> cs;

15 private Impl(Iterable <Converter <? super T>> cs) { this.cs = cs; }

16

17 @Override public List <?> apply(T input) {

18 // WARNING: inferred type argument Spliterator <Converter <? super T>>

19 // for flatMap () contains subtype -asserting wildcard

20 return StreamSupport.stream(cs.spliterator (), false)

21 .flatMap(c -> c.convert(input). stream ())

22 .collect(Collectors.toList ());

23 }

24 }

25 }

Fig. 8. Generic method call with potentially unsafe inferred type argument our analysis found (simplified).
The code as shown is sanitized and logically simplified from the (proprietary) original and inlines helper
declarations originally declared in separate files.

whose inferred type argument contained a nested subtype-asserting wildcard (see table 2). Figure 8

shows a simplified and sanitized, standalone version of the file, with the flagged generic method

call on line 20.
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As can be seen, this particular issue is easily fixed by adding the missing upper bound to the

inner class’s type parameter declaration in line 13. The so-modified code successfully compiles

because the same upper bound is already declared in line 9. With that modification, the code also

isn’t flagged by our analysis anymore.

Thus, even though this code comes quite close, it doesn’t run afoul of Java’s latent unsoundness.

Therefore, we conclude that none of the code we analyzed appears to be affected by Java’s unsound-
ness. This confirms at very large scale the prevailing belief that Java’s unsoundness is of minimal

practical significance.

However, that also arguably makes the warning our analysis raises in figure 8 a false positive. In

future work we plan to investigate ways of recognizing this code as safe as-is, e.g., by leveraging that

the private inner class in question is always instantiated with a suitably bounded type parameter

as mentioned above.

Even with the false positive discussed above, table 2 shows that our approach is substantially

more precise than potential other ways of detecting sources of unsoundness in existing Java code.

• As alluded to before, we could instead flag all wildcard declarations with non-trivial lower and

upper bounds, which Amin and Tate [2016, sect. 7] had suggested could be used to address

Java’s unsoundness. This would correspond to the last column of row B in table 2 (detailed

below), which shows that in the analyzed corpus, this approach would (unnecessarily) flag

roughly one out of every 90 thousand lines of code.

• We could alternatively seemingly only flag declarations of subtype-asserting wildcards, which

as discussed we understand TameFJ to effectively do [Cameron et al. 2008]. Per the last column

of row A in table 2, this would also trigger more frequently in the code we analyzed, though

only a handful of times per 100 million lines of code.

That suggests that these alternative approacheswouldmore commonly unnecessarily flag actually

safe code in practice.
5
For instance, TameFJ would consider all wildcard declarations counted in

the last column of row A as ill-formed.

To understand how the corpus of Java code we analyzed relates to other Java code, we note that

we only found a single subtype-asserting wildcard in the open-source portion of our corpus (namely,

the wildcard detailed in footnote 5), while we found such wildcards slightly more commonly in

proprietary code (see last column of row A in table 2). Given that such wildcard declarations are

necessary (though not sufficient) for triggering Java’s unsoundness, we conclude that the code we

analyzed overall appears to be representative of or more challenging than the large cross-section

of open-source Java we analyzed, and therefore likely other Java code, when it comes to Java’s

unsoundness specifically.

It’s instructive to ask why subtype-asserting wildcards are so rare in practice to begin with

(see row A in table 2). At least in part, this is due to the Java compiler already often enforcing

the rule we used, i.e., that a wildcard’s lower bound must be a known subtype of its upper bound.

For instance, when a wildcard’s lower bound is a concrete type, such as ? super String, then
the compiler—according to our manual experiments with javac 17—appears to make sure that

the concrete type is indeed a subtype of the bound declared for the type parameter the wildcard

corresponds to. If the lower bound is a type variable, ? super T, the compiler also performs

this check, but only if the referenced type variable is declared with a non-trivial upper bound (i.e.,

something other than Object). The only time the Java compiler allows subtype-asserting wildcards

5
One example of a subtype-asserting wildcard that our approach permits but would no longer compile if

subtype-asserting wildcards were forbidden outright in Java we found in the open-source project PMD here:

https://github.com/pmd/pmd/blob/05d5bead37e04690d4f5169898801a6b1ec6dd1e/pmd-core/src/main/java/net/

sourceforge/pmd/lang/ast/SignedNode.java#L24.
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is therefore when a type variable whose own upper bound is Object is used as the lower bound of

a wildcard that stands in for a type parameter with non-trivial upper bound, as is the case in figure

7. Additionally, as Amin and Tate [2016] discuss, the compiler’s incomplete handling of wildcards

sometimes leads it to reject even remaining cases, just not always. These circumstances are fortunate,

in a way, since they mean the Java compiler already makes it very unlikely to accidentally run afoul

of the existing unsoundness. Our simple additional rules therefore allow eliminating the problem

completely with seemingly marginal impact on existing code.

For comparison, we collected similar statistics to above while reducing precision in the wildcard

types we look for. That is, the remaining rows in table 2 show null assignments etc. for progressively

larger supersets of wildcards compared to row A. Specifically, row B includes lower-bounded

wildcards that have any non-trivial upper bounds, whether they are subtype-asserting or not.

As the table shows, such wildcards occur orders of magnitude more frequently in the corpus we

analyzed. Finally, row C shows all wildcards with non-trivial lower bound—whether they have

trivial or non-trivial upper bounds—for comparison. Again, these cases occur substantially more

frequently compared to the previous condition.

5.2 Implications for Kotlin
Kotlin

6
is a Java-like programming language that can execute on Java Virtual Machines. By support-

ing both declaration-site and use-site variance, Kotlin allows expressing types that are semantically

similar to Java wildcards [Tate 2013]. It is therefore reasonable to wonder whether Kotlin might

be susceptible to soundness issues similar to Java’s. The paper that reported Java’s and Scala’s

unsoundness is silent on this point [Amin and Tate 2016].

Based on the results in this paper, Kotlin appears to be protected from the unsoundness plaguing

Java. The reason we come to this conclusion is that Kotlin’s typechecker, which reportedly doesn’t

support "implicit constraints" [Tate 2013], appears to consider the equivalent of subtype-asserting

wildcards as ill-formed. Based on corollary 1 this trivially ensures that every wildcard-like type in

Kotlin has a witness. Moreover, null literals can always be assigned to types containing wildcards,

namely by typing null with the witness type we know must exist. In terms of our formal system,

Kotlin’s rule therefore guarantees null can always be typed, because T-Null’s premise always

holds (thanks to corollary 1), and that Stub can always make progress when evaluating a well-typed

expression, which in turn guarantees type safety.

In other words, Kotlin appears to be "correct by construction", by which we mean that unlike in

Java, null can be typed bottom (⊥) in Kotlin. We’ll note that TameFJ’s aforementioned restrictions

on well-formed existential types [Cameron et al. 2008] appear similar to Kotlin’s. However, Kotlin’s

mixed-site variance, which neither our formal system nor TameFJ directly capture, still warrants

further study, though Tate [2013] suggests that mixed-site variance can be encoded with Java-style

use-site variance.

We’ll point out that Kotlin’s type system is nullness-aware, but by forbidding subtype-asserting

wildcards, Kotlin appears protected from Java’s unsoundness thanks to corollary 1 and thus in a

manner orthogonal to Kotlin’s nullness checking.

6 RELATEDWORK
Amin and Tate [2016] demonstrate that Java and Scala are unsound with a series of examples. In

Java’s case they show that unsoundness can arise when null references are assigned to subtype-

asserting wildcards. Java wildcards have been extensively studied [Cameron et al. 2008; Smith and

6
https://kotlinlang.org/
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Cartwright 2008; Tate et al. 2011], and Kotlin’s mixed-site variance was specifically designed to

avoid many of the previously identified pitfalls [Tate 2013].

Amin and Tate [2016] informally discuss possible fixes for Java’s unsoundness that would restrict

allowable wildcard declarations, e.g., by forbidding wildcards with non-trivial lower bounds that

also inherit a non-trivial upper bound from the type parameter they stand in for. Nieto et al. [2020]

informally suggest that nullness types can be used to fix Scala’s unsoundness. To our knowledge,

this paper proposes a novel "fix" for Java that wasn’t previously considered: our approach is to

ensure the sound introduction of Java wildcards in all cases while allowing subtype-asserting

wildcards where they are safe. This is to our knowledge also the first paper to prove soundness (in

a core calculus) of a suggested fix for Java. As a corollary we’re able to show that the approach

Kotlin appears to employ—namely forbidding subtype-asserting wildcards—is also sound in our

calculus.

Tony Hoare famously described the null pointer as a "billion dollar mistake". Nullness types

have found their way into widely used programming languages in recent years, including C#, Dart,

Kotlin, Scala, Swift, and TypeScript. They’ve also long been the subject of academic research (e.g.,

[Chalin and James 2007; Fähndrich and Leino 2003; Papi et al. 2008]), not least as motivation for

studying sum and union types [Harper 2016]. Sound initialization of non-null fields in particular

has been the subject of extensive study [Fähndrich and Leino 2003; Fähndrich and Xia 2007; Liu

et al. 2020; Summers and Mueller 2011].

Scala is reportedly using nullness types to fix its unsoundness [Nieto et al. 2020]. By contrast,

this paper shows that Java’s unsoundness is avoidable without nullness types, and supports the

hypothesis that Kotlin likewise avoids unsoundness without reliance on its nullness type system

[Tate 2013].

Amin and Tate [2016] survey the extensive literature formalizing different subsets of Java, such

as Drossopoulou et al. [1999]; Flatt et al. [1998]; Igarashi et al. [2001]. Existing formalizations of Java

wildcards [Cameron et al. 2008; Torgersen et al. 2005] didn’t consider null nor subtype-asserting

wildcards (see Section 4.5). The formal system in this paper builds in particular on FGJ [Igarashi

et al. 2001] and TameFJ [Cameron et al. 2008] but includes null as well as existential types capable

of expressing subtype-asserting wildcards.

Tate et al. [2011] included an empirical analysis of Java wildcards in nearly 10 million lines of

open-source Java code. This paper includes an empirical analysis of wildcards in a much larger

corpus of Java code. Most of the empirical findings presented in this paper are novel and specific to

Java’s unsoundness, but some of the reported numbers are comparable to data Tate et al. [2011]

previously reported for their different corpus. In particular, the corpus analyzed for this paper

included (rare) subtype-asserting wildcards (cf. table 2, row A) where the (much smaller) corpus

from Tate et al. [2011] included none.

7 CONCLUSIONS
This paper shows that Java’s unsoundness [Amin and Tate 2016] is fixable with small tweaks to

Java’s typing rules to ensure that Java wildcards are never introduced without witness types, which

Java currently unsoundly permits when assigning null. We formalized this idea in a core calculus

and proved it sound. We also implemented our approach as a static analysis and used it to analyze

a corpus of several hundred million lines of Java code. Our analysis found no issues and a single

false positive in the code we analyzed, suggesting that our approach may be practical to adopt by

Java developers—and maybe even into Java—with minimal impact on existing code. Our formal

system also suggests that Kotlin doesn’t suffer from unsoundness similar to Java’s.
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A PROOF OF THEOREM 1 (PRESERVATION)
Lemma 1 (Permutation). Let Γ and Δ be variable and type contexts, respectively. Assume that Γ′

and Δ′ are permutations of Γ and Δ, respectively.
(1) If Δ ⊢ 𝐾 <: 𝐿 then Δ′ ⊢ 𝐾 <: 𝐿.
(2) If Δ ⊢ 𝐿 ok then Δ′ ⊢ 𝐿 ok.
(3) If Δ ⊢ 𝑇 witnessed then Δ′ ⊢ 𝑇 witnessed.
(4) If Δ|Γ ⊢ 𝑡 : 𝑇 then Δ′ |Γ′ ⊢ 𝑡 : 𝑇 .

Proof. Immediate from the rules, recalling that we assume the same variable name isn’t defined

twice in any context Γ or Δ. □

Lemma 2 (Weakening). Let Δ′ = 𝑋 : 𝐿..𝑈 and assume 𝑋 ∩ dom(Δ) = ∅ and 𝑥 ∉ dom(Γ).
(1) If Δ ⊢ 𝐾 <: 𝐿 then Δ,Δ′ ⊢ 𝐾 <: 𝐿.
(2) If Δ ⊢ 𝐿 ok then Δ,Δ′ ⊢ 𝐿 ok.
(3) If Δ ⊢ 𝑇 witnessed then Δ,Δ′ ⊢ 𝑇 witnessed.
(4) If Δ|Γ ⊢ 𝑡 : 𝑇 then Δ,Δ′ |Γ ⊢ 𝑡 : 𝑇 and Δ|Γ, 𝑥 : 𝑆 ⊢ 𝑡 : 𝑇 .

Proof. Part (1) by induction on the derivation of Δ ⊢ 𝐾 <: 𝐿.

Cases S-Refl and S-Bot are immediate.

Case S-Trans. We have Δ ⊢ 𝐾 <: 𝐿′ and Δ ⊢ 𝐿′ <: 𝐿. By i.h. (induction hypothesis) we get

Δ,Δ′ ⊢ 𝐾 <: 𝐿′ and Δ,Δ′ ⊢ 𝐿′ <: 𝐿. Then Δ,Δ′ ⊢ 𝐾 <: 𝐿 by S-Trans as desired.

Cases S-VarLeft and S-VarRight are immediate because the type variable has to be defined in

Δ and we assume that 𝑋 don’t overlap with Δ.
Case S-Extends. 𝐾 = ∃Δ′′.𝐶 ⟨𝑇 ′⟩ and 𝐿 = ∃Δ′′.[𝑇 ′/𝑌 ]𝑁 and class 𝐶 ⟨𝑌 ◁ 𝑈 ′⟩ ◁ 𝑁 {. . .} and

𝑌 ∩ dom(Δ,Δ′′) = ∅. Without loss of generality we may further assume that 𝑌 ∩ dom(Δ′) = ∅,
since type variables can be renamed as needed. Then the conclusion is immediate from S-Extends.

Case S-Exists immediate from i.h. and lemma 1.

Proof of part (2) by induction on the derivation of Δ ⊢ 𝐿 ok using part (1) and lemma 1.

Proof of part (3) by induction on the derivation of Δ ⊢ 𝑇 witnessed using parts (1-2) and lemma

1.

Proof of part (4) by induction on the derivation of Δ|Γ ⊢ 𝑡 : 𝑇 using parts (1-3) and lemma 1. □

Lemma 3. If Δ ⊢ 𝑇 witnessed then Δ ⊢ 𝑇 ok.

Proof. Immediate: all possible derivations of Δ ⊢ 𝑇 witnessed require Δ ⊢ 𝑇 ok. □

Lemma 4. If Δ ⊢ 𝐿 ok then fv(𝐿) ⊆ dom(Δ).

Proof. By induction on Δ ⊢ 𝐿 ok.
WF-Bot trivial: fv(⊥) = ∅.
WF-Top. 𝐿 = ∃𝑋 : 𝐿..𝑈 .Object⟨⟩ and Δ, 𝑋 : 𝐿..𝑈 ⊢ 𝐿,𝑈 ok. Without loss of generality we assume

that 𝑋 ∩ dom(Δ) = ∅. By i.h., fv(𝐿,𝑈 ) ⊆ dom(Δ) ∪𝑋 . Since fv(Object⟨⟩) = ∅ and 𝑋 are bound in

𝐿, fv(𝐿) ⊆ dom(Δ) as needed.
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WF-Var. 𝐿 = 𝑋 and 𝑋 : 𝐾..𝑈 ∈ Δ. Thus fv(𝐿) = {𝑋 } and 𝑋 ∈ dom(Δ) and the conclusion is

immediate.

WF-Class. 𝐿 = ∃𝑋 : 𝐿..𝑈 .𝐶 ⟨𝑇 ⟩ and Δ, 𝑋 : 𝐿..𝑈 ⊢ 𝑇, 𝐿,𝑈 ok. Without loss of generality we assume

that 𝑋 ∩ dom(Δ) = ∅. By i.h., fv(𝑇, 𝐿,𝑈 ) ⊆ dom(Δ) ∪ 𝑋 . Because fv(𝐶 ⟨𝑇 ⟩) = fv(𝑇 ) and 𝑋 are

bound in 𝐿, fv(𝐿) ⊆ dom(Δ) as needed. □

Lemma 5 (Type substitution preserves subtyping). If Δ1, 𝑋 : 𝐿..𝑈 ,Δ2 ⊢ 𝐾 <: 𝐿 and Δ1 ⊢
[𝑇 /𝑋 ]𝐿 <: 𝑇 and Δ1 ⊢ 𝑇 <: [𝑇 /𝑋 ]𝑈 and fv(𝑇 ) ⊆ dom(Δ1) and none of 𝑋 appear in Δ1 then
Δ1, [𝑇 /𝑋 ]Δ2 ⊢ [𝑇 /𝑋 ]𝐾 <: [𝑇 /𝑋 ]𝐿.

Proof. By induction on the derivation of Δ1, 𝑋 : 𝐿..𝑈 ,Δ2 ⊢ 𝐾 <: 𝐿.

Cases S-Refl and S-Bot are immediate.

Case S-Trans. We have Δ1, 𝑋 : 𝐿..𝑈 ,Δ2 ⊢ 𝐾 <: 𝐿′ and Δ1, 𝑋 : 𝐿..𝑈 ,Δ2 ⊢ 𝐿′ <: 𝐿. By i.h.,

Δ1, [𝑇 /𝑋 ]Δ2 ⊢ [𝑇 /𝑋 ]𝐾 <: [𝑇 /𝑋 ]𝐿′ and Δ1, [𝑇 /𝑋 ]Δ2 ⊢ [𝑇 /𝑋 ]𝐿′ <: [𝑇 /𝑋 ]𝐿. Then Δ1, [𝑇 /𝑋 ]Δ2 ⊢
[𝑇 /𝑋 ]𝐾 <: [𝑇 /𝑋 ]𝐿 follows by S-Trans.

Case S-VarLeft. We have 𝐾 = 𝑋 and 𝑋 : 𝐿𝑋 ..𝑈𝑋 ∈ Δ1, 𝑋 : 𝐿..𝑈 ,Δ2 and 𝐿 = 𝑈𝑋 .

• If 𝑋 ∈ dom(Δ1) then trivially Δ1, [𝑇 /𝑋 ]Δ2 ⊢ 𝑋 <: 𝑈𝑋 by S-VarLeft because 𝑋 aren’t free in

𝑈𝑋 and therefore 𝑋 and𝑈𝑋 are unaffected by the substitution.

• If 𝑋 ∈ dom(Δ2) then 𝑋 : [𝑇 /𝑋 ]𝐿𝑋 ..[𝑇 /𝑋 ]𝑈𝑋 ∈ [𝑇 /𝑋 ]Δ2 and [𝑇 /𝑋 ]Δ2 ⊢ [𝑇 /𝑋 ]𝑋 <:

[𝑇 /𝑋 ]𝑈𝑋 by S-VarLeft.

• Else 𝑋 = 𝑋𝑖 . By assumption, Δ1 ⊢ 𝑇𝑖 <: [𝑇 /𝑋 ]𝑈𝑖 . Since [𝑇 /𝑋 ]𝑋𝑖 = 𝑇𝑖 , by lemma 2, we get

Δ1, [𝑇 /𝑋 ]Δ2 ⊢ 𝑇𝑖 = [𝑇 /𝑋 ]𝑋𝑖 <: [𝑇 /𝑋 ]𝑈𝑖 as required.

Case S-VarRight is symmetric to S-VarLeft.

Case S-Extends. 𝐾 = ∃Δ′.𝐶 ⟨𝑇 ′⟩ and 𝐿 = ∃Δ′.[𝑇 ′/𝑌 ]𝑁 and class 𝐶 ⟨𝑌 ◁ 𝑈 ⟩ ◁ 𝑁 {. . .} and 𝑌 ∩
(𝑋∪dom(Δ1,Δ2,Δ

′)) = ∅. Without loss of generality wemay further assume that𝑋∩dom(Δ2,Δ
′) =

∅. Since dom( [𝑇 /𝑋 ] (Δ2,Δ
′)) = dom(Δ2,Δ

′) we know 𝑌 ∩ dom(Δ1, [𝑇 /𝑋 ] (Δ2,Δ
′)) = ∅.

LetΔ′′ = [𝑇 /𝑋 ]Δ′
. By T-Class and lemmas 3 and 4, fv(𝑁 ) ⊆ 𝑌 . Then [𝑇 /𝑋 ]𝐿 = ∃Δ′′.[[𝑇 /𝑋 ]𝑇 ′/𝑌 ]𝑁

and [𝑇 /𝑋 ]𝐾 = ∃Δ′′.𝐶 ⟨[𝑇 /𝑋 ]𝑇 ′⟩. Then the needed conclusion, Δ1, [𝑇 /𝑋 ]Δ2 ⊢ [𝑇 /𝑋 ]𝐾 <: [𝑇 /𝑋 ]𝐿,
follows by S-Extends.

Case S-Exists. Letting Δ = Δ1, 𝑋 : 𝐿..𝑈 ,Δ2, we have 𝐾 = ∃Δ′.[𝑇 ′/𝑌 ]𝑁 and 𝐿 = ∃𝑌 : 𝐿′..𝑈 ′.𝑁
and Δ,Δ′ ⊢ [𝑇 ′/𝑌 ]𝐿′ <: 𝑇 ′

and Δ,Δ′ ⊢ 𝑇 ′ <: [𝑇 ′/𝑌 ]𝑈 ′
and fv(𝑇 ′) ⊆ dom(Δ,Δ′) and dom(Δ′) ∩

fv(𝐿) = ∅. We can assume without loss of generality that 𝑋 , 𝑌 , and dom(Δ′) are pairwise disjoint.
By i.h., we get Δ1, [𝑇 /𝑋 ]Δ2, [𝑇 /𝑋 ]Δ′ ⊢ [𝑇 /𝑋 ] [𝑇 ′/𝑌 ]𝐿′ <: [𝑇 /𝑋 ]𝑇 ′

and Δ1, [𝑇 /𝑋 ]Δ2, [𝑇 /𝑋 ]Δ′ ⊢
[𝑇 /𝑋 ]𝑇 ′ <: [𝑇 /𝑋 ] [𝑇 ′/𝑌 ]𝑈 ′

. Sincewe assume fv(𝑇 ) ⊆ dom(Δ1), fv( [𝑇 /𝑋 ]𝑇 ′) ⊆ dom(Δ1, [𝑇 /𝑋 ]Δ2, [𝑇 /𝑋 ]Δ′)
and dom( [𝑇 /𝑋 ]Δ′) ∩ fv( [𝑇 /𝑋 ]𝐿) = ∅. Then, using that [𝑇 /𝑋 ] [𝑇 ′/𝑌 ]𝐿′ = [[𝑇 /𝑋 ]𝑇 ′/𝑌 ] [𝑇 /𝑋 ]𝐿′
for any 𝐿′, we can derive Δ1, [𝑇 /𝑋 ]Δ2 ⊢ [𝑇 /𝑋 ]∃Δ′.[𝑇 ′/𝑌 ]𝑁 <: [𝑇 /𝑋 ]∃𝑌 : 𝐿′..𝑈 ′.𝑁 by S-Exists

as required. □

Lemma 6 (Type substitution preserves well-formedness). If Δ1, 𝑋 : 𝐿..𝑈 ,Δ2 ⊢ 𝐿 ok and
Δ1 ⊢ [𝑇 /𝑋 ]𝐿 <: 𝑇 and Δ1 ⊢ 𝑇 <: [𝑇 /𝑋 ]𝑈 and Δ1 ⊢ 𝑇 ok and none of 𝑋 appear in Δ1 then
Δ1, [𝑇 /𝑋 ]Δ2 ⊢ [𝑇 /𝑋 ]𝐿 ok.

Proof. By induction on Δ ⊢ 𝐿 ok, letting Δ = Δ1, 𝑋 : 𝐿..𝑈 ,Δ2.

Case WF-Bot is immediate: type substitution has no effect.

Case WF-Var. We have 𝐿 = 𝑋 , 𝑋 : 𝐿𝑋 ..𝑈𝑋 ∈ Δ, and Δ ⊢ 𝐿𝑋 ,𝑈𝑋 ok.
By i.h., Δ1, [𝑇 /𝑋 ]Δ2 ⊢ [𝑇 /𝑋 ]𝐿𝑋 , [𝑇 /𝑋 ]𝑈𝑋 ok.
• If 𝑋 ∈ dom(Δ1) then 𝑋 , 𝐿𝑋 , and 𝑈𝑋 are unaffected by the substitution, and with the i.h.,

WF-Var gives the required Δ1, [𝑇 /𝑋 ]Δ2 ⊢ 𝑋 ok.
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• If 𝑋 ∈ dom(Δ2) then [𝑇 /𝑋 ]𝑋 = 𝑋 and 𝑋 : [𝑇 /𝑋 ]𝐿𝑋 ..[𝑇 /𝑋 ]𝑈𝑋 ∈ [𝑇 /𝑋 ]Δ2. With the i.h.,

WF-Var gives the required Δ1, [𝑇 /𝑋 ]Δ2 ⊢ [𝑇 /𝑋 ]𝑋 = 𝑋 ok.
• Else 𝑋 = 𝑋𝑖 and [𝑇 /𝑋 ]𝑋𝑖 = 𝑇𝑖 . By assumption we know that Δ1 ⊢ 𝑇𝑖 ok. Then lemma 2 gives

us Δ1, [𝑇 /𝑋 ]Δ2 ⊢ 𝑇𝑖 ok as required.

Case WF-Class. We have 𝐿 = ∃Δ′.𝐶 ⟨𝑇 ′⟩ and Δ′ = 𝑋 ′
: 𝐿′..𝑈 ′

and Δ,Δ′ ⊢ 𝑇 ′, 𝐿′,𝑈 ′ ok and

Δ,Δ′ ⊢ 𝑇 ′ <: [𝑇 ′/𝑌 ]𝑈 ′′
and class 𝐶 ⟨𝑌 ◁ 𝑈 ′′⟩ ◁ 𝑁 {. . .}.

By i.h., Δ1, [𝑇 /𝑋 ]Δ2, [𝑇 /𝑋 ]Δ′ ⊢ [𝑇 /𝑋 ]𝑇 ′, [𝑇 /𝑋 ]𝐿′, [𝑇 /𝑋 ]𝑈 ′ ok. Δ1 ⊢ 𝑇 ok implies fv(𝑇 ) ⊆
dom(Δ1) by lemma 4, and thus by lemma 5, Δ1, [𝑇 /𝑋 ]Δ2, [𝑇 /𝑋 ]Δ′ ⊢ [𝑇 /𝑋 ]𝑇 ′ <: [𝑇 /𝑋 ] [𝑇 ′/𝑌 ]𝑈 ′′

.

Without loss of generality we can assume that 𝑋 , 𝑋 ′
, and 𝑌 are disjoint. Moreover fv(𝑈 ′′) ⊆ 𝑌

per T-Class and lemma 4, and therefore [𝑇 /𝑋 ] [𝑇 ′/𝑌 ]𝑈 ′′ = [[𝑇 /𝑋 ]𝑇 ′/𝑌 ]𝑈 ′′
. Then Δ1, [𝑇 /𝑋 ]Δ2 ⊢

[𝑇 /𝑋 ]∃Δ′.𝐶 ⟨𝑇 ′⟩ ok by WF-Class as required.

Case WF-Top like the relevant part of case WF-Class is trivial by i.h. □

Lemma 7 (Type substitution preserves witnesses). If Δ1, 𝑋 : 𝐿..𝑈 ,Δ2 ⊢ 𝑇 witnessed and
Δ1 ⊢ [𝑇 /𝑋 ]𝐿 <: 𝑇 and Δ1 ⊢ 𝑇 <: [𝑇 /𝑋 ]𝑈 and Δ1 ⊢ 𝑇 witnessed and none of 𝑋 appear in Δ1 then
Δ1, [𝑇 /𝑋 ]Δ2 ⊢ [𝑇 /𝑋 ]𝑇 witnessed.

Proof. By induction on Δ ⊢ 𝑇 witnessed, letting Δ = Δ1, 𝑋 : 𝐿..𝑈 ,Δ2 and using that Δ1 ⊢ 𝑇 ok
by lemma 3 and fv(𝑇 ) ⊆ dom(Δ1) by lemma 4.

Case W-Var. 𝑇 = 𝑋 and Δ ⊢ 𝑋 ok.

• If 𝑋 = 𝑋𝑖 ∈ 𝑋 then [𝑇 /𝑋 ]𝑋𝑖 = 𝑇𝑖 . By assumption, Δ1 ⊢ 𝑇𝑖 witnessed and Δ1, [𝑇 /𝑋 ]Δ2 ⊢
𝑇𝑖 witnessed follows by lemma 2 as required.

• Else 𝑋 ∈ dom(Δ1,Δ2). By lemma 6, Δ1, [𝑇 /𝑋 ]Δ2 ⊢ [𝑇 /𝑋 ]𝑋 = 𝑋 ok and thus Δ1, [𝑇 /𝑋 ]Δ2 ⊢
[𝑇 /𝑋 ]𝑋 = 𝑋 witnessed by W-Var.

Case W-Direct. 𝑇 = ∃.𝐶 ⟨𝑆⟩ and Δ ⊢ 𝑇 ok and Δ ⊢ 𝑆 witnessed.
By i.h.,Δ1, [𝑇 /𝑋 ]Δ2 ⊢ [𝑇 /𝑋 ]𝑆 witnessed. By lemma 6,Δ1, [𝑇 /𝑋 ]Δ2 ⊢ [𝑇 /𝑋 ]𝑇 ok. ThenΔ1, [𝑇 /𝑋 ]Δ2 ⊢

[𝑇 /𝑋 ]𝑇 witnessed by W-Direct.

Case W-Wildcard. 𝑇 = ∃Δ′.𝐶 ⟨𝑆⟩ and Δ′ = 𝑌 : 𝐿′..𝑈 ′ ≠ ∅ and Δ ⊢ ∃.𝑁 <: 𝑇 and Δ ⊢ 𝑇 ok and
Δ ⊢ ∃.𝑁 witnessed and Δ,Δ′ ⊢ 𝑆, 𝐿′,𝑈 ′ witnessed.

By i.h., Δ1, [𝑇 /𝑋 ]Δ2 ⊢ [𝑇 /𝑋 ]∃.𝑁 witnessed and Δ1, [𝑇 /𝑋 ] (Δ2,Δ
′) ⊢ [𝑇 /𝑋 ] (𝑆, 𝐿′,𝑈 ′) witnessed.

By lemma 5, Δ1, [𝑇 /𝑋 ]Δ2 ⊢ [𝑇 /𝑋 ]∃.𝑁 <: [𝑇 /𝑋 ]𝑇 . By lemma 6, Δ1, [𝑇 /𝑋 ]Δ2 ⊢ [𝑇 /𝑋 ]𝑇 ok. Then
Δ1, [𝑇 /𝑋 ]Δ2 ⊢ [𝑇 /𝑋 ]𝑇 witnessed by W-Wildcard.

□

Lemma 8 (Type substitution preserves typing). If 𝑋 : 𝐿..𝑈 ,Δ2 |Γ ⊢ 𝑡 : 𝑇 and ⊢ [𝑇 /𝑋 ]𝐿 <: 𝑇

and ⊢ 𝑇 <: [𝑇 /𝑋 ]𝑈 and ⊢ 𝑇 witnessed then [𝑇 /𝑋 ]Δ2 | [𝑇 /𝑋 ]Γ ⊢ [𝑇 /𝑋 ]𝑡 : [𝑇 /𝑋 ]𝑇 .

Proof. By induction on the derivation of Δ|Γ ⊢ 𝑡 : 𝑇 , letting Δ = 𝑋 : 𝐿..𝑈 ,Δ2, and using that

⊢ 𝑇 ok by lemma 3 and fv(𝑇 ) = ∅ by lemma 4.

T-Var. We have 𝑡 = 𝑥 and 𝑥 : 𝑇 ∈ Γ. Then 𝑥 : [𝑇 /𝑋 ]𝑇 ∈ [𝑇 /𝑋 ]Γ and [𝑇 /𝑋 ]Δ2 | [𝑇 /𝑋 ]Γ ⊢
[𝑇 /𝑋 ]𝑥 = 𝑥 : [𝑇 /𝑋 ]𝑇 by T-Var.

Case T-Null. 𝑡 = null and Δ ⊢ 𝑇 witnessed. By lemma 7, [𝑇 /𝑋 ]Δ2 ⊢ [𝑇 /𝑋 ]𝑇 witnessed. Then
[𝑇 /𝑋 ]Δ2 | [𝑇 /𝑋 ]Γ ⊢ [𝑇 /𝑋 ]null = null : [𝑇 /𝑋 ]𝑇 by T-Null.

Case T-New. 𝑡 = new 𝑁 (𝑡), 𝑇 = ∃.𝑁 , Δ ⊢ ∃.𝑁 witnessed, fields(𝑁 ) = 𝑇 ′𝑓 , Δ|Γ ⊢ 𝑡 : 𝑆 , and
Δ ⊢ 𝑆 <: 𝑇 ′

.
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By i.h., [𝑇 /𝑋 ]Δ2 | [𝑇 /𝑋 ]Γ ⊢ [𝑇 /𝑋 ]𝑡 : [𝑇 /𝑋 ]𝑆 . By lemma 5, [𝑇 /𝑋 ]Δ2 ⊢ [𝑇 /𝑋 ]𝑆 <: [𝑇 /𝑋 ]𝑇 ′
. By

lemma 7, [𝑇 /𝑋 ]Δ2 ⊢ [𝑇 /𝑋 ]∃.𝑁 witnessed. Moreover, fields( [𝑇 /𝑋 ]𝑁 ) = [𝑇 /𝑋 ]𝑇 ′𝑓 by definition

of fields. Then, [𝑇 /𝑋 ]Δ2 | [𝑇 /𝑋 ]Γ ⊢ [𝑇 /𝑋 ]new 𝑁 (𝑡) : [𝑇 /𝑋 ]∃.𝑁 by T-New.

Case T-Field. We have 𝑡 = 𝑡0 .𝑓𝑖 , 𝑇 = 𝑆𝑖 , Δ|Γ ⊢ 𝑡0 : 𝑇0, Δ ⊢ 𝑇0 <: ∃.𝑁 , and fields(𝑁 ) = 𝑆 𝑓 . By
i.h., [𝑇 /𝑋 ]Δ2 | [𝑇 /𝑋 ]Γ ⊢ [𝑇 /𝑋 ]𝑡0 : [𝑇 /𝑋 ]𝑇0. By lemma 5, [𝑇 /𝑋 ]Δ2 ⊢ [𝑇 /𝑋 ]𝑇0 <: [𝑇 /𝑋 ]∃.𝑁 , and

fields( [𝑇 /𝑋 ]𝑁 ) = [𝑇 /𝑋 ]𝑆 𝑓 by definition of fields. Then [𝑇 /𝑋 ]Δ2 | [𝑇 /𝑋 ]Γ ⊢ [𝑇 /𝑋 ]𝑡0.𝑓𝑖 : [𝑇 /𝑋 ]𝑆𝑖
by T-Field as required.

Case T-Call. 𝑡 = 𝑡0 .⟨𝑇 ′⟩𝑚(𝑡) and Δ|Γ ⊢ 𝑇 ′ witnessed and Δ|Γ ⊢ 𝑡0 : 𝑇0 and Δ|Γ ⊢ 𝑡 : 𝑆 and Δ ⊢
𝑇0 <: ∃.𝑁 and mtype(𝑚, 𝑁 ) = ⟨𝑌 ◁ 𝑈 ′⟩𝑆 ′ → 𝑆 ′ and Δ ⊢ 𝑆 <: [𝑇 ′/𝑌 ]𝑆 ′ and Δ ⊢ 𝑇 ′ <: [𝑇 ′/𝑌 ]𝑈 ′

and finally 𝑇 = [𝑇 ′/𝑌 ]𝑆 ′. Without loss of generality we can assume 𝑋 and 𝑌 are disjoint.

By i.h., [𝑇 /𝑋 ]Δ2 | [𝑇 /𝑋 ]Γ ⊢ [𝑇 /𝑋 ]𝑡0 : [𝑇 /𝑋 ]𝑇0 and [𝑇 /𝑋 ]Δ2 | [𝑇 /𝑋 ]Γ ⊢ [𝑇 /𝑋 ]𝑡 : [𝑇 /𝑋 ]𝑆 . By
lemma 5, [𝑇 /𝑋 ]Δ2 ⊢ [𝑇 /𝑋 ]𝑇0 <: [𝑇 /𝑋 ]∃.𝑁 , and mtype( [𝑇 /𝑋 ]𝑁 ) = [𝑇 /𝑋 ] (⟨𝑌 ◁ 𝑈 ′⟩𝑆 ′ → 𝑆 ′) by
definition of mtype. Additionally, by lemma 7, [𝑇 /𝑋 ]Δ2 ⊢ [𝑇 /𝑋 ]𝑇 ′ witnessed, and by lemma 5,

[𝑇 /𝑋 ]Δ2 ⊢ [𝑇 /𝑋 ]𝑆 <: [𝑇 /𝑋 ] [𝑇 ′/𝑌 ]𝑆 ′ and [𝑇 /𝑋 ]Δ2 ⊢ [𝑇 /𝑋 ]𝑇 ′ <: [𝑇 /𝑋 ] [𝑇 ′/𝑌 ]𝑈 ′
.

Then [𝑇 /𝑋 ]Δ2 | [𝑇 /𝑋 ]Γ ⊢ [𝑇 /𝑋 ]𝑡0.⟨𝑇 ′⟩𝑚(𝑡) : [𝑇 /𝑋 ]𝑇 by T-Call as required.

Case T-Let. 𝑡 = let 𝑥 : ∃Δ′.𝑁 = 𝑡1 in 𝑡2 and Δ|Γ ⊢ 𝑡1 : 𝑇1 and Δ,Δ′ |Γ, 𝑥 : ∃.𝑁 ⊢ 𝑡2 : 𝑇2 and

Δ ⊢ 𝑇1 <: ∃Δ′.𝑁 and Δ,Δ′ ⊢ 𝑇2 <: 𝑇 and Δ ⊢ 𝑇, ∃Δ′.𝑁 ok and dom(Δ′) ⊆ fv(𝑁 ).
Without loss of generality we assume dom(Δ′) ∩ 𝑋 = ∅ and therefore dom(Δ′) ⊆ fv( [𝑇 /𝑋 ]𝑁 ).

By i.h., [𝑇 /𝑋 ]Δ2 | [𝑇 /𝑋 ]Γ ⊢ [𝑇 /𝑋 ]𝑡1 : [𝑇 /𝑋 ]𝑇1 and [𝑇 /𝑋 ]Δ2, [𝑇 /𝑋 ]Δ′ | [𝑇 /𝑋 ]Γ, 𝑥 : [𝑇 /𝑋 ]∃.𝑁 ⊢
[𝑇 /𝑋 ]𝑡2 : [𝑇 /𝑋 ]𝑇2.
Additionally, by lemma 6, [𝑇 /𝑋 ]Δ2 ⊢ [𝑇 /𝑋 ]𝑇 ok and [𝑇 /𝑋 ]Δ2 ⊢ [𝑇 /𝑋 ]∃Δ′.𝑁 ok, and by lemma

5, [𝑇 /𝑋 ]Δ2 ⊢ [𝑇 /𝑋 ]𝑇1 <: [𝑇 /𝑋 ]∃Δ′.𝑁 and [𝑇 /𝑋 ]Δ2, [𝑇 /𝑋 ]Δ′ ⊢ [𝑇 /𝑋 ]𝑇2 <: [𝑇 /𝑋 ]𝑇 . Then
[𝑇 /𝑋 ]Δ2 | [𝑇 /𝑋 ]Γ ⊢ [𝑇 /𝑋 ]𝑡 : [𝑇 /𝑋 ]𝑇 by T-Let as required.

Case T-Elvis. 𝑡 = 𝑡1 ? : 𝑡2 and Δ|Γ ⊢ 𝑡1 : 𝑇1, Δ|Γ ⊢ 𝑡2 : 𝑇2 and Δ ⊢ 𝑇1 <: 𝑇 and Δ ⊢ 𝑇2 <: 𝑇 .
By i.h., [𝑇 /𝑋 ]Δ2 | [𝑇 /𝑋 ]Γ ⊢ [𝑇 /𝑋 ]𝑡1 : [𝑇 /𝑋 ]𝑇1 and [𝑇 /𝑋 ]Δ2 | [𝑇 /𝑋 ]Γ ⊢ [𝑇 /𝑋 ]𝑡2 : [𝑇 /𝑋 ]𝑇2. By

lemma 5, [𝑇 /𝑋 ]Δ2 ⊢ [𝑇 /𝑋 ]𝑇1 <: [𝑇 /𝑋 ]𝑇 and [𝑇 /𝑋 ]Δ2 ⊢ [𝑇 /𝑋 ]𝑇2 <: [𝑇 /𝑋 ]𝑇 .
Then [𝑇 /𝑋 ]Δ2 | [𝑇 /𝑋 ]Γ ⊢ [𝑇 /𝑋 ]𝑡1 ? : 𝑡2 : [𝑇 /𝑋 ]𝑇 by T-Elvis as required. □

Lemma 9 (Term substitution preserves typing). If Δ|𝑥 : 𝑇, Γ2 ⊢ 𝑡 : 𝑇 and Δ|∅ ⊢ 𝑡 : 𝑆 where
Δ ⊢ 𝑆 <: 𝑇 then Δ|Γ2 ⊢ [𝑡/𝑥]𝑡 : 𝑆 for some 𝑆 such that Δ ⊢ 𝑆 <: 𝑇 .

Proof. By induction on the derivation of Δ|Γ ⊢ 𝑡 : 𝑇 letting Γ = 𝑥 : 𝑇, Γ2.
Case T-Var. 𝑡 = 𝑥 and 𝑥 : 𝑇 ∈ Γ.

• If 𝑥 ∈ dom(Γ2) then [𝑡/𝑥]𝑥 = 𝑥 and therefore Δ|Γ2 ⊢ [𝑡/𝑥]𝑥 : 𝑇 by T-Var. Letting 𝑆 = 𝑇

finishes the case since then Δ ⊢ 𝑆 <: 𝑇 by S-Refl.

• Otherwise, 𝑥 = 𝑥𝑖 and thus 𝑇 = 𝑇𝑖 . Letting 𝑆 = 𝑆𝑖 finishes the case, since we’re in particular

assuming that Δ ⊢ 𝑆𝑖 <: 𝑇𝑖 .
Case T-Null. 𝑡 = null and Δ ⊢ 𝑇 witnessed. Since [𝑡/𝑥]null = null, Δ|Γ2 ⊢ [𝑡/𝑥]null : 𝑇 by

T-Null and letting 𝑆 = 𝑇 finishes the case.

Case T-New. 𝑡 = new 𝑁 (𝑠), 𝑇 = ∃.𝑁 , Δ ⊢ ∃.𝑁 witnessed, fields(𝑁 ) = 𝑈 𝑓 , Δ|Γ ⊢ 𝑠 : 𝑇 ′
, and

Δ ⊢ 𝑇 ′ <: 𝑈 .

By i.h., Δ|Γ2 ⊢ [𝑡/𝑥]𝑠 : 𝑆 ′ with Δ ⊢ 𝑆 ′ <: 𝑇 ′
. Then Δ ⊢ 𝑆 ′ <: 𝑈 by S-Trans and Δ|Γ2 ⊢

[𝑡/𝑥]new 𝑁 (𝑠) : ∃.𝑁 by T-New. Letting 𝑆 = ∃.𝑁 = 𝑇 finishes the case.

Case T-Field. We have 𝑡 = 𝑡0 .𝑓𝑖 , 𝑇 = 𝑈𝑖 , Δ|Γ ⊢ 𝑡0 : 𝑇0, Δ ⊢ 𝑇0 <: ∃.𝑁 , and fields(𝑁 ) = 𝑈 𝑓 . By i.h.,

Δ|Γ2 ⊢ [𝑡/𝑥]𝑡0 : 𝑆0 with Δ ⊢ 𝑆0 <: 𝑇0. By S-Trans, Δ ⊢ 𝑆0 <: ∃.𝑁 , Then Δ|Γ2 ⊢ [𝑡/𝑥]𝑡0.𝑓𝑖 : 𝑈𝑖 by

T-Field and letting 𝑆 = 𝑈𝑖 = 𝑇 finishes the case.
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Case T-Call. 𝑡 = 𝑡0.⟨𝑇 ′⟩𝑚(𝑠) and Δ|Γ ⊢ 𝑇 ′ witnessed and Δ|Γ ⊢ 𝑡0 : 𝑇0 and Δ|Γ ⊢ 𝑠 : 𝑇 ′′
and Δ ⊢

𝑇0 <: ∃.𝑁 and mtype(𝑚, 𝑁 ) = ⟨𝑌 ◁ 𝑈 ′⟩𝑆 ′ → 𝑆 ′ and Δ ⊢ 𝑇 ′′ <: [𝑇 ′/𝑌 ]𝑆 ′ and Δ ⊢ 𝑇 ′ <: [𝑇 ′/𝑌 ]𝑈 ′

and finally 𝑇 = [𝑇 ′/𝑌 ]𝑆 ′.
By i.h., Δ|Γ2 ⊢ [𝑡/𝑥]𝑡0 : 𝑆0 with Δ ⊢ 𝑆0 <: 𝑇0 and Δ|Γ2 ⊢ [𝑡/𝑥]𝑠 : 𝑆 ′′ with Δ ⊢ 𝑆 ′′ <: 𝑇 ′′

. By

S-Trans, Δ ⊢ 𝑆0 <: ∃.𝑁 and Δ ⊢ 𝑆 ′′ <: [𝑇 ′/𝑌 ]𝑆 ′. Then Δ|Γ2 ⊢ [𝑡/𝑥]𝑡0.⟨𝑇 ′⟩𝑚(𝑠) : [𝑇 ′/𝑌 ]𝑆 ′ by
T-Call and letting 𝑆 = [𝑇 ′/𝑌 ]𝑆 ′ = 𝑇 finishes the case.

Case T-Let. 𝑡 = let 𝑥 : ∃Δ′.𝑁 = 𝑠1 in 𝑠2 and Δ|Γ ⊢ 𝑠1 : 𝑆1 and Δ,Δ′ |Γ, 𝑥 : ∃.𝑁 ⊢ 𝑠2 : 𝑆2 and

Δ ⊢ 𝑆1 <: ∃Δ′.𝑁 and Δ,Δ′ ⊢ 𝑆2 <: 𝑇 and Δ ⊢ 𝑇, ∃Δ′.𝑁 ok and dom(Δ′) ⊆ fv(𝑁 ). Without loss of

generality we assume that 𝑥 ∉ 𝑥 .

By i.h., Δ|Γ2 ⊢ [𝑡/𝑥]𝑠1 : 𝑆 ′
1
with Δ ⊢ 𝑆 ′

1
<: 𝑆1 and Δ,Δ′ |Γ2, 𝑥 : ∃.𝑁 ⊢ [𝑡/𝑥]𝑠2 : 𝑆 ′

2
with

Δ,Δ′ ⊢ 𝑆 ′
2
<: 𝑆2. By S-Trans, Δ ⊢ 𝑆 ′

1
<: ∃Δ′.𝑁 and Δ,Δ′ ⊢ 𝑆 ′

2
<: 𝑇 . Then Δ|Γ ⊢ [𝑡/𝑥]𝑡 : 𝑇 by T-Let

and letting 𝑆 = 𝑇 finishes the case.

Case T-Elvis. 𝑡 = 𝑠1 ? : 𝑠2 and Δ|Γ ⊢ 𝑠1 : 𝑆1 and Δ|Γ ⊢ 𝑠2 : 𝑆2 and Δ ⊢ 𝑆1 <: 𝑇 and Δ ⊢ 𝑆2 <: 𝑇 .
By i.h., Δ|Γ2 ⊢ [𝑡/𝑥]𝑠1 : 𝑆 ′1 with Δ ⊢ 𝑆 ′

1
<: 𝑆1 and Δ|Γ2 ⊢ [𝑡/𝑥]𝑠2 : 𝑆 ′2 with Δ ⊢ 𝑆 ′

2
<: 𝑆2.

Then Δ ⊢ 𝑆 ′
1
<: 𝑇 and Δ ⊢ 𝑆 ′

2
<: 𝑇 follow by S-Trans. Finally, Δ|Γ2 ⊢ [𝑡/𝑥]𝑠1 ? : 𝑠2 : 𝑇 , and letting

𝑆 = 𝑇 finishes the case.

□

Lemma 10. If mtype(𝑚,𝐶 ⟨𝑇 ⟩) = ⟨𝑌 ◁ 𝑈 ′⟩𝑈 → 𝑈 and mbody(𝑚⟨𝑇 ′⟩,𝐶 ⟨𝑇 ⟩) = 𝑥 .𝑡 where ⊢
∃.𝐶 ⟨𝑇 ⟩,𝑇 ′ witnessed and ⊢ 𝑇 ′ <: [𝑇 ′/𝑌 ]𝑈 ′, then there exist 𝑁 and𝑇 such that ∅|𝑥 : [𝑇 ′/𝑌 ]𝑈 , this :

∃.𝑁 ⊢ 𝑡 : 𝑇 and ⊢ ∃.𝐶 ⟨𝑇 ⟩ <: ∃.𝑁 and ⊢ 𝑇 <: [𝑇 ′/𝑌 ]𝑈 and ⊢ ∃.𝑁 witnessed.

Proof. By induction on the derivation of mbody(𝑚⟨𝑇 ′⟩,𝐶 ⟨𝑇 ⟩) = 𝑥 .𝑡 .
Case M-Class. class 𝐶 ⟨𝑋 ◁ 𝑈 ′′′⟩ ◁ 𝑁 ′{. . . 𝑀} and ⟨𝑌 ◁ 𝑈 ′′′′⟩𝑆 𝑚(𝑆 𝑥) = 𝑡0 ∈ 𝑀 and 𝑡 =

[𝑇 ′/𝑌 ] [𝑇 /𝑋 ]𝑡0. Without loss of generality we assume 𝑋 and 𝑌 are disjoint.

Let Δ = 𝑋 : ⊥..𝑈 ′′′, 𝑌 : ⊥..𝑈 ′′′′
and Γ = 𝑥 : 𝑆, this : ∃.𝐶 ⟨𝑋 ⟩. By T-Class and T-Method,

Δ|Γ ⊢ 𝑡0 : 𝑆0 and Δ ⊢ 𝑆0 <: 𝑆 . Since ⊢ ∃.𝐶 ⟨𝑇 ⟩ witnessed, we know ⊢ ∃.𝐶 ⟨𝑇 ⟩ ok and ⊢ 𝑇 witnessed
by W-Direct and ⊢ 𝑇 <: [𝑇 /𝑋 ]𝑈 ′′′

by WF-Class. By lemmas 3 and 4, fv(𝑇,𝑇 ′) = ∅, and by S-Bot,

⊢ ⊥ <: 𝑇,𝑇 ′
.

Then by lemmas 5 and 8, respectively, using that [𝑇 /𝑋 ]∃.𝐶 ⟨𝑋 ⟩ = ∃.𝐶 ⟨𝑇 ⟩:

[𝑇 /𝑋 ]𝑌 : ⊥..𝑈 ′′′′ ⊢ [𝑇 /𝑋 ]𝑆0 <: [𝑇 /𝑋 ]𝑆

[𝑇 /𝑋 ]𝑌 : ⊥..𝑈 ′′′′ |𝑥 : [𝑇 /𝑋 ]𝑆, this : ∃.𝐶 ⟨𝑇 ⟩ ⊢ [𝑇 /𝑋 ]𝑡0 : [𝑇 /𝑋 ]𝑆0
By M-Class,𝑈 ′ = [𝑇 /𝑋 ]𝑈 ′′′′

,𝑈 = [𝑇 /𝑋 ]𝑆 , and𝑈 = [𝑇 /𝑋 ]𝑆 . Additionally, fv(𝑇,𝑇 ′) = ∅ means

that [𝑇 ′/𝑌 ]𝑇 = 𝑇 . By using lemmas 5 and 8 again and applying the above simplifications we get:

⊢ [𝑇 ′/𝑌 ] [𝑇 /𝑋 ]𝑆0 <: [𝑇 ′/𝑌 ]𝑈

∅|𝑥 : [𝑇 ′/𝑌 ]𝑈 , this : ∃.𝐶 ⟨𝑇 ⟩ ⊢ 𝑡 : [𝑇 ′/𝑌 ] [𝑇 /𝑋 ]𝑆0
Since ⊢ ∃.𝐶 ⟨𝑇 ⟩ <: ∃.𝐶 ⟨𝑇 ⟩ by S-Refl, letting 𝑁 = 𝐶 ⟨𝑇 ⟩ and𝑇 = [𝑇 ′/𝑌 ] [𝑇 /𝑋 ]𝑆0 finishes the case.
CaseM-Super. class𝐶 ⟨𝑋 ◁ _⟩ ◁ 𝑁 ′{. . . 𝑀},𝑚 ∉ 𝑀 , andmbody(𝑚⟨𝑇 ′⟩,𝐶 ⟨𝑇 ⟩) = mbody(𝑚⟨𝑇 ′⟩, [𝑇 /𝑋 ]𝑁 ′).
By M-Super,mtype(𝑚,𝐶 ⟨𝑇 ⟩) = mtype(𝑚, [𝑇 /𝑋 ]𝑁 ′). By i.h., there exist 𝑁 and𝑇 such that ∅|𝑥 :

[𝑇 ′/𝑌 ]𝑈 , this : ∃.𝑁 ⊢ 𝑡 : 𝑇 and ⊢ [𝑇 /𝑋 ]∃.𝑁 ′ <: ∃.𝑁 and ⊢ 𝑇 <: [𝑇 ′/𝑌 ]𝑈 and ⊢ ∃.𝑁 witnessed.
Since ⊢ ∃.𝐶 ⟨𝑇 ⟩ <: [𝑇 /𝑋 ]∃.𝑁 ′

by S-Extends, we get ⊢ ∃.𝐶 ⟨𝑇 ⟩ <: ∃.𝑁 by S-Trans.

□

Lemma 11. If ⊢ ∃.𝑁 ′ <: ∃.𝑁 and fields(𝑁 ) = 𝑇 𝑓 then fields(𝑁 ′) = 𝑇 𝑓 ,𝑈𝑔.
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Proof. We prove the following more general property by induction on ⊢ ∃𝑌 : 𝐿′..𝑈 ′.𝑁 ′ <:

∃𝑋 : 𝐿..𝑈 .𝑁 : If ⊢ ∃𝑌 : 𝐿′..𝑈 ′.𝑁 ′ <: ∃𝑋 : 𝐿..𝑈 .𝑁 and fields(𝑁 ) = 𝑆 𝑓 then there exist 𝑇 such that
fv(𝑇 ) ⊆ 𝑌 and fields(𝑁 ′) = [𝑇 /𝑋 ]𝑆 𝑓 , 𝑆 ′𝑔.

S-Refl. 𝑌 = 𝑋 and 𝑁 ′ = 𝑁 . This case is immediate letting 𝑇 = 𝑌 .

S-Bot, S-VarLeft, and S-VarRight don’t apply.

S-Trans. ⊢ ∃𝑌 : 𝐿′..𝑈 ′.𝑁 ′ <: 𝐾 and ⊢ 𝐾 <: ∃𝑋 : 𝐿..𝑈 .𝑁 .

It must be that 𝐾 = ∃𝑍 : 𝐿′′..𝑈 ′′.𝑁 ′′
because 𝐾 can neither be ⊥—since class types 𝑁 can’t be

subtypes of ⊥—nor 𝑋 (because there are no free variables). Without loss of generality we assume

that 𝑋 , 𝑌 , and 𝑍 are pairwise disjoint.

Then by applying the i.h. to the second premise, there exist 𝑇 ′′
such that fv(𝑇 ′′) ⊆ 𝑍 and

fields(𝑁 ′′) = [𝑇 ′′/𝑋 ]𝑆 𝑓 , 𝑆 ′′𝑔′′.
Then by i.h. there also exist𝑇 ′

such that fv(𝑇 ′) ⊆ 𝑌 and fields(𝑁 ′) = [𝑇 ′/𝑍 ] ( [𝑇 ′′/𝑋 ]𝑆 𝑓 , 𝑆 ′′𝑔′′), 𝑆 ′′′𝑔′′′.
Letting 𝑇 = [𝑇 ′/𝑍 ]𝑇 ′′

, we can rewrite fields(𝑁 ′) = [𝑇 /𝑋 ]𝑆 𝑓 , [𝑇 ′/𝑍 ]𝑆 ′′𝑔′′, 𝑆 ′′′𝑔′′′. Letting 𝑆 ′𝑔 =

[𝑇 ′/𝑍 ]𝑆 ′′𝑔′′, 𝑆 ′′′𝑔′′′ and observing that fv(𝑇 ) ⊆ 𝑌 finishes the case.

S-Extends. ⊢ ∃𝑋 : 𝐿..𝑈 .𝐶 ⟨𝑇 ′⟩ <: ∃𝑋 : 𝐿..𝑈 .[𝑇 ′/𝑍 ]𝑁 ′′
and class 𝐶 ⟨𝑍 ◁ _⟩ ◁ 𝑁 ′′{𝑆 ′′ 𝑔; . . .},

and thus 𝑁 ′ = 𝐶 ⟨𝑇 ′⟩ and 𝑁 = [𝑇 ′/𝑍 ]𝑁 ′′
and 𝑌 = 𝑋 .

By rule F-Class, fields(𝐶 ⟨𝑇 ′⟩) = 𝑆 𝑓 , [𝑇 ′/𝑍 ]𝑆 ′′𝑔, where fields(𝑁 ) = 𝑆 𝑓 . Letting 𝑇 = 𝑌 and

𝑆 ′ = [𝑇 ′/𝑍 ]𝑆 ′′ therefore finishes the case.
S-Exists. 𝑁 ′ = [𝑇 /𝑋 ]𝑁 and fv(𝑇 ) ⊆ 𝑌 . This case is immediate with the given 𝑇 , since

fields(𝑁 ′) = [𝑇 /𝑋 ]fields(𝑁 ). □

Lemma 12. If ⊢ ∃.𝑁 ′ <: ∃.𝑁 andmtype(𝑚, 𝑁 ) = ⟨𝑋 ◁ 𝑈 ⟩𝑇 → 𝑇 is defined thenmtype(𝑚, 𝑁 ′) =
⟨𝑋 ◁ 𝑈 ⟩𝑇 → 𝑇

Proof. We prove the following more general property by induction on ⊢ ∃𝑌 : 𝐿′..𝑈 ′.𝑁 ′ <:

∃𝑋 : 𝐿..𝑈 .𝑁 : If ⊢ ∃𝑌 : 𝐿′..𝑈 ′.𝑁 ′ <: ∃𝑋 : 𝐿..𝑈 .𝑁 and mtype(𝑚, 𝑁 ) = ⟨𝑋 ′ ◁ 𝑆 ′⟩𝑆 → 𝑆 and 𝑋,𝑌 ∩
𝑋 ′ = ∅ then there exist 𝑇 such that fv(𝑇 ) ⊆ 𝑌 and mtype(𝑚, 𝑁 ′) = [𝑇 /𝑋 ]mtype(𝑚, 𝑁 ).

S-Refl. 𝑌 = 𝑋 and 𝑁 ′ = 𝑁 . This case is immediate letting 𝑇 = 𝑌 .

S-Bot, S-VarLeft, and S-VarRight don’t apply.

S-Trans. ⊢ ∃𝑌 : 𝐿′..𝑈 ′.𝑁 ′ <: 𝐾 and ⊢ 𝐾 <: ∃𝑋 : 𝐿..𝑈 .𝑁 .

It must be that 𝐾 = ∃𝑍 : 𝐿′′..𝑈 ′′.𝑁 ′′
because 𝐾 can neither be ⊥—since class types 𝑁 can’t be

subtypes of ⊥—nor 𝑋 (because there are no free variables). Without loss of generality we assume

that 𝑋 , 𝑌 , and 𝑍 are pairwise disjoint.

Then by applying the i.h. to the second premise, there exist 𝑇 ′′
such that fv(𝑇 ′′) ⊆ 𝑍 and

mtype(𝑚, 𝑁 ′′) = [𝑇 ′′/𝑋 ]mtype(𝑚, 𝑁 ).
Then by i.h. there also exist𝑇 ′

such that fv(𝑇 ′) ⊆ 𝑌 andmtype(𝑚, 𝑁 ′) = [𝑇 ′/𝑍 ] [𝑇 ′′/𝑋 ]mtype(𝑚, 𝑁 ).
Letting 𝑇 = [𝑇 ′/𝑍 ]𝑇 ′′

, we can rewrite mtype(𝑚, 𝑁 ′) = [𝑇 /𝑋 ]mtype(𝑚, 𝑁 ). Observing that

fv(𝑇 ) ⊆ 𝑌 finishes the case.

S-Extends. 𝑁 ′ = 𝐶 ⟨𝑇 ′′⟩, 𝑁 = [𝑇 ′′/𝑍 ]𝑁 ′′
, 𝑌 = 𝑋 , class 𝐶 ⟨𝑍 ◁ 𝑈 ′′⟩ ◁ 𝑁 ′′{. . . 𝑀}, and 𝑍 ∩𝑋 =

∅.
If𝑚 ∉ 𝑀 then mtype(𝑚, 𝑁 ) = mtype(𝑚, 𝑁 ′) by M-Super and the conclusion is immediate with

𝑇 = 𝑌 .

Otherwise,𝑚 ∈ 𝑀 . By induction on the derivation of mtype we can show that mtype(𝑚, 𝑁 ′) =
[𝑇 ′′/𝑍 ]mtype(𝑚, 𝑁 ′′) = [𝑇 ′′/𝑍 ]⟨𝑋 ′ ◁ 𝑈 ′′′⟩𝑇 ′′′ → 𝑇 ′′′

. Without loss of generality we can assume

𝑋 ′
is disjoint from 𝑍 , which means that 𝑆 ′ = [𝑇 ′′/𝑍 ]𝑈 ′′′

, 𝑆 = [𝑇 ′′/𝑍 ]𝑇 ′′′
, and 𝑆 = [𝑇 ′′/𝑍 ]𝑇 ′′′

. By

T-Method and the definition of override, it must be that ⟨𝑋 ′ ◁ 𝑈 ′′′⟩𝑇 ′′′𝑚(𝑇 ′′′ 𝑥) = 𝑡 ∈ 𝑀 .
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Without loss of generality we also assume 𝑍 ∩𝑋 = ∅. By M-Class and using the above equations

we know: mtype(𝑚,𝐶 ⟨𝑇 ′′⟩) = [𝑇 ′′/𝑍 ]⟨𝑋 ′ ◁ 𝑈 ′′′⟩𝑇 ′′′ → 𝑇 ′′′ = ⟨𝑋 ′ ◁ 𝑆 ′⟩𝑆 → 𝑆 = mtype(𝑚, 𝑁 ′).
Letting 𝑇 = 𝑌 therefore finishes the case.

S-Exists. 𝑁 ′ = [𝑇 /𝑋 ]𝑁 and fv(𝑇 ) ⊆ 𝑌 . This case is immediate with the given 𝑇 since

mtype(𝑚, [𝑇 /𝑋 ]𝑁 ) = [𝑇 /𝑋 ]mtype(𝑚, 𝑁 ). □

Proof of theorem 1 (Preservation). By induction on the derivation of 𝑡 ↦−→ 𝑡 ′.

Case Read. 𝑡 = new 𝑁 (𝑉 ).𝑓𝑖 , 𝑡 ′ = 𝑉𝑖 , and fields(𝑁 ) = 𝑇 𝑓 .
By T-New, ⊢ new 𝑁 (𝑉 ) : ∃.𝑁 and ⊢ 𝑉 : 𝑆 and ⊢ 𝑆 <: 𝑇 . By T-Field, ⊢ ∃.𝑁 <: ∃.𝑁 ′

and

fields(𝑁 ′) = 𝑈𝑔 and 𝑇 = 𝑈𝑖 .

By lemma 11, fields(𝑁 ) = 𝑈𝑔,𝑈 ′𝑔′. Therefore, 𝑓𝑖 = 𝑔𝑖 and 𝑇 = 𝑇𝑖 = 𝑈𝑖 . Letting 𝑇
′ = 𝑆𝑖 finishes

the case, since in particular ⊢ 𝑉𝑖 : 𝑆𝑖 and ⊢ 𝑆𝑖 <: 𝑇𝑖 per above.
Case Present. 𝑡 = new 𝑁 (𝑉 ) ? : 𝑡2 and 𝑡 ′ = new 𝑁 (𝑉 ).
From T-Elvis and T-New we know ⊢ new 𝑁 (𝑉 ) : ∃.𝑁 and ∃.𝑁 <: 𝑇 . Letting 𝑇 ′ = ∃.𝑁 therefore

finishes the case.

Case Absent. 𝑡 = null ? : 𝑡2 and 𝑡
′ = 𝑡2.

From T-Elvis we know ⊢ 𝑡2 : 𝑇2 and ⊢ 𝑇2 <: 𝑇 . Thus letting 𝑇 ′ = 𝑇2 finishes the case.
Case Invoke. 𝑡 = new 𝑁 (𝑉 ).⟨𝑇 ⟩𝑚(𝑉 ′), 𝑡 ′ = [𝑉 ′/𝑥, new 𝑁 (𝑉 )/this]𝑡0, and mbody(𝑚⟨𝑇 ⟩, 𝑁 ) =

𝑥 .𝑡0.

By T-New, ⊢ new 𝑁 (𝑉 ) : ∃.𝑁 and ⊢ ∃.𝑁 witnessed. By T-Call, ⊢ 𝑇 witnessed, ⊢ ∃.𝑁 <: ∃.𝑁 ′
,

mtype(𝑚, 𝑁 ′) = ⟨𝑋 ◁ 𝑈 ′⟩𝑈 → 𝑈 , ⊢ 𝑉 ′
: 𝑆 , ⊢ 𝑆 <: [𝑇 /𝑋 ]𝑈 , ⊢ 𝑇 <: [𝑇 /𝑋 ]𝑈 ′

, and finally 𝑇 =

[𝑇 /𝑋 ]𝑈 .

By lemma 12,mtype(𝑚, 𝑁 ) = ⟨𝑋 ◁ 𝑈 ′⟩𝑈 → 𝑈 . By lemma 10, ∅|𝑥 : [𝑇 /𝑋 ]𝑈 , this : ∃.𝑁 ′′ ⊢ 𝑡0 : 𝑆
such that ⊢ ∃.𝑁 <: ∃.𝑁 ′′

, and ⊢ 𝑆 <: [𝑇 /𝑋 ]𝑈 . Then by lemma 9, ⊢ 𝑡 ′ : 𝑇 ′
for some 𝑇 ′

such that

⊢ 𝑇 ′ <: 𝑆 .
Then ⊢ 𝑇 ′ <: [𝑇 /𝑋 ]𝑈 = 𝑇 follows by S-Trans.

Case Unpack. 𝑡 = let 𝑥 : ∃𝑋 : 𝐿..𝑈 .𝑁 = new𝑁 ′(𝑉 ) in 𝑡2, 𝑡 ′ = [new𝑁 ′(𝑉 )/𝑥] [𝑇 /𝑋 ]𝑡2, ⊢ ∃.𝑁 ′ <:
[𝑇 /𝑋 ]∃.𝑁 , ⊢ [𝑇 /𝑋 ]𝐿 <: 𝑇 , ⊢ 𝑇 <: [𝑇 /𝑋 ]𝑈 , and ⊢ 𝑇 witnessed.
By T-New, ⊢ new 𝑁 ′(𝑉 ) : ∃.𝑁 ′

and ⊢ ∃.𝑁 ′ witnessed. By T-Let, ⊢ ∃.𝑁 ′ <: ∃𝑋 : 𝐿..𝑈 .𝑁 and

𝑋 : 𝐿..𝑈 |𝑥 : ∃.𝑁 ⊢ 𝑡2 : 𝑇2 and 𝑋 : 𝐿..𝑈 ⊢ 𝑇2 <: 𝑇 and ⊢ 𝑇, ∃𝑋 : 𝐿..𝑈 .𝑁 ok and 𝑋 ⊆ fv(𝑁 ).
By lemma 8, ∅|𝑥 : [𝑇 /𝑋 ]∃.𝑁 ⊢ [𝑇 /𝑋 ]𝑡2 : [𝑇 /𝑋 ]𝑇2. Then, by lemma 9, ⊢ [new𝑁 ′(𝑉 )/𝑥] [𝑇 /𝑋 ]𝑡2 =

𝑡 ′ : 𝑆 where ⊢ 𝑆 <: [𝑇 /𝑋 ]𝑇2.
Moreover, by lemmas 3, 4 and 5, ⊢ [𝑇 /𝑋 ]𝑇2 <: [𝑇 /𝑋 ]𝑇 . Since ⊢ 𝑇 ok, by lemma 4, 𝑇 can’t have

free type variables, and thus [𝑇 /𝑋 ]𝑇 = 𝑇 . Then ⊢ 𝑆 <: 𝑇 by S-Trans and letting 𝑇 ′ = 𝑆 finishes
the case.

Case Stub. 𝑡 = let 𝑥 : ∃𝑋 : 𝐿..𝑈 .𝑁 = null in 𝑡2, 𝑡
′ = [null/𝑥] [𝑇 /𝑋 ]𝑡2, ⊢ ∃.𝑁 ′ <: [𝑇 /𝑋 ]∃.𝑁 ,

⊢ [𝑇 /𝑋 ]𝐿 <: 𝑇 , ⊢ 𝑇 <: [𝑇 /𝑋 ]𝑈 , and ⊢ ∃.𝑁 ′,𝑇 witnessed.
By T-Let, ⊢ 𝑇1 <: ∃𝑋 : 𝐿..𝑈 .𝑁 and 𝑋 : 𝐿..𝑈 |𝑥 : ∃.𝑁 ⊢ 𝑡2 : 𝑇2 and 𝑋 : 𝐿..𝑈 ⊢ 𝑇2 <: 𝑇 and

⊢ 𝑇, ∃𝑋 : 𝐿..𝑈 .𝑁 ok and 𝑋 ⊆ fv(𝑁 ).
By lemma 8, ∅|𝑥 : [𝑇 /𝑋 ]∃.𝑁 ⊢ [𝑇 /𝑋 ]𝑡2 : [𝑇 /𝑋 ]𝑇2. By T-Null, ⊢ null : ∃.𝑁 ′

. Then, by lemma

9, ⊢ [null/𝑥] [𝑇 /𝑋 ]𝑡2 = 𝑡 ′ : 𝑆 where ⊢ 𝑆 <: [𝑇 /𝑋 ]𝑇2. The remainder of the case proceeds like

Unpack.

Case C-Field. 𝑡 = 𝑡0.𝑓𝑖 , 𝑡
′ = 𝑡 ′

0
.𝑓𝑖 , and 𝑡0 ↦−→ 𝑡 ′

0
.

By T-Field, ⊢ 𝑡0 : 𝑇0 and ⊢ 𝑇0 <: ∃.𝑁 and fields(𝑁 ) = 𝑈 𝑓 and 𝑇 = 𝑈𝑖 . By i.h., ⊢ 𝑡0 : 𝑇 ′
0
where

⊢ 𝑇 ′
0
<: 𝑇0. Then ⊢ 𝑇 ′

0
<: ∃.𝑁 by S-Trans and ⊢ 𝑡 ′

0
.𝑓𝑖 : 𝑈𝑖 by T-Field. Letting 𝑇 ′ = 𝑈𝑖 = 𝑇 finishes

the case.
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Case C-New. 𝑡 = new 𝑁 (𝑉 , 𝑡𝑖 , 𝑡), 𝑡 ′ = new 𝑁 (𝑉 , 𝑡 ′𝑖 , 𝑡), and 𝑡𝑖 ↦−→ 𝑡 ′𝑖 .

By T-New, ⊢ ∃.𝑁 witnessed and fields(𝑁 ) = 𝑈 𝑓 and ⊢ 𝑉 , 𝑡𝑖 , 𝑡 : 𝑇 and ⊢ 𝑇 <: 𝑈 and 𝑇 = ∃.𝑁 .

By i.h., ⊢ 𝑡 ′𝑖 : 𝑇 ′
𝑖 where ⊢ 𝑇 ′

𝑖 <: 𝑇𝑖 . Then ⊢ 𝑇 ′
𝑖 <: 𝑈𝑖 by S-Trans and ⊢ new 𝑁 (𝑉 , 𝑡 ′𝑖 , 𝑡) : 𝑇 by T-New.

Letting 𝑇 ′ = 𝑇 finishes the case.

Cases C-Receiver, C-Let, and C-Elvis similar to C-Field.

Case C-Arg similar to C-New.

□

B PROOF OF THEOREM 2 (PROGRESS)
Lemma 13 (Witness). If ⊢ ∃.𝑁 <: ∃𝑌 : 𝐿′..𝑈 ′.𝑁 ′ and ⊢ ∃.𝑁 witnessed then there exist𝑇 ′ such that

fv(𝑇 ′) = ∅ and ⊢ ∃.𝑁 <: [𝑇 ′/𝑌 ′]∃.𝑁 ′ and ⊢ [𝑇 ′/𝑌 ′]∃.𝑁 ′ <: ∃𝑌 : 𝐿′..𝑈 ′.𝑁 ′ and ⊢ [𝑇 ′/𝑌 ]𝐿′ <: 𝑇 ′

and ⊢ 𝑇 ′ <: [𝑇 ′/𝑌 ]𝑈 ′ and ⊢ [𝑇 ′/𝑌 ]∃.𝑁 ′ witnessed.

Proof. We prove the followingmore general property by induction on derivation of ⊢ ∃𝑋 : 𝐿..𝑈 .𝑁 <:

∃𝑌 : 𝐿′..𝑈 ′.𝑁 ′
, often writing ⊢ 𝑆 <: 𝑇 <: 𝑈 as shorthand for ⊢ 𝑆 <: 𝑇 and ⊢ 𝑇 <: 𝑈 : If

⊢ [𝑇 /𝑋 ]∃.𝑁 <: ∃𝑋 : 𝐿..𝑈 .𝑁 <: ∃𝑌 : 𝐿′..𝑈 ′.𝑁 ′ and ⊢ [𝑇 /𝑋 ]𝐿 <: 𝑇 <: [𝑇 /𝑋 ]𝑈 and fv(𝑇 ) = ∅ and
⊢ [𝑇 /𝑋 ]∃.𝑁 witnessed then there exist 𝑇 ′ such that fv(𝑇 ′) = ∅ and ⊢ [𝑇 /𝑋 ]∃.𝑁 <: [𝑇 ′/𝑌 ]∃.𝑁 ′ <:
∃𝑌 : 𝐿′..𝑈 ′.𝑁 ′ and ⊢ [𝑇 ′/𝑌 ]𝐿′ <: 𝑇 ′ <: [𝑇 ′/𝑌 ]𝑈 ′ and ⊢ [𝑇 ′/𝑌 ]∃.𝑁 ′ witnessed.

Case S-Refl immediate with 𝑇 ′ = 𝑇 .
Case S-Bot doesn’t apply because ⊥ is not a type.

Case S-Trans.We have ⊢ ∃𝑋 : 𝐿..𝑈 .𝑁 <: 𝐾 <: ∃𝑌 : 𝐿′..𝑈 ′.𝑁 ′
. It must be that𝐾 = ∃𝑍 : 𝐿′′..𝑈 ′′.𝑁 ′′

because 𝐾 can neither be ⊥—since class types 𝑁 can’t be subtypes of ⊥—nor 𝑋 (because there are

no free variables).

Then by applying the i.h. to the first premise, there exist𝑇 ′′
such that fv(𝑇 ′′) = ∅, ⊢ [𝑇 /𝑋 ]∃.𝑁 <:

[𝑇 ′′/𝑍 ]∃.𝑁 ′′ <: 𝐾 , ⊢ [𝑇 ′′/𝑍 ]𝐿′′ <: 𝑇 ′′ <: [𝑇 ′′/𝑍 ]𝑈 ′′
, and [𝑇 ′′/𝑍 ]∃.𝑁 ′′ witnessed.

Then by i.h. there also exist 𝑇 ′
such that fv(𝑇 ′) = ∅, ⊢ [𝑇 ′′/𝑍 ]∃.𝑁 ′′ <: [𝑇 ′/𝑌 ]∃.𝑁 ′ <:

∃𝑌 : 𝐿′..𝑈 ′.𝑁 ′
, ⊢ [𝑇 ′/𝑌 ]𝐿′ <: 𝑇 ′ <: [𝑇 ′/𝑌 ]𝑈 ′

, and ⊢ [𝑇 ′/𝑌 ]∃.𝑁 ′ witnessed
Then, ⊢ [𝑇 /𝑋 ]∃.𝑁 <: [𝑇 ′/𝑌 ]∃.𝑁 ′

follows from S-Trans, and 𝑇 ′
satisfy the conditions of the

needed substitution.

Cases S-VarLeft and S-VarRight don’t apply because there are no free variables.

Case S-Extends. ⊢ ∃𝑋 : 𝐿..𝑈 .𝐶 ⟨𝑆⟩ <: ∃𝑋 : 𝐿..𝑈 .[𝑆/𝑍 ]𝑁 ′′
and class 𝐶 ⟨𝑍 ◁ 𝑈 ′′⟩ ◁ 𝑁 ′′{. . .}

and 𝑋 ∩ 𝑍 = ∅, i.e., 𝑁 = 𝐶 ⟨𝑆⟩ and 𝑁 ′ = [𝑆/𝑍 ]𝑁 ′′
and 𝑋 = 𝑌 and 𝐿 = 𝐿′ and𝑈 = 𝑈 ′

.

By S-Extends, ⊢ ∃.[𝑇 /𝑋 ]𝐶 ⟨𝑆⟩ <: ∃.[𝑇 /𝑋 ] [𝑆/𝑍 ]𝑁 ′′ = ∃.[𝑇 /𝑋 ]𝑁 ′
. By S-Exists, ∃.[𝑇 /𝑋 ]𝑁 ′ <:

∃𝑋 : 𝐿..𝑈 .𝑁 ′
.

By T-Class,𝑍 : ⊥..𝑈 ′′ ⊢ ∃.𝑁 ′′witnessed. Since ⊢ [𝑇 /𝑋 ]∃.𝐶 ⟨𝑆⟩witnessed, we know ⊢ [𝑇 /𝑋 ]∃.𝐶 ⟨𝑆⟩ ok
and ⊢ [𝑇 /𝑋 ]𝑆 witnessed per W-Direct and ⊢ [𝑇 /𝑋 ]𝑆 <: [[𝑇 /𝑋 ]𝑆/𝑍 ]𝑈 ′′

per WF-Class. Since also

⊢ ⊥ <: [𝑇 /𝑋 ]𝑆 by S-Bot, we get ⊢ [[𝑇 /𝑋 ]𝑆/𝑍 ]∃.𝑁 ′′ witnessed by lemma 7, which by rewriting is

the same as ⊢ [𝑇 /𝑋 ]∃.𝑁 ′ witnessed. Thus, letting 𝑇 ′ = 𝑇 finishes the case.

Case S-Exists. ⊢ ∃𝑋 : 𝐿..𝑈 .[𝑇 ′′/𝑌 ]𝑁 ′ <: ∃𝑌 : 𝐿′..𝑈 ′.𝑁 ′
and thus 𝑁 = [𝑇 ′′/𝑌 ]𝑁 ′

, and also

fv(𝑇 ′′) ⊆ 𝑋 and 𝑋 ∩ fv(∃𝑌 : 𝐿′..𝑈 ′.𝑁 ′) = ∅ and 𝑋 : 𝐿..𝑈 ⊢ [𝑇 ′′/𝑌 ]𝐿′ <: 𝑇 ′′ <: [𝑇 ′′/𝑌 ]𝑈 ′
.

Let 𝑇 ′ = [𝑇 /𝑋 ]𝑇 ′′
and assume without loss of generality that 𝑋 and 𝑌 are disjoint. Also note

that 𝑋 can’t be free in 𝑁 ′, 𝐿′,𝑈 ′
and therefore [𝑇 /𝑋 ] (𝑁 ′, 𝐿′,𝑈 ′) = 𝑁 ′, 𝐿′,𝑈 ′

. Then by lemma

5, ⊢ [𝑇 ′/𝑌 ]𝐿′ <: 𝑇 ′
and ⊢ 𝑇 ′ <: [𝑇 ′/𝑌 ]𝑈 ′

. Also fv(𝑇 ′) = ∅ and therefore ⊢ [𝑇 ′/𝑌 ]∃.𝑁 ′ <:

∃𝑌 : 𝐿′..𝑈 ′.𝑁 ′
by S-Exists.

Since𝑁 = [𝑇 ′′/𝑌 ]𝑁 ′
andwe assume ⊢ [𝑇 /𝑋 ]∃.𝑁 witnessedwe get ⊢ [𝑇 /𝑋 ] [𝑇 ′′/𝑌 ]∃.𝑁 ′witnessed

and therefore ⊢ [𝑇 ′/𝑌 ]∃.𝑁 ′ witnessed by rewriting.
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𝑁 = [𝑇 ′′/𝑌 ]𝑁 ′
also gives us ⊢ [𝑇 /𝑋 ]∃.𝑁 <: [𝑇 ′/𝑌 ]∃.𝑁 ′

by S-Refl, and it follows that𝑇 ′
satisfy

the conditions of the needed substitution.

□

Lemma 14. If ⊢ 𝑇 witnessed then there exists 𝑁 such that ⊢ ∃.𝑁 <: 𝑇 and ∃.𝑁 witnessed.

Proof. By case analysis of ⊢ 𝑇 witnessed.
T-Var. Doesn’t apply: no variables in scope.

T-Direct. 𝑇 = ∃.𝑁 . Immediate since ⊢ 𝑇 <: 𝑇 by S-Refl.

T-Wildcard. Immediate: the rule’s premises include the needed properties. □

Lemma 15. If Δ ⊢ [𝑇 /𝑋 ]𝑇 witnessed and 𝑋 ∩ dom(Δ) = ∅ then Δ ⊢ 𝑇𝑖 witnessed for all
𝑋𝑖 ∈ 𝑋 ∩ fv(𝑇 ).

Proof. By induction on the derivation of Δ ⊢ [𝑇 /𝑋 ]𝑇 witnessed.
W-Var. 𝑇 = 𝑋 and therefore fv(𝑇 ) = 𝑋 .
• If 𝑋 = 𝑋𝑖 ∈ 𝑋 then [𝑇 /𝑋 ]𝑋𝑖 = 𝑇𝑖 . Since Δ ⊢ [𝑇 /𝑋 ]𝑋𝑖 witnessed by assumption, Δ ⊢
𝑇𝑖 witnessed follows by rewriting.

• Otherwise, 𝑋 ∉ 𝑋 and conclusion holds vacuously.

W-Direct. 𝑇 = ∃.𝐶 ⟨𝑇 ′⟩ and Δ ⊢ [𝑇 /𝑋 ]𝑇 ′ witnessed. By i.h., Δ ⊢ 𝑇𝑖 witnessed for all 𝑇𝑖 where

𝑋𝑖 ∈ fv(𝑇 ′), which is the needed property since 𝑋 ∩ fv(𝑇 ) = 𝑋 ∩ fv(𝑇 ′).
W-Wildcard. 𝑇 = ∃Δ′.𝐶 ⟨𝑇 ′⟩ and Δ′ = 𝑌 : 𝐿′..𝑈 ′

and Δ,Δ′ ⊢ [𝑇 /𝑋 ] (𝑇 ′, 𝐿′,𝑈 ′) witnessed.
Without loss of generality we can assume that 𝑋 ∩ 𝑌 = ∅. By i.h., Δ,Δ′ ⊢ 𝑇𝑖 witnessed for all 𝑇𝑖

where 𝑋𝑖 ∈ fv(𝑇 ′, 𝐿′,𝑈 ′), which is the needed property. □

Proof of theorem 2 (Progress). By induction on typing derivation ⊢ 𝑡 : 𝑇 .
Case T-Var. cannot occur: 𝑡 is closed.

Case T-Null. 𝑡 = null is a value.

Case T-New. 𝑡 = new 𝑁 (𝑡). By i.h., either all 𝑡 are values or there is a smallest 𝑖 such that 𝑡𝑖 err or
𝑡𝑖 ↦−→ 𝑡 ′𝑖 can take a step. If all 𝑡 are values then 𝑡 is also a value. Else if 𝑡𝑖 err then 𝑡 err by Err-New.

Otherwise, 𝑡 ↦−→ new 𝑁 (𝑡1, . . . , 𝑡𝑖−1, 𝑡 ′𝑖 , 𝑡𝑖+1, . . . , 𝑡𝑛) per C-New.

Case T-Field. We have 𝑡 = 𝑡0.𝑓𝑖 and ⊢ 𝑡0 : 𝑇0 and ⊢ 𝑇0 <: ∃.𝑁 and fields(𝑁 ) = 𝑇 𝑓 .

By i.h., 𝑡0 is either a value, or else 𝑡0 err, or else 𝑡0 ↦−→ 𝑡 ′
0
. We distinguish the following cases:

• If 𝑡0 err the 𝑡 err by Err-Field.

• If 𝑡0 can step then 𝑡 ↦−→ 𝑡 ′
0
.𝑓𝑖 by C-Field.

• If 𝑡0 = null then 𝑡 err by Err-Read.

• Otherwise, it must be 𝑡0 = new 𝑁 ′(𝑉 ) and thus 𝑇0 = ∃.𝑁 ′
per T-New. By lemma 11,

fields(𝑚, 𝑁 ′) = 𝑇 𝑓 ,𝑈 𝑔, and therefore 𝑡 ↦−→ 𝑉𝑖 by Read.

Case T-Call.We have 𝑡 = 𝑡0.⟨𝑇 ⟩𝑚(𝑡), ⊢ 𝑇 witnessed, ⊢ 𝑡0 : 𝑇0, ⊢ 𝑡 : 𝑆 , ⊢ 𝑇0 <: ∃.𝑁 ,mtype(𝑚, 𝑁 ) =
⟨𝑋 ◁ 𝑈 ′⟩𝑈 → 𝑈 , ⊢ 𝑆 <: [𝑇 /𝑋 ]𝑈 , and ⊢ 𝑇 <: [𝑇 /𝑋 ]𝑈 ′

.

By i.h., 𝑡0 and 𝑡 are either all values or there is a smallest 𝑖 ≥ 0 such that 𝑡𝑖 err or 𝑡𝑖 ↦−→ 𝑡 ′𝑖 can
take a step. We distinguish the following cases:

• If 𝑡0 = null and all 𝑡 are values then 𝑡 err by Err-Invoke.

• Else if all 𝑡0, 𝑡 are values then it must be that 𝑡0 = new 𝑁 ′(𝑉 ). Per T-New, 𝑇0 = ∃.𝑁 ′
and

⊢ ∃.𝑁 ′ witnessed. By lemma 12, mtype(𝑚, 𝑁 ′) = ⟨𝑋 ◁ 𝑈 ′⟩𝑈 → 𝑈 ′
. Since mtype(𝑚, 𝑁 ′) is

defined,mbody(𝑚⟨𝑇 ⟩, 𝑁 ′) = 𝑥 .𝑡𝑏 must also be defined, and 𝑥 must have the same cardinality

as𝑈 . Then 𝑡 ↦−→ [𝑡/𝑥, 𝑡0/this]𝑡𝑏 by Invoke.

• Else if 𝑡𝑖 err then 𝑡 err by Err-Receiver if 𝑖 = 0 or by Err-Arg otherwise.
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• Else if 𝑡0 can step then 𝑡 ↦−→ 𝑡 ′
0
.⟨𝑇 ⟩𝑚(𝑡) by C-Receiver.

• Otherwise 𝑡𝑖 with 𝑖 > 0 can step and 𝑡 ↦−→ 𝑡0.⟨𝑇 ⟩𝑚(𝑡1, . . . , 𝑡𝑖−1, 𝑡 ′𝑖 , 𝑡𝑖+1, . . . , 𝑡𝑛) by C-Arg.

Case T-Let. We have 𝑡 = let 𝑥 : ∃Δ.𝑁 = 𝑡1 in 𝑡2, ⊢ 𝑡1 : 𝑇1, ⊢ 𝑇1 <: ∃Δ.𝑁 , and 𝑋 ⊆ fv(𝑁 ), letting
Δ = 𝑋 : 𝐿..𝑈 .

By i.h., 𝑡1 is value or else 𝑡1 err or else 𝑡1 ↦−→ 𝑡 ′
1
for some 𝑡 ′

1
:

• If 𝑡1 err then 𝑡 err by Err-Let.

• Else if 𝑡1 can step then 𝑡 ↦−→ let 𝑥 : ∃Δ.𝑁 = 𝑡 ′
1
in 𝑡2 by C-Let.

• Otherwise, 𝑡1 is a value, i.e., either null or new. If 𝑡1 = null then ⊢ null : 𝑇1 and ⊢
𝑇1 witnessed per T-Null. Then by lemma 14 there exists 𝑁 ′

such that ⊢ ∃.𝑁 ′ <: 𝑇1 and

⊢ ∃.𝑁 ′ witnessed, and we can derive ⊢ ∃.𝑁 ′ <: ∃Δ.𝑁 by S-Trans. Otherwise it must be

𝑡1 = new 𝑁 ′(𝑉 ) and therefore 𝑇1 = ∃.𝑁 ′
and ⊢ ∃.𝑁 ′ witnessed per T-New.

Either way, by lemma 13 there exist𝑇 such that fv(𝑇 ) = ∅, ⊢ ∃.𝑁 ′ <: [𝑇 /𝑋 ]∃.𝑁 , ⊢ [𝑇 /𝑋 ]𝐿 <:

𝑇 , ⊢ 𝑇 <: [𝑇 /𝑋 ]𝑈 , and ⊢ [𝑇 /𝑋 ]∃.𝑁 witnessed. Since all 𝑋 are free in 𝑁 , by lemma 15,

⊢ 𝑇 witnessed. Finally, 𝑡 ↦−→ [𝑡1/𝑥] [𝑇 /𝑋 ]𝑡2 by Stub if 𝑡1 = null and by Unpack otherwise.

Case T-Elvis. We have 𝑡 = 𝑡1 ? : 𝑡2 and ⊢ 𝑡1 : 𝑇1 (among other facts). By i.h., 𝑡1 is value or 𝑡1 err or
𝑡1 ↦−→ 𝑡 ′

1
for some 𝑡 ′

1
. Then we have the following:

• If 𝑡1 err then 𝑡 err by Err-Elvis.

• if 𝑡1 can step then 𝑡 ↦−→ 𝑡 ′
1
? : 𝑡2 by C-Elvis.

• Else if 𝑡1 = null then 𝑡 ↦−→ 𝑡2 by Absent.

• Else 𝑡1 = new 𝑁 (𝑉 ), and then 𝑡 ↦−→ new 𝑁 (𝑉 ) by Present.

□
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