
Understanding Host Interconnect Congestion
Saksham Agarwal

Cornell University
Rachit Agarwal
Cornell University

Behnam Montazeri
Google

Masoud Moshref
Google

Khaled Elmeleegy
Google

Luigi Rizzo
Google

Marc Asher de
Kruijf
Google

Gautam Kumar
Google

Sylvia Ratnasamy
Google & UC Berkeley

David Culler
Google

Amin Vahdat
Google

ABSTRACT
We present evidence and characterization of host congestion
in production clusters: adoption of high-bandwidth access
links leading to emergence of bottlenecks within the host
interconnect (NIC-to-CPU data path). We demonstrate that
contention on existing IO memory management units and/or
the memory subsystem can significantly reduce the available
NIC-to-CPU bandwidth, resulting in hundreds of microsec-
onds of queueing delays and eventual packet drops at hosts
(even when running a state-of-the-art congestion control
protocol that accounts for CPU-induced host congestion).
We also discuss implications of host interconnect congestion
to design of future host architecture, network stacks and
network protocols.

CCS CONCEPTS
• Networks → Transport protocols; Network perfor-
mance analysis; • Hardware → Networking hardware;

KEYWORDS
Congestion control, datacenter transport, network hardware
ACM Reference Format:
Saksham Agarwal, Rachit Agarwal, Behnam Montazeri, Masoud
Moshref, Khaled Elmeleegy, Luigi Rizzo, Marc Asher de Kruijf,
Gautam Kumar, Sylvia Ratnasamy, David Culler, and Amin Vahdat.
2022. Understanding Host Interconnect Congestion. In The 21st
ACM Workshop on Hot Topics in Networks (HotNets ’22), November
14–15, 2022, Austin, TX, USA. ACM, New York, NY, USA, 7 pages.
https://doi.org/10.1145/3563766.3564110

1 INTRODUCTION
The conventional wisdom in the systems and networking
communities is that congestion happens primarily within the

HotNets ’22, November 14–15, 2022, Austin, TX, USA
© 2022 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-9899-2/22/11.
https://doi.org/10.1145/3563766.3564110

0.2 0.4 0.6 0.8

Host Access Link Bandwidth Utilization
H

o
s
t

D
ro

p
 R

a
te

N
o
rm

a
li
z
e
d

F
ra

c
ti
o
n

(A
m

o
n
g
 a

ll
 d

a
ta

 p
o
in

ts
 o

n
 p

lo
t)

0.0 1.0
0

1

Figure 1: Host congestion in a large-scale Google production
cluster. The figure shows scatter plot of link utilization (nor-
malized by access link bandwidth) and packet drop rates at
hosts. The cluster runs both the Linux kernel and SNAP [22]
network stacks, with TCP and Swift [15] congestion control
protocols, respectively0. Precise values for packet drop rates
are hidden due to these being sensitive. Packet drop rates are
positively correlated with host access link utilization; also,
packet drops happen even when host link utilization is low.

network fabric (that is, at network switches). This may have
been true for the Internet and early-generation datacenter
networks; however, we need to revisit this conventional wis-
dom for modern clusters. This paper presents evidence and
characterization of host congestion in large-scale production
clusters: we demonstrate that adoption of high-bandwidth
access links, combined with relatively stagnant technology
trends for other host resources, have led to emergence of
bottlenecks within the host interconnect, that is, the data
path between the NIC and the CPU. Our goals are three-fold:
(1) to characterize host congestion originally observed in a
large-scale Google production cluster that runs Swift [15]—a
state-of-the-art congestion control protocol (see Figure 1);
(2) to build an in-depth understanding of the root causes of
host congestion, and of the impact of host congestion on
application-level performance; and (3) to explore implica-
tions of host congestion to design of next-generation host
architecture, network stacks, and network protocols.
We study two root causes for host congestion. The first

one, discussed in §3.1, is due to the need for memory pro-
tection from I/O devices. When such memory protection is

0Data collected over a 24-hour period, and binned at a 10-minute granularity.
All drops in the figure are due to host congestion induced by host intercon-
nect bottlenecks (confirmed using counters within our infrastructure).

198

This work is licensed under a Creative Commons Attribution International 4.0 License.

https://doi.org/10.1145/3563766.3564110
https://doi.org/10.1145/3563766.3564110
https://creativecommons.org/licenses/by/4.0/

HotNets ’22, November 14–15, 2022, Austin, TX, USA Agarwal et al.

enabled, for every DMA request initiated by the NIC, one
must translate the NIC-visible virtual address to host physi-
cal address; when the address translation (page) table does
not fit into the cache, one or more memory accesses are
required for the translation. The resulting increase in per-
DMA latency directly impacts the rate at which NIC can
transfer data to CPU. The challenge is that, with increasing
access link bandwidths, we expect larger number of actively
used addresses (to accommodate increase in bandwidth-delay
product), larger cache misses (since cache sizes have not in-
creased at the same rate), and larger per-DMA latency (since
memory access latency has largely been stagnant); thus, this
problem is likely to worsen over time.
The second root cause of host congestion builds upon a

rather surprising observation of packet drops at hosts even
when host access link bandwidth is far from fully utilized
(Figure 1). We find that this is due to bottlenecks within the
host memory subsystem. In particular, CPUs reading/writing
data to main memory share the memory bus bandwidth with
the NIC performing DMA operations; when memory bus is
contended, CPUs are able to acquire a larger fraction of mem-
ory bus bandwidth than NIC. As a result, in-flight packets
result in NIC buffers building up before congestion control
protocols can react; this, in turn, results in large queueing de-
lays and eventual packet drops at the host even when host is
receiving data at a rate lower than the access link bandwidth.
We study this phenomenon in more depth in §3.2. Given that
memory bus bandwidth per core is increasing much more
slowly than NIC and PCIe bandwidths, this problem is also
likely to worsen over time.

In terms of application-level performance, host congestion
is no different from congestion within the network fabric—it
can lead to hundreds of microseconds of tail latency, signifi-
cant throughput drop, and violation of isolation properties
due to packet drops. Unfortunately, host congestion due
to host interconnect bottlenecks is only going to become
worse—even though a 10× increase in access link bandwidth
is anticipated within next few years (100Gbps NICs are al-
ready commodity, and 400–800Gbps NICs are already stan-
dardized [32]), technology trends for essentially all other
resources along the host interconnect—CPU speeds, cache
sizes, memory access latency, memory bus bandwidth per
core, NIC buffer sizes, etc.—are largely stagnant. To that end,
we outline several interesting avenues for research in alle-
viating host congestion. In particular, we discuss in §4 that
resolving host interconnect congestion problem requires a
multi-pronged approach: rethinking host architecture (new
mechanisms for memory protection from I/O devices, for
sharing of memory bandwidth, etc.), new system design (en-
abling new congestion signals from “outside” the network
stack), and new network protocols (rethinking sub-RTT re-
sponse to host congestion).
Our study—that focuses on host congestion due to host

interconnect bottlenecks—complements recent works [8–
10, 34] that focus on CPU efficiency and/or network stack

NIC

Memory
Bus

PCIe Bus
Root Complex Memory

Controller

CPUs

IOMMU DRAM

Input Buffer PCIe Writes

Rx Descriptors

PCIe Credits1
6

3 4
5

772

Figure 2: The host datapath between the NIC and the CPU.

performance for regimes where hosts operate at maximum
loss-free rate (that is, hosts observe no persistent congestion
to begin with). Our study also presents a more complete pic-
ture on host congestion when compared to recent works that
focus on understanding the impact of high-bandwidth links
on individual hardware components (e.g., PCIe [25], memory
bandwidth [20, 30], and IOMMU [4, 5, 10, 19, 21, 29])—as we
will discuss throughout the paper, host congestion turns out
to be a result of imperfect interaction (and resource imbal-
ance!) between multiple components within the host inter-
connect. Finally, unlike most prior work, our work studies
the behavior of congestion control protocols and resulting
application-level performance under host congestion due to
bottlenecks within the host interconnect.

2 HOST DATAPATH
Figure 2 shows the life of a packet at a receiver host1.
1. The NIC first enqueues all arriving packets into its input

buffer, which is typically a small SRAM (typically 1 − 2
MBs for commodity NICs [14, 31]).

2. The NIC then fetches an Rx descriptor from a queue
(the NIC driver periodically replenishes these descriptors).
When memory protection from I/O devices is enabled, the
descriptor provides the virtual address in the host memory
where the packet should be DMA’ed.

3. To DMA the packet to host memory, the NIC then in-
stantiates PCIe write transactions using the address in
the packet descriptor. PCIe uses a lossless interconnect
using credit-based flow-control, implemented via a fixed
(hardware-specific) number of credits [25]. When PCIe
does not have enough credits to serve a request, requests
are enqueued in the NIC input buffer (resulting in queue-
ing and eventual packet drops) until requisite number of
credits become available.

4. The write transaction requests are then handled by the
PCIe root complex (the other end of the PCIe). The root
complex first performs virtual to physical memory address
translation using a special device called input/outout mem-
ory management unit (IOMMU). IOMMU uses a page table
that primarily resides in host memory; these translations
can be sped up using a cache called I/O Translation Looka-
side buffer (IOTLB). An IOTLB miss requires a page table
walk using one or more accesses to host memory.

1Sender-side datapath has mechanisms in place (e.g., backpressure from
NIC to CPU) that ensure that sender-side typically does not experience host
congestion [8]. Thus, we primarily focus on the receiver side.

199

Understanding Host Interconnect Congestion HotNets ’22, November 14–15, 2022, Austin, TX, USA

5. Once the physical memory address is available, the PCIe
root complex moves the data to the host memory over the
memory bus (shared by CPUs)2.

6. The root complex, upon completion of the memory write,
replenishes PCIe credits that can be used to service subse-
quent write requests. Any delays in the NIC-to-memory
datapath (e.g., due to IOTLB misses, memory access la-
tency, etc.) result in a backpressure to the NIC input buffer,
until the root complex can replenish the credits.

7. Finally, the NIC interrupts the CPU to initiate packet pro-
cessing and/or replenishing of Rx descriptors.

Note that, if memory protection is not enabled, no address
translation is needed as the descriptor provides the physical
memory address for the NIC to DMA the packet.

3 HOST CONGESTION
We now characterize host congestion. We use the following
testbed: our machines have Intel Skylake CPUs, 2 NUMA
nodes each with 28 cores, 100Gbps NICs, PCIe 3.0 x16 lanes
per NIC, 128 size IOTLB per IOMMU, and a theoretical maxi-
mum memory bus bandwidth of 115.2GBps per NUMA node
(6 DDR4 channels per NUMA node with maximum data rate
of 2400MT/s per channel). We extract a minimalistic work-
load from our production cluster that leads to host conges-
tion: 40 sender machines and one receiver machine exchange
traffic using SNAP [22] network stack with Swift [15] con-
gestion control (CC) protocol. The receiver machine runs
one or more threads, each on a dedicated core in the same
NUMA node as the NIC; each receiver thread issues 16KB
remote reads using one connection per sender.

We primarily focus on application-level throughput (pay-
load bytes received per unit time) and packet drop rate (ra-
tio of the number of packets dropped and the number of
packets transmitted). Drop rate serves as a proxy for vio-
lation of isolation properties—all applications use a shared
NIC buffer where drops end up occuring. For our cluster,
when using 4K MTUs, the throughput is upper bounded by
∼92Gbps due to protocol header overheads. To demonstrate
IOTLB contention, we measure IOTLB misses per packet. To
demonstrate memory bandwidth contention, we measure
total memory bandwidth across all memory channels con-
nected to the NIC-local NUMA node. Ideally, we want to
achieve maximum throughput with near-zero drop rates.

3.1 IOMMU induced host congestion

Intuition. Almost all modern hosts enable memory pro-
tection using an input/output memory management unit
(IOMMU) [19, 29]—for every DMA request initiated by the
NIC, IOMMU translates the NIC-visible virtual address to
host physical address using a page table that primarily re-
sides in memory; these address translations are sped up

2If Direct Cache Access (e.g., DDIO) is enabled, data is first moved to the
CPU cache [8]; this may result in eviction of existing cache contents to the
host memory over the same memory bus.

using a special translation lookaside buffer (IOTLB) cache.
An IOTLB miss requires a page table walk using one or more
memory accesses, resulting in larger per-DMA latency. For
instance, an IOTLB hit typically takes a few nanoseconds of
latency; a miss, however, can trigger one or more memory
accesses (depending on what page entry level was already
cached in IOTLB) [5, 19], thus incurring additional latency
of few hundreds of nanoseconds to up to a microsecond [25].
Given that NIC can have only a small number of fixed-size
DMA transactions in flight, the increase in per-DMA latency
directly impacts the rate at which NIC can transfer data
to memory (as we discuss below, this follows immediately
from Little’s Law [18]). Since PCIe is only nominally faster
than the line rate for 100Gbps NICs (using PCIe 3.0 with a
maximum 128Gbps theoretical capacity, the achievable PCIe
goodput is only ∼110Gbps due to the PCIe transaction and
link layer header overheads [25]), such reduced PCIe transfer
rates result in NIC queue build up and eventual packet drops.

Setup.We compare scenarios with IOMMUOFF and ON (see
§2 for the two datapaths). Our network stack uses IOMMU
in so-called loose mode: each thread registers upfront a
fixed amount of memory with IOMMU (using 4K/2MB map-
pings), and keeps the mapping alive throughout its opera-
tions, so there are no software IOTLB invalidations at run
time (other modes supported by Linux, e.g., dynamically
deleting IOMMU mappings at run time are known to cause
even worse IOTLB misses [19, 29]). Thus, by varying number
of threads/cores, we can control the number of active pages
registered to IOMMU (this number increases linearly with
number of cores). By default, hugepages are enabled—2MB
IOMMU mappings are used for data transfers; descriptors
and other control packets use the standard 4KB mappings.

NIC-to-CPU throughput reduces with increasing IO-
MMU contention. Figure 3 demonstrates host congestion
due to IOMMU-induced host interconnect bottleneck. For
fewer than 8 cores, the CC protocol is bottlenecked by CPU
cycles; thus, the throughput almost linearly increases with
number of cores reaching the maximum possible through-
put of 92Gbps (accounting for protocol headers discussed
earlier, shown by green line) at × = 8. Beyond that point, we
observe a difference between the IOMMU OFF and ON cases.
When IOMMU is OFF, throughput stays at 92Gbps. When
IOMMU is ON, throughput reduces with increasing number
of receiver threads (Figure 3(left)); corresponding increase
in IOTLB misses per packet (Figure 3(right)) demonstrates
that the host interconnect is bottlenecked in this regime.
Increasing number of IOTLB misses are due to increase

in larger number of entries in IOMMU (due to each receiver
thread being allocated a fixed memory region) and due to
lack of locality in IOMMU access patterns—since there are
multiple active flows (recall from our setup that we create
a single flow per receiver thread per sender), subsequent
packets do not necessarily lie in contiguous memory regions.
Note that we are increasing both the working set size and

200

HotNets ’22, November 14–15, 2022, Austin, TX, USA Agarwal et al.

2 4 6 8 10 12 14 16
Number of Receiver Cores

40

50

60

70

80

90

100
Th

ro
ug

hp
ut

 (G
bp

s)

 CPU
 Bottlenecked

 Interconnect
 Bottlenecked

Throughput vs Receiver Cores

App Throughput -- IOMMU ON
App Throughput -- IOMMU OFF
Modeled App Throughput -- IOMMU ON
Max Achievable Throughput

2 4 6 8 10 12 14 16
Number of Receiver Cores

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Dr
op

 R
at

e
(%

)

 CPU
 Bottlenecked

 Interconnect
 Bottlenecked

Drop Percentage vs Receiver Cores
IOMMU ON
IOMMU OFF

2 4 6 8 10 12 14 16
Number of Receiver Cores

0.0

0.5

1.0

1.5

2.0

2.5

3.0

IO
TL

B
M

iss
es

 p
er

 P
ac

ke
t

 CPU
 Bottlenecked

 Interconnect
 Bottlenecked

IOTLB Misses per Packet vs Receiver Cores

Figure 3: For our baseline setup, IOMMU induced congestion can result in up to 15% throughput degradation compared to the
no-IOMMU case, and up to 3% packet drops. With increasing number of cores, the page entries registered to IOMMU increases
and the host interconnect soon becomes the bottleneck due to large number of IOTLB misses.

2 4 6 8 10 12 14 16
Number of Receiver Cores

30

40

50

60

70

80

90

100

Th
ro

ug
hp

ut
 (G

bp
s)

Throughput vs Receiver Cores

App Throughput -- HugePages Enabled
App Throughput -- HugePages Disabled
Max Achievable Throughput

2 4 6 8 10 12 14 16
Number of Receiver Cores

0.0

0.5

1.0

1.5

2.0

2.5

3.0
Dr

op
 R

at
e

(%
)

Drop Percentage vs Receiver Cores
Hugepages Enabled
Hugepages Disabled

2 4 6 8 10 12 14 16
Number of Receiver Cores

0

1

2

3

4

5

6

IO
TL

B
M

iss
es

 p
er

 P
ac

ke
t

IOTLB Misses per Packet vs Receiver Cores

Figure 4: Disabling hugepages results inmore than 30% throughput degradation due tomuchmore increased IOMMU contention.
The drop rates can still be as high as 2% at such low network utilization.

the number of flows in Figure 3; we also measured that the
impact of increase in number of concurrent flows is minimal.
Thus, the key reason for degradation here is in fact increasing
working set size. There is a sudden increase of IOTLB misses
per packet above 8 threads (see Figure 3(right)), indicating
that the total number of IOMMU entries exceed the IOTLB
size (128 for our setup) for more than 8 threads. Recall that
each packet can incur multiple IOTLB misses3.

As outlined earlier, IOTLB misses create a hard limit to the
maximum achievable NIC-to-CPU throughput: PCIe credits
allow at most𝐶 packets in flight, each PCIe write experiences
a latency𝑇𝑏𝑎𝑠𝑒 +𝑀 ·𝑇𝑚𝑖𝑠𝑠 where the𝑇𝑏𝑎𝑠𝑒 is the latency with
no IOTLB misses,𝑀 is the IOTLB miss rate per packet, and
𝑇𝑚𝑖𝑠𝑠 is latency accounting for IOTLB misses. As a result, the
throughput is bounded by (𝐶 · pkt_size)/(𝑇𝑏𝑎𝑠𝑒 +𝑀 ·𝑇𝑚𝑖𝑠𝑠).
The observed throughput closely matches the above model—
we show the simulated results of this model in Figure 3 (only
for the scenarios with threads ≥ 10where this model applies,
since PCIe credits are the bottleneck).

Existing transport designs cannot react to the host
congestion effectively. Figure 3(center) shows significant
packet drops (≥ 2%) in the steady state, suggesting that the
net average arrival rate of packets at the NIC exceeds the
NIC-to-CPU throughput. This may be surprising given that
our CC protocol was designed to handle delays within the
host. The reason is as follows. Our CC protocol uses a target
host delay value of 100𝜇s to account for inflation in host

3In the worst-case, a packet can result in 6 IOTLB misses when hugepages
are enabled, one for each of the 6 PCIe transactions necessary—DMA of
payload, completion queue entry and packet descriptor for the packet, and
the corresponding ACK packet sent back to the sender. The observed miss
rates, of course, depend on address locality.

delays due to CPU bottlenecks, queueing delay at the NIC
buffer and NIC-to-memory DMA latency [15] (when host
is not a bottleneck, we measure the delay to be almost al-
ways ≤ 10𝜇s). However, ∼1MB NIC buffer size in our testbed
corresponds to NIC queueing delay of less than 90𝜇s when
NIC can transfer data to the CPU at rates greater than or
equal to 1MB/90𝜇s= 88.8Gbps (∼81Gbps application-level
throughput); thus, when throughput is greater than 81Gbps,
the CC protocol does even react to host congestion resulting
in queueing and packet drops at the NIC.
We observe precisely the above phenomenon in our ex-

periments — until × = 12, throughput is greater than 81Gbps
and packet drops continue to increase; once the through-
put drops below 81Gbps, CC kicks in, reducing the rate and
packet drops. Note that, even when CC kicks in, packet drop
rate does not reduce to zero; this is because of two reasons:
(1) CC protocol reduces the rate when the NIC buffer is al-
ready almost full, and the corresponding in-flight packets
experience drops upon arrival at the NIC; and (2) like any
classical CC protocol, our protocol also demonstrates the
sawtooth behavior—upon reducing the rate, the host delay
reduces, resulting in a corresponding increase in rate, leading
to subsequent host congestion and drops.

Disabling hugepages causes larger IOMMU contention.
Figure 4 presents results for hugepage disabled case (using
4K pages instead of 2M pages). We observe that the threshold
when the host interconnect becomes the bottleneck arrives
with fewer receiver threads. This is because: (1) the number
of registered pages increase by 512×, resulting inmore IOTLB
misses (as evident from Figure 4(right)); (2) DMAing data
for each 4K MTU packet requires fetching two pages instead
of just a single hugepage. This results in worse NIC-to-CPU

201

Understanding Host Interconnect Congestion HotNets ’22, November 14–15, 2022, Austin, TX, USA

4MB 8MB 12MB 16MB
Rx Memory Region Size

40

50

60

70

80

90

100
Th

ro
ug

hp
ut

 (G
bp

s)
Throughput vs Rx Memory Region Size

App Throughput -- IOMMU ON
App Throughput -- IOMMU OFF
Max Achievable Throughput

4MB 8MB 12MB 16MB
Rx Memory Region Size

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Dr
op

 R
at

e
(%

)

Drop Percentage vs Rx Memory Region Size
IOMMU ON
IOMMU OFF

4MB 8MB 12MB 16MB
Rx Memory Region Size

0.5

1.0

1.5

2.0

IO
TL

B
M

iss
es

 p
er

 P
ac

ke
t

IOTLB Misses per Packet vs Rx Memory Region Size

Figure 5: Provisioning networks for larger BDPs makes the host congestion problem worse – hosts require at least BDP worth of
memory to store arriving packets. Larger memory can significantly degrade the application throughput due to IOMMU quickly
becoming the bottleneck, since larger number of pages per core are registered to the IOMMU leading more IOTLB misses.

0

20

40

60

80

100
To

ta
l M

em
or

y
Ba

nd
wi

dt
h

(G
Bp

s)

Memory Bandwidth

0 1 2 4 6 8 10 12 14 15
Number of cores running memory antagonist

0

20

40

60

80

100

Th
ro

ug
hp

ut
 (G

bp
s)

Throughput vs Memory Antagonism (IOMMU OFF)

App Throughput -- IOMMU OFF
0

20

40

60

80

100

To
ta

l M
em

or
y

Ba
nd

wi
dt

h
(G

Bp
s)

Memory Bandwidth

0 1 2 4 6 8 10 12 14 15
Number of cores running memory antagonist

0

20

40

60

80

100
Th

ro
ug

hp
ut

 (G
bp

s)
Throughput vs Memory Antagonism (IOMMU ON)

App Throughput -- IOMMU ON

0 1 2 4 6 8 10 12 14 15
Number of cores running memory antagonist

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5

Dr
op

 R
at

e
(%

)

Drop Percentage vs Memory Antagonism
IOMMU ON
IOMMU OFF

Figure 6: Adding memory bandwidth contention can degrade network utilization (∼ 15% even without any IOMMU contention).
Adding IOMMU contention in conjunction lead to even larger degradation (∼ 25% degradation with 15 stream cores).

throughput degradation when hugepages are disabled. The
drop percentage, as discussed above, is lower—while CC
kicks in earlier (since throughput < 81Gbps even with 6
threads), it lacks effectiveness due to small NIC buffer sizes
resulting in drops even at 65% network utilization. Hence,
disabling hugepages can provide smaller drop rates, but at the
expense of degraded throughput with IOMMU contention.

Provisioning networks for larger BDPs leads to larger
IOMMU contention. For larger bandwidths, BDP will be
larger; thus, larger memory regions must be provisioned to
ensure one BDP worth of buffer pools per receive queue
to fully utilize the network. Figure 5 shows the effect of
increasing memory region sizes. As expected, this leads to
larger IOTLB misses per packet, since the same number of
concurrent requests could potentially access larger number
of pages, thus swapping out more IOTLB entries, resulting
in lower NIC-to-CPU throughput. Drop rates follow similar
trend as previous scenarios—for the baseline case of 12MB
memory region size, the host delay before drops was 98.7𝜇s;
with 16MB size, it increases to 110.5𝜇s, hence leading to the
CC protocol kicking in and reducing the drop rate.

3.2 Memory bus induced host congestion

Intuition. Another root cause of host congestion is the
rapidly reducing gap between access link bandwidth and
memory bus bandwidth: in large servers, applications that
perform large volumes of memory operations can lead to
starvation of memory requests coming from the NIC. Specif-
ically, within the host interconnect, CPUs reading/writing
data to memory share the memory bus with the NIC per-
forming DMA operations; when memory bus is contended,
per-DMA latency increases for memory requests coming

from the NIC. This increase leads to an effect similar to the
IOMMU case discussed in the previous subsection: increase
in latency eventually results in PCIe bandwidth underutiliza-
tion, and in-flight packets resulting in NIC buffers quickly
building up. This, in turn, results in large host delays and
packet drops even when host is receiving data at rate lower
than the access link bandwidth; these delays and drops can
result in subsequent rate reduction and link underutilization.

Setup.We use Stream [7] benchmark to antagonise the mem-
ory bus, with one instance per physical core, up to 15 cores.
We use the same setup of §3.1, with 40 senders and 12 re-
ceiver threads, and two scenarios: IOMMU on and off. The
maximum achievable bandwidth by Stream per NUMA node
on our machine is ∼90GB/s (65GB/s for reads and 25GB/s
for writes).

NIC-to-host throughput degrades with higher mem-
ory bus contention. Figure 6 shows throughput degrada-
tion and packet drops with increasing memory bus con-
tention. Without any Stream cores, we achieve maximum
throughput, with ∼11.8GB/s write bandwidth (due to PCIe
writes for arriving packets), along with a small read band-
width (∼3.3GB/s)—this is because of data copy from receiver
threads to application threads. When memory bus is close to
saturation, starting with 10 stream cores, we see that NIC-to-
CPU throughput reduces. This is because in such a scenario,
the latency in performing memory writes increases. When
the memory controller receives read/write requests from
CPUs/NIC, they are typically served in a first-come-first-
serve manner [16, 24], irrespective of the source of request.
Hence as the offered load to the memory bus reaches closer
to the maximum achievable memory bandwidth, similar to

202

HotNets ’22, November 14–15, 2022, Austin, TX, USA Agarwal et al.

any load-latency curve for a closed-loop system, the service
times for PCIe write requests will also increase.

Larger PCIe latencies further degrade the through-
put. Figure 6(center) shows scenario where IOMMU is con-
tended in conjunction to the memory bus. Here, NIC-to-CPU
throughput is already low with no antagonists due to addi-
tional latency from IOTLB misses. Throughput now starts
degrading with only 6 stream cores—this is because, starting
with 6 stream cores, the increase in memory bus bandwidth
utilization per core is sublinear; at this point, the memory
bus is already close to saturation and latencies for PCIe write
requests will start increasing further4. With 15 stream cores,
the throughput reduces to ∼60Gbps. The drop rates follow
trends similar to discussed previously in §3.1—the CC pro-
tocol observes delays increasingly more than 100𝜇s with
reducing arrival rates, hence reducing drops.

4 LOOKING FORWARD
Technology trends suggest that the problem of host conges-
tion is only going to get worse with time. As discussed earlier,
while host access link bandwidths are likely to increase by
10× over the next few years, technology trends for essen-
tially all other host resources—e.g., NIC buffer sizes [30], the
ratio of access link bandwidth to PCIe bandwidth [26–28],
IOTLB sizes [4, 25], memory access latencies [17, 32], and
memory bandwidth per core [23]—are largely stagnant.
One root cause of host congestion, that we did not focus

on much, is the inability of the host software to consume
packets at the rate at which NIC receives packets [8–10, 22]
either due to lack of available CPUs or simply due to ineffi-
cient host software. The challenges introduced by inefficient
host software are important, but do admit a solution: dynam-
ically changing cores allocated to software processing [9, 15].
Our results, in §3, show that state-of-the-art CC protocols
can handle host congestion introduced by host software us-
ing precisely such solutions. However, as we have shown in
the previous section, the case of host congestion due to host
interconnect bottlenecks is very different: increasing the
number of cores can in fact increase host congestion due to
inflating host interconnect bottlenecks. Simply using a lower
host target delay would not resolve the problem: with CC
protocols taking at least one RTT to respond to congestion,
in-flight bytes can exceed NIC buffer sizes even with a small
number of senders5. Indeed, similar reasoning also applies
for TCP-like protocols [2, 12]: the total in-flight bytes can
still exceed NIC buffer capacity. Thus, different forms of host
congestion—host software and host interconnect—require
different responses. To alleviate host congestion, and to de-
sign CC protocols that respond efficiently to host congestion,
we believe the following directions are worth exploring:

4Similar phenomenon will also occur for Figure 6(left), but there is no visible
degradation for 6-8 cores due to available headroom in PCIe bandwidth.
5Even if we assume a 20𝜇s RTT and 100G line rate, in-flight packets for just
8 concurrent senders can exceed 1MB threshold.

Rethinking host architecture for future-generation dat-
acenter networks. Given our results, we believe the fol-
lowing are interesting directions to explore: (a) alternative
architectures to enable memory protection from the NIC, e.g.,
efficient offload of I/O address translation as in technologies
like ATS [1]; (b) alternatives to PCIe link layer protocol, e.g.,
CXL [33] might alleviate host-congestion problems to some
degree via potentially reducing PCIe latency or via expand-
ing memory bandwidth over PCIe channels; and perhaps
more importantly, (c) mechanisms to more “fairly” share the
memory bandwidth between compute and network traffic,
e.g., emerging technologies like Intel MBA [13] and ARM
MPAM [6] enable enforcing QoS guarantees for memory bus,
and we can utilize existing ideas in QoS-scheduling [3, 11]
to share memory bandwidth.

Rethinking congestion signals. Host congestion due to
bottlenecks within the host interconnect brings a new twist
to the classical CC problem: in addition to congestion signals
that originate within the network (e.g., queuing and drops at
switches, ECN, delay, etc.), future CC protocols should both
incorporate new congestion signals that come from “outside
the network” (e.g., CPU utilization, memory bandwidth con-
tention, memory fragmentation, etc.), and new mechanisms
to react to these signals.

Rethinking congestion response. Traditionally, different
components within the host have been responsible for alloca-
tion of resources (e.g., network stack for network resources,
CPU schedulers for compute resources, memory controller
for memory bandwidth, etc.) with little or no coordination.
Thus, CC protocols typically take a view of allocating net-
work resources: responding to congestion by reducing the
rate of data transmission. Our study suggests at least two
directions where we should rethink congestion response
to fundamentally resolving host congestion. First, we need
a more coordinated approach to balanced allocation of re-
sources across all components (compute, memory bandwidth,
network bandwidth); for instance, rather than reducing rate
for network transfers upon congestion at the NIC, one could
trigger CPU rescheduling to reduce memory bus bottleneck
(e.g., scheduling applications on NUMA nodes different from
the one where the NIC is connected). Second, we need to re-
think the timescale of congestion response: while RTT-level
response may be sufficient for fabric congestion, emergence
of Terabit Ethernet and stagnant NIC buffer sizes may neces-
sitate a sub-RTT response for host congestion.

ACKNOWLEDGMENTS
Wewould like to thank our shepherd, Srinivasan Seshan, and
HotNets reviewers for insightful feedback. We would also
like to thank Nandita Dukkipati and Jeff Mogul for feedback
on early versions of this paper. This research was in part
supported by NSF grants CNS-2047283 and CNS-1704742, a
Google faculty research award, and a Sloan fellowship.

203

Understanding Host Interconnect Congestion HotNets ’22, November 14–15, 2022, Austin, TX, USA

REFERENCES
[1] Jasmin Ajanovic. 2008. PCI Express 3.0 Accelerator Features. (2008).
https://www.intel.com.ec/content/dam/doc/white-
paper/pci-express3-accelerator-white-paper.pdf

[2] Mohammad Alizadeh, Albert Greenberg, David A Maltz, Jitendra Pad-
hye, Parveen Patel, Balaji Prabhakar, Sudipta Sengupta, and Murari
Sridharan. 2010. Data Center TCP (DCTCP). In ACM SIGCOMM.

[3] Mohammad Alizadeh, Shuang Yang, Milad Sharif, Sachin Katti, Nick
McKeown, Balaji Prabhakar, and Scott Shenker. 2013. pFabric: Minimal
near-optimal datacenter transport. In ACM SIGCOMM.

[4] Nadav Amit, Muli Ben-Yehuda, Dan Tsafrir, and Assaf Schuster. 2011.
vIOMMU: efficient IOMMU emulation. In USENIX ATC.

[5] Nadav Amit, Muli Ben-Yehuda, and Ben-Ami Yassour. 2010. IOMMU:
strategies for mitigating the IOTLB bottleneck. In IEEE ISCA.

[6] Arm. 2021. Memory system resource partitioning and moni-
toring (MPAM). (2021). https://developer.arm.com/
documentation/ddi0598/latest

[7] Lars Bergstrom. 2011. Measuring NUMA effects with the STREAM
benchmark. arXiv:1103.3225 (2011).

[8] Qizhe Cai, Shubham Chaudhary, Midhul Vuppalapati, Jaehyun Hwang,
and Rachit Agarwal. 2021. Understanding host network stack over-
heads. In ACM SIGCOMM.

[9] Qizhe Cai, Midhul Vuppalapati, Jaehyun Hwang, Christos Kozyrakis,
and Rachit Agarwal. 2022. Towards 𝜇s tail latency and terabit ethernet:
disaggregating the host network stack. In ACM SIGCOMM.

[10] Alireza Farshin, Amir Roozbeh, Gerald Q Maguire Jr, and Dejan Kostić.
2020. Reexamining direct cache access to optimize I/O intensive appli-
cations for multi-hundred-gigabit networks. In USENIX ATC.

[11] Matthew P Grosvenor, Malte Schwarzkopf, Ionel Gog, Robert NM
Watson, Andrew W Moore, Steven Hand, and Jon Crowcroft. 2015.
Queues don’t matter when you can jump them!. In USENIX NSDI.

[12] Sangtae Ha, Injong Rhee, and Lisong Xu. 2008. CUBIC: a new TCP-
friendly high-speed TCP variant. In ACM SIGOPS OSR.

[13] Intel. 2019. Introduction to Memory Bandwidth Allocation.
(2019). https://www.intel.com/content/www/us/en/
developer/articles/technical/introduction- to-
memory-bandwidth-allocation.html

[14] Anuj Kalia, Michael Kaminsky, and David Andersen. 2019. Datacenter
RPCs can be General and Fast. In USENIX NSDI.

[15] Gautam Kumar, Nandita Dukkipati, Keon Jang, Hassan MG Was-
sel, Xian Wu, Behnam Montazeri, Yaogong Wang, Kevin Springborn,
Christopher Alfeld, Michael Ryan, David Wetherall, and Amin Vahdat.
2020. Swift: Delay is simple and effective for congestion control in the
datacenter. In ACM SIGCOMM.

[16] Chang Joo Lee, Onur Mutlu, Veynu Narasiman, and Yale N Patt. 2008.
Prefetch-aware DRAM controllers. In IEEE/ACM MICRO.

[17] Bojie Li, Zhenyuan Ruan, Wencong Xiao, Yuanwei Lu, Yongqiang
Xiong, Andrew Putnam, Enhong Chen, and Lintao Zhang. 2017.

KV-direct: High-performance in-memory key-value store with pro-
grammable nic. In ACM SOSP.

[18] John DC Little and Stephen C Graves. 2008. Little’s law. In Building
intuition. Springer.

[19] Moshe Malka, Nadav Amit, Muli Ben-Yehuda, and Dan Tsafrir. 2015.
rIOMMU: efficient IOMMU for I/O devices that employ ring buffers.
ACM SIGPLAN Notices.

[20] Ilias Marinos, Robert NM Watson, Mark Handley, and Randall R Stew-
art. 2017. Disk| Crypt| Net: rethinking the stack for high-performance
video streaming. In ACM SIGCOMM.

[21] Alex Markuze, Igor Smolyar, Adam Morrison, and Dan Tsafrir. 2018.
DAMN: Overhead-free IOMMU protection for networking. In ACM
ASPLOS.

[22] Michael Marty, Marc de Kruijf, Jacob Adriaens, Christopher Alfeld,
Sean Bauer, Carlo Contavalli, Michael Dalton, Nandita Dukkipati,
William C Evans, Steve Gribble, et al. 2019. Snap: A microkernel
approach to host networking. In ACM SOSP.

[23] Hassan Mujtaba. 2020. Intel Sapphire Rapids Xeon Scalable
CPUs. (2020). https://wccftech.com/intel-sapphire-
rapids-xeon-scalable-cpus-volume-ramp-rumored-
for-2023/

[24] Onur Mutlu and Thomas Moscibroda. 2008. Parallelism-aware batch
scheduling: enhancing both performance and fairness of shared DRAM
systems. In IEEE ISCA.

[25] Rolf Neugebauer, Gianni Antichi, José Fernando Zazo, Yury Audzevich,
Sergio López-Buedo, and AndrewWMoore. 2018. Understanding PCIe
performance for end host networking. In ACM SIGCOMM.

[26] NVIDIA. 2022. ConnectX-5. (2022). https://www.nvidia.com/
en-us/networking/ethernet/connectx-5/

[27] NVIDIA. 2022. ConnectX-6. (2022). https://www.nvidia.com/
en-us/networking/ethernet/connectx-6/

[28] NVIDIA. 2022. ConnectX-7. (2022). https://nvdam.widen.net/
s/srdqzxgdr5/connectx-7-datasheet

[29] Omer Peleg, AdamMorrison, Benjamin Serebrin, and Dan Tsafrir. 2015.
Utilizing the IOMMU scalably. In USENIX ATC.

[30] Boris Pismenny, Liran Liss, Adam Morrison, and Dan Tsafrir. 2022.
The benefits of general-purpose on-NIC memory. In ACM ASPLOS.

[31] Sivasankar Radhakrishnan, Yilong Geng, Vimalkumar Jeyakumar, Ab-
dul Kabbani, George Porter, and Amin Vahdat. 2014. SENIC: scalable
NIC for end-host rate limiting. In USENIX NSDI.

[32] Shelby Thomas, Geoffrey M Voelker, and George Porter. 2018.
Cachecloud: towards speed-of-light datacenter communication. In
USENIX HotCloud.

[33] Stephen Van Doren. 2019. HOTI 2019: Compute Express Link. In IEEE
HOTI.

[34] Yimeng Zhao, Ahmed Saeed, Mostafa Ammar, and Ellen Zegura. 2021.
Scouting the path to a million-client server. In PAM.

204

https://www.intel.com.ec/content/dam/doc/white-paper/pci-express3-accelerator-white-paper.pdf
https://www.intel.com.ec/content/dam/doc/white-paper/pci-express3-accelerator-white-paper.pdf
https://developer.arm.com/documentation/ddi0598/latest
https://developer.arm.com/documentation/ddi0598/latest
https://www.intel.com/content/www/us/en/developer/articles/technical/introduction-to-memory-bandwidth-allocation.html
https://www.intel.com/content/www/us/en/developer/articles/technical/introduction-to-memory-bandwidth-allocation.html
https://www.intel.com/content/www/us/en/developer/articles/technical/introduction-to-memory-bandwidth-allocation.html
https://wccftech.com/intel-sapphire-rapids-xeon-scalable-cpus-volume-ramp-rumored-for-2023/
https://wccftech.com/intel-sapphire-rapids-xeon-scalable-cpus-volume-ramp-rumored-for-2023/
https://wccftech.com/intel-sapphire-rapids-xeon-scalable-cpus-volume-ramp-rumored-for-2023/
https://www.nvidia.com/en-us/networking/ethernet/connectx-5/
https://www.nvidia.com/en-us/networking/ethernet/connectx-5/
https://www.nvidia.com/en-us/networking/ethernet/connectx-6/
https://www.nvidia.com/en-us/networking/ethernet/connectx-6/
https://nvdam.widen.net/s/srdqzxgdr5/connectx-7-datasheet
https://nvdam.widen.net/s/srdqzxgdr5/connectx-7-datasheet

	Abstract
	1 Introduction
	2 Host Datapath
	3 Host Congestion
	3.1 IOMMU induced host congestion
	3.2 Memory bus induced host congestion

	4 Looking forward
	Acknowledgments
	References

