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Abstract

Scaling up language models has been shown to predictably improve performance and sample
efficiency on a wide range of downstream tasks. This paper instead discusses an unpredictable
phenomenon that we refer to as emergent abilities of large language models. We consider an
ability to be emergent if it is not present in smaller models but is present in larger models.
Thus, emergent abilities cannot be predicted simply by extrapolating the performance of
smaller models. The existence of such emergence raises the question of whether additional
scaling could potentially further expand the range of capabilities of language models.

1 Introduction

Language models have revolutionized natural language processing (NLP) in recent years. It is now well-known
that increasing the scale of language models (e.g., training compute, model parameters, etc.) can lead to
better performance and sample efficiency on a range of downstream NLP tasks (Devlin et al., 2019; Brown
et al., 2020, inter alia). In many cases, the effect of scale on performance can often be methodologically
predicted via scaling laws—for example, scaling curves for cross-entropy loss have been shown to empirically
span more than seven orders of magnitude (Kaplan et al., 2020; Hoffmann et al., 2022). On the other hand,
performance for certain downstream tasks counterintuitively does not appear to continuously improve as a
function of scale, and such tasks cannot be predicted ahead of time (Ganguli et al., 2022).

In this paper, we will discuss the unpredictable phenomena of emergent abilities of large language models.
Emergence as an idea has been long discussed in domains such as physics, biology, and computer science
(Anderson, 1972; Hwang et al., 2012; Forrest, 1990; Corradini & O’Connor, 2010; Harper & Lewis, 2012, inter
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alia). We will consider the following general definition of emergence, adapted from Steinhardt (2022) and
rooted in a 1972 essay called “More Is Different” by Nobel prize-winning physicist Philip Anderson (Anderson,
1972):

Emergence is when quantitative changes in a system result in qualitative changes in behavior.

Here we will explore emergence with respect to model scale, as measured by training compute and number of
model parameters. Specifically, we define emergent abilities of large language models as abilities that are
not present in smaller-scale models but are present in large-scale models; thus they cannot be predicted by
simply extrapolating the performance improvements on smaller-scale models (§2).1 We survey emergent
abilities as observed in a range of prior work, categorizing them in settings such as few-shot prompting (§3)
and augmented prompting strategies (§4). Emergence motivates future research on why such abilities are
acquired and whether more scaling will lead to further emergent abilities, which we highlight as important
questions for the field (§5).

2 Emergent Abilities Definition

As a broad concept, emergence is often used informally and can be reasonably interpreted in many different
ways. In this paper, we will consider a focused definition of emergent abilities of large language models:

An ability is emergent if it is not present in smaller models but is present in larger models.

Emergent abilities would not have been directly predicted by extrapolating a scaling law (i.e. consistent
performance improvements) from small-scale models. When visualized via a scaling curve (x-axis: model
scale, y-axis: performance), emergent abilities show a clear pattern—performance is near-random until a
certain critical threshold of scale is reached, after which performance increases to substantially above random.
This qualitative change is also known as a phase transition—a dramatic change in overall behavior that would
not have been foreseen by examining smaller-scale systems (Huberman & Hogg, 1987).

Today’s language models have been scaled primarily along three factors: amount of computation, number
of model parameters, and training dataset size (Kaplan et al., 2020; Hoffmann et al., 2022). In this paper,
we will analyze scaling curves by plotting the performance of different models where training compute for
each model is measured in FLOPs on the x-axis (Hoffmann et al., 2022). Because language models trained
with more compute tend to also have more parameters, we additionally show plots with number of model
parameters as the x-axis in Appendix D (see Figure 11 and Figure 12, as well as Figure 4 and Figure 10).
Using training FLOPs or model parameters as the x-axis produces curves with similar shapes due to the fact
that most dense Transformer language model families have scaled training compute roughly proportionally
with model parameters (Kaplan et al., 2020).

Training dataset size is also an important factor, but we do not plot capabilities against it because many
language model families use a fixed number of training examples for all model sizes (Brown et al., 2020; Rae
et al., 2021; Chowdhery et al., 2022). Although we focus on training computation and model size here, there
is not a single proxy that adequately captures all aspects of scale. For example, Chinchilla (Hoffmann et al.,
2022) has one-fourth as many parameters as Gopher (Rae et al., 2021) but uses similar training compute; and
sparse mixture-of-expert models have more parameters per training/inference compute than dense models
(Fedus et al., 2021; Du et al., 2021). Overall, it may be wise to view emergence as a function of many
correlated variables. For example, later in Figure 4 we will also plot emergence as a function of WikiText103
perplexity (Merity et al., 2016), which happens to closely correlate with training computation for Gopher/
Chinchilla (though this correlation may not hold in the long-run).

Note that the scale at which an ability is first observed to emerge depends on a number of factors and is
not an immutable property of the ability. For instance, emergence may occur with less training compute

1This survey focuses on pre-trained Transformer language models. Emergent abilities in NLP more broadly, however, could
go back to Miller et al. (2004), Liang (2005), or earlier.
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or fewer model parameters for models trained on higher-quality data. Conversely, emergent abilities also
crucially depend on other factors such as not being limited by the amount of data, its quality, or the number
of parameters in the model. Today’s language models are likely not trained optimally (Hoffmann et al., 2022),
and our understanding of how to best train models will evolve over time. Our goal in this paper is not to
characterize or claim that a specific scale is required to observe emergent abilities, but rather, we aim to
discuss examples of emergent behavior in prior work.

3 Few-Shot Prompted Tasks

Language 
model

Input

OutputReview: This movie sucks.
Sentiment: negative.

Review: I love this movie.
Sentiment:

positive.

Figure 1: Example of an input and
output for few-shot prompting.

We first discuss emergent abilities in the prompting paradigm, as pop-
ularized by GPT-3 (Brown et al., 2020).2 In prompting, a pre-trained
language model is given a prompt (e.g. a natural language instruction)
of a task and completes the response without any further training
or gradient updates to its parameters. Brown et al. (2020) proposed
few-shot prompting, which includes a few input-output examples in
the model’s context (input) as a preamble before asking the model to
perform the task for an unseen inference-time example. An example prompt is shown in Figure 1.

The ability to perform a task via few-shot prompting is emergent when a model has random performance
until a certain scale, after which performance increases to well-above random. Figure 2 shows eight such
emergent abilities spanning five language model families from various work.

BIG-Bench. Figure 2A–D depicts four emergent few-shot prompted tasks from BIG-Bench, a crowd-sourced
suite of over 200 benchmarks for language model evaluation (BIG-Bench, 2022). Figure 2A shows an arithmetic
benchmark that tests 3-digit addition and subtraction, as well as 2-digit multiplication. GPT-3 and LaMDA
(Thoppilan et al., 2022) have close-to-zero performance for several orders of magnitude of training compute,
before performance jumps to sharply above random at 2 · 1022 training FLOPs (13B parameters) for GPT-3,
and 1023 training FLOPs (68B parameters) for LaMDA. Similar emergent behavior also occurs at around the
same model scale for other tasks, such as transliterating from the International Phonetic Alphabet (Figure 2B),
recovering a word from its scrambled letters (Figure 2C), and Persian question-answering (Figure 2D). Even
more emergent abilities from BIG-Bench are given in Appendix E.

TruthfulQA. Figure 2E shows few-shot prompted performance on the TruthfulQA benchmark, which
measures the ability to answer questions truthfully (Lin et al., 2021). This benchmark is adversarially curated
against GPT-3 models, which do not perform above random, even when scaled to the largest model size.
Small Gopher models also do not perform above random until scaled up to the largest model of 5 · 1023

training FLOPs (280B parameters), for which performance jumps to more than 20% above random (Rae
et al., 2021).

Grounded conceptual mappings. Figure 2F shows the task of grounded conceptual mappings, where
language models must learn to map a conceptual domain, such as a cardinal direction, represented in a
textual grid world (Patel & Pavlick, 2022). Again, performance only jumps to above random using the largest
GPT-3 model.

Multi-task language understanding. Figure 2G shows the Massive Multi-task Language Understanding
(MMLU) benchmark, which aggregates 57 tests covering a range of topics including math, history, law, and
more (Hendrycks et al., 2021a). For GPT-3, Gopher, and Chinchilla, models of ∼1022 training FLOPs (∼10B
parameters) or smaller do not perform better than guessing on average over all the topics, scaling up to 3–5
·1023 training FLOPs (70B–280B parameters) enables performance to substantially surpass random. This
result is striking because it could imply that the ability to solve knowledge-based questions spanning a large
collection of topics might require scaling up past this threshold (for dense language models without retrieval
or access to external memory).

2Though GPT-3 popularized prompting, the task setup has existed since before GPT-3 (Trinh & Le, 2018; McCann et al.,
2018; Radford et al., 2019; Raffel et al., 2020).
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Figure 2: Eight examples of emergence in the few-shot prompting setting. Each point is a separate model.
The ability to perform a task via few-shot prompting is emergent when a language model achieves random
performance until a certain scale, after which performance significantly increases to well-above random. Note
that models that used more training compute also typically have more parameters—hence, we show an
analogous figure with number of model parameters instead of training FLOPs as the x-axis in Figure 11.
A–D: BIG-Bench (2022), 2-shot. E: Lin et al. (2021) and Rae et al. (2021). F: Patel & Pavlick (2022). G:
Hendrycks et al. (2021a), Rae et al. (2021), and Hoffmann et al. (2022). H: Brown et al. (2020), Hoffmann
et al. (2022), and Chowdhery et al. (2022) on the WiC benchmark (Pilehvar & Camacho-Collados, 2019).

Word in Context. Finally, Figure 2H shows the Word in Context (WiC) benchmark (Pilehvar & Camacho-
Collados, 2019), which is a semantic understanding benchmark. Notably, GPT-3 and Chinchilla fail to
achieve one-shot performance of better than random, even when scaled to their largest model size of ∼5 · 1023

FLOPs. Although these results so far may suggest that scaling alone may not enable models to solve WiC,
above-random performance eventually emerged when PaLM was scaled to 2.5 ·1024 FLOPs (540B parameters),
which was much larger than GPT-3 and Chinchilla.

4 Augmented Prompting Strategies

Although few-shot prompting is perhaps currently the most common way of interacting with large language
models, recent work has proposed several other prompting and finetuning strategies to further augment the
abilities of language models. If a technique shows no improvement or is harmful when compared to the
baseline of not using the technique until applied to a model of a large-enough scale, we also consider the
technique an emergent ability.
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Figure 3: Specialized prompting or finetuning methods can be emergent in that they do not have a positive
effect until a certain model scale. A: Wei et al. (2022b). B: Wei et al. (2022a). C: Nye et al. (2021). D:
Kadavath et al. (2022). An analogous figure with number of parameters on the x-axis instead of training
FLOPs is given in Figure 12. The model shown in A-C is LaMDA (Thoppilan et al., 2022), and the model
shown in D is from Anthropic.

Multi-step reasoning. Reasoning tasks, especially those involving multiple steps, have been challenging for
language models and NLP models more broadly (Rae et al., 2021; Bommasani et al., 2021; Nye et al., 2021). A
recent prompting strategy called chain-of-thought prompting enables language models to solve such problems
by guiding them to produce a sequence of intermediate steps before giving the final answer (Cobbe et al., 2021;
Wei et al., 2022b; Suzgun et al., 2022). As shown in Figure 3A, chain of thought prompting only surpasses
standard prompting without intermediate steps when scaled to 1023 training FLOPs (∼100B parameters).
A similar emergence in performance gain was also observed when augmenting few-shot prompting with
explanations that came after the final answer (Lampinen et al., 2022).

Instruction following. Another growing line of work aims to better enable language models to perform
new tasks simply by reading instructions describing the task (without few-shot exemplars). By finetuning
on a mixture of tasks phrased as instructions, language models have been shown to respond appropriately
to instructions describing an unseen task (Ouyang et al., 2022; Wei et al., 2022a; Sanh et al., 2022; Chung
et al., 2022). As shown in Figure 3B, Wei et al. (2022a) found that this instruction-finetuning technique hurts
performance for models of 7 ·1021 training FLOPs (8B parameters) or smaller, and only improves performance
when scaled to 1023 training FLOPs (∼100B parameters) (though Sanh et al. (2022) found shortly after that
this instruction-following behavior could be also induced by finetuning smaller encoder-decoder T5 models).

Program execution. Consider computational tasks involving multiple steps, such as adding large numbers or
executing computer programs. Nye et al. (2021) show that finetuning language models to predict intermediate
outputs (“scratchpad”) enables them to successfully execute such multi-step computations. As shown in
Figure 3C, on 8-digit addition, using a scratchpad only helps for models of ∼9 · 1019 training FLOPs (40M
parameters) or larger.

Model calibration. Finally, an important direction for deployment of language models studies is calibration,
which measures whether models can predict which questions they will be able to answer correctly. Kadavath
et al. (2022) compared two ways of measuring calibration: a True/False technique, where models first propose
answers and then evaluate the probability “P(True)” that their answers are correct, and more-standard
methods of calibration, which use the probability of the correct answer compared with other answer options.
As shown in Figure 3D, the superiority of the True/False technique only emerges when scaled to the largest
model scale of ∼3 · 1023 training FLOPs (52B parameters).
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Table 1: List of emergent abilities of large language models and the scale (both training FLOPs and number
of model parameters) at which the abilities emerge.

Emergent scale

Train. FLOPs Params. Model Reference

Few-shot prompting abilitiesr Addition/subtraction (3 digit) 2.3E+22 13B GPT-3 Brown et al. (2020)r Addition/subtraction (4-5 digit) 3.1E+23 175Br MMLU Benchmark (57 topic avg.) 3.1E+23 175B GPT-3 Hendrycks et al. (2021a)r Toxicity classification (CivilComments) 1.3E+22 7.1B Gopher Rae et al. (2021)r Truthfulness (Truthful QA) 5.0E+23 280Br MMLU Benchmark (26 topics) 5.0E+23 280Br Grounded conceptual mappings 3.1E+23 175B GPT-3 Patel & Pavlick (2022)r MMLU Benchmark (30 topics) 5.0E+23 70B Chinchilla Hoffmann et al. (2022)r Word in Context (WiC) benchmark 2.5E+24 540B PaLM Chowdhery et al. (2022)r Many BIG-Bench tasks (see Appendix E) Many Many Many BIG-Bench (2022)

Augmented prompting abilitiesr Instruction following (finetuning) 1.3E+23 68B FLAN Wei et al. (2022a)r Scratchpad: 8-digit addition (finetuning) 8.9E+19 40M LaMDA Nye et al. (2021)r Using open-book knowledge for fact checking 1.3E+22 7.1B Gopher Rae et al. (2021)r Chain-of-thought: Math word problems 1.3E+23 68B LaMDA Wei et al. (2022b)r Chain-of-thought: StrategyQA 2.9E+23 62B PaLM Chowdhery et al. (2022)r Differentiable search index 3.3E+22 11B T5 Tay et al. (2022b)r Self-consistency decoding 1.3E+23 68B LaMDA Wang et al. (2022b)r Leveraging explanations in prompting 5.0E+23 280B Gopher Lampinen et al. (2022)r Least-to-most prompting 3.1E+23 175B GPT-3 Zhou et al. (2022)r Zero-shot chain-of-thought reasoning 3.1E+23 175B GPT-3 Kojima et al. (2022)r Calibration via P(True) 2.6E+23 52B Anthropic Kadavath et al. (2022)r Multilingual chain-of-thought reasoning 2.9E+23 62B PaLM Shi et al. (2022)r Ask me anything prompting 1.4E+22 6B EleutherAI Arora et al. (2022)

5 Discussion

We have seen that a range of abilities—in the few-shot prompting setup or otherwise—have thus far only
been observed when evaluated on a sufficiently large language model. Hence, their emergence cannot be
predicted by simply extrapolating performance on smaller-scale models. Emergent few-shot prompted tasks
are also unpredictable in the sense that these tasks are not explicitly included in pre-training, and we likely
do not know the full scope of few-shot prompted tasks that language models can perform. This raises the
question of whether further scaling could potentially endow even-larger language models with new emergent
abilities. Tasks that language models cannot currently do are prime candidates for future emergence; for
instance, there are dozens of tasks in BIG-Bench for which even the largest GPT-3 and PaLM models do not
achieve above-random performance (see Appendix E.4).

The ability for scale to unpredictably enable new techniques is not just theoretical. Consider the Word in
Context (WiC) benchmark (Pilehvar & Camacho-Collados, 2019) shown in Figure 2H, as a historical example.
Here, scaling GPT-3 to around 3 · 1023 training FLOPs (175B parameters) failed to unlock above-random
one-shot prompting performance.3 Regarding this negative result, Brown et al. (2020) cited the model
architecture of GPT-3 or the use of an autoregressive language modeling objective (rather than using a
denoising training objective) as potential reasons, and suggested training a model of comparable size with
bidirectional architecture as a remedy. However, later work found that further scaling a decoder-only language
model was actually enough to enable above-random performance on this task. As is shown in Figure 2H,
scaling PaLM (Chowdhery et al., 2022) from 3 · 1023 training FLOPs (62B parameters) to 3 · 1024 training

3GPT-3 does achieve slightly above-random performance on the dev set with few-shot instead of one-shot prompting (∼55%),
but this above-random performance did not appear to be a result of scale and did not hold on the test set server.
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FLOPs (540B parameters) led to a significant jump in performance, without the significant architectural
changes suggested by Brown et al. (2020).

5.1 Potential explanations of emergence

Although there are dozens of examples of emergent abilities, there are currently few compelling explanations
for why such abilities emerge in the way they do. For certain tasks, there may be natural intuitions for why
emergence requires a model larger than a particular threshold scale. For instance, if a multi-step reasoning
task requires l steps of sequential computation, this might require a model with a depth of at least O (l)
layers. It is also reasonable to assume that more parameters and more training enable better memorization
that could be helpful for tasks requiring world knowledge.4 As an example, good performance on closed-book
question-answering may require a model with enough parameters to capture the compressed knowledge
base itself (though language model-based compressors can have higher compression ratios than conventional
compressors (Bellard, 2021)).

It is also important to consider the evaluation metrics used to measure emergent abilities (BIG-Bench,
2022). For instance, using exact string match as the evaluation metric for long-sequence targets may disguise
compounding incremental improvements as emergence. Similar logic may apply for multi-step or arithmetic
reasoning problems, where models are only scored on whether they get the final answer to a multi-step
problem correct, without any credit given to partially correct solutions. However, the jump in final answer
accuracy does not explain why the quality of intermediate steps suddenly emerges to above random, and using
evaluation metrics that do not give partial credit are at best an incomplete explanation, because emergent
abilities are still observed on many classification tasks (e.g., the tasks in Figure 2D–H).

As an alternative evaluation, we measure cross-entropy loss, which is used in scaling laws for pre-training, for
the six emergent BIG-Bench tasks, as detailed in Appendix A. This analysis follows the same experimental
setup from BIG-Bench (2022) and affirms their conclusions for the six emergent tasks we consider. Namely,
cross-entropy loss improves even for small model scales where the downstream metrics (exact match, BLEU,
and accuracy) are close to random and do not improve, which shows that improvements in the log-likelihood
of the target sequence can be masked by such downstream metrics. However, this analysis does not explain
why downstream metrics are emergent or enable us to predict the scale at which emergence occurs. Overall,
more work is needed to tease apart what enables scale to unlock emergent abilities.

5.2 Beyond scaling

Although we may observe an emergent ability to occur at a certain scale, it is possible that the ability could
be later achieved at a smaller scale—in other words, model scale is not the singular factor for unlocking
an emergent ability. As the science of training large language models progresses, certain abilities may be
unlocked for smaller models with new architectures, higher-quality data, or improved training procedures.
For example, there are 14 BIG-Bench tasks5 for which LaMDA 137B and GPT-3 175B models perform
at near-random, but PaLM 62B in fact achieves above-random performance, despite having fewer model
parameters and training FLOPs. While there is not an empirical study ablating every difference between
PaLM 62B and prior models (the computational cost would be too high), potential reasons for the better
performance of PaLM could include high-quality training data (e.g., more multilingual and code data than
LaMDA) and architectural differences (e.g., split digit-encodings; see Section 2 in Chowdhery et al. (2022)).
Another potentially way of unlocking emergence is through a different pre-training objective—it was shown
in Tay et al. (2022c) that a computationally-efficient continued pre-training stage on a mixture-of-denoisers
objective (Tay et al., 2022a) enabled emergent performance on several BIG-Bench tasks.

Moreover, once an ability is discovered, further research may make the ability available for smaller scale
models. Consider the nascent direction of enabling language models to follow natural language instructions
describing a task (Wei et al., 2022a; Sanh et al., 2022; Ouyang et al., 2022, inter alia). Although Wei et al.
(2022a) initially found that instruction-based finetuning only worked for 68B parameter or larger decoder-only

4Though note that encoding world knowledge in parameters is just one approach; there are others (e.g., Guu et al., 2020;
Borgeaud et al., 2021).

5These tasks are enumerated in Appendix F.
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models, Sanh et al. (2022) induced similar behavior in a 11B model with an encoder-decoder architecture,
which typically has higher performance after finetuning than decoder-only architectures (Wang et al., 2022a).
As another example, Ouyang et al. (2022) proposed a finetuning and reinforcement learning from human
feedback approach for the InstructGPT models, which enabled a 1.3B model to outperform much larger
models in human-rater evaluations on a broad set of use cases.

There has also been work on improving the general few-shot prompting abilities of language models (Gao
et al., 2021; Schick & Schütze, 2021, inter alia). Theoretical and interpretability research (Wei et al., 2021a;
Saunshi et al., 2021) on why a language modeling objective facilitates certain downstream behavior could in
turn have implications on how to enable emergence beyond simply scaling. For instance, certain features of
pre-training data (e.g., long-range coherence, having many rare classes) have also been shown to correlate with
emergent few-shot prompting and could potentially enable it in smaller models (Xie et al., 2022; Chan et al.,
2022), and few-shot learning can require certain model architectures in some scenarios (Chan et al., 2022).
Computational linguistics work has further shown how threshold frequencies of training data can activate
emergent syntactic rule-learning when model parameters and training FLOPs are held constant (Wei et al.,
2021b), which has even been shown to have striking “aha” moments similar to those in the psycholinguistics
literature (Abend et al., 2017; Zhang et al., 2021). As we continue to train language models, lowering the
scale threshold for emergent abilities will become more important for making research on such abilities to
available to the community more broadly (Bommasani et al., 2021; Ganguli et al., 2022; Liang et al., 2022).

Naturally, there are limitations to a program consisting only of increasing scale (training compute, model
parameters, and dataset size). For instance, scaling may eventually be bottle-necked by hardware constraints,
and some abilities may not have emerged at this point. Other abilities may never emerge—for instance, tasks
that are far out of the distribution of even a very large training dataset might not ever achieve any significant
performance. Finally, an ability could emerge and then plateau; in other words, there is no guarantee that
scaling enables an ability to reach the desired level.

5.3 Another view of emergence

While scale (e.g., training FLOPs or model parameters) has been highly correlated with language model
performance on many downstream metrics so far, scale need not be the only lens to view emergent abilities.
For example, the emergence of task-specific abilities can be analyzed as a function of the language model’s
perplexity on a general text corpus such as WikiText103 (Merity et al., 2016). Figure 4 shows such a plot
with WikiText103 perplexity of the language model on the x-axis and performance on the MMLU benchmark
on the y-axis, side-by-side with plots of training FLOPs and model parameters on the x-axis.

Because WikiText103 perplexity and training FLOPs happen to be highly correlated for the models considered
here (Gopher and Chinchilla), the plots of emergent abilities look similar for both. However, this correlation
between WikiText103 perplexity and scale may not hold in the future as new techniques beyond vanilla
dense Transformer models are developed (e.g., retrieval-augmented models may have strong WikiText103
perplexity with less training compute and fewer model parameters (Borgeaud et al., 2021)). Also note that
using WikiText103 perplexity to compare across model families can be complicated due to factors such as
differences in training data composition. Overall, emergent abilities should probably be viewed as a function
of many correlated variables.

5.4 Emergent risks

Importantly, similar to how emergent abilities have been observed in the few-shot prompting setting without
explicitly being included in pre-training, risks could also emerge (Bommasani et al., 2021; Steinhardt, 2021;
Ganguli et al., 2022). For instance, societal risks of large language models such as truthfulness, bias, and
toxicity are a growing area of research (Weidinger et al., 2021). Such risks are important considerations
whether or not they can be precisely characterized as “emergent” based on the definition in §2, and, in some
scenarios, do increase with model scale (see the Inverse Scaling Prize6). Since work on emergent abilities

6https://github.com/inverse-scaling/prize
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Figure 4: Top row: the relationships between training FLOPs, model parameters, and perplexity (ppl) on
WikiText103 (Merity et al., 2016) for Chinchilla and Gopher. Bottom row: Overall performance on the
massively multi-task language understanding benchmark (MMLU; Hendrycks et al., 2021a) as a function of
training FLOPs, model parameters, and WikiText103 perplexity.

incentivizes scaling language models, it is important to be aware of risks that increase with model scale even
if they are not emergent.

Here, we summarize several prior findings on the relationship between specific social risks and model scale.
On WinoGender (Rudinger et al., 2017), which measures gender bias in occupations such as “nurse” or
“electrician,” scaling has improved performance so far (Du et al., 2021; Chowdhery et al., 2022), though
BIG-Bench (2022) found in BBQ bias benchmark (Parrish et al., 2022) that bias can increase with scaling for
ambiguous contexts. As for toxicity, Askell et al. (2021) found that while larger language models could produce
more toxic responses from the RealToxicityPrompts dataset (Gehman et al., 2020), this behavior could be
mitigated by giving models prompts with examples of being “helpful, harmless, and honest.” For extracting
training data from language models, larger models were found to be more likely to memorize training data
(Carlini et al., 2021; 2022), though deduplication methods have been proposed and can simultaneously reduce
memorization while improving performance (Kandpal et al., 2022; Lee et al., 2022a). The TruthfulQA
benchmark (Lin et al., 2021) showed that GPT-3 models were more likely to mimic human falsehoods as they
got larger, though Rae et al. (2021) later showed on a multiple-choice version that scaling Gopher to 280B
enabled emergent performance substantially better than random.

Beyond the above, emergent risks also include phenomena that might only exist in future language models
or that have not yet been characterized in current language models. Some such behaviors, as discussed
in detail in Hendrycks et al. (2021b), could be backdoor vulnerabilities, inadvertent deception, or harmful
content synthesis. Approaches involving data filtering, forecasting, governance, and automatically discovering
harmful behaviors have been proposed for discovering and mitigating emergent risks (Bender et al., 2021;
Weidinger et al., 2021; Steinhardt, 2021; Ganguli et al., 2022; Perez et al., 2022, inter alia). For a more
detailed discussion of the risks of large language models, including emergent risks, see Bender et al. (2021);
Steinhardt (2021); Bommasani et al. (2021); Ganguli et al. (2022).
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5.5 Sociological changes

Finally, the emergent abilities discussed here focus on model behavior and are just one of several types of
emergence in NLP (Manning et al., 2020; Teehan et al., 2022). Another notable type of qualitative change is
sociological, in which increasing scale has shifted how the community views and uses language models. For
instance, NLP has historically focused on task-specific models (Jurafsky & Martin, 2009). Recently, scaling
has led to an explosion in research on and development of models that are “general purpose” in that they are
single models that aim to perform a range of tasks not explicitly encoded in the training data (e.g., GPT-3,
Chinchilla, and PaLM) (Manning, 2022).

One key set of results in the emergent sociological shift towards general-purpose models is when scaling
enables a few-shot prompted general-purpose model to outperform prior state of the art held by finetuned
task-specific models. As a few examples, GPT-3 175B achieved new state of the art on the TriviaQA and
PiQA question-answering benchmarks (Brown et al., 2020); PaLM 540B achieved new state of the art on three
arithmetic reasoning benchmarks (Chowdhery et al., 2022); and the multimodal Flamingo 80B model achieved
new state of the art on six visual question answering benchmarks (Alayrac et al., 2022). In all of these cases,
state-of-the-art performance was achieved by few-shot prompting a language model of unprecendented scale
(scaling curves for these examples are shown in Appendix Figure 13). These abilities are not necessarily
emergent since they have smooth, predictable scaling curves—however, they do underscore an emergent
sociological shift towards general-purpose models in the NLP community.

The ability for general-purpose models to perform unseen tasks given only a few examples has also led to
many new applications of language models outside the NLP research community. For instance, language
models have been used via prompting to translate natural language instructions into actions executable
by robots (Ahn et al., 2022; Huang et al., 2022), interact with users (Coenen et al., 2021; Wu et al., 2021;
2022a; Lee et al., 2022b), and facilitate multi-modal reasoning (Zeng et al., 2022; Alayrac et al., 2022). Large
language models have also been deployed in the real-world both in products, such as GitHub CoPilot,7 and
directly as services themselves, such as OpenAI’s GPT-3 API.8

5.6 Directions for future work

Future work on emergent abilities could involve train more-capable language models, as well as methods for
better enabling language models to perform tasks. Some potential directions include but are not limited to
the following.

Further model scaling. Further scaling up models has so far appeared to increase the capabilities of
language models, and is a straightforward direction for future work. However, simply scaling up language
models is computationally expensive and requires solving substantial hardware challenges, and so other
approaches will likely play a key role in the future of the emergent abilities of large language models.

Improved model architectures and training. Improving model architecture and training procedures
may facilitate high-quality models with emergent abilities while mitigating computational cost. One direction
is using sparse mixture-of-experts architectures (Lepikhin et al., 2021; Fedus et al., 2021; Artetxe et al.,
2021; Zoph et al., 2022), which scale up the number of parameters in a model while maintaining constant
computational costs for an input. Other directions for better computational efficiency could involve variable
amounts of compute for different inputs (Graves, 2016; Dehghani et al., 2018), using more localized learning
strategies than backpropagation through all weights in a neural network (Jaderberg et al., 2017), and
augmenting models with external memory (Guu et al., 2020; Borgeaud et al., 2021; Wu et al., 2022b, inter
alia). These nascent directions have already shown promise in many settings but have not yet seen widespread
adoption, which will likely require further work.

Data scaling. Training long enough on a large-enough dataset has been shown to be key for the ability of
language models to acquire syntactic, semantic, and other world knowledge (Zhang et al., 2021; Wei et al.,
2021b; Razeghi et al., 2022). Recently, Hoffmann et al. (2022) argued that prior work (Kaplan et al., 2020)

7https://copilot.github.com/
8https://beta.openai.com/docs/introduction
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underestimated the amount of training data needed to train a compute-optimal model, underscoring the
importance of training data. Collecting large datasets so that models can be trained for longer could allow a
greater range of emergent abilities under a fixed model size constraint.

Better techniques for and understanding of prompting. Although few-shot prompting (Brown et al.,
2020) is simple and effective, general improvements to prompting may further expand the abilities of language
models. For instance, simple modifications such as calibrating output probabilities (Zhao et al., 2021;
Holtzman et al., 2021) or using a noisy channel (Min et al., 2022a) have improved performance on a range of
tasks. Augmenting few-shot exemplars with intermediate steps (Reynolds & McDonell, 2021; Nye et al., 2021;
Wei et al., 2022b) has also enabled models to perform multi-step reasoning tasks not possible in the standard
prompting formulation from Brown et al. (2020). Moreover, better exploration of what makes prompting
successful (Wei et al., 2021a; Xie et al., 2022; Min et al., 2022b; Olsson et al., 2022) could lead to insights
on how to elicit emergent abilities at a smaller model scale. Sufficient understanding of why models work
generally lags the development and popularization of techniques such as few-shot prompting, and it is also
likely that the best practices for prompting will change as more-powerful models are developed over time.

Frontier tasks. Although language models can perform a wide range of tasks, there are still many tasks that
even the largest language models to date cannot perform with above-random accuracy. Dozens of such tasks
from BIG-Bench are enumerated in Appendix E.4; these tasks often involve abstract reasoning (e.g., playing
Chess, challenging math, etc). Future research could potentially investigate why these abilities have not yet
emerged, and how to enable models to perform these tasks. Looking forward, another growing direction
could be multilingual emergence; results on multilingual BIG-Bench tasks indicate that both model scale and
training data play a role in emergence (e.g., Figure 2D shows that both using PaLM’s training dataset and
scaling to 62B parameters is required for question-answering in Persian). Other frontier tasks could include
prompting in multiple modalities (Alayrac et al., 2022; Ramesh et al., 2022).

Understanding emergence. Beyond research on unlocking further emergence, an open question for future
research is how and why emergent abilities occur in large language models. This paper conducted initial
analyses regarding scaling of the cross-entropy loss on BIG-Bench (Appendix A.1), different metrics for
generative tasks (Appendix A.2), and which types of tasks emergence occurs (Appendix A.3 and Appendix B).
These analyses did not provide complete answers to why emergence occurs or how to predict it. Future
research could potentially analyze emergence in new ways (e.g., analyze the relationship between emergent
tasks and similar data in training; create a synthetic task that requires multiple compositional sub-tasks and
evaluate how each of those sub-tasks improve with scale and unlock emergence when combined). Overall,
understanding emergence is an important direction because it could potentially allow us predict what abilities
future models may have, as well as provide new insights into how to train more-capable language models.

6 Conclusions

We have discussed emergent abilities of language models, for which meaningful performance has only been
thus far observed at a certain computational scale. Emergent abilities can span a variety of language models,
task types, and experimental scenarios. Such abilities are a recently discovered outcome of scaling up language
models, and the questions of how they emerge and whether more scaling will enable further emergent abilities
seem to be important future research directions for the field of NLP.

Broader Impact Statement

In this paper, we surveyed results in the existing literature, without proposing new methods or models. As
discussed in (§5), emergent abilities are unpredictable in several ways, and include emergent risks (§5.4). We
believe these phenomena warrant careful study and raise important questions for the field.
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A BIG-Bench analysis

A.1 Cross-entropy loss analysis

Here we study how scaling curves may appear differently depending on the evaluation metric used to measure
performance. We will focus on the six few-shot prompted BIG-Bench tasks that we consider emergent
for LaMDA models. Three of these tasks are generative and use Exact Match (EM) or BLEU (Papineni
et al., 2002) as the evaluation metric. The other three tasks are classification and use accuracy (acc) as the
evaluation metric.

In the scaling curves for these tasks, peformance in EM/BLEU/acc is close to random for small models
(≤1022 FLOPs / ≤27B params). We will compare these scaling curves against alternative plots that have a
different y-axis measured by cross-entropy loss. Cross-entropy loss differs from EM/BLEU/acc in that it
captures improvements in performance (the predicted distribution getting closer to ground truth) even when
the EM/BLEU/acc is random. For example, if two examples are both wrong as measured by EM/BLEU/acc,
one example may be closer to the ground truth in terms of probabilities, and this information is captured by
the cross-entropy loss.

These plots are expected to look like one of the following:

• Outcome 1: For the model scales where EM/BLEU/acc is random, cross-entropy loss also does not
improve as scale increases. This outcome implies that for these scales, the model truly does not get
any better at the tasks.

• Outcome 2: For the model scales where EM/BLEU/acc is random, cross-entropy loss does improve.
This outcome implies that the models do get better at the task, but these improvements are not
reflected in the downstream metric of interest. The broader implication is that scaling small models
improves the models in a way that is not reflected in EM/BLEU/Acc, and that there is some critical
model scale where these improvements enable the downstream metric to increase to above random as
an emergent ability.

We find that all six BIG-Bench tasks fall under Outcome 2, and detail this analysis below. Overall, the
conclusion from this analysis is that small models do improve in some ways that downstream metrics that
EM/BLEU/Acc do not capture. However, these tasks are still considered emergent, and this analysis does
not provide any straightforward indicators of how to predict such emergent behaviors.

A.1.1 Generative tasks

Figure 5 shows the cross-entropy loss on the three generative BIG-Bench tasks (modified arithmetic, IPA
transliterate, and word unscramble) alongside the downstream evaluation metrics used in Figure 2. For all
three tasks, notice that while the error rate is nearly 100% for small models (≤1022 FLOPs / ≤27B params),
the cross-entropy loss does actually improve for these model sizes. At the point of emergence as measured by
error rate, we also see an “elbow” in performance improvement for cross-entropy loss.

A.1.2 Classification tasks

Figure 6 (middle row) shows the cross-entropy loss of the three classification BIG-Bench tasks. Similar to the
generative tasks, when the error rate is close to random, cross-entropy loss consistently still improves for
models trained with more compute. This again shows that performance as computed by accuracy can mask
consistent improvements in the likelihood of the target sequences.

We also perform an additional analysis of the multiple choice emergent tasks in Figure 6 (bottom row),
which shows the log probabilities of the correct response and incorrect response(s). We find that the cross-
entropy loss decreases for both the correct and incorrect responses in the three emergent multiple choice
tasks. Counterintuitively, both log-probabilities can decrease in tandem even when the probability across
all available multiple choice responses is normalized. The reason is that larger models produce less-extreme
probabilities (i.e., values approaching 0 or 1) and therefore the average log-probabilities have fewer extremely
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Figure 5: Adjacent plots for error rate and cross-entropy loss on three emergent generative tasks in BIG-Bench
for LaMDA. We show error rate for both greedy decoding (T = 0) as well as random sampling (T = 1). Error
rate is (1 - exact match score) for modified arithmetic and word unscramble, and (1 - BLEU score) for IPA
transliterate.

small values. However, we note that for each of these three tasks, that the average log-probability of the
correct and incorrect responses eventually deviates at a certain scale, during which performance on the task
increases substantially.
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Figure 6: Adjacent plots for error rate, cross-entropy loss, and log probabilities of correct and incorrect
responses on three classification tasks on BIG-Bench that we consider to demonstrate emergent abilities.
Logical arguments only has 32 samples, which may contribute to noise. Error rate is (1 - accuracy).
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A.2 Different metrics for generative tasks

In §5.1 we asked whether the apparent emergent abilities on generative tasks were due to using a particular
metric such as exact string match, which does not award partially correct sequences. Here, we show three
emergent generative BIG-Bench tasks using all evaluation metrics provided by BIG-Bench, which includes
metrics such as BLEU, ROUGE, and BLEURT, that award partial credit for answers that do not exactly
match the target. For all three tasks, the emergent behavior appears to be independent of which evaluation
metric is used. Hence, we conclude that using exact string match instead of another evaluation metric
that awards partial credit is not a complete explanation of emergence on generative tasks. Two emergent
generative BIG-Bench tasks, word unscramble and repeat copy logic, are excluded here because exact match
is the only most sensible evaluation metric for those tasks, which measure the ability to manipulate words in
the input (and hence metrics like BLEU and ROUGE that give word-level partial credit are not valid).
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Figure 7: Multiple evaluation metrics for emergent BIG-Bench tasks that are generative in nature. For all
three tasks, emergent behavior is apparent for all evaluation metrics.

A.3 BIG-Bench task analysis

BIG-Bench contains over 200 tasks, and each task has associated keywords identified by the authors who
submitted the task (e.g., “common sense”, “multilingual”). Given this, we asked the question, which types of
BIG-Bench tasks are more likely to be emergent (compared with scaling smoothly)? For this analysis, we
manually classified all 210 BIG-Bench tasks as thus far emergent or not. We used the definition of emergence
given in §3, which is that the task had near-random performance until a certain scale, after which performance
increases to substantially above random (as opposed to smoothly increasing). Because this definition is
potentially subjective based on the definition of “near-random” (and any heuristic we decide on would encode
these subjective biases), two co-authors of the paper worked together and agreed with confidence on all the
tasks labeled as emergent. For full transparency, this set of annotations is listed in Appendix E.

In Figure 8, we show the number of tasks that are emergent for each keyword in BIG-Bench. Furthermore, we
stratify them by tasks that first emerged with LaMDA 137B or GPT-3 175B, as well as tasks that were not
emergent until using PaLM models. The non-emergent tasks in this plot include either “smoothly increasing”
tasks (performance predictably increased with model size) or “flat” tasks (all models achieved approximately
random performance). The remaining 40 BIG-Bench tasks not included in this chart did not fit into any of
the above categories (e.g., too noisy due to very few eval examples, performance not correlated with model
scale, etc.).

Since the number of tasks per keyword varied substantially among keywords, and most keywords had less
than twenty tasks, the “most emergent” keywords differed depending on whether we compare number of
emergent tasks or percentage of emergent tasks per keyword. Tracking the absolute number of emergent
tasks per keyword is problematic since it effectively just captures the most common keywords used across
BigBench. We therefore tracked which keywords had the highest percent of emergent tasks, which were
analogical reasoning, word sense disambiguation, truthfulness, social reasoning, and emotional understanding.
While one might expect a priori that reasoning-related tasks would more likely to be emergent, only two of
the top five tasks were reasoning and other keyword tags like logical reasoning and causal reasoning did not
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have a particularly high fraction of emergent tasks. Moreover, arithmetic and mathematics had relatively low
percentage of emergent tasks, which was unexpected since some of the earliest examples of emergence were on
arithmetic (Brown et al., 2020). Overall, there are no clear trends for which types of tasks are most emergent.

Finally, examining which keywords have the most tasks with flat scaling curves can also align with prior
intuitions. For instance, visual reasoning has the largest fraction of tasks with flat scaling curves (8/13),
since language models are not designed for visual reasoning. Other categories with a large fraction of flat
scaling curve tasks are non-language, repeated interaction, context length, computer code, and multi-step—all
targeting weaknesses of large language models. These flat categories could be directions for future work in
emergence in large language models.
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Figure 8: Proportion of emergent tasks for keywords in BIG-Bench (each task can be associated with multiple
keywords). We only included keywords with at least five tasks. Smoothly increasing: performance improved
predictably as model scale increased. Emergent with LaMDA/GPT: performance was near-random until used
with LaMDA 137B or GPT-3 175B. Emergent with PaLM: performance was near-random for all previous
models, until using a PaLM model (8B, 62B, or 540B). Flat: no model performs better than random.
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B Further MMLU analysis

In §5.3, we saw how emergent performance on MMLU for Gopher and Chinchilla could be viewed as a
function of training FLOPs, model parameters, and WikiText103 perplexity. Because MMLU is actually
a suite of 57 topics spanning four categories, we ask the question of whether certain categories were more
conducive to emergence than others. This is similar in nature to the BIG-Bench analysis done in the prior
section (Appendix A.3). One difference here is that the MMLU categories are mutually exclusive—each topic
only has one category, whereas a single BIG-Bench task often had multiple keyword tags. However, there
are only four categories and 57 tasks for MMLU (compared with 200+ tasks and dozens of keywords for
BIG-Bench).

In Figure 10, we stratify the performance of MMLU among the four categories given in the benchmark
(Humanities, STEM, Social Science, and other), and plot them with multiple x-axes: training FLOPs, model
parameters, and WikiText103 perplexity. It is clear that Social Science and Humanities have the largest
jump in performance from the second-largest to the largest model, and STEM has the smallest jump in
performance. For a given x-axis (training FLOPs, model parameters, WikiText103 ppl), all four categories
had similar plot shapes. This result is also summarized in Figure 9.
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Figure 9: Performance of largest Chinchilla and Gopher models (70B and 280B, respectively) compared with
the second-largest model (7B parameters for both Chiinchlla and Gopher). The 7B Chinchilla and Gopher
models perform around random (25%) for all four categories. So the categories that improved the most from
7B to 70B/280B are humanities and social science, whereas STEM (Science, Technology, Engineering, and
Mathematics) improved the least.
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Figure 10: Emergence of Chinchilla and Gopher on MMLU. In the four rows, performance is stratified into
four supercategories. For both Chinchilla and Gopher, Social Science had the highest level of emergence while
STEM was the least emergent.

25



Published in Transactions on Machine Learning Research (08/2022)

C All Model Details

Table 2 below summarizes the parameter count, number of training tokens, and the training FLOPs for the
models highlighted in our work. The models span from the smallest LaMDA model with 2.1M parameters to
the largest PaLM model with 540B parameters and 2.5E+24 training FLOPs—roughly 8x the computational
budget of GPT-3.

Table 2: Parameters, training examples, and training FLOPs of large language models.

Model Parameters Train tokens Train FLOPs

GPT-3 125M 300B 2.25E+20
350M 300B 6.41E+20
760M 300B 1.37E+21
1.3B 300B 2.38E+21
2.7B 300B 4.77E+21
6.7B 300B 1.20E+22
13B 300B 2.31E+22

175B 300B 3.14E+23

LaMDA 2.1M 262B 3.30E+18
17M 313B 3.16E+19
57M 262B 8.90E+19
134M 170B 1.37E+20
262M 264B 4.16E+20
453M 150B 4.08E+20
1.1B 142B 9.11E+20
2.1B 137B 1.72E+21
3.6B 136B 2.96E+21
8.6B 132B 6.78E+21
29B 132B 2.30E+22
69B 292B 1.20E+23

137B 674B 5.54E+23

Gopher 417M 300B 7.51E+20
1.4B 300B 2.52E+21
7.1B 300B 1.28E+22
280B 325B 5.46E+23

Chinchilla 417M 314B 7.86E+20
1.4B 314B 2.63E+21
7.1B [sic] 199B 8.47E+21
70B 1.34T 5.63E+23

PaLM 8B 780B 3.74E+22
62B 780B 2.90E+23

540B 780B 2.53E+24

Anthropic LM 800M 850B 4.08E+21
3B 850B 1.53E+22
12B 850B 6.12E+22
52B 850B 2.65E+22
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D Scaling with Parameter Count

Figures 11, 12, and 13 shows emergent abilities with an x-axis of number of model parameters.
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Figure 11: Eight examples of emergence in the few-shot prompting setting. Each point is a separate model.
The ability to perform a task via few-shot prompting is emergent when a language model achieves random
performance until a certain scale, after which performance significantly increases to well-above random. Note
that models with more parameters also typically use more training compute—hence, we show an analogous
figure with training FLOPs instead of number of model parameters as the x-axis in Figure 2. A–D: BIG-Bench
(2022), 2-shot. E: Lin et al. (2021) and Rae et al. (2021). F: Patel & Pavlick (2022). G: Hendrycks et al.
(2021a), Rae et al. (2021), and Hoffmann et al. (2022). H: Brown et al. (2020), Hoffmann et al. (2022), and
Chowdhery et al. (2022) on the WiC benchmark (Pilehvar & Camacho-Collados, 2019).

27



Published in Transactions on Machine Learning Research (08/2022)

1B 10B 100B
0

5

10

15

20

25

No chain
of thought

Chain of
thought

G
SM

8K
A
cc
ur
ac
y
(%

)

(A) Math word
problems

1B 10B 100B
30

40

50

60

70

No
instruction

tuning

Instruction
tuning

10
N
LU

ta
sk

av
er
ag
e

(B) Instruction
following

10M 100M 1B
0

20

40

60

80

100

No
scratchpad

Scratchpad

Model scale (number of parameters)

A
cc
ur
ac
y
(%

)

(C) 8-digit addition

1B 10B 100B

100

101

Letter
choices

T/F

%
E
C
E

(lo
g-
sc
al
e,

de
cr
ea
si
ng

) (D) Calibration

Figure 12: Specialized prompting or finetuning methods can be emergent in that they do not have a positive
effect until a certain model scale. A: Wei et al. (2022b). B: Wei et al. (2022a). C: Nye et al. (2021). D:
Kadavath et al. (2022). The model shown in A-C is LaMDA (Thoppilan et al., 2022), and the model shown
in D is from Anthropic.
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Figure 13: On some benchmarks, task-general models (not explicitly trained to perform a task) surpass prior
state-of-the-art performance held by a task-specific model. A & B: Brown et al. (2020). C: Chowdhery et al.
(2022). D: Alayrac et al. (2022).
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E BIG-Bench Task Classification

This appendix contains the task classification annotations used for Figure 8 in Appendix A.3. Each task only
appears in a single category. That is, if a task was initially emergent with GPT-3 or LaMDA, we excluded it
from the PaLM emergence category.

Notably, Appendix E.4 lists the tasks where no model performs better than random (i.e., flat scaling
curve). These tasks are potential candidates for future emergence, since a model in the future might achieve
above-random performance on them.

E.1 Smoothly increasing

abstract narrative understanding, auto categorization, bbq lite json, cause and effect, chess state tracking, con-
lang translation, context definition alignment, contextual parametric knowledge conflicts, coqa conversational
question answering, cryobiology spanish, date understanding, emojis emotion prediction, empirical judgments,
entailed polarity, evaluating information essentiality, forecasting subquestions, gem, general knowledge, hindi
question answering, human organs senses, implicatures, implicit relations, intent recognition, linguistic
mappings, list functions, matrixshapes, mult data wrangling, multiemo, natural instructions, nonsense words
grammar, object counting, operators, penguins in a table, physics, polish sequence labeling, qa wikidata,
reasoning about colored objects, rephrase, riddle sense, sentence ambiguity, similarities abstraction, simp
turing concept, simple arithmetic, simple arithmetic json, simple arithmetic json multiple choice, simple
arithmetic json subtasks, simple arithmetic multiple targets json, simple ethical questions, squad shifts,
subject verb agreement, swedish to german proverbs, undo permutation, unit conversion, unnatural in context
learning, bridging anaphora resolution barqa, disfl qa, novel concepts, periodic elements

E.2 Emergent with GPT-3 or LaMDA

analytic entailment, codenames, common morpheme, fact checker, figure of speech detection, gender inclusive
sentences german, hindu knowledge, international phonetic alphabet transliterate, irony identification, logical
args, logical deduction, misconceptions, modified arithmetic, phrase relatedness, physical intuition, question
answer creation, repeat copy logic, self evaluation tutoring, social iqa, sports understanding, strange stories,
strategyqa, swahili english proverbs, word sorting, word unscrambling

E.3 Emergent wih PaLM

anachronisms, analogical similarity, ascii word recognition, auto debugging, causal judgment, code line
description, conceptual combinations, crass ai, cryptonite, cs algorithms, disambiguation qa, elementary
math qa, emoji movie, english proverbs, english russian proverbs, geometric shapes, goal step wikihow,
gre reading comprehension, hinglish toxicity, hyperbaton, identify odd metaphor, international phonetic
alphabet nli, language identification, linguistics puzzles, logic grid puzzle, logical fallacy detection, logical
sequence, metaphor boolean, metaphor understanding, movie dialog same or different, odd one out, parsinlu
qa, parsinlu reading comprehension, physics questions, question selection, snarks, sufficient information,
temporal sequences, timedial, understanding fables, unit interpretation, vitaminc fact verification

E.4 Flat (no model better than random)

abstraction and reasoning corpus, authorship verification, checkmate in one, chinese remainder theorem, cifar10
classification, color, com2sense, cycled letters, discourse marker prediction, formal fallacies syllogisms negation,
hhh alignment, kanji ascii, kannada, key value maps, language games, mathematical induction, minute
mysteries qa, misconceptions russian, mnist ascii, multistep arithmetic, navigate, paragraph segmentation,
play dialog same or different, presuppositions as nli, program synthesis, python programming challenge, real
or fake text, roots optimization and games, salient translation error detection, self awareness, semantic parsing
in context sparc, semantic parsing spider, simple text editing, sudoku, symbol interpretation, talkdown, tense,
text navigation game, topical chat, tracking shuffled objects, twenty questions, web of lies, which wiki edit,
winowhy, word problems on sets and graphs
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E.5 Other

Better than random and not correlated with scale: boolean expressions, crash blossom, dynamic counting,
entailed polarity hindi, epistemic reasoning, factuality of summary, fantasy reasoning, gender sensitivity
chinese, gender sensitivity english, high low game, identify math theorems, intersect geometry, muslim violence
bias, persian idioms, protein interacting sites, scientific press release, self evaluation courtroom, social support,
spelling bee, taboo, training on test set, truthful qa, yes no black white, dark humor detection, dyck languages,
moral permissibility, ruin names

Model gets worse with scale: bbq lite, bias from probabilities, diverse social bias, movie recommendation,
unqover

Not enough examples: known unknowns, suicide risk, what is the tao

Incomplete evals: convinceme, long context integration, medical questions russian

Other: arithmetic (emergent at 1B, which is none of the above categories), few-shot nlg (not sure why
BLEURT is negative here)

F PaLM 62B is emergent but GPT-3 and LaMDA are not

We made the point in §5.2 that scale is not the only factor in emergence, since PaLM 62B shows emergence
on many BIG-Bench tasks for which GPT-3 175B and LaMDA 137B do not, even though PaLM 62B has
fewer model parameter and less training FLOPs.

This is the list of tasks: anachronisms, ascii word recognition, conceptual combinations, cryptonite, disam-
biguation qa, emoji movie, goal step wikihow, gre reading comprehension, linguistics puzzles, logic grid puzzle,
metaphor boolean, metaphor understanding, odd one out, parsinlu qa.
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