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Abstract

We propose two novel approaches to address a critical problem of reach measurement across
multiple media – how to estimate the reach of an unobserved subset of buying groups (BGs)
based on the observed reach of other subsets of BGs. Specifically, we propose a model-free ap-
proach and a model-based approach. The former provides a coarse estimate for the reach of any
subset by leveraging the consistency among the reach of different subsets. Linear programming
is used to capture the constraints of the reach consistency. This produces an upper and a lower
bound for the reach of any subset. The latter provides a point estimate for the reach of any
subset. The key idea behind the latter is to exploit the conditional independence model. In
particular, the groups of the model are created by assuming each BG has either high or low
reach probability in a group, and the weights of each group are determined through solving a
non-negative least squares (NNLS) problem. In addition, we also provide a framework to give
both confidence interval and point estimates by integrating these two approaches with training
points selection and parameter fine-tuning through cross-validation. Finally, we evaluate the
two approaches through experiments on synthetic data.
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1 Introduction

An essential goal of brand advertising is to reach as many potential customers as possible. For
instance, as shown in Figure 1, consider an advertiser launched an ad campaign on 3 publishers.
Suppose each publisher tells, from their raw data, that it reached 100000 users. Then the advertiser
may ask whether the branding budget was effectively spent on, e.g., Pub C? To answer this
question, we can compute the number of unique users reached by Pub C only, i.e., the incremental
reach from the subset of publishers {A,B} to the subset {A,B,C}. Without extra information,
the answer can be any number from 0 to 100000, which is a wide range. In the current practice,
advertisers often have little clue about where the actual incremental reach falls in this wide range
– and thus little clue about whether their branding budget was effectively spent. More generally,
advertisers often want to compute the full reach Venn diagram – the number of unique users reached
across any subset of the publishers, or in other words, the reach of any subset.

Figure 1: Three-publisher reach Venn diagram

A P -publisher reach Venn diagram includes 2P subsets. As the number of publishers increases,
and especially in a privacy and compute constrained environment, it can be infeasible to compute
all possible combinations. Thus, instead of the full reach Venn diagram, we often can only observe
a partial reach Venn diagram, i.e., the reach of some subsets. Based on the reach of some subsets,
we want to estimate the reach of any other subset. Therefore, in this paper, we propose the
methodologies to estimate the reach of any subset.

In practice, the concept of a publisher can also be extended to a buying group (BG). A BG
can be a publisher, or a sub-platform of a publisher, or a group of events of interest defined by the
advertisers (e.g., a sub-campaign with a specific configuration like special targeting or the campaign
within a sub-time-window such as the first week). Thus, the phrase of subset-reach estimation used
in this paper refers to estimating the reach of a subset of BGs.

In the rest of this section, we introduce an example of incremental reach estimation under any
permutation of BGs to show the critical need for estimating the reach of any subset. At the end,
we introduce the organization of this paper.

Incremental Reach Under a Permutation of BGs

Consider an example with P = 5 BGs denoted by G1, G2, · · · , G5. Further suppose we observe
that the reach of each BG is 100000 and the union reach of all 5 BGs is 336160. Then given the
incremental sequence G1 → G2 → G3 → G4 → G5, what is the estimate of the union reach of BGs
G1, G2, that of BGs G1, G2, G3, and that of BGs G1, G2, G3, G4?

Without extra information, the reach of the subsets, denoted by R({G1, G2}), R({G1, G2, G3}),
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Figure 2: An example of incremental reach curves for five BGs.

and R({G1, G2, G3, G4}), respectively, can actually take on any value between 100000 and 336160.
This is because they are all bounded by the single-BG reach and the all-BGs-union reach, while
satisfying R({G1, G2}) ≤ R({G1, G2, G3}) ≤ R({G1, G2, G3, G4}) due to the reach consistency.
As shown in Figure 2, the incremental reach curve can be any orange-colored curve. However,
compared to the green-colored ground truth, the estimation range [100000, 336160] is wide.

To reduce the estimation uncertainty, we need to measure the reach of more subsets. Can we
directly measure the reach of the three subsets in the incremental sequence G1 → G2 → G3 →
G4 → G5? While the answer is yes for this specific sequence, what if the advertiser also wants to
know the incremental reach for another sequence, say, G2 → G3 → G5 → G1 → G4? Then similar
to the initial problem, we observe the reach of only some subsets in this incremental sequence.
Again, as the number of queries that an advertiser can afford is limited, we cannot measure the
reach of all subsets in the incremental sequence under all possible permutations of the BGs.

Back to G1 → G2 → G3 → G4 → G5, suppose we observe the reach of five additional sub-
sets: R({G1, G5}) = R({G1, G4}) = 180000, R({G2, G3, G4}) = R({G1, G2, G4}) = 244000, and
R({G2, G3, G4, G5}) = 295200. With this extra information, can we have a narrower range for
the estimates of R({G1, G2}), R({G1, G2, G3}), and R({G1, G2, G3, G4}) than [100000, 336160]?
Naively, this appears difficult because these five additional subsets are not contained in the incre-
mental sequence. Nevertheless, it is straightforward that both R({G1, G4}) and R({G2, G3, G4})
cannot exceed R({G1, G2, G3, G4}) owing to the reach consistency. Hence, we can at least narrow
the range of the estimation of R({G1, G2, G3, G4}) down to [244000, 336160].

The observation above indicates that even if a subset is not contained in the incremental se-
quence, the reach of that subset may still provide useful information for estimating the reach of a
subset contained in that sequence. Besides the incremental reach, in more general use cases, it is
critical to understand how to utilize the observed reach of some subsets (of BGs) to estimate the
reach of an unobserved subset (of BGs).

The rest of this paper is organized as follows. Sec. 2 introduces the problem formulation and a
brief overview of our proposed new approaches. The proposed approaches include both a model-free
and a model-based approach, which are described in detail and exemplified in Sec. 3 and Sec. 4,
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respectively. In Sec. 5, we integrate the two approaches into a framework, which incorporates adap-
tively selecting more training points, fine-tuning the model parameter, and suggesting a method
for calculating the error bar. To evaluate our proposed approaches, we provide two experiments in
Sec. 6 by using synthetic data. Finally, we conclude this paper in Sec. 7.

2 Problem Description and Our Proposed Approaches

In this section, we begin with the problem formulation and provide a brief overview of our proposed
new approaches. We also summarize the glossary and the notations used throughout this paper.

2.1 Problem Description

Consider P BGs, denoted by G1, G2, · · · , GP . Suppose we observe the reach of n subsets of the
P BGs, which include at least P single-BG reach and the union reach of all the P BGs, and/or the
reach of some other subsets. We are interested in addressing the following three questions:

1. How to examine if the reach of these n observed subsets satisfy the reach consistency?

2. How to estimate the reach of an unobserved subset?

3. How to evaluate the estimated reach of an unobserved subset?

Note that among the three related questions above, the most critical question is the second.

2.2 Overview of Our Proposed Approaches

In this paper, we propose a (statistical) model-free approach and a (statistical) model-based ap-
proach to answer all the three questions posed above. In particular, we provide an overview of our
solutions in this section and introduce them in detail in the rest of this paper.

In the model-free approach, we leverage the consistency among the reach Venn diagram. Using
the reach consistency as the constraints, we develop a linear programming solver. Using this solver,
we address the first question by transforming the reach-consistency check problem into a linear
programming problem that can be efficiently solved. The solution is specified in Theorem 1 in Sec.
3.

Additionally, we can bound the reach of any unobserved subset with minor adjustments to the
linear programming solver. Thus, we resolve the second question by providing a 100%-confidence
interval estimate. This solution is described in Theorem 2 in Sec. 3. The main idea behind the
model-free approach is that the reach of any subset can be broken down into the reach of the
primitive regions belonging to that subset. The possible reach range of any subset, therefore, can
be determined through the imposed constraints of the reach of the primitive regions in the linear
programming solver.

In the model-based approach, we propose an algorithm to fit the reach of the observed subsets
to a conditional independence model. While the concept of the conditional independence model has
been well investigated in some use cases [1], a challenge arises when the problem is non-parametric
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Figure 3: The framework of the proposed reach modeling to estimate the reach an unobserved
subset

or semi-parametric, e.g., the number of groups can be unlimited. To deal with this challenge, we
divide the universe, i.e., the set of all the users, into 2P mutually-exclusive activity segments by
assuming that each BG has low- or high-reach probability in a segment. Then in each segment, we
apply an independence-model assumption that the probability of a user being reached by any BG
is independent of the others. Finally, the reach of an observed subset is approximated by a linear
combination of its reach in each segment, and the weights are determined through solving an NNLS
problem. With this approach, we answer the second question by providing a point estimate. This
solution is present in Algorithm 1 in Sec. 4.

Finally, we propose a framework depicted in Figure 3 that integrates the two approaches de-
scribed above to give both a confidence interval and a point estimate of the reach of any unobserved
subset. In addition, this framework includes adaptively determining which subset to measure the
reach for training the proposed model in Algorithm 1, fine-tuning the model parameter via cross-
validation, and suggesting a method to define an error bar for the evaluation purpose. These topics
are thoroughly discussed in Sec. 5.

2.3 Glossary and Notations

We summarise the phrases frequently used throughput this paper in Table 1.

Table 1: Glossary

Glossary Description

BG A BG (buying group) can be a publisher, or a sub-platform of a publisher,
or a group of events of interest defined by the advertisers.

Conditional inde-
pendence

The universe consists of multiple mutually-exclusive groups, and within
each group, the probability of a user being reached by one BG is indepen-
dent of the others.

Venn diagram A Venn diagram uses overlapping circles or other shapes to illustrate the
logical relationships between two or more sets of items.

Primitive region an indivisible region of a Venn diagram
Reach of a subset the number of users reached by a subset of BGs
Training points the reach of the observed subsets
NNLS non-negative least squares
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For brevity, we also summarize the notations used throughout this paper in Table 2.

Table 2: Notations

Notations Description

P the number of BGs
U the universe, i.e., the set of all the users
U the universe size, i.e., the number of users in U
Gi the ith BG where i = 1, · · · , P
Gi the subset of the users reached by BG Gi
S a subset of BGs. S can be a single-BG set, e.g., {G1} or a union set of multiple

BGs, e.g., {G1, G2}. For P BGs, there are a total of 2P − 1 non-empty subsets.
R(S) the reach of the subset S of BGs, i.e., the number of users reached by at least

one BG in S.
r(S) the proportion of the users in the universe that are reached by at least one BG

in S and is expressed as r(S) = R(S)/U . It also represents the probability of a
user being reached by at least one BG in S.

a, a, A a scalar, a column vector, and a matrix, respectively
| · | the cardinality of a set or the absolute value of a scalar
‖ · ‖p the Lp norm of the vector
(·)T the transpose operator of a vector or a matrix
∪, ∩, \ the set union, the set intersection, and set difference operators, respectively
a � b for two vectors a and b with equal size, each entry of the a is greater than or

equal to the corresponding entry of b.
bin2dec(·) a function that translates a binary representation to its decimal representation,

e.g., bin2dec(110) = 6

Note that given a subset of BGs, e.g., S = {G1, G2}, the reach of that subset, based on the
notations defined in Table 2, is expressed as R({G1, G2}) , |G1∪G2|, the cardinality of the (union)
subset G1 ∪ G2. Thus, for brevity and notation consistency, when no ambiguity is caused, we use
S to denote a subset of BGs (e.g., {G1, G2}) or a subset of users reached by at least one of those
BGs (e.g., G1 ∪ G2), interchangeably. In addition, for any set operation expression involving union,
intersection, and set difference operators, e.g., G1 \ G2, we also use R(G1 \ G2) to denote the reach
of that expression, i.e., the number of the users reached by BG G1 but not by BG G2.

3 A Model-free Approach: Bound the Reach of a Subset Based
on Venn Diagram Consistency

In this section, we propose a model-free approach to bound the reach of any unobserved subset.
We begin with an example to demonstrate how to examine the reach of subsets satisfy the reach
consistency. Then we develop our solution by designing a linear programming solver based on reach
Venn diagram. Finally, by using this solver with minor adjustments, we can estimate the reach of
any subset by providing an upper and a lower bounds.
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3.1 Consistency Among a Reach Venn Diagram

Consider three BGs G1, G2, and G3. Suppose we observe each single-BG reach R(Gi) = 3000 for
i = 1, 2, 3, the all-BGs-union reach R(G1 ∪ G2 ∪ G3) = 7000, and R(G2 ∪ G3) = 5000. Then we want
to estimate the unobserved R(G1 ∪ G3). Consider the estimations of two models in the following:

• Model 1 estimates R̂(G1 ∪ G3) = 3500. Is this estimation feasible? The answer is no, because
R(G1 ∪ G2 ∪ G3) = 7000 is larger than R(G1 ∪ G3) + R(G2) = 6500, which contradicts the
triangle inequality R(G1 ∪ G2 ∪ G3) ≤ R(G1 ∪ G3) +R(G2).

• Model 2 estimates R̂(G1 ∪G3) = 4000. Again, is it feasible? Now since the triangle inequality
above is satisfied, this estimation seems feasible. However, it is still not, because R((G1 \
G3) ∪ (G2 \ G3)) = R(G1 ∪ G2 ∪ G3) − R(G3) = 4000 is larger than R(G1 \ G3) + R(G2 \ G3) =
R(G1∪G3)−R(G3)+R(G2∪G3)−R(G3) = 3000, which contradicts another triangle inequality
R((G1 \ G3) ∪ (G2 \ G3)) ≤ R(G1 \ G3) +R(G2 \ G3).

The example above implies that the possible values of R(G1 ∪ G3) constitute a feasible region
that is bounded by the underlying inequalities of the reach of other subsets. If R(G1 ∪ G3) takes a
value outside of that region, R(G1 ∪ G3) is inconsistent with the reach of other subsets. With this
intuition, we define the reach consistency in the following.

Definition 1. (Reach consistency) The reach of any two subsets S1, S2 are consistent if and only
if they satisfy (Monotonicity) R(S1 ∪ S2) ≥ R(Si), i = 1, 2 and (Subadditivity) R(S1 ∪ S2) ≤
R(S1) +R(S2).

From the example above, it can be seen that examining the monotonicity and subadditivity of
the reach of any subsets is not straightforward for the case with even P = 3 BGs, let alone for
P ≥ 3. Thus, it is necessary to develop a systematic approach that is computation-efficient to
validate the reach consistency.

Before proceeding into our proposed approach, we first introduce the following preliminaries.

Definition 2. (Primitive regions) Refer to each indivisible region of a Venn diagram as a prim-
itive region. A P -BGs reach Venn diagram has 2P primitive regions. Denote them by Rx1···xP =
∩∀xi=1 Gi \ ∪∀xi=0 Gi where xi ∈ {0, 1}, i = 1 · · · , P .

Example: Consider P = 2 BGs G1 and G2. A 2-BGs reach Venn diagram has 2P = 22 = 4
primitive regions: G1 \ G2, G2 \ G1, G1 ∩ G2 indicating the set of users reached by G1 only, G2 only,
both G1 and G2, respectively, and U \ (G1 ∪G2) representing the users not reached by any BG. For
brevity, denote them by R10, R01, R11, and R00, respectively.

Lemma 1. The reach of any subset is the sum of the reach of all the primitive regions belonging
to that subset.

Proof: Denote by S a subset and by Rx1···xP ’s the 2P primitive regions of the P -BGs reach
Venn diagram. Then we have

R(S) = R(∪∀Rx1···xP⊆S Rx1···xP ) =
∑

∀Rx1···xP⊆S
R(Rx1···xP ) (1)

where the second equality holds because all the primitive regions are mutually exclusive and R(·)
is a linear counting function.
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Lemma 2. In a P -BGs reach Venn diagram, for any subset S, there exists a 2P × 1 column
vector bS so that R(S) = bTSx, where x = [R(R1), · · · , R(R2P )]T is another 2P × 1 column vector
stacking the reach of all the 2P primitive regions defined in Definition 2. The jth entry of bS for
j = 1, · · · , 2P is given by 1Rj (S), an indicator function equal to one if Rj ⊂ S and zero otherwise.

Proof: The existence and construction of the vector bS for any subset S directly follows Lemma
1 in the vector form.

Lemma 3. A combination of the reach of multiple subsets is consistent if and only if the reach of
each subset can be expressed as a partial-sum of the same non-negative reach of the 2P primitive
regions.

Proof: This lemma directly follows Definition 2 in the compact matrix form.

3.2 Validate the Reach Consistency Through Linear Programming

As Lemma 3 implies, detecting the consistency among the reach of multiple subsets is equivalent to
verifying if the reach of each primitive region is non-negative. This can be accomplished by linear
programming. Based on this idea, our approach is stated through the following theorem.

Theorem 1. Consider P BGs and the reach of n subsets R(Si)’s for i = 1, · · · , n. They are
consistent if and only if the following linear programming has a non-negative solution:

arg max
t

t (2)

s.t.

{
R(Si) = bTSix i = 1, · · · , n,
t ≤ xj j = 1, · · · , 2P , (3)

where bSi’s are defined in Lemma 2, and x = [x1, x2, · · · , x2P ]T represents the reach of the 2P

primitive regions (the order does not affect).

Proof: The proof is relatively straightforward. Specifically, if the solution t∗ ≥ 0, each entry of
the vector x is non-negative, thus indicating the reach consistency. On the other hand, if the reach
consistency is satisfied, each entry of x must be non-negative. Thus, t∗ is given by the minimum
of all the entries of x, which implies t∗ = min(x1, · · · , x2P ) ≥ 0.

To apply Theorem 1, we first need to specify the linear combination vector bSi for each subset
Si and then solve the formulated linear-programming problem. If the solution t∗ ≥ 0, R(Si)’s are
consistent; otherwise, they are inconsistent.

3.3 Bound the Reach of a Subset Through Linear Programming

Besides detecting the reach consistency, we can also employ linear programming to bound the reach
of any unobserved subset. This is because the constraints in (3) have already enforced a collection
of limitations on the reach of primitive regions, which in turn can be used to characterize the reach
of an unobserved subset. As a result, linear programming is a natural tool to discover the reach
boundaries while maintaining the reach consistency. The main result is introduced through the
following theorem.
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Theorem 2. Suppose we observe the reach of n subsets R(Si) for i = 1, · · · , n, and they are
consistent. Given an unobserved subset S∗, without extra information, the tightest upper and lower
bounds of R(S∗), denoted by R(S∗) and R(S∗), respectively, are given by:

R(S∗) = arg min
t
t (4)

s.t.


R(Si) = bTSix for i = 1, · · · , n,
t = bTS∗x,
x � 0,

(5)

and

R(S∗) = arg max
t
t (6)

s.t.


R(Si) = bTSix for i = 1, · · · , n,
t = bTS∗x,
x � 0.

(7)

Proof: The proof follows the similar idea as that for Theorem 1. Specifically, for either the
upper bound t∗ = R(S∗) or the lower bound t∗ = R(S∗), it must exist an x∗ � 0, which implies the
consistency among the reach Venn diagram. Thus, after projecting x∗ to bSi , the largest/smallest
possible projection automatically turn into the tightest upper/lower bound of R(S∗).

With the approach shown in Theorem 2, let us revisit the example in Figure 2 to see how to
obtain more accurate incremental reach curves. Given the reach of each single-BG and the all-BGs-
union reach, we determine n = 6 in Theorem 2. For each Si equal to Gi for i = 1 · · · , 5 and ∪5i=1Gi,
respectively, we specify the corresponding bSi , the underlying linear combination coefficients of the
reach of the primitive regions, based on Lemma 2. Then for each of the three unobserved subsets,
G1 ∪ G2, ∪3i=1Gi, and ∪4i=1Gi, we perform the following three steps sequentially:

1. Let S∗ = G1 ∪ G2 and specify the corresponding bS∗ based on Lemma 2. Apply Theorem
2 to obtain the upper bound R(G1 ∪ G2) and the lower bound R(G1 ∪ G2). Choose any
R̂(G1 ∪ G2) ∈ [R(G1 ∪ G2), R(G1 ∪ G2)].

2. Treat the chosen R̂(G1 ∪ G2) as the ground truth and increase n by one, i.e., n = 6 + 1 = 7.
Let S∗ = ∪3i=1Gi and specify the corresponding bS∗ based on Lemma 2. Then apply Theorem
2 to obtain the upper bound R(∪3i=1Gi) and the lower bound R(∪3i=1Gi). Pick any R̂(∪3i=1Gi)
between these two bounds.

3. Also, treat R̂(∪3i=1Gi) as the ground truth and update n = 7 + 1 = 8. Let S∗ = ∪4i=1Gi
and specify the corresponding bS∗ based on Lemma 2. Then apply Theorem 2 to obtain the
upper bound R(∪4i=1Gi) and the lower bound R(∪4i=1Gi). Pick any R̂(∪4i=1Gi) between the
two bounds. Finally, the estimated reach of the three unobserved subsets contained in the
incremental sequence is given by R̂(∪2i=1Gi), R̂(∪3i=1Gi) and R̂(∪4i=1Gi).

To see the feasible region of the incremental reach curves, we choose a different R̂(·) within
its range [R(·), R(·)] in each step and use it as the ground truth in the next step. As a result,
we obtain a family of incremental reach curves, shown as the blue-colored dense curves/region
in Figure 4. It can be seen that the blue-colored curves span a much narrower range than the
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Figure 4: An example of incremental reach curves for five BGs.

orange-colored curves, and the boundaries of the blue-colored region are much closer to the ground
truth. Meanwhile, the blue-colored region covers the ground truth with 100% probability. Thus,
Theorem 2 provides a fundamental limit for estimating the reach of a the subset no matter what
models/algorithms can be used.

Note that if we desire to identify only the boundaries of this feasible region, we can directly
choose R̂(·) to be R(·) and R(·), respectively in each step, and find the upper and lower bound of the
reach estimation in the next step. Then sequentially connecting all the upper bounds and all the
lower bounds, respectively, give the upper and lower boundaries of the feasible region, respectively.

4 A Model-based Approach: Conditional Independence Model

Compared to the model-free approach, modeling is usually more appealing owing to its ability to
better characterize the dependencies among multiple BGs and to explore more advanced optimiza-
tion techniques. In this section, we propose a model-based approach to estimate the reach of an
unobserved subset. In particular, by using the reach of observed subsets as the training points,
we design a conditional independence model and propose an algorithm to fit the training points to
the model. Also, by tuning a parameter of the model, we show that the model can be perfectly
fitted to achieve zero training error. Next, we start from the model description, and then provide
examples and insights to interpret the proposed approach.

4.1 The Proposed Model-based Approach

We begin with the following definitions as preliminaries.

Definition 3. (P -length binary string) For P BGs, define a set I = {x1 · · ·xP | xi ∈ {0, 1}, i =
1, · · · , P} where each element of I is a P -bit binary string.

Remark: Since each xi is a binary, there are a total of 2P elements in I.
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Definition 4. (Universe segmentation) For P BGs, an universe U consists of 2P + 1 mutually-
exclusive activity segments. In the first 2P segments Ux1···xP for each x1 · · ·xP ∈ I defined in
Definition 3, BG Gi has a high probability to reach a user if xi = 1 or a low probability to reach a
user if xi = 0. The last activity segment corresponds to the subset of users in universe that are not
reached by any BG.

Remark: We will use Definition 4 as an assumption for our model-based approach to assign
each user in the universe to one activity segment. The high/low-reach probability will be modeled
later in Definition 6.

Example: For P = 3 and x1x2x3 = 110, U110 implies an activity segment in which each user is
reached by both G1 and G2 with a high probability and by G3 with a low probability.

Definition 5. (Union subset) Consider P BGs and Gi, the set of users reached by BG Gi, where
i = 1, · · · , P . For each x′1x

′
2 · · ·x′P ∈ I defined in Definition 3, we define the following union subset

Sx′1x′2···x′P , ∪∀x′i=1Gi. (8)

If a user belongs to Sx′1x′2···x′P , we say that user is reached by the subset Sx′1x′2···x′P for brevity.

Remark: In a P -BGs reach Venn diagram, Sx′1x′2···x′P implies the subset of users reached by at
least one BG Gi with x′i = 1. As a result, R(Sx′1x′2···x′P ) represents the (union) reach of the subset
of all the BGs {Gi | i = 1, · · · , P, and x′i = 1}.

Example: For P = 3 and x′1x
′
2x
′
3 = 110, S110 = G1 ∪ G2, and R(S110) denotes the number of

users reached by either G1 or G2.

Definition 6. (Conditional independence) Consider P BGs and Gi, the set of users reached by BG
Gi, where i = 1, · · · , P . Suppose a user is reached by the BG Gi with either the high probability
r1(Gi) = 1−(1−r(Gi))/d or the low probability r0(Gi) = r(Gi)/d, where d > 1 is a tuning parameter.
Then for any user in the activity segment Ux1x2···xP defined in Definition 4, the probability of that
user reached by the subset Sx′1x′2···x′P defined in Definition 5 is given by:

z(Sx′1x′2···x′P ,Ux1x2···xP ) = 1−Π∀i, x′i=1(1− rxi(Gi)). (9)

where x′1x
′
2 · · ·x′P ∈ I ′ ⊆ I \ {00 · · · 0}, x1x2 · · ·xP ∈ I, and I is defined in Definition 3.

Remark: (9) assumes that in each activity segment, the probability of a user being reached by
one BG is independent of the others. In addition, we design the expressions of r1(Gi) and r0(Gi) to
model the high-/low-reach probabilities for BG Gi to reach any user in a segment. Such a binary
assumption can be easily extended to create more activity segments. However, in this paper we
consider this binary assumption only for the computation efficiency.

Example: Consider P = 3, x′1x
′
2x
′
3 = 110, and x1x2x3 = 100. For any user in the segment

U100, the BG G1 has the high-reach probability r1(G1), and the BG G2 has the low-reach proba-
bility r2(G1). Then the probability of the same user being reached by the subset S110 is given by
z(S110,U100) = 1−Π∀i, x′i=1(1− rxi(Gi)) = 1−Π2

i=1(1− rxi(Gi)) = 1− (1− r1(G1))(1− r0(G2)).
With the above definitions, let us continue to describe our proposed model-based approach.

Consider P ≥ 2 BGs denoted by Gi, where i = 1, · · · , P . Suppose we have measured the reach
of n union subsets Sx′1x′2···x′P where x′1x

′
2 · · ·x′P ∈ I ′ ⊆ I \ {00 · · · 0}, n = |I ′|, and I is defined in
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Definition 3. For brevity, we call these n measurements the n training points. Note that we require
at least the reach of each single-BG and the all-BGs-union reach to be included, and thus n ≥ P+1.
That is, at least the R(Sx′1x′2···x′P )’s are available for all x′1x

′
2 · · ·x′P satisfying

∑P
i=1 x

′
i = 1 (for the

P reach of single-BG) or
∑P

i=1 x
′
i = P (for the all-BGs-union reach). In addition, we may choose

the reach of some other subsets, i.e., from the R(Sx′1x′2···x′P )’s where 1 <
∑P

i=1 x
′
i < P , as additional

training points. While we will discuss how to choose the additional training points in Sec. 5, we
assume all the n training points are given and fixed in this section.

Our proposed model-based approach is introduced through the following algorithm.

Algorithm 1. (The model-based approach)

Setup: Given the n training points R(Sx′1···x′P )’s for all x′1 · · ·x′P ∈ I ′, calculate r(Sx′1···x′P ) =
R(Sx′1···x′P )/U . If the universe size U is unknown, first estimate it with the proposed algorithm in

(16) in Sec. 5, and then treat the estimation Û as U . Next, perform the following steps sequentially.

1. Create 2P + 1 mutually-exclusive activity segments according to Definition 4. Since the last
segment not reached by any BG does not play an active role, we ignore it in this algorithm.

2. For each x′1 · · ·x′P ∈ I ′ and each x1 · · ·xP ∈ I, calculate z(Sx′1···x′P ,Ux1···xP ) according to
Definition 6 where the tuning parameter d will be specified in Theorem 3 and Sec. 5. Af-
ter obtaining the n × 2P entities, we form an n × 2P matrix Z = Z(d) where each entry
z(Sx′1···x′P ,Ux1···xP ) is arranged in the row index in an ascending order w.r.t. bin2dec(x′P · · ·x′1)
and the column index is bin2dec(xP · · ·x1) (index starts from 0).

3. Stack the n entities r(Sx′1···x′P )’s for all x′1 · · ·x′P ∈ I ′ into an n × 1 column vector rSI′ by
arranging the entries in an ascending order w.r.t. bin2dec(x′P · · ·x′1).

4. Denote by w a 2P × 1 column vector and let Jd(w) , ‖rSI′ −Z(d) ·w‖22 be the training error.
Then solve the following non-negative least squares (NNLS) problem:

w∗ = arg min
w

Jd(w), (10)

s.t.

{
w � 0,

‖w‖1 ≤ 1.

Here, w∗, which our proposed model is trained for, is the weight vector to linearly combine
all the reach probabilities in the 2P activity segments.

5. To estimate the reach of any unobserved subset Sq where q ∈ I \ I ′, calculate z(Sq,Ux1···xP )
for each x1 · · ·xP ∈ I following Definition 6. Then form a column vector z(q) by placing
z(Sq,Ux1···xP ) at the (bin2dec(xP · · ·x1))th entry (index starts from 0). Finally, the reach
estimation of the subset Sq is given by:

r̂(Sq) = zT (q) ·w∗ =⇒ R̂(Sq) = r̂(Sq) · U = zT (q) ·w∗ · U. (11)

Remark: In Step 1 above, because the universe is divided into 2P +1 mutually-exclusive activity
segments, the weights used for linearly combining the reach probabilities in each segment should
sum to one. Since we exclude the non-active segment after Step 1, the constraint ‖w‖1 ≤ 1 is
imposed in Step 4. In addition, the functions r1(Gi) and r0(Gi) in Step 2 and Definition 6 are used
as a simple way to model the high- and low-probability for BG Gi to reach a user, and the values
can be tuned via the model parameter d.
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Theorem 3. (Perfect model-fitting) Suppose the n training points in Algorithm 1 are consistent.
For the problem formulated in (10) in Algorithm 1, if d is large enough, there always exists a
solution w∗ so that Jd(w

∗) = 0.

Proof: The proof is deferred to Appendix A.

Remark: Theorem 3 implies if d is large enough, we can perfectly fit the n training points to
the model, i.e., rSI′ = Z(d) · w∗. This is accomplished by representing the observational vector
rSI′ with a linear combination of the columns of the matrix Z(d), and the combination weights are
w∗. Recall that Z(d) has 2P columns, each corresponding to one activity segment created in Step
1. We can also interpret Theorem 3 from the geometric perspective. In the n-dimensional vector
space, the 2P columns of Z(d), as 2P vertices, define a convex hull. Then the n-dimensional point
represented by rSI′ must stay in this convex hull. To help the reader interpret Algorithm 1 and
Theorem 3, we provide two examples in Sec. 4.2.

Be aware that Theorem 3 requires the assumption of the reach consistency among the training
points to achieve zero training error, but Algorithm 1 does not need it. In fact, even if the training
points are inconsistent, Algorithm 1 can still be applied, but the training error will no longer be
zero no matter how large d is. In practice, if the training points are inconsistency due to, e.g.,
measurement error and/or the differential-privacy (DP) noise, we may need extra processing to
adjust the training points and/or the reach estimations of any unobserved subset when necessary.

4.2 Understanding Algorithm 1 and Theorem 3

To better interpret our proposed model-based approach, we provide two examples with P = 2 and
P = 3 in this section, followed by the insights of Algorithm 1. The example with P = 2 focuses on
how to fit the data to our model. It is the simplest example that can be easily visualized in a 3-D
system. In the example with P = 3, we demonstrate the algorithm in terms of model fitting and
reach estimation.

4.2.1 Example 1: P = 2 BGs

For P = 2 there are three subsets Sx′1x′2 for all x′1x
′
2 ∈ I ′ = {10, 01, 11} by ignoring the subset of

users not reached by any BG. Since the reach of all of them have to be used as the training points,
there is no more subset for reach estimation. Thus, we only show the algorithm flow until Step 4
in the following.

1. For P = 2 there are a total of 2P = 22 = 4 activity segments, denoted by Ux1x2 for all
x1x2 ∈ I = {00, 10, 01, 11}.

2. As described in Sec. 4.1, the must-be-included three training points are the R(Sx′1x′2)’s for
all x′1x

′
2 ∈ I ′ = {10, 01, 11}. According to Definition 5, we specify S10 = G1, S01 = G2, and

S11 = G1∪G2. With Definition 6, z(Sx′1x′2 ,Ux1x2) for x′1x
′
2 = 10, 01, 11 and x1x2 = 00, 10, 01, 11

can be calculated as follows:

• x′1x′2 = 10, Sx′1x′2 = G1 =⇒ z(S10,U00) = z(S10,U01) = r0(G1) = r(G1)/d, z(S10,U10) =
z(S10,U11) = r1(G1) = 1− (1− r(G1))/d.
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Figure 5: Visualization of the reach surface for the proposed model with P = 2

• x′1x′2 = 01, Sx′1x′2 = G2 =⇒ z(S01,R00) = z(S01,R10) = r(G2)/d and also z(S01,R01) =
z(S01,R11) = 1− (1− r(G2))/d.

• x′1x′2 = 11, Sx′1x′2 = G1∪G2 =⇒ z(S11,Rx1x2) = 1− (1−z(S10,Rx1x2))(1−z(S01,Rx1x2))
for x1x2 = 00, 10, 01, 11.

Then according to the row order x′1x
′
2 = 10, 01, 11 and the column order x1x2 = 00, 10, 01, 11

sequentially, we form the Z(d) matrix as:

Z(d) =

 r1
d 1− 1−r1

d
r1
d 1− 1−r1

d
r2
d

r2
d 1− 1−r2

d 1− 1−r2
d

1−(1− r1
d )(1− r2

d ) 1− 1−r1
d (1− r2

d ) 1−(1− r1
d )1−r2d 1− (1−r1)(1−r2)

d2

 . (12)

3. Form the vector rSI′ = [r(S10), r(S01), r(S11)]T = [R(S10)/U,R(S01)/U,R(S11)/U ]T from the
three training points.

4. Choose a large enough d, say, d→ +∞ as the extreme case. Then Z(d) in Step 2 becomes:

Z(+∞) =

 0 1 0 1
0 0 1 1
0 1 1 1

 . (13)

With the above Z(+∞), solve the NNLS problem formulated in (10). Denote the solution by
w∗, and it can be verified that Jd(w

∗) = 0.

From (12) to (13), the first column of Z(d) becomes all zero when d→ +∞, which means both
BGs in the segment U00 have zero low-reach probability. Thus, U00 merges with the non-active
segment that we introduced but excluded after Step 1 of Algorithm 1. Also, only in this case, each
activity segment Ux1x2 is equivalent to the primitive region Rx1x2 defined in Definition 2.

In Figure 5, we show the four points (0, 0, 0), (1, 0, 1), (0, 1, 1), (1, 1, 1) by treating each column
of Z(+∞) as the three coordinates in the 3-D system. Each point comes from one out of the four
activity segments that we created in Step 1. These four points, as four vertices, define a 3-D convex
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hull. The convex hull is enclosed by four surfaces, and each surface is established by every three
of the four vertices above. As long as the training points are consistent, the observed vector rSI′
must stay in the formed convex hull. In fact, each of the established four surfaces produces an
underlying triangle inequality associated with the reach of the three subsets.

Additionally, the colored surface between the four vertices in Figure 5 is obtained from (9),
which is given by z = 1 − (1 − x)(1 − y) where x, y, z represent the reach of BG1, reach of BG2,
and their union reach. In particular, by letting (x, y) = (0, 0), (1, 0), (0, 1), (1, 1), we obtain the
four vertices above sequentially; and if x and y take fractions between zero and one, we obtain
the colored surface shown in Figure 5. Clearly, the proposed modeling approach relies on the
assumption that the probabilities for the two BGs to reach a user are independent in each activity
segment. Hence, any point on the colored surface also satisfies the reach consistency, and thus the
colored surface also stays in the formed convex hull.

Note that the colored surface obtained from our modeling approach does not necessarily mean
the ground truth. Also, the four vertices represent the extreme cases. Back to Theorem 3, the
condition of large enough d implies that we can find a finite d to achieve perfect model fitting.
With the geometric interpretation of Figure 5, it means when d becomes smaller, the four vertices
will be away from the extreme points and move along the colored surface. As a result, the volume
of the convex hull becomes smaller, but zero training error can still be achieved as long as the
shrinking convex hull stills include the vector rSI′ .

4.2.2 Example 2: P = 3 BGs

Suppose we have n = 4 training points R(Sx′1x′2x′3)’s for all x′1x
′
2x
′
3 ∈ I ′ = {100, 010, 001, 111}, and

we can obtain the corresponding r(Sx′1x′2x′3) = R(Sx′1x′2x′3)/U . Also, suppose R(S110) is unobserved
and we want to estimate it. Then we show each step of Algorithm 1 as follows.

1. For P = 3 there are a total of 2P = 23 = 8 activity segments, denoted by Ux1x2x3 for all
x1x2x3 ∈ I = {000, 100, 010, 110, 001, 101, 011, 111}.

2. Considering I ′ from the four training points. Following Definition 5 we readily specify S100 =
G1, S010 = G2, S001 = G3, and S111 = ∪3i=1Gi. With Definition 6, z(Sx′1x′2x′3 ,Ux1x2x3) for each
x′1x

′
2x
′
3 ∈ I ′ and each x1x2x3 ∈ I can be calculated as follows:

• x′1x′2x′3 = 100, Sx′1x′2x′3 = G1 =⇒ z(S100,Ux1x2x3) = r(G1)/d for x1x2x3 = 000, 010, 001,
011, and z(S100,Ux1x2x3) = 1− (1− r(G1))/d for x1x2x3 = 100, 110, 101, 111.

• x′1x′2x′3 = 010, Sx′1x′2x′3 = G2 =⇒ z(S010,Ux1x2x3) = r(G2)/d for x1x2x3 = 000, 100, 001,
101, and z(S010,Ux1x2x3) = 1− (1− r(G2))/d for x1x2x3 = 010, 110, 011, 111.

• x′1x′2x′3 = 001, Sx′1x′2x′3 = G3 =⇒ z(S001,Ux1x2x3) = r(G3)/d for x1x2x3 = 000, 100, 010,
110, and z(S001,Ux1x2x3) = 1− (1− r(G3))/d for x1x2x3 = 001, 101, 011, 111.

• x′1x′2x′3 = 111, Sx′1x′2x′3 = ∪3i=1Gi =⇒ z(S111,Ux1x2x3) = 1 − Πx′1x
′
2x
′
3∈{100,010,001}(1 −

z(Sx′1x′2x′3 ,Ux1x2x3)) for each x1x2x3 ∈ I.

Then according to the row order x′1x
′
2x
′
3 = 100, 010, 011, 111 and the column order x1x2x3 =
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000, 100, 010, 110, 001, 101, 011, 111, we form the Z(d) matrix as:

Z(d) =


z(S100,U000) z(S100,U100) · · · z(S100,U111)
z(S010,U000) z(S010,U100) · · · z(S010,U111)
z(S001,U000) z(S001,U100) · · · z(S001,U111)
z(S111,U000) z(S111,U100) · · · z(S111,U111)

 . (14)

3. Form the vector rSI′ = [r(S100), r(S010), r(S001), r(S111)]T from the training points.

4. For any given d, solve the NNLS problem formulated in (10), and denote the solution by w∗.
Theorem 3 implies Jd(w

∗) = 0 if d is large enough. We can directly let d → +∞ like in the
example with P = 2 or to find the minimum d so that Jd(w

∗) = 0.

5. For the unobserved subset S110 = G1 ∪ G2 \ G3, we calculate z(S110,Ux1x2x3) = 1 − (1 −
z(S100,Ux1x2x3))(1−z(S010,Rx1x2x3)) for each x1x2x3 ∈ I. Then arrange them into a column
vector z(110) = [z(S110,U000), z(S110,U100), · · · , z(S110,U111)]T following the order of Ux1x2x3
with x1x2x3 = 000, 100, 010, 110, 001, 101, 011, 111. Finally, the reach of the subset S110 is
estimated as R̂(S110) = r̂(S110) · U = zT (110) ·w∗ · U .

Remark: In Step 2 above, the independence-model assumption is applied in each of the eight
activity segments. That is, h = 1−(1−x)(1−y)(1−z) where x, y, z, h represent the reach of BG1,
that of BG2, that of BG3, and their union reach, in each segment. Enumerating x, y, z over their
high- and low-reach probabilities, we obtain a total of 8 points (x, y, z, h)’s in the 4-dimensional
vector space. These 8 points, as 8 vertices, define a convex hull in the 4-D system. Theorem 3
implies that the vector rI′ must stay in this convex hull, if the training points are consistent.

4.2.3 Why do we Need Algorithm 1?

Without the universe segmentation, the conditional independence model reduces to the indepen-
dence model, which is simpler and widely used in practice. Compared to the independence model,
the conditional independence model provides higher flexibility than the independence model in
characterizing the correlation between multiple BGs. However, in practice, without any prior cor-
relation information between the BGs, it is usually difficult to determine the number of segments
needed, the weights of each segment, and the single-BG reach in each segment.

In Algorithm 1, we utilize the conditional independence model and address the above challenges
through a modeling approach. Specifically, we divide the universe into 2P mutually-exclusive
activity segments by assuming each BG has low/high-reach probability in a segment and a non-
active segment for the users not reached by any BG. In each segment labeled with x1 · · ·xP , the
single-BG reach probability is modeled as rxi(Gi) defined in Definition 6. Then the probability of a
user being reached by a subset is computed from the modeled single-BG reach probabilities in (9)
with the independence-model assumption. Finally, the combination weights of each segment are
obtained through solving the NNLS problem formulated in (10).
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5 Integration of the Two Approaches for Subset-Reach Estimation

In Sec. 3 and Sec. 4, we introduce a model-free and a model-based approaches for estimating the
reach of a subset. While the former provides a 100%-confidence interval as a coarse estimate, the
latter provides a point estimate. In practice, whenever the advertiser asks for the reach of a subset,
we can first use the former to tell an estimation range as narrower as possible, and then use the latter
to provide answer without uncertainty. With this idea, in this section, we integrate the model-free
and model-based approaches into a framework to estimate the reach of any subset. As shown in
Figure 3, the proposed framework consists of six blocks, each with the following functionality:

1. “Linear programming solver”: It has been introduced in Theorem 2 in Sec. 3.

2. “Adaptively choose training points”: What if we are allowed to choose some training points?
We propose an algorithm by applying the linear programming solver to sequentially choose
the next training point as the one with the largest uncertainty. See Sec. 5.1 in detail.

3. “Conditional independence model”: It has been introduced in Sec. 4.1, particularly in Steps
1–4 of Algorithm 1. If the universe size U is unavailable, we propose a very simple algorithm
to estimate it. See Sec. 5.2 in detail.

4. “Tune model parameters via cross validation”: What is a proper value of the model parameter
d we should use in Algorithm 1? We propose an algorithm to answer this question. The idea
is to leverage cross validation and choose the d that leads to the minimum average cross-
validation error. See Sec. 5.3 in detail.

5. “Model estimation”: We apply both the model-free approach in Theorem 2 and the model-
based approach in Step 5 of Algorithm 1 to estimate the reach of any unobserved subset. The
estimations include a 100%-confidence interval and a point estimate.

6. “Error bar via cross validation”: How to evaluate the model-estimation quality? We answer
this question by proposing an algorithm to define an error-bar metric. The idea is to analyze
the estimation accuracy on the testing points based on the statistics of the cross-validation
accuracy on the training points. See Sec. 5.4 in detail.

Before proceeding into the description of the four algorithms, we first summarize the additional
notations used throughout this section in Table 3.

Table 3: Additional notations used throughout this section

Notations Description

I the binary string set {x1 · · ·xP | xi ∈ {0, 1}, i = 1, · · · , P} defined in Definition 3

I ′b the basic binary string set {x′1 · · ·x′P |
∑P

i=1 x
′
i = 1 or

∑P
i=1 x

′
i = P} used to

define the must-be-included training points, i.e., |I ′b| = P + 1
Ic the candidate string set defined as I \ {00 · · · 0} \ I ′b for training points selection
I ′ the binary string set used to define the n training points, i.e., |I ′| = n and

I ′b ⊆ I ′ ⊆ I \ {00 · · · 0}
R(Sq), R(Sq) the upper and the lower bounds of R(Sq) obtained from Theorem 2
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Consider the following example with P = 3 and n = 5 to interpret the notations in Table 3:

I = {100, 010, 110, 001, 101, 011, 111, 000},
I ′b = {100, 010, 001, 111},
Ic = {110, 101, 011},
I ′ = {100, 010, 001, 111, 101}.

Regarding the n = 5 training points, at least, the reach of the four subset R(Sx′1x′2x′3)’s for all
x′1x

′
2x
′
3 ∈ I ′b must be included. Thus, we are allowed to choose the reach of one more subset

R(Sx′1x′2x′3) as an additional training point by choosing one x′1x
′
2x
′
3 ∈ Ic. For example, if we

choose x′1x
′
2x
′
3 = 101, then the n = 5 training points are given by R(Sx′1x′2x′3)’s for all x′1x

′
2x
′
3 ∈ I ′.

Moreover, recall that I firstly introduced in Definition 3 is used to define the universe segmentation
in Definition 4 and also to define a subset Sx′1···x′P in Definition 5.

5.1 Adaptively Choose Training Points

The training points, as introduced in Sec. 4.1, must contain all the P single-BG reach and the
all-BGs-union reach. Besides these P + 1 training points, when the privacy budget allows, one
can measure the reach of more subsets and use them as the extra training points to improve the
model accuracy. Nevertheless, how to determine the additional training points? In this section, we
propose an algorithm to heuristically answer this question. The main idea is to leverage the linear
programming solver introduced in Theorem 2 in Sec. 3.

We begin with the problem formulation. Consider P BGs, denoted by Gi, i = 1, · · · , P , and
the users reached by Gi is denoted by Gi. If the total number of the training points n = P + 1, we
cannot choose any more training points. Otherwise, we desire to measure the reach of additional
n − (P + 1) subsets R(Sx′1···x′P )’s by choosing n − (P + 1) different indices x′1 · · ·x′P ’s from the
candidate string index set Ic. To this end, we propose the following algorithm:

Algorithm 2. (Adaptively choosing the training points)

1. Initially, let I ′ = I ′b as a start, T , {R(Sq′)|q′ ∈ I ′b} be the P + 1 training points we must
have, and Ic = I \ {00 · · · 0} \ I ′b be the candidate-index set.

2. For each q ∈ Ic, based on T , calculate R(Sq) and R(Sq) based on the model-free approach in
Theorem 2. Choose the one with the largest bound gap as the next training point, i.e.,

q∗ = arg max
q∈Ic
|R(Sq)−R(Sq)|. (15)

3. Measure R(Sq∗). Then update I ′ = I ′ ∪ {q∗}, T = T ∪ {R(Sq∗)}, and Ic = Ic \ {q∗}.

4. If |I ′| = n, the algorithm terminates; otherwise, go back to Step 2.

Remark: In Step 2 of Algorithm 2, the larger gap between the bounds, the higher uncertainty
that reach estimation. To reduce the estimation uncertainty as much as possible, we choose the
subset that produces the largest bound gap, measure the reach of that subset, and then add it
to the training points. As a result, Algorithm 1 can produce a narrower 100%-confidence interval
when estimating the reach of any unobserved subset.
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5.2 Estimating the Universe Size

In Algorithm 1, it still requires to specify the universe size U , if it is not available in practice.
Without any prior information on U , we propose the following algorithm to estimate U .

Algorithm 3. (Estimate the universe size)

The universe size is estimated by solving the following equation w.r.t. U :

1− R(∪Pi=1Gi)
U

= ΠP
i=1

(
1− R(Gi)

U

)
. (16)

Remark: (16) requires all the P single-BG reach and the all-BGs-union reach. Without any
prior information on U , we choose U to satisfy the independence-model assumption. For P ≤ 5,
(16) can be solved with a close-formed expression; otherwise, it can be resolved via optimization
algorithms, such as binary search or the Newton–Raphson method.

5.3 Tuning the Parameter d Used in Algorithm 1 via Cross Validation

In Theorem 3, we show that the training error can be zero if d is large enough. However, it does
not indicate how the model will perform on the testing points/dataset. Note that we ultimately
want to estimate the reach of any unobserved subset as accurately as possible. Thus, the model
generalization capability is critical. If d is large enough so that the training error is zero, when the
model is applied to estimate the reach of any unobserved subset, over-fitting tends to happen. On
the other hand, if d is too small so that the training error is significantly larger than zero, then
under-fitting is likely to happen. Considering the trade-off between over-fitting and under-fitting,
how to choose a proper value for d?

If the number of the training points is very large, we can split the training points into two
mutually-exclusive subsets, one for training and the other for validation. Training the model on
the training subset and fine-tuning model parameters on the validation subset will produce a more
reliable solution. Nevertheless, we often only have a small number of the training points. To better
exploit the limited training points, we borrow the idea of K-fold cross validation. Specifically, out
of the n training points, excluding the P+1 must-be-used training points, the rest n − (P + 1)
training points, i.e., the R(Sx′1···x′P )’s for all x′1 · · ·x′P ∈ I ′ \ I ′b can be used for cross validation.
In each round of cross validation, we use one of them as the validation point and the other n − 1
training points to train the model following Algorithm 1.

During the training process in each round of cross validation, we can perfectly fit all the n− 1
training points to the model to achieve zero training error by searching for the minimum d value.
Such a way requires iterative computation and still inherits the potential over-fitting problem. To
make the optimization simpler, an alternatively way is to train the model with a fixed set of pre-
defined d values, and then the optimal d will be the one which produces the minimum averaged
estimation error over all the validation rounds. With the above idea, we propose the following
algorithm to determine the value of d used in Algorithm 1.

Algorithm 4. (Tuning d via cross validation)

Setup: Define the minimum, the maximum, and the total number of the d values we consider,
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denoted by dmin, dmax, and D, respectively. Then the set of d values that we consider is given by

D ,

{
dmin + c · dmax − dmin

D − 1

∣∣ c = 0, · · · , D − 1

}
. (17)

In this paper, we assume dmin = 1, dmax = 5, and D = 10. Then for each d ∈ D, we perform a
total of |I ′ \ I ′b| = n− (P + 1) rounds of cross validation. In each round,

1. Choose one q′ ∈ I ′ \ I ′b and use R(Sq′) as the ground truth for validation.

2. Fit the other n−1 training points R(Sx′1···x′P )’s for all x′1 · · ·x′P ∈ I ′\{q′} to the model following
Steps 1–4 of Algorithm 1, and estimate R(Sq′) following Step 5 of Algorithm 1. Denote the

estimation by R̂d(Sq′), where the footnote of d indicates this estimation is d-dependent.

3. Use Theorem 2 to obtain R(Sq′) and R(Sq′).

4. Compute the relative error of the reach estimation R̂d(Sq′) as

erel(R̂d(Sq′)) ,
R̂d(Sq′)−R(Sq′)
R(Sq′)−R(Sq′)

. (18)

After completing all the n− (P + 1) rounds of validation, we calculate the average of the absolute
validation relative error. Then the optimal d∗ is selected as one that produces the minimum averaged
absolute relative error:

d∗ = arg min
d∈D

1

n− (P + 1)

∑
q′∈I′\I′b

|erel(R̂d(Sq′))|. (19)

Remark: Algorithm 4 applies only if n > P + 1. Also, the training points R(Sx′1···x′P )’s for all
x′1 · · ·x′P ∈ I ′b are never used for validation. Only the R(Sx′1···x′P ) for all x′1 · · ·x′P ∈ I ′ \ I ′b are used
for both training and validation but not in the same round. In contrast, in K-fold cross validation,
each data point is used as for training during (K − 1)/K portion of the rounds and for testing
during the other 1/K portion of the rounds. This is one difference between the cross validation in
this paper and the more widely used K-fold cross validation.

After d∗ is found from (19), we plug it into Step 4 of Algorithm 1 and fit all the n training points
to the model, and use this trained model to estimate the reach of any other subset. In addition,
note that we define the relative error of a validation point in (18) as the absolute estimation error
normalized by the gap of the upper and lower bounds of that point. Here, we use the relative error
rather than the absolute error, because the reach of each subset may significantly vary but we do
not expect any single term to dominate the error sum.

Finally, let us further interpret the values of d when we compare Algorithm 4 against Theorem
3. Using the optimal d∗ produced by Algorithm 4, Algorithm 1 cannot achieve zero training error
any more. This is not surprising because of the cross validation. Compared to the minimum d
in Theorem 3 to achieve zero training error, the d∗ produced by Algorithm 4 is smaller. In other
words, after we plug d∗ into Algorithm 1 and fit all the n training points to the model, the training
error will not be zero.
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5.4 Error Bar via Cross Validation

Given any unobserved subset Sq where q /∈ I ′, after the reach estimation R̂(Sq) is made by Al-
gorithm 1, what remains to be shown is how to evaluate the uncertainty of R̂(Sq). In fact, the
100%-confidence interval [R(Sq), R(Sq)] is one conservative answer. Besides it, if we desire a nar-
rower, say, 90%-confidence interval, we provide a solution via the following algorithm.

Algorithm 5. (Error bar)

1. With each q′ ∈ I ′ \ I ′b defined in (19), calculate the relative estimation error erel(R̂(Sq′))
defined in (18).

2. Calculate the αth quartile, denoted by qα, of the absolute relative estimation errors. That is,
qα is the αth quartile after sorting the |erel(R̂(Sq′))|’s for all q′ ∈ I ′ \I ′b in an ascending order.

3. For the unobserved subset Sq where q /∈ I ′, calculate R̂(Sq), R(Sq), R(Sq) by using Algorithm
1 and Theorem 2, respectively. Then for any given the quartile α, e.g., α = 90, the α%-
confidence interval is given by [Rα%(Sq), Rα%(Sq)] where

Rα%(Sq) = max(R(Sq), R̂(Sq)− qα/2 · (R(Sq)−R(Sq))) (20)

Rα%(Sq) = min(R(Sq), R̂(Sq) + qα/2 · (R(Sq)−R(Sq))). (21)

Remark: While the standardized definition of the error bar for our framework is unavailable,
we introduce the above algorithm as a start to define and calculate the error bar. Note that the
quartile calculation is based on the assumption that the relative estimation error (nearly) follows
a normal distribution. If this assumption is avoided, then the definition of the error bar can also
be revised to other different forms.

6 Experiments on Synthetic Data

In this section, we evaluate the performance of the framework proposed in Sec. 5 through two
experiments on synthetic data. In the first experiment, we assume the training points are given
and fixed, i.e., without adaptive selection. In the second experiment, we focus on evaluating the
performance of adaptively selecting the training points.

6.1 Performance of Estimating the Reach of Subsets with Fixed Training Points

In this experiment, we fix the number of training points as n = 2P + 1. In particular, besides
the must-be-included P single-BG reach and the all-BGs union reach, we also include the reach of
all-but-one-BGs union subsets as the training points. For P BGs, there are P all-but-one-BGs, i.e.,
each obtained by excluding one BG from the all the P BGs. Thus, the training points are given by
R(Sx′1···x′P )’s for all x′1 · · ·x′P ∈ I ′ = {x′1 · · ·x′P |

∑P
i=1 x

′
i = k, k ∈ {1, P −1, P}}. Furthermore, to

mimic the actual reach measurements in presence of the DP noise, we add an independent Gaussian
noise to each training point so that the 90th quartile of the error on each training point is 10%. As
a result, the noise variance is ( 0.1

1.645R(Sx′1···x′P ))2 for the training point R(Sx′1···x′P ) based on these
assumptions. Then we treat the noisy training points as the ground truth in this experiment.

To generate the synthetic data, we employ the following three data generators:
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• CI(10 groups, random reach): we set 10 groups with the weights drawn from the uniform
distribution between 0 and 1. In each group the single-BG reach proportion r(Gi)’s are
independently drawn from the Beta(0.4, 2) distribution.

• Dirichlet(alpha=2): The reach of the primitive regions is drawn from the Dirichlet distribution
with all the entries of the α vector equal to two.

• Dirichlet(alpha=0.5): The reach of the primitive regions is drawn from the Dirichlet distri-
bution with all the entries of the α vector equal to 0.5. In fact, the smaller entry of the alpha
vector, the larger variance the reach of the primitive region. Thus, Dirichlet(alpha=0.5) is
considered for a stress test.

With each data generator, we generate a total of 100 replicates. Using these 100 replicates in the
framework in Figure 3 allows us to statistically evaluate the reach estimations of the unobserved
subsets.

To evaluate the reach estimation of a subset, for each replica of the synthetic data, we first
feed the 2P + 1 training points to model fitting in Figure 3, including “Conditional independence
model” and “Tune model parameters via cross validation”. Next, using the well-trained model, we
estimate the reach of each of the 2P −1− (2P +1) = 2P −2P −2 unobserved subsets. In particular,
using the model-free and model-based approaches introduced in Sec. 3 and Sec. 4, we calculate
the relative error defined in (18) for each estimation. With 100 replicates of the synthetic data,
we finally can collect a total of 100(2P − 2P − 2) error terms. Finally, the 90th quartile of these
100(2P − 2P − 2) error terms, referred to as q90(error on reach estimation), can be calculated.

Table 4: Performances of evaluating the framework shown in Figure 3 on testing

P (number of BGs) Synthetic data q90(error on reach estimations)

6 CI(10 groups, random reach) 10.1%
6 Dirichlet(alpha=2) 10.9%
6 Dirichlet(alpha=0.5) 19.8%

8 CI(10 groups, random reach) 10.4%
8 Dirichlet(alpha=2) 6.4%
8 Dirichlet(alpha=0.5) 12.7%

In Table 4, we show q90(error on reach estimations) as a performance evaluation metric by
assuming P = 6, 8 BGs for each data generator. It turns out the 90th quartiles of the relative error
are 10.1% and 10.9% when using CI(10 groups, random reach) and Dirichlet(alpha=2) as the data
generator, respectively. That is, 90% of estimations have relative error less than 10.1% and 10.9%,
respectively. When Dirichlet(alpha=0.5) is used for the purpose of stress test, the performance
significantly degrades, but the 90th quartiles of the relative error are still below 20%.

6.2 Performance of Adaptively Selecting the Training Points for Incremental
Reach Estimation

In this section, we revisit the example shown in Figure 2 in Sec. 1 again. To demonstrate the
performance of adaptive training-points selection, we assume there are P = 5 BGs, each single-BG
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(a) Select 1 more training point. (b) Select 2 more training points.

(c) Select 5 more training points. (d) Select 10 more training points.

Figure 6: Performance of adaptively selecting up to 10 training points

reach is 100000, and the universe size U = 500000. In addition, we assume the probability of a
user being reached by one BG is independent with the others. With these assumptions, for any two
BGs, any three BGs, any four BGs, and all the five BGs, their union reach can be readily calculated
and given by 180000, 244000, 295200, and 336160, respectively, which align with the numbers used
in the example in Figure 2. In the experiment, we use all these numbers as the ground truth.

Recall that the training points must include all the single-BG reach and the all-BGs union
reach. Thus, we start from using six training points R(Sx′1···x′5) = 100000 for any x′1 · · ·x′5 satisfying∑5

i=1 x
′
i = 1 and R(S11111) = 336160 to train the model. As our goal is estimate R(S11000),

R(S11100), and R(S11110) in the incremental sequence G1 → G2 → G3 → G4 → G5, we call them
the testing points. Among the total of 2P − 1 = 25 − 1 = 31 subsets (excluding the subset of
users not reached by any BG), other than the 6 training and 3 testing points, the reach of the
rest 31− 6− 3 = 22 subsets comprise of the candidates to be measured and used as the additional
training points.

In our experiment, we use Algorithm 2 to select up to 10 additional training points. After each
additional training is selected, we use all the training points to examine the possible values of the 3
testing points by using the model-free approach introduced in Theorem 2. As a result, the following
ten additional training points are selected sequentially in the experiment: R(S01011), R(S11010),
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R(S01110), R(S11100), R(S01101), R(S10110), R(S10011), R(S10101), R(S11001), and R(S00110). In
Figure 6, we show the range for the reach of the three testing-subsets after we select the first one,
first two, first five, and all the ten additional training points shown above.

Several observations can be made from Figure 6. First, as expected, the more training points,
the less uncertainty of the estimations. Second, although selecting more training points is generally
useful, we may not always reduce the 100% confidence interval width. For example, the estimation
range of R({G1, G2}) (or R(G1 ∪ G2)) in sub-figure (b) appears identical to that in sub-figure (a),
even though one more training point is used. Finally, let us compare the sub-figure (c) of to Figure
4. Although five additional training points are used for both, the area enclosed by the blue-colored
bounds in sub-figure (c) is larger than that in Figure 4. This is because we select the subset with the
largest reach estimation uncertainty as the next training point, but in principle this may not lead
to the best estimations of the incremental reach curves. If we focus on estimating the incremental
reach curve only, then we can tailor the algorithm design to directly minimize the area enclosed by
the upper and lower bounds of incremental reach curves. Since estimating the incremental reach is
only one application of estimating the reach of a subset, we do not investigate the more advanced
algorithm in this paper.

7 Conclusion

In this paper, we investigated the problem of estimating the reach Venn diagram given partial
observations of the diagram. A critical use case of this problem is to estimate the incremental
reach on any permutations of multiple BGs. To solve the problem, we propose two new approaches.
The first is a model-free approach, meaning that it does not rely on any model assumption. In
this approach, we translate the problem of detecting the reach consistency among the reach of the
observed subsets into solving a linear-programming problem on the reach Venn diagram. Through
imposing constraints of the reach of the observed subsets, we also provide a solution to bound the
reach of an unobserved subset. The second approach uses the conditional independence model.
In particular, we developed a new fitting algorithm for the model that is interpretable. Through
solving a non-negative least squares (NNLS) problem, we can provide a point estimate for the
reach of any unobserved subset. We also provide a framework by integrating these two approaches,
combined with training points selection and parameter fine-tuning through cross-validation, to give
both confidence interval and point estimates.

We like to point out that this paper primarily focuses on introducing novel methodologies for
estimating the reach of any subset, and the experiments are performed on synthetic data only.
More comprehensive evaluations will be expected when the real-world data arrives.

Appendix

A The Proof of Theorem 3

Since it is very challenging to directly prove Theorem 3, we first let d→ +∞ and show the proof as
an intermediate result. Then based on this intermediate result, we complete the proof for Theorem
3 in a relatively easier manner.
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A.1 The Intermediate Proof for d→ +∞

For each subset Sx′1x′2···x′P defined in Definition 5, it can be represented as a union of all the mutually-
exclusive primitive regions belonging to that subset:

Sx′1x′2···x′P = ∪Rx1x2···xP⊆Sx′1x′2···x′P
Rx1x2···xP , x′1x

′
2 · · ·x′P ∈ I ′, (22)

where the primitive region Rx1x2···xP is defined in Definition 2, and we rewrite it here again:

Rx1···xP = ∩∀xi=1 Gi − ∪∀xi=0 Gi. (23)

Thus, the reach/ cardinality of the subset Sx′1x′2···x′P equals the sum of the reach/ cardinality of each
associated primitive region, i.e.,

R(Sx′1x′2···x′P ) =
∑

Rx1x2···xP⊆Sx′1x′2···x′P

R(Rx1x2···xP ), x′1x
′
2 · · ·x′P ∈ I ′. (24)

Normalizing both sides of the n equations above by the universe size U , we obtain:

r(Sx′1x′2···x′P ) =
∑

Rx1x2···xP⊆Sx′1x′2···x′P

r(Rx1x2···xP ) (25)

=
∑

x1x2···xP∈I
1Sx′1x′2···x′P

(Rx1x2···xP ) · r(Rx1x2···xP ), x′1x
′
2 · · ·x′P ∈ I ′, (26)

where 1S(R) is an indicator function where 1S(R) = 1 if R ⊆ S and 0 for otherwise. Stacking
the n entities above into a column vector rSI′ by arranging the entries in an ascending order w.r.t.
(bin2dec(x′P · · ·x′2x′1))th, we rewrite all the n equations above into a compact matrix form:

rSI′ = Un×2P · rRI (27)

where rRI is a 2P × 1 column vector with r(Rx1···xP ) as the (bin2dec(xP · · ·x1))th entry (index
starts from zero) for all x1 · · ·xP ∈ I. Moreover, the resulting n × 2P matrix U describes the
probability of any user in the primitive region Rx1x2···xP being reached by the subset Sx′1x′2···x′P .
The entry of U corresponding to row Sx′1x′2···x′P column Rx1x2···xP can be specified as:

u(Sx′1x′2···x′P ,Rx1x2···xP ) = 1Sx′1x′2···x′P
Rx1x2···xP = ⊕∀i, xi=x′i=11, (28)

where ⊕ denotes the “logical or” operator. It can be seen that the value of (28) is one if there
exists a BG Gi so that xi = 1 and x′i = 1; otherwise, the value is zero.

Based on (27), it can be seen that for any observed vector rSI′ that satisfies the reach consistency,
there must exist a vector rRI with non-negative entries to satisfy rSI′ = U · rRI . Note that the
sum of the entries of the vector rRI is given by

‖rRI‖1 =
∑

x1···xP∈I
r(Rx1···xP ) =

∑
x1···xP∈I

R(Rx1···xP )/U = 1 (29)

due to the fact that the sum of the reach/cardinality of each of the 2P primitive regions equals the
universe size.
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Next, consider the n training points from the n subsets Sx′1···x′P for all x′1 · · ·x′P ∈ I ′. With
Algorithm 1 introduced in Sec. 4.1, the entry of Z can be obtained from (9) and re-stated here:

z(Sx′1x′2···x′P ,Ux1x2···xP ) = 1−Π∀i, x′i=1(1− rxi(Gi)). (30)

By assuming d → +∞, BG Gi has r0(Gi) = r(Gi)/d = 0 (resp. r1(Gi) = 1 − (1 − r(Gi))/d) = 1)
probability to reach a user in any activity segment Ux1x2···xP with xi = 0 (resp. xi = 1). Substituting
the resulting r0(Gi) = 0 and r1(Gi) = 1 into the above equation, we can further simplify it as:

z(Sx′1x′2···x′P ,Rx1x2···xP ) = 1−Π∀i, xi=x′i=1(1− r1(Gi)) = ⊕∀i, x′i=xi=11. (31)

The comparison between (28) and (31) reveals z(Sx′1x′2···x′P ,Ux1x2···xP ) = u(Sx′1x′2···x′P ,Rx1x2···xP )
given the same x′1x

′
2 · · ·x′P and x1x2 · · ·xP . Thus, we have Z = U.

Finally, to prove there exists a 2P×1 column vector w∗ with non-negative entries and ‖w∗‖1 ≤ 1
so that J(w∗) = 0, it suffice to show rSI′ = Z ·w∗. To see it, we rewrite

rSI′ = Z ·w∗ = U ·w∗. (32)

Then we directly let w∗ = rRI in (27) and thus ‖w∗‖1 = ‖rRI‖1. The equal sign holds here because
the segment U00···0 and the non-active segment (which includes the users not reached by any BG)
together comprise of the primitive region R00···0. On the other hand, as the non-active segment is
not of interest and excluded after Step 1 of Algorithm 1, we have ‖w∗‖1 ≤ ‖rRI‖1 for any value of
d. Since the entries of rRI are non-negative and ‖rRI‖1 = 1 owing to (29), we conclude the entries
of w∗ are also non-negative and ‖w∗‖1 ≤ ‖rRI‖1 = 1, and the equal sign holds when d→ +∞.

So far, we complete the proof for d→ +∞.

A.2 The Proof for d < +∞

In last section with d→ +∞, J(w∗) = 0 implies that the observed vector rRI can be represented
by a linear combination of the columns of the matrix Z(+∞), the linear weights are non-negative,
and their sum is upper bounded by one. From the geometric perspective, it implies that in a n-
dimensional vector space where each dimension is for one training point, the n-dimensional vector
rSI′ must stay in the convex hull of the 2P vertices corresponding to all the columns of Z(+∞),

i.e., rSI′ ∈ Conv(cols(Z(+∞))) , C∞.

Next, consider d takes a finite value. Denote by Cd the convex hull of the 2P vertices corre-
sponding to all the columns of Z(d).

First of all, if d = 1, then both r1(Gi) and r0(Gi) defined in Definition 6 would be identical to
r(Gi) after simplification. Without high/low reach probability variations, the 2P activity segments
without difference among themselves will be merged into one segment, and the proposed model in
Algorithm 1 essentially reduces to an independence model. Meanwhile, the resulting convex hull
Z(d) collapses into a single point in the 2P -dimensional vector space, and this single point cannot
be guaranteed to be just the point represented by the observed vector rSI′ . Hence, generally we
have rSI′ /∈ C1.

Second, consider 1 < d < +∞. Note that the 2P vertices of Cd are defined by the 2P columns
of the matrix Z(d), and each of its entry is a continuous function of the parameter d. When
d increases/decreases, the convex hull Cd also continuously inflates/shrinks. According to the
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intermediate value theorem, there must exist a finite value d∗, so that the observed vector rSI′ just
stays on the surface of Cd∗ or stays in Cd∗ . That is, there always exists w∗ with non-negative entries
and its entry sum upper bounded by one, so that Jd(w

∗) = 0.

Therefore, we complete all the proof.

Remark: The proof above can be further reinforced by proving there exists a d∗ so that rSI′
stays on the surface of Cd∗ , and for any d > d∗, rSI′ stays in Cd∗ . The intuition is that for any
1 < d2 < d1 < +∞, it can be shown that C1 ⊂ Cd2 ⊂ Cd1 ⊂ C∞, meaning Cd monotonically
inflates/shrinks when d increases/decreases. Therefore, there exists not many but only one d∗ so
that rSI′ stays on the surface of Cd∗ . To complete this reinforced proof, it suffices to show any point
in Cd2 must stay in Cd1 but the vertices of Cd1 stay outside of Cd2 . Since this is out of the scope of
this paper, we omit the reinforced proof.
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