
acmqueue | november-december 2020 1

software design

S
hared libraries encourage code reuse, promote
consistency across teams, and ultimately improve
product velocity and quality. But application
developers are still left to choose the right
libraries to use, figure out how to configure

those libraries correctly, and wire everything together.
By preinstalling and preconfiguring libraries, application
frameworks provide a simplified developer experience
and even greater consistency, albeit at the cost of some
flexibility.

By owning the entire application life cycle, frameworks
go beyond a mere collection of libraries. Guaranteed
framework behavior can scale development—for example,
by avoiding the need for in-depth security or privacy code
reviews of every application. The cross-team and cross-
language consistency provided by frameworks is also a
necessary foundation for higher-level automation and
smart systems.

This article begins with an overview of the central
aspects of frameworks, then dives deeper into the benefits
of frameworks, the tradeoffs they entail, and the most
important features we recommend implementing. Finally,

While powerful,
frameworks
are not for

everyone.

CHRIS NOKLEBERG AND BRAD HAWKES, GOOGLE

1 of 26 TEXT
ONLY

Best Practice:
Application
Frameworks

http://crossmark.crossref.org/dialog/?doi=10.1145%2F3442632.3447806&domain=pdf&date_stamp=2021-01-20

acmqueue | november-december 2020 2

software design

the article presents a practical application of frameworks
at Google: how developing a microservices platform
allowed Google to break up its monolithic code base, and
how frameworks enabled that change.

WHAT IS A FRAMEWORK?
A framework is in many ways similar to a shared library and
has similar benefits. For Google, two technical principles
help to distinguish a framework from a library: inversion
of control and extensibility. While seemingly modest, the
many benefits of frameworks discussed in this article are
principally derived from these principles.

Inversion of control
In an application built from scratch, the engineer dictates
the flow of the program—this is normal control flow. In
a framework-based application, the framework controls
the flow and will call into the user code—this is inverted
control flow. Inverted control flow is sometimes referred
to as the Hollywood principle: “Don’t call us; we’ll call you.”
The framework control flow is well defined and standard
across all applications. Ideally, applications implement
only the application-specific logic, and the framework can
handle all of the other minutiae of building something like a
microservice.

Extensibility
Extensibility is the second key differentiator from a
library and goes hand in hand with inversion of control.
Because the control flow of a framework is owned
by the framework, the only mechanism to alter the

2 of 26

acmqueue | november-december 2020 3

software design

framework’s behavior is via the extension points it
exposes. For example, a server framework might have an
extension point that allows an application to run some
code after every request. This behavior also implies that
nonextensible parts of a framework are fixed and cannot
be changed by applications.

BENEFITS OF FRAMEWORKS
Frameworks have multiple benefits beyond the
functionality that shared libraries provide, and they are
advantageous to a variety of stakeholders in different
ways.

For developers
Developers, who ultimately decide whether or not to use
an available framework, are the most obvious beneficiaries
of frameworks. Primary developer benefits include
increased productivity, simplicity, and conformance to best
practices. Developers can write less code by leveraging
built-in framework features, and the code they do write
can be simpler because the framework handles boilerplate
code. A framework provides a well-lit path for best
practices by providing sensible defaults and eliminating
pointless and time-consuming decision-making.

For product teams
In addition to improving developer productivity,
frameworks benefit product teams by freeing up team
resources that would otherwise be spent building
redundant infrastructure. Product teams can then focus
on what makes their product special.

3 of 26

acmqueue | november-december 2020 4

software design

Product teams also benefit when frameworks isolate
them from changes in the underlying infrastructure.
While not possible in all cases, the additional abstractions
provided by a framework mean that some infrastructure
migrations can be treated as implementation details that
are handled entirely by whoever maintains the framework.

Product launches at Google often require signoff
from multiple teams. For example, a launch coordination
engineer is responsible for reviewing launches for
production safety and effectiveness, while an information
security engineer will check an application’s design for
common security vulnerabilities. A framework can simplify
the launch-review process when the teams performing
reviews are familiar with the frameworks and can rely on
their behavioral guarantees. After launch, standardization
will also make the system easier to manage.

For the company
At the company level, common frameworks can increase
developer mobility by reducing how long it takes for
developers to get up to speed on a new application.
If a company has a sufficiently large community of
developers, investing in high-quality documentation
and training programs is worthwhile; this in turn helps
attract documentation and code contributions from the
community itself. Widespread usage of a framework also
means that a relatively small investment in improvements
to the framework can have a large impact.

Over time, centralization in framework architectures
can allow widescale reaction to changing landscapes.
For example, if you rely on a consistent microservice/

4 of 26

acmqueue | november-december 2020 5

software design

RPC (remote procedure call) framework and bandwidth
becomes more expensive relative to CPU, then the
framework defaults can adjust compression parameters
centrally based on that cost tradeoff.

TRADEOFFS FOR FRAMEWORKS
While frameworks come with the multiple benefits just
described, they also entail certain tradeoffs.

Opinionated frameworks can hinder innovation
Frameworks often have to make choices about which
types of technologies to support. While supporting every
conceivable technology is not practical, there are clear
benefits when frameworks are opinionated—that is, when
they encourage the use of some technologies or design
patterns over others.

Opinionated frameworks can greatly simplify the job
of developers approaching their new system with a blank
slate. When developers have many ways to accomplish
the same task, they can easily get buried in the details
of decisions that have negligible impacts on the overall
system. For these developers, accepting framework-
preferred technologies of an opinionated framework
allows them to focus on the business of building their
system. Having a common and consistent preference also
benefits the entire company, even if that answer is less
than perfect.

Of course, you may have to deal with a long tail of
applications and teams, and some product requirements
or team preferences may not be well suited for existing
frameworks. The framework maintainers are put in the

5 of 26

acmqueue | november-december 2020 6

software design

position of deciding what is and isn’t a best practice, and
whether an unconventional use case is “valid” or not, which
can be uncomfortable for everyone involved.

Another important consideration is that even if
something is clearly a best practice today, technology
evolves quickly, and there’s a risk that frameworks will
not keep pace with innovation. Experimenting with
alternative application designs may be more expensive
because developers need either to learn framework
implementation details or to rely on assistance from
framework maintainers.

Universality can lead to unnecessary abstractions
Many framework benefits such as common control
surfaces (explained later) are realized only when a
critical mass of applications use the same framework.
Such a framework must be sufficiently generic to
support the vast majority of use cases, which in practical
terms means having a rich request life cycle and all the
extensibility hooks that any application would need. These
requirements necessarily add some layers of indirection
between the application and underlying libraries, which
can add both cognitive and CPU overhead. For application
developers, more layers in the software stack can
complicate debugging.

Another potential drawback of frameworks is that they
are yet one more thing engineers have to learn. Newly
hired Googlers are frequently overwhelmed by the number
of technologies they need to learn just to get a “hello
world” example working. A full-featured framework might
make the situation worse, not better.

6 of 26

acmqueue | november-december 2020 7

software design

Google has mitigated these issues somewhat by
trying to make the core of each framework as simple
and performant as possible, and leaving other features
as optional modules. Google also tries to provide
framework-aware tools that can leverage the inherent
structure of the frameworks to simplify debugging.
Ultimately, however, frameworks have a cost that you must
acknowledge, and you need to make sure that any given
framework provides enough benefits to justify this cost.
Different programming-language frameworks may also
have differing sets of tradeoffs, creating another decision
point and cost/benefit scenario for developers.

IMPORTANT FRAMEWORK FEATURES
As already discussed, inversion of control and extensibility
are fundamental aspects of frameworks. Beyond those
basic parameters, frameworks should account for several
other features.

Standardized application life cycle
To reiterate, inversion of control means that a framework
owns and standardizes an application’s overall life cycle,
but what benefit does this structure actually buy? The
scenario of avoiding cascading failure provides one
example.

Cascading failure is a well-known cause of system
outages, including many at Google. It can occur when part
of a distributed system fails, which then increases the
probability that other parts will fail. For more information
on the causes of cascading failures and how to avoid them,
see the chapter on Addressing Cascading Failures in Site

7 of 26

https://landing.google.com/sre/sre-book/chapters/addressing-cascading-failures/

acmqueue | november-december 2020 8

software design

Reliability Engineering (O’Reilly Media, 2016).
Server frameworks at Google have a number of built-

in protections against cascading failure. Two of the most
important principles are:
3 �Keep serving. If a server can answer requests

successfully, it should do so. If it can successfully serve
some kinds of requests but not other kinds, it should
continue running and answer the requests that it can
serve.

3 �Start up quickly. The server should start up as quickly
as possible. Faster startup means faster recovery from
crashes. The server should avoid waiting serially for
initializations involving RPCs to external systems to
complete.
The Google production environment gives each server

a configurable amount of time to become “healthy” (start
responding to requests). If the time expires, the system
assumes that an unrecoverable error occurred and
terminates the server process.

There is one common antipattern that occurs naturally
in the absence of a framework: A library creates its own
RPC connection and then waits for that connection to be
ready. As a server code base grows over time, you can end
up with literally dozens of such libraries in the transitive
dependencies. The result is server initialization code, which
if unrolled effectively looks like figure 1.

Under normal circumstances, this code will work
fine, which is especially problematic because there is
no indication of a lurking problem. That problem shows
itself when one of the associated back-end services slows
down or goes down altogether—now the primary server’s

8 of 26

acmqueue | november-december 2020 9

software design

startup is delayed. If the startup is sufficiently delayed, it
will be killed before it ever gets a chance to start handling
requests, which can contribute to a cascading failure.

One possible improvement is to create the RPC stubs
first, as in figure 2, and then wait for them all in parallel. In
this scenario, you need to wait only for the max of the stub
initialization times rather than the sum.

While still not perfect, even this limited refactoring
demonstrates that you need some coordination between
the libraries creating the RPC stubs—they must hand off
responsibility for waiting for the stub to something outside
of the library. In Google’s case, that responsibility is owned
by the server framework, which also has the following
features:
3 �Waiting for all stubs to be ready in parallel, by polling

readiness periodically (< 1 sec). Once a configurable

9 of 26

FIGURE 1: Server initialization code

// In library 1
// newStub creates a stub which will asynchronously connect to a backend.
FooService.Stub fooStub = FooService.newStub(...);
// waitUntilReady blocks until the stub is successfully connected.
waitUntilReady(fooStub);
// In library 2
BarService.Stub barStub = BarService.newStub(...);
waitUntilReady(barStub);
// In library 3
BazService.Stub bazStub = BazService.newStub(...);
waitUntilReady(bazStub);

acmqueue | november-december 2020 10

software design

timeout has elapsed, the server can continue with
initialization even if not all back ends are ready.

3 �Emitting human- and machine-readable logging for
debugging and integration with standard monitoring and
alerting systems.

3 �Plugging in arbitrary resources, not just RPC stubs,
through a generic mechanism. Technically, only a function
returning a Boolean (for “Am I ready?”) and a name
is necessary for logging purposes. These hooks are
typically used by the common libraries that deal with
resources (e.g., a file API); application developers often
get the behavior automatically just by using the library.

3 �Providing a centralized way to configure certain back
ends as “critical,” which alters their startup and runtime
behavior.
These features would (rightly) be considered overkill for

any individual library, but implementing them makes sense

FIGURE 2: RPC stubs

// Make sure to call newStub for all stubs first, before we wait for any of
them.
FooService.Stub fooStub = FooService.newStub(...); // In library 1
BarService.Stub barStub = BarService.newStub(...); // In library 2
BazService.Stub bazStub = BazService.newStub(...); // In library 3
// Wait, now that we have started the async connection process for all
stubs.
// The order in which we wait for the stubs is irrelevant.
waitUntilReady(fooStub);
waitUntilReady(barStub);
waitUntilReady(bazStub);

10 of 26

acmqueue | november-december 2020 11

software design

if you can do so in a central place from which all back-
end-using libraries can benefit. Just as shared libraries
are a way to share code among applications, in this case
the framework is a way for libraries themselves to share
functionality.

SREs (site reliability engineers) are much happier to
support framework-based servers because of features
such as these, and they often encourage their developer
counterparts to choose framework-based solutions.
Frameworks provide a baseline level of production
regularity that is difficult—if not impossible—to achieve
when just gluing together a bunch of disconnected
libraries.

Standardized request life cycle
While details vary depending on the type of application,
many frameworks support additional life cycles beyond
an overall application life cycle. For Google server
frameworks, the most important unit of work is a request.
Following a similar inversion-of-control model, the goal
of the request life cycle is to divide the responsibilities for
different aspects of the request into separate extensible
pieces of code. This allows application developers to
concentrate on writing the actual business logic that
makes their application unique.

Here’s an example of one such real-world framework
and its component pieces, as illustrated in figure 3:
3 �Processors–intercept incoming and outgoing payloads.

Mostly used for logging but have some capabilities for
short-circuiting a request (e.g., enforcing invariants
across an entire application).

11 of 26

acmqueue | november-december 2020 12

software design

3 �Action–application business logic that takes the request
and returns a response object, possibly with side effects.

3 �Exception handler–converts an uncaught exception into
a response object.

3 �Response handler–serializes a response object to the
client.
While applications can take advantage of the framework

extension points, the vast majority of application code
takes the form of actions, which embody the application-
specific business logic.

This separation of concerns has been helpful in the
realm of web security, for example. Google develops many
web applications, so has a strong desire to guard against
all of the various web security vulnerabilities, such as

FIGURE 3: An example framework and its component pieces

processors

framework

pre-process

exception
handler

response
handlerpost-process

response

request
action

application

(business
logic)

response

request

12 of 26

acmqueue | november-december 2020 13

software design

XSS (cross-site scripting). XSS vulnerabilities are often
caused by application code returning a string response
containing insufficiently sanitized or escaped data. The
traditional approach to fixing these bugs is simply to add
in the missing escaping data and hope that tests and code
reviews will prevent similar problems in the future (spoiler:
they will not).

Fundamentally, this approach won’t work because the
underlying APIs that the applications are coding against
are inherently prone to bugs like XSS because they accept
strings or similarly unstructured/untyped data. For
example, the Java Servlet API gives applications a raw
Writer, to which you can pass arbitrary characters. This
approach puts too much of a burden on developers to do
the right thing; instead, the security team at Google has
focused on designing inherently safe APIs, such as:
3 �HTML template systems with contextual-aware

escaping.
3 SQL-injection-resistant database APIs.
3 �“Safe HTML” wrapper types that carry contracts

stipulating that their value is safe to use in various
contexts.
The request life cycle of Google’s server frameworks

complements the use of these APIs because the
application code never deals with raw strings or bytes.
Instead, the code returns high-level response objects with
types such as SafeHtmlResponse that can be constructed
only in ways that are guaranteed to be well formed.
Turning those response objects into bytes on the wire is
the responsibility of a response handler, which is typically
a built-in part of the framework. Google sometimes

13 of 26

https://en.wikipedia.org/wiki/Cross-site_scripting

acmqueue | november-december 2020 14

software design

needs custom response handlers, but all usages must
be reviewed by the security team—a requirement that is
enforced at the build level.

The net impact is that Google has reduced the
number of XSS vulnerabilities in applications using these
frameworks to virtually zero. As you can imagine, Google’s
security team strongly encourages the use of frameworks
and has made many framework contributions to improve
the security story for all framework users. A standard
framework-based server can effectively skip many of
the security or privacy reviews that a bespoke server
would require to launch, since the framework is trusted to
guarantee certain behaviors.

Of course, the benefits of a structured and extensible
request life cycle go well beyond separating business
logic from response serialization. The most basic benefit
is that it keeps each component small and easy to
reason about, which helps long-term code health. Other
infrastructure teams within Google can easily extend
framework functionality without working directly with the
framework team. Finally, applications can introduce their
own cross-cutting features without touching each action.
In some cases, these features are domain specific, but
other features end up being generally applicable and are
eventually “upstreamed” into the framework itself.

Common control surfaces
What we call control surfaces include all of the non-
application-specific inputs and outputs of a binary when
viewed as a black box. These include operational controls,
monitoring, logging, and configuration.

14 of 26

acmqueue | november-december 2020 15

software design

Uniformity across servers makes troubleshooting
problems much easier. Regardless of which server
they’re troubleshooting, developers and SREs all know
what information is available and where to look for it. If
something about a server needs to be tweaked, everyone
knows which knobs are available and how to change them.

Beyond making it easier for humans to operate servers,
having common control surfaces across servers also
makes shared automation viable. For example, if all
servers export errors in a standard way, changing the
release pipeline to perform automatic canarying becomes
possible: You can first roll out a new binary to a few
servers and look for a spike in errors before performing
a wider rollout. You can read more about the benefits of
a common control surface from the SRE’s perspective in
the chapter on the Evolving SRE Engagement Model in Site
Reliability Engineering (O’Reilly, 2016).

Frameworks provide a great opportunity to enforce a
level of uniformity across application control surfaces.
While, generally, only a few people care about the exact
composition of control surfaces, there is tremendous
value to the company in having a single consistent answer.
Consistency means that you can easily share and scale
automation across multiple binaries. By simplifying
integration with the surrounding ecosystem, you can
reap the benefits of having a standard many times over,
independent of the merits of the standard itself.

One challenge of implementing a common control
surface is that framework maintainers are often the first
to discover inconsistencies across programming-language
libraries. For example, all languages had an existing notion

15 of 26

https://landing.google.com/sre/sre-book/chapters/evolving-sre-engagement-model/

acmqueue | november-december 2020 16

software design

of a command-line argument whose value was a duration
(a length of time). On the positive side, the syntax was
somewhat compatible among languages, at least for the
most basic examples such as “1h30m.” Once we dug into
the details, however, a different picture emerged, as shown
in figure 4.

These days, library owners have a greater awareness of
the value of cross-language consistency and the need to
take such consistency into consideration. On the framework
side, Google also uses test harnesses to run the same
suite of tests against servers written in each programming
language to ensure consistency going forward.

Modularity

FIGURE 4: Inconsistencies across programming language libraries

C++ Java
Days ("d") ✓

Hours ("h") ✓ ✓

Minutes ("m") ✓ ✓

Seconds ("s") ✓ ✓

Milliseconds ("ms") ✓

Microseconds ("us") ✓

Nanoseconds ("ns") ✓

Units out of order ✓

Repeated units ✓

Fractional values ✓

Unitless value ✓

Mixed case ✓

16 of 26

acmqueue | november-december 2020 17

software design

For better or worse, there is no central software
engineering authority at Google. Although most
developers work against a single code repository,
engineering practices still vary significantly among teams.
The choice of technologies for any given project typically
rests with the tech lead of the project, with few top-
down mandates. Understandably, people tend to choose
technologies with which they have prior experience. As
a result, in order for a new technology to gain significant
adoption, it must have either an obvious value or a low
barrier to entry; typically, it must have both.

For Google’s server frameworks, core life-cycle
management and request dispatching are the only strictly
required features. All other functionality is bundled into
optional, independent “modules” that implement their
functionality using the various life-cycle hooks exposed
by the framework, as discussed earlier. Application
developers can pick and choose which modules to add to
their server, and in many cases even major features can be
added via a one-liner:

install(new LoadSheddingModule());

The actual list of available standard modules numbers
in the hundreds, including features such as authentication,
experiments, and logging.

The ability to add framework features incrementally to
a server was a big factor in framework adoption at Google.
It allowed for “hello world” examples and prototype
servers to be small and easy to understand, while still
making it simple to scale up to a more full-featured server

17 of 26

acmqueue | november-december 2020 18

software design

when appropriate.
The independence of the modules also allows for

easy substitution of an application-specific module
for a standard framework module if you have special
requirements. Because standard framework modules
use the same extensibility APIs as application-specific
modules, upstreaming a useful feature into the framework
is usually a trivial matter of moving code. This allows
a framework to be an ever-growing collection of best
practices, once these practices have proven their value in
the real world.

The high degree of encapsulation exhibited here
means that framework maintainers can radically change
the implementation of a module without touching any
application code. This is especially useful when a back-end
system is deprecated or requires API changes (which is
distressingly common). Google frameworks have insulated
many application developers from needing to perform
complex or costly migrations, and for many teams this is
one of the most compelling benefits of frameworks today.

One role of a framework maintainer is to ensure
that modules collaborate with each other correctly.
Maintainers can also select default module lists or provide
recommendations and constraints about which modules
should be used for different situations. One challenge
is striking the right balance with regard to granularity:
While developers tend to prefer fine-grained modules for
flexibility, it’s harder for framework maintainers to ensure
that all combinations will work well together.

18 of 26

acmqueue | november-december 2020 19

software design

MICROSERVICES
The standardization provided by widespread use of
frameworks leads to opportunities for higher-level
tools and automation. This allowed Google to create
a microservices platform and break up the monolithic
servers.

Before microservices: the monolith
The existence of shared libraries and frameworks has
greatly simplified the actual act of writing production-
quality code within Google. Writing code, however, is just
one part of deploying an application at Google. Other
critical ingredients include integration testing; launch
reviews for aspects such as security and privacy; acquiring
production resources; performing releases; collecting and
saving logs; experimentation; and debugging and resolving
outages.

Historically, handling all of these items was an
expensive process that all server owners had to complete,
regardless of the size of the server. As a result, instead of
deploying new servers, smaller teams adding a new service
would look for an existing server to which they could add
their code. This way, the team could just focus on writing
their business logic and get everything else “for free.” Of
course, once enough teams took this approach, it became
clear that piggybacking onto existing server functionality
was not actually free. This incentive structure resulted in
a tragedy of the commons many times at Google: Well-
supported servers continued to grow and grow until they
became huge and unmaintainable monoliths.

Monoliths have many negative consequences. On the

19 of 26

acmqueue | november-december 2020 20

software design

developer productivity front, you must deal with slow
builds, slow server startup, and a high likelihood that
your presubmit tests will break when you try to submit
your change. For example, one important Google Search-
related C++ binary became so large that it was impossible
even to link, given technical limits at the time (12 GB RAM).

When it comes to releases, it’s hard to push them to
monoliths on schedule. As a monolith grows, so too does
the number of contributing developers, which naturally
results in more blocking bugs. A delayed release may make
achieving the next release even more difficult, which can
create a vicious cycle.

In production, monoliths create a dangerous shared fate
between ostensibly unrelated services, as well as a greater
chance of bugs caused by unexpected interactions. Scaling
services independently of one another is impossible, which
makes resource provisioning more difficult.

Moving away from a server-oriented world
Although it eventually became clear that the monolith
situation at Google was unsustainable, there was no good
alternative. Simply mandating that people stop adding
to a monolith would have had equally bad consequences.
Instead, Google needed to eliminate the toil of
productionizing and running a new server. That would allow
the decision of which services should make up a server
to be based on purely production reasons, rather than
developer convenience, shown in figure 5.

Working backward from the goal that developers
should just focus on the business logic of their application-
specific service, and that everything else should be

20 of 26

acmqueue | november-december 2020 21

software design

Todd
Service

Carl
Service

Carl
Service

Mr. Burns
Service

Mr. Burns
Service

Lisa
Service

Skinner
Service

Skinner
Service

Rod
Service

Lisa
Service

Rod
Service

Homer
Service

Todd
Service

Homer
Service

Marge
Service

Marge
Service

Selma
Service

Selma
Service

Maggie
Service

Maggie
Service

Smithers
Service

Smithers
Service

original
binary

Lenny
Service

Lenny
Service

Moe
Service

Moe
Service

Bart
Service

Bart
Service

FIGURE 5: Breaking up a monolithic server into smaller servers

21 of 26

acmqueue | november-december 2020 22

software design

automated as much as possible, some requirements
eventually became clear:
3 �Developers should be declaring and implementing

service APIs, not writing main methods; orchestrating
how a binary is actually run is the role of the
microservice platform.

3 �All of the metadata needed for automation, including
production configuration, should live in a declarative
format alongside the code for the service.

3 �Resources and dependencies between services should
be explicit and declarative. Ideally, you should be able
to visualize the entire production topology just from
looking at the metadata for the universe of services.

3 �Services should be isolated from each other, so that
arbitrary services can be co-assembled into a server.
Among other requirements, this means avoiding global
state and side effects.
When these requirements are satisfied, virtually

all formerly manual processes can be automated. For
example, testing infrastructure can use the metadata to
wire up a portion of the service-dependency graph when
running integration tests.

A microservice platform using these principles was
developed at Google, initially for the purpose of breaking
up a particular large monolithic server that had seen rapid
growth as a result of intense feature development. Once
the platform proved beneficial, it was organically adopted
by other teams within Google and was eventually spun out
into a separate officially supported project.

Today the platform is the de facto standard for new
server development, in part because it appeals to both

22 of 26

acmqueue | november-december 2020 23

software design

small teams and large organizations. Because of the high
level of automation, small teams can now easily turn
up a Google-quality production service in a matter of
days, whereas before a turn-up following best practices
might have taken months. For large organizations, the
consistency across teams reduces support costs, and
the shared platform means that staffing org-specific
infrastructure teams is often unnecessary.

Another benefit of moving to microservices has been
encouraging developers to think more about the proper
division of work among services, which has led to more
rational system architectures. Using technologies such
as gRPC and protocol buffers as the boundary between
separate systems forces you to consider the APIs in a
way that doesn’t necessarily happen when you’re only
using function calls in the same process. RPC systems are
also language agnostic, so each microservice owner can
independently decide which language to use.

One remaining challenge, and a ripe area for future
work, is providing higher-level tools to manage an ever-
growing number of microservices. For example, monitoring
consoles that were written in the previous era may have
assumed a relatively small number of unique binaries, and
this will require a new user interface to accommodate the
much greater number of binaries that arises when people
fully adopt microservices.

Relationship with frameworks
Frameworks are a critical component of making Google’s
microservices platform work for a few reasons:
3 �The inversion of control inherent in the framework’s life

23 of 26

acmqueue | november-december 2020 24

software design

cycle naturally lends itself to a model where application
developers just hand off their service implementation to
the platform.

3 �Common control services (across both servers and
languages) are required for many platform features,
including release management, monitoring, and logging.

3 �Modularity means that both the platform and application
code can provide independent modules, which when
combined together, work in a sane way to form a
complete server.
Figure 6 shows the full development stack for Google’s

microservices platform:
As discussed before, frameworks can offer a greater

level of encapsulation than libraries, which simplifies
writing applications and provides isolation from underlying
library churn. In a similar way, the microservices platform
goes beyond just code to encapsulate other artifacts
such as production configuration. This allows for a

platform abstracts infrastructure so
you can focus on code

framework provides software structure
for writing applications

library provides per-language
implementations for protocols

protocol defines basic wire formats and
server behaviors

FIGURE 6: development stack of Google’s microservices platform

24 of 26

acmqueue | november-december 2020 25

software design

corresponding higher level of simplification and isolation
from churn. For example, the platform maintainers can
(if necessary) automatically apply an emergency code
fix or configuration change that rebuilds all affected
binaries and pushes them to production in a uniform way—
previously impossible.

Using a microservices platform, however, does
present some challenges. One of the biggest of these is
that enforcing all of the invariants required to make the
microservices platform function properly can be onerous
and may even affect how applications are coded. To provide
one example, Google’s Java servers share certain thread
pools. Combined with the requirement that all services
must be isolated from each other, this implies that a
blocking thread-per-request model cannot be allowed—it
would be too easy for a blocking service to use up all
the threads and starve another service. For that reason,
servers are mandated to be async only, a solution that not
all teams are happy with.

Another challenge is that adding more hops between
microservices may add latency to the overall request. In
some cases, this latency can be mitigated by architectural
improvements that happen as part of a microservices
rewrite. For its microservices platform, Google has also
ensured that requests between services that happen to be
co-located in the same server use an optimized in-process
transport.

CONCLUSION
While frameworks can be a powerful tool, they have
some disadvantages and may not make sense for all

25 of 26

acmqueue | november-december 2020 26

software design

organizations. Framework maintainers need to provide
standardization and well-defined behavior while not
being overly prescriptive. When frameworks strike the
right balance, however, they can offer large developer
productivity gains. The consistency provided by widespread
use of frameworks is a boon for other teams such as SRE
and security that have a vested interest in the quality of
applications. Additionally, the structure of frameworks
provides a foundation for building higher-level abstractions
such as microservices platforms, which unlock new
opportunities for system architecture and automation. At
Google, such frameworks and platforms have seen broad
organic adoption and have had a significant positive impact.

Brad Hawkes is a senior software engineer working on core
infrastructure at Google. He works on the server framework
on the Java Virtual Machine, which is used in thousands of
servers across Google. He is on LinkedIn at www.linkedin.com/
in/bhawkes.

Chris Nokleberg is a principal software engineer and tech
lead of server frameworks at Google. He started developing
and evangelizing frameworks as a tech lead on Google Docs
almost 10 years ago. His current focus is helping large teams
adopt Google’s microservices platform and standardizing
developer best practices across the company.
Copyright © 2020 held by owner/author. Publication rights licensed to ACM.

26 of 26

http://www.linkedin.com/in/bhawkes
http://www.linkedin.com/in/bhawkes

