
1

Sandwiched Compression: Repurposing Standard
Codecs with Neural Network Wrappers

Onur G. Guleryuz, Philip A. Chou, Berivan Isik, Hugues Hoppe, Danhang Tang,
Ruofei Du, Jonathan Taylor, Philip Davidson, and Sean Fanello

Abstract—We propose sandwiching standard image and video

codecs between pre- and post-processing neural networks. The

networks are jointly trained through a differentiable codec

proxy to minimize a given rate-distortion loss. This sandwich

architecture not only improves the standard codec’s performance

on its intended content, it can effectively adapt the codec to other

types of image/video content and to other distortion measures.

Essentially, the sandwich learns to transmit “neural code images”

that optimize overall rate-distortion performance even when the

overall problem is well outside the scope of the codec’s design.

Through a variety of examples, we apply the sandwich architec-

ture to sources with different numbers of channels, higher resolu-

tion, higher dynamic range, and perceptual distortion measures.

The results demonstrate substantial improvements (up to 9 dB

gains or up to 30% bitrate reductions) compared to alternative

adaptations. We derive VQ equivalents for the sandwich, establish

optimality properties, and design differentiable codec proxies

approximating current standard codecs. We further analyze

model complexity, visual quality under perceptual metrics, as

well as sandwich configurations that offer interesting potentials

in image/video compression and streaming.

Index Terms—Image/video/graphics coding, learned compres-

sion, differentiable proxy, rate-distortion optimization, multi-

spectral, super-resolution, high dynamic range, perceptual dis-

tortion measures

I. INTRODUCTION

Image and video coding are well-established domains,
with a rich history marked by the evolution of international
and industry standard codecs, such as JPEG, MPEG 1,2,4,
H261, H262, H264/AVC, VC1, VP9, H265/HEVC, AV1, and
H266/VVC [1]–[6]. Remarkably, for several decades, these
standard codecs have been fundamentally rooted in linear
transforms like the discrete cosine tranform (DCT) in the
spatial dimensions, and motion-compensated prediction in the
temporal dimension. At this time, however, image and video
coding is beginning to shift in a new direction.

Recent advancements have spotlighted learned image and
video codecs based on neural networks trained end-to-end that,
impressively, outperform the standard codecs in rate-distortion
metrics, where distortion is measured as mean squared error
(MSE) on color image components [7]–[13]. In scenarios
where complete faith to the source is not demanded, more
dramatic reductions in bitrate (⇠3x) for the same visual quality
have been obtained by training neural networks using auxiliary
distortion measures (such as image likelihood modeled by
discriminators in generative adversarial networks [14]). Neural
networks also have an obvious, if unheralded, functional
advantage over standard codecs in that they can be trained on

This work was done while the authors were at Google Research.

(a) Original source image (b) Bottleneck (neural code) image

(c) Reconstructed bottleneck image (d) Reconstructed source image

Fig. 1. The sandwich architecture can accomplish surprising results even
with a simple codec (here JPEG 4:0:0, a single-channel grayscale codec).
The neural pre-processor is able to encode the full RGB image in (a) into a
grayscale image of neural codes in (b). The neural codes are low-frequency
dither-like patterns that modulate the color information yet also survive JPEG
compression (c). At the decoding end, the neural post-processor demodulates
the patterns to faithfully recover the color while also achieving deblocking.

datasets of images whose distributions are mismatched from
the usual photographic images, for example medical, multi-
spectral, depth, geometric, or other unusual image classes, as
well as other distortion criteria, including human perceptual
criteria but also machine performance criteria (e.g., classifica-
tion, segmentation, labeling, and diagnosis.)

Unfortunately, the performance and functional advantages of
neural codecs have so far come at great computational cost [8],
[10]–[13]. This cost is typically at a level that is impractical
for HD imagery at video rates even on dedicated neural chips
especially in mobile devices where power is a prime concern.
Handling UHD at graphics rates is even more impractical.

In this paper, we propose an architecture for a hybrid
between standard codecs and purely neural codecs, which we
call the sandwich architecture. In the sandwich architecture,
a standard codec is positioned between a neural pre-processor
and a neural post-processor, which are jointly trained to mini-
mize distortion subject to a bitrate constraint. The neural pre-
and post-processors can be lightweight, yet they are able to
improve the rate-distortion performance of the standard codec,
even on typical color photographic images when the distortion
measure is MSE — the design target for standard codecs.
More interestingly, the improvement is especially pronounced

ar
X

iv
:2

40
2.

05
88

7v
1

 [e
es

s.I
V

]
8

Fe
b

20
24

2

when the application mismatches the design target in some
way, including non-RGB images (e.g., C-channel images with
C 6= 3 such as medical, multispectral, depth, geometric, and
other sensed images), non-MSE distortion criteria (e.g., human
perceptual metrics, realism metrics, and machine task-specific
performance metrics), and non-standard profile hardware con-
straints (e.g., higher bit depth and higher spatial resolution). At
the same time, the sandwich approach leverages the standard
codec for much of the heavy lifting, including highly effi-
cient transforms, entropy coding, and motion processing. Vast
resources have been put into the hardware implementations
of standard codecs and their broader ecosystems (transparent
packetization, networking, routing, etc.), which can make these
resources essentially free compared to the power consumption
required in neural chips.

The magic behind the sandwich architecture is the ability
for the pre-processor to learn how to produce images of neural
codes that are well-compressible by a standard codec and
for the post-processor to learn how to decode these images,
to minimize the relevant distortion measure. Of course, the
neural code images have to be robust to the compression
noise typically inserted at those bitrates by the standard
codec. To gain an intuitive understanding of what these neural
code images may look like, consider a simplified problem in
which the neural pre- and post-processors adapt a 1-channel
(grayscale) codec to compressing an ordinary 3-channel color
image, shown in Fig.1. The top image (a) is the original source
image fed into the pre-processor. The neural code image (b), or
bottleneck image, is the image produced by the pre-processor
and fed to into the encoder of the standard codec. This is called
the bottleneck image since it is at the locus of the compression
bottleneck. Note that the bottleneck image contains spatial
modulation patterns (akin to watermarks) that serve to encode
the color information in this case. These patterns are the
neural codes. Here the neural codes have a single channel, but
more typically they have more channels. The reconstructed
bottleneck image (c) is emitted from decoder of the standard
codec (note the typical JPEG blocking artifacts) and fed into
the post-processor. The reconstructed source image (d) is the
image output from the post-processor. Note that both color and
sharp spatial definition are recovered from the neural codes.
(Refer to subsection IV-A for rate-distortion results relevant
to this scenario.)

This journal paper aims to be a coherent presentation of our
recent work in this area [15]–[18]. Few works prior to ours
paired standard codecs with neural networks as pre- or post-
processors. Most such works paired the standard codec with
either a neural pre-processor alone (e.g., to perform denoising
of the input image [19]–[21]) or a neural post-processor alone
(e.g., to perform deblocking or other enhancements of the
output image [22]–[24]). A few works paired standard codecs
with both neural pre- and post-processors, such as [25]–[29],
but these solutions, like prior non-neural solutions such as
[30] or the “frame super-resolution” mode of VP9, did so in
such a way that the pre- and post-processors may be used
independently; thus no neural codes are generated; hence they
do not take full advantage of the communication available
between the pre- and post-processors (see Proposition 1).

Beyond proposing the sandwich architecture itself, a major
contribution of our paper is a solution for jointly training the
pre- and post-processors. To jointly train these neural networks
using standard gradient back-propagation, the standard codec
must be differentiable. Hence during training we replace the
standard codec with a differentiable codec proxy. We show
that well-designed simple proxies that approximate key codec
components allow the training of models that robustly work
with different standard codecs. In so doing, and with help
of many scenario results we show, we also establish the
sandwich as a potent avenue for compression problems with
complexity/legacy constraints.1

Another major contribution of this work is to demonstrate
the advantages of the sandwich architecture across a variety
of settings:
• For coding of 3-channel color images over a 1-channel

(grayscale, or 4:0:0) codec, as in Fig. 1, sandwiching has 6–
9 dB gain in MSE. Over a 1.5-channel (4:2:0) codec, sand-
wiching has a 10% reduction in bitrate. And over a 3-channel
(4:4:4) codec, sandwiching has a 15% reduction in bitrate.
• For coding of 2x high resolution (HR) or super-resolved

images over 1x lower resolution (LR) codecs, sandwiching has
up to 9 dB gain in MSE.
• For coding of 16-bit high dynamic range2 (HDR) color

images over an 8-bit lower dynamic range (LDR) codec,
sandwiching has up to 3 dB gain in MSE.
• In rendering applications, for coding of 3-channel normal

maps over a 1.5-channel codec, sandwiching has a 4-5 dB gain
in MSE. Over a 3-channel codec, sandwiching has a 1.5-2 dB
gain, or about 15% reduction in bitrate.
• For coding of 8-channel texture maps (3-channel albedo,

3-channel normals, 1-channel roughness, and 1-channel occlu-
sion) over an 8-channel codec (implemented as the concatena-
tion of eight 1-channel instances), sandwiching has a 20-30%
reduction in bitrate, when distortion is measured in terms of
MSE of the lighted, rendered images (the so-called shaded
distortion).
• We show that the results do not depend heavily on whether

the standard codec is JPEG or HEVC-Intra (HEIC) without
any model retraining. We also show that the results degrade but
hold up well as the number of parameters of the pre- and post-
processors is reduced by more than two orders of magnitude,
to fewer than 60K parameters in each neural processor.
• For coding of video, we show analogous gains in MSE

for coding color over grayscale codecs, and coding HR over
LR codecs. Perhaps most importantly from the perspective
of video applications, we demonstrate that for coding color
video over color codecs, sandwiching yields 30% reduction in
bitrate at the same visual quality, when trained to minimize
the perceptual distortion measure LPIPS instead of MSE.

The rest of the paper is organized as follows. After the
prelude of Section II, which discusses VQ equivalents and
optimality, Section III presents the sandwich architecture. Sec-
tion IV includes our image compression experiments followed

1As will become clear one can immediately benefit many legacy scenarios
by deploying a sandwich with constraint-dependent models trained with this
paper’s proxies.

2In this work, the term HDR is interchangeable with high bit depth.

3

by Section V which presents complexity results. Section VI
is devoted to video compression experiments. Section VII is
a discussion and conclusion.

II. PRELUDE: THE SANDWICH AS A CODELENGTH
CONSTRAINED VECTOR QUANTIZER

Pre-Post processing applied around a compression codec is
a well-known technique. In ⌃� compression [31] one wraps
a simple 1-bit quantizer to make it function like a k-bit one,
in [32] one wraps DPCM codecs (performance-wise inferior
to transform codecs) to get them to perform like transform
codecs, using [19]–[24] one can wrap image codecs to reduce
input noise and reduce codec artifacts, and so on. Compression
literature includes many such interesting designs that offer
specific solutions to specific problems. With neural networks
one now has the capability of designing much more general
mappings as pre-post processors. In this section we briefly
explore the potential gains one can tap into.

Compression codecs can be seen as vector quantizer code-
books. A standard codec at a particular operating point can
be thought of in terms of a set of codewords (decoder recon-
struction vectors existing in high dimensions) and associated
binary strings (bits signaling each desired reconstruction). A
sandwich with non-identity wrappers maps a source to use
the standard codebook and then maps the standard decoder’s
output into final reconstructions. Looking from outside the
sandwich, we hence see a new codebook for the source that is
determined by the pre/post-processor mappings modifying the
standard codebook. Suppose the standard codec is not adequate
for a given source. Then, a natural question to ask is “How
much better can we make the standard codec by wrapping it
in a sandwich?”

In order to quantify the properties of “sandwich-achievable”
codebooks and how they would compare to a codebook
that is optimal for the source, let us momentarily disregard
limitations on neural network complexity and limitations of
back propagation in finding overall optimal solutions. Assume
we can find the optimal pre-post-processor mappings. What
is the efficiency of the sandwich system with respect to an
optimal codebook? The following proposition shows that the
optimal sandwich can accomplish the optimal compression
performance except for a potential rate penalty induced by
a potential mismatch of the standard codec codelengths.

Proposition 1. Let X be a Rn-valued bounded source, let
d be a distortion measure, and let D(R) be the operational
distortion-rate function for X under d. For any ✏ > 0, let
(↵⇤

,�
⇤
, �

⇤) be the encoding, decoding, and lossless coding
maps for a rate-R codec for X achieving D(R) within ✏/2.
Let (↵,�, �) be a regular codec (e.g., a standard codec,
possibly designed for a different source and different distortion
measure) with bounded codelengths. Then there exist neu-
ral pre- and post-processors f and g such that the codec
sandwich (↵ � f, g � �, �) has expected distortion at most
D(R) + ✏ and expected rate at most R+D(p||q) + ✏, where
p(k) = P ({↵⇤(X) = k}) and q(k) = 2�|�(k)|.

Proof. See subsection VIII-H in Supplementary Material.

bitrate

Fig. 2. Neural-sandwiched image codec during (a) operation and (b) training.
Gray boxes are not differentiable; blue are differentiable; green are trainable.
Loss function for training is

P
Dn + �Rn over example images n.

Note the key role of the sandwich in adapting the inner
codebook to the outer compression scenario. When sandwich-
ing a high-performance image/video codec for different but
related image/video applications one can expect the mismatch
to be lighter compared to, say, when one tries to sandwich
an image codec to transport audio data. From the perspective
of the proposition, using configurable codecs, i.e., those that
allow codebook codelengths to be optimized such as neural
codecs, may help minimize the implied penalty. While beyond
the scope of this paper, we point to generalizing the sandwich
to configurable codecs as an interesting research direction.

III. THE SANDWICH ARCHITECTURE

In this section, we set up the sandwich architecture. We
focus on image and video compression in turn.

A. Sandwich for Image Compression
The sandwich architecture for image compression is shown

in Fig. 2(a). An original source image S with one or more
full-resolution channels is mapped by a neural pre-processor
into one or more channels of neural (or latent) codes. Each
channel of neural codes may be full resolution or reduced
resolution. The channels of neural codes are grouped into one
or more bottleneck images B suitable for consumption by a
standard image codec. The bottleneck images are compressed
by the standard image encoder into a bitstream, which is
decompressed by the corresponding decoder into reconstructed
bottleneck images B̂. The channels of the reconstructed bot-
tleneck images are then mapped by a neural post-processor
into a reconstructed source image Ŝ.

The standard image codec in the sandwich is configured
to avoid any color conversion or further subsampling. Thus, it
compresses three full-resolution channels as an image in 4:4:4
format, one full-resolution channel and two half-resolution
channels as an image in 4:2:0 format, or one full-resolution
channel as an image in 4:0:0 (i.e., grayscale) format — all
without color conversion. Other combinations of channels are
processed by appropriate grouping.

Fig.3 shows the network architectures we use for our neural
pre-processor and post-processor. The upper branch of the
network learns pointwise operations, like color conversion,

4

U-Net

MLP

+

re
sa
m
pl
e

(a) Pre-processor

U-Net

MLP

+

re
sa
m
pl
e

(b) Post-processor

Fig. 3. Neural pre-processor and post-processor.

clip
[0,255]

𝐵 𝐵

Fig. 4. Image codec proxy.

using a multilayer perceptron (MLP) or equivalently a series
of 1⇥1 2D convolutional layers, while the lower branch uses a
U-Net [33] to take into account more complex spatial context.
At the output of the pre-processor, any half-resolution channels
are obtained by sub-sampling, while at the input of the post-
processor, any half-resolution channels are first upsampled to
full resolution. We have deliberately picked the U-Net as it
is a well-known model whose performance in various areas is
well-documented. U-Net models also have been systematically
studied with reduced parameter/complexity variants easily
generated.

Fig. 2(b) shows the setup for training the neural pre-
processor and post-processor using stochastic gradient descent.
Because derivatives cannot be back-propagated through the
standard image codec, it is replaced by a differentiable3 image
codec proxy. For each training example n = 1, . . . , N , the
image codec proxy reads the bottleneck image Bn and outputs
the reconstructed bottleneck image B̂n, as a standard image
codec would. It also outputs a real-valued estimate of the
number of bits Rn that the standard image codec would use
to encode Bn. The distortion is measured as any differentiable
distortion measure Dn = d(Sn, Ŝn) (such as the squared `2

error ||Sn � Ŝn||2) between the original and reconstructed
source images. Together, the rate Rn and distortion Dn are the
key elements of the differentiable loss function. Specifically,
the neural pre-processor and post-processor are optimized to
minimize the Lagrangian D + �R of the average distortion
D = (1/N)

P
n Dn and the average rate R = (1/N)

P
n Rn.

The image codec proxy itself comprises the differentiable
elements shown in Fig. 4. For convenience the image codec
proxy is modeled after JPEG, an early codec for natural
images. Nevertheless, experimental results show that it in-
duces the trained pre-processor and post-processor to produce
bottleneck images sufficiently like natural images that they
can also be compressed efficiently by other codecs such as
HEVC. The image codec proxy spatially partitions the input
channels into 8 ⇥ 8 blocks. In the DCT domain, the blocks
X = [Xi] are processed independently, using (1) a “differen-
tiable quantizer” (or quantizer proxy) to create distorted DCT
coefficients X̂i = Q(Xi), and (2) a differentiable entropy
measure (or rate proxy) to estimate the bitrate required to
represent the distorted coefficients X̂i. Both proxies take the

3In this paper as in most of the ML literature, the term differentiable more
properly means almost-everywhere differentiable.

nominal quantization stepsize � as an additional input.
Further information on quantizer and rate proxies is pro-

vided in supplementary section VIII-A and information on
adaptations for HR and HDR are provided in VIII-B.

B. Sandwich for Video Compression

The sandwich architecture for video compression is shown
wrapping our video codec proxy in Fig. 5. Observe that the
neural pre-post-processors handle video frames independently.
The video codec proxy maps an input video sequence to an
output video sequence plus a bitrate for each video frame. It
has the following components.

Intra-Frame Coding. The video codec proxy simulates cod-
ing the first (t = 0) frame of the group, or the I-frame, using
the image codec proxy described above in subsection III-A.

Motion Compensation. The video codec proxy simulates
predicting each subsequent (t > 0) frame of the group, or
P-frame, by motion-compensating the previous frame. Motion
compensation is performed using a pre-computed dense mo-
tion flow field obtained by running a state-of-the-art optical
flow estimator, UFlow [34], between the original source
images Sn(t) and Sn(t� 1). The video proxy simply applies
this motion flow to the previous reconstructed bottleneck
image B̂n(t�1) to obtain an inter-frame prediction B̃n(t) for
bottleneck image Bn(t). Note that our motion compensation
proxy does not actually depend on Bn(t), so even though it is
a spatial warping, it is a linear map from B̂n(t� 1) to B̃n(t),
with a constant Jacobian. This makes optimization much easier
than using a differentiable function of both B̂n(t � 1) and
Bn(t), like UFlow itself, that finds as well as applies a warping
from B̂n(t � 1) to Bn(t). Such functions have notoriously
fluctuating Jacobians that make training difficult.

Prediction Mode Selection. An Intra/Inter prediction proxy
simulates a modern video codec’s Inter/Intra prediction mode
decisions. This ensures better handling of temporally oc-
cluded/uncovered regions in video. First, Intra prediction is
simulated by rudimentarily compressing the current-frame and
low pass filtering it. This simulates filtering, albeit not the
usual directional filtering, to predict each block from its
neighboring blocks. Initial rudimentary compression ensures
that the Intra prediction proxy is not unduly preferred at
very low rates. For each block, the Intra prediction (from
spatial filtering) is compared to the Inter prediction (from
motion compensation), and the one closest to the input block
determines the mode of the prediction.

Residual Coding. The predicted image, comprising a com-
bination of Intra- and Inter-predicted blocks, is subtracted
from the bottleneck image, to form a prediction residual. The
residual image is then compressed using the image codec
proxy described above in subsection III-A. The compressed
residual is added back to the prediction to obtain a “pre-loop-
filtered” reconstruction of the bottleneck image B̂n(t).

Loop Filtering. The “pre-loop-filtered” reconstruction is
then filtered by a loop filter to obtain the final reconstructed
bottleneck image B̂n(t). The loop filter is implemented with a
small U-Net((8);(8, 8)) [33] (see Section V for U-Net notation)
that processes one channel at a time. The loop filter is trained

5

𝑆𝑛(0) 𝐵𝑛(0)

neural
pre-

processor

neural
post-

processor

𝐵𝑛(0) መ𝑆𝑛(0)

image
codec
proxy

loop
filter
proxy

motion
comp
proxy

intra/inter
prediction

proxy

neural
pre-

processor

neural
post-

processor

image
codec
proxy

loop
filter
proxy

stepsize Δ𝑖𝑛𝑡𝑒𝑟

-

bitrate 𝑅𝑛(1)
𝐸𝑛(1) 𝐸𝑛(1)+

stepsize Δ𝑖𝑛𝑡𝑟𝑎

bitrate 𝑅𝑛(0)

𝑆𝑛(1) 𝐵𝑛(1)𝐵𝑛(1) መ𝑆𝑛(1)

motion
comp
proxy

intra/inter
prediction

proxy

neural
pre-

processor

neural
post-

processor

image
codec
proxy

loop
filter
proxy

stepsize Δ𝑖𝑛𝑡𝑒𝑟

-

bitrate 𝑅𝑛(2)
𝐸𝑛(2) 𝐸𝑛(2)+

𝑆𝑛(2) 𝐵𝑛(2)𝐵𝑛(2) መ𝑆𝑛(2)

video codec proxy

di
st

or
tio

n
m

ea
su

re
di

st
or

tio
n

m
ea

su
re

di
st

or
tio

n
m

ea
su

re

𝐷𝑛(0)

𝐷𝑛(1)

𝐷𝑛(2)

Fig. 5. Neural-sandwiched video codec during training. Loss function for training is
P

Dn(t) + �Rn(t) over example clips n and frames t. The shaded
box (video codec proxy) is replaced with a standard video codec during operation/inference. Green boxes are trainable; blue are differentiable; cyan are
differentiable with pre-trained parameters. The entire video codec proxy is differentiable.

once for four rate points on natural video using only the video
codec proxy with rate-distortion (`2) training loss in order to
mimic common loop filters. The resulting set of filters are
kept fixed for all of our simulations, i.e., once independently
trained, the four loop filters are not further trained.

Pre-Post-Processors. Same as subsection III-A and Fig. 3.
Loss Function. The loss function is the total rate-distortion

Lagrangian
P

n,t Dn(t)+�Rn(t), where Dn(t) and Rn(t) are
the distortion and rate of frame t in clip n. The rate term in
particular serves to encourage the pre- and post-processors to
produce temporally consistent neural codes, since neural codes
that move according to the motion field are well predicted
(see subsection VI-B.) Note that the overall mapping from the
input images through the pre-processor, video codec proxy,
post-processor, and loss function is differentiable.

IV. IMAGE COMPRESSION EXPERIMENTS

We first present results for compressing ordinary 3-channel
color (RGB) images through codecs with a restricted number
of channels (4:0:0 and 4:2:0 compared to 4:4:4), where dis-
tortion is measured as RGB-PSNR. Then we present results
for compressing high spatial resolution (HR) images through
codecs with lower spatial resolution (LR), and for compressing
high dynamic range (HDR) images through codecs with lower
dynamic range (LDR), where distortion is again measured
as RGB-PSNR. These results are indicative of how a neural
sandwich can adapt the hardware of a standard codec to
source images with higher resource requirements. Finally,
we present results on graphics data, first for compressing 3-
channel normal maps, where distortion is measured as PSNR
on the normal maps, and then for compressing 8-channel
shading maps for use in computer graphics, where distortion is
measured as RGB-PSNR after shading from 8 to 3 channels.
These results are indicative of how a neural sandwich can
adapt a codec designed for 3-channel RGB images and MSE
to other image types and other distortion measures. In these
results, we also see how the codec proxy, though modeled after

JPEG, is also adequate to represent more advanced codecs
such as HEIC/HEVC.

For our RGB results, we use the Pets, CLIC, and HDR+
datasets [35]–[37], while for our computer graphics results,
we use the Relightables dataset [38]. Training and evaluation
are performed on distinct subsets of each dataset. All results
are generated using actual compression on 500 test images of
size 256⇥ 256 randomly cropped from the evaluation subset.

The U-Nets have a multi-resolution ladder of four with
channels doubling up the ladder from 32 to 512 , specifically
U-Net([32, 64, 128, 256]; [512, 256, 128, 64, 32]). (See
Section V for notation.) MLP networks have two layers with
16 nodes. Output channels of the networks are determined
based on bottleneck and overall output channels.

We obtain R-D curves as follows. We train four models
mi for four different Lagrange multiplier values �i using
established D + �R optimization [39]. For each model, we
obtain an R-D curve by encoding the images using a sweep
over many step-size values. Finally we compute the Pareto
frontier of these four curves.

A. Compressing 3-channel RGB Images with C 3-channel
Codecs

In this section, we report the rate-distortion performance
of compressing 3-channel RGB images with JPEG YUV
and neural-sandwiched JPEG codecs, across 4:4:4, 4:2:0, and
4:0:0 formats, which respectively correspond to C-channel
bottleneck images with C = 3, 1.5, and 1.

Fig. 6 shows R-D results evaluated on the Pets dataset. For
the 4:0:0 format, the neural-sandwiched version shows 6–9 dB
improvement over the standard codec, due to the fact that for
this format, the standard codec can transport only grayscale,
whereas the neural-sandwiched version manages to transport
color through modulating patterns, as exemplified in Fig. 1
(and Fig. S2). For the 4:2:0 and 4:4:4 formats, R-D perfor-
mances for the standard codec are close to one another. For
both formats, the neural-sandwiched standard codec performs

6

0.4 0.5 0.6 0.7 0.8 0.9
Rate (bpp)

20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35

R
G

B-
PS

N
R

 (d
B)

neural-sandwiched JPEG 4:4:4
neural-sandwiched JPEG 4:2:0
neural-sandwiched JPEG 4:0:0
JPEG YUV 4:4:4
JPEG YUV 4:2:0
JPEG YUV 4:0:0

Fig. 6. R-D performance of compressing 3-
channel RGB images with JPEG YUV and neural-
sandwiched JPEG, in 4:4:4, 4:2:0, and 4:0:0.

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Rate (bpp)

25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

R
G

B-
PS

N
R

 (d
B)

neural-sandwiched JPEG 4:4:4 LR
neural-sandwiched JPEG (post-only) 4:4:4 LR
JPEG 4:4:4 LR
JPEG 4:4:4 HR

(a) JPEG

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Rate (bpp)

25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

R
G

B-
PS

N
R

 (d
B)

neural-sandwiched HEIC 4:4:4 LR
neural-sandwiched HEIC (post-only) 4:4:4 LR
HEIC 4:4:4 LR
HEIC 4:4:4 HR

(b) HEIC

Fig. 7. R-D performances of compressing high resolution (HR) RGB images with lower resolution
(LR) codecs alone, LR codecs plus neural post-processing, and neural-sandwiched SR codecs. For
reference, also shown are R-D performances of compressing HR RGB images with HR codecs.

better than the standard codec in either format. In particular,
for the 4:2:0 format, the neural-sandwiched version shows a
10% reduction in bitrate, while for the 4:4:4 format, the neural-
sandwiched version shows a 15% reduction. It is remarkable
that for the 4:4:4 format, the neural-sandwiched version finds
a way to utilize the denser sampling for improved gains. Also
surprising is that at low rates the neural-sandwiched 4:0:0
codec is competitive with the JPEG YUV codecs.

B. Compressing High Resolution (HR) RGB Images with
Lower Resolution (LR) Codecs

In this subsection, we consider the rate-distortion perfor-
mance of compressing high resolution (HR) RGB images with
lower resolution (LR) standard codecs, both with JPEG and
HEIC.4 LR is half the horizontal and vertical resolution of
HR. Thus, whether sandwiched or not, we precede the standard
codecs with bicubic filtering and 2⇥ downsampling and follow
them with 2⇥ upsampling using Lanczos3 interpolation.

Fig. 7 shows R-D results using (a) JPEG and (b) HEIC as
the standard codec evaluated on the CLIC dataset. When they
are neural-sandwiched, JPEG and HEIC have identical pre-
and post-processors, with no retraining for HEIC. The neural-
sandwiched standard codecs show substantial improvement
over the standard codecs alone: 5-7 dB gains for JPEG,
and 7-8 dB gains for HEIC, in the 0.3-0.5 bpp range, and
further gains at higher rates. We also compare a standard
codec with a post-processor alone (i.e., with no pre-processor),
where the post-processor is architecturally identical to the
post-processor in the neural sandwich, but trained to perform
only super-resolution. It can be seen that the post-processor
alone accounts for at most 2 dB of the sandwich’s gains. The
substantial improvement obtained by the sandwich over the
super-resolution network clearly points to the importance of
the neural pre-processor, the joint training of the pre- and post-
processor networks, and their ability to communicate with each
other using neural codes to signal how to super-resolve the
images. For reference, the figure also shows R-D performances
of compressing HR RGB images with codecs that are natively

4Our use of the term HEIC is a slight misnomer. We used x265/ffmpeg to
generate HEVC-INTRA compressed images. While we have tried to minimize
it, our per-image results thus contain some unneeded meta data bits.

bpp 0.2 0.3 0.4 0.5 0.6 0.7 0.8
CNN-RD [26] 1.58 1.09 0.67 0.55 0.33 0.18 0.15
HR sandwich 1.59 1.49 1.42 1.49 1.49 1.46 1.69

TABLE I
GAIN IN PSNR-Y (DB) OVER JPEG ON DIV2K VALIDATION IMAGE 0873.

HR. It can be seen that the sandwiched LR codecs outperform
even the native HR codecs over a wide range of lower bitrates.
Comparing JPEG and HEIC results, it can be seen that the
gains due to neural sandwiching of JPEG are substantially
retained for HEIC.

Fig. 8 (and Fig. S3) show qualitative and objective results.
Observe the substantial improvements obtained by the sand-
wiched codec over JPEG and neural post-processing: Detail is
retained in the city view, aliasing is avoided on the building
face and the texture. All with substantial dB improvements
(+4.5 dB, +6.5 dB, +10.6 dB over neural post-processing)
at the same rate. Fig. 9 (and Fig. S4) show the sandwich
bottlenecks.

Table I compares our HR sandwich to the closely related but
independently developed work of [26], in which their “CNN-
RD” solution also surrounds a standard codec with neural
pre- and post-processors using 2x down- and up-sampling.
However their networks’ formulation and training regimen
prohibits them from learning to communicate the neural codes
needed to carry good HR information. (Their post-processor
is trained first to super-resolve a low-pass image; then their
pre-processor is trained to minimize D + �R with the fixed
post-processor. This misses the main advantage of having
neural pre- and post-processors.) The table shows that our
work has significantly higher gains in PSNR-Y (dB) relative
to the same standard codec (JPEG) on the Div2k validation
image 0873 [40]. Indeed, though not shown in the table, their
solution saturates and begins to under-perform the standard
codec above 0.8 bpp (⇠30 dB); ours out-performs the standard
codec until about 2.0 bpp (⇠37 dB).

C. Compressing HDR RGB Images with LDR Codecs

In this subsection, we report the rate-distortion performance
of compressing high dynamic range (HDR) RGB images with
lower dynamic range (LDR) standard codecs (8-bit JPEG and
8-bit HEIC), alone and neural-sandwiched.

7

(a) Originals

(b) Sandwich: (29.1 dB, 0.54 bpp), (32.1 dB, 0.33 bpp), (22.3 dB, 0.38 bpp)

(c) JPEG: (23.4 dB, 0.54 bpp), (23.9 dB, 0.34 bpp), (12.5 dB, 0.38 bpp)

(d) Post-Only: (24.6 dB, 0.54 bpp), (25.6 dB, 0.34 bpp), (11.7 dB, 0.38 bpp)

Fig. 8. Super-resolution sandwich of a low-res codec: Original 256 ⇥ 256
source images and reconstructions by sandwich, JPEG with linear upsampling,
and JPEG with neural post-processing respectively. The regions identified
in the top row show areas where detail is either lost or aliased after
downsampling and LR transport. Note how the sandwich output in (b)
correctly transports the detail whereas JPEG and post-only recover the wrong
information. The picture in the last column, while correctly transported by
the sandwich, results in severe aliasing for JPEG and even further reduced
performance for post-only which amplifies the aliasing.

Fig. 9. 128⇥128 reconstructed bottleneck images for the super-resolution
sandwich results in Fig. 8 [enlarged for clarity]. Observe that while the bot-
tlenecks appear aliased, noisy etc., the sandwich post-processor has correctly
demodulated this noise in the final pictures.

For the HDR simulations, we use the HDR+ dataset [37].
The HDR images have d = 16 bits per color component, while
the LDR codecs transmit only 8 bits per color component.
By sandwiching the LDR codecs in neural pre- and post-
processors, it is possible to signal spatially-localized tone
mapping curves via neural codes from the pre-processor to
the post-processor, in order to carry the least significant bits

of the HDR image through the LDR codec.
Fig. 10 shows R-D results in terms of d-bit RGB-PSNR vs.

bits per pixel, evaluated on the HDR+ dataset. The definition
of d-bit RGB-PSNR is

RGB PSNR = 10 log10

✓�
2d � 1

�2
(3HW)/

���S � Ŝ

���
2
◆
,

(1)
where S and Ŝ are the original and reproduced d-bit RGB
source images of size H ⇥ W . The figure shows the per-
formance of the LDR codecs alone (8-bit JPEG and 8-bit
HEIC) in comparison to the neural-sandwiched LDR codecs,
as well as to JPEG post-processed with the state-of-the-
art Dequantization-Net [41] (trained on the same dataset).
The maximum PSNR one can obtain by losslessly encoding
the most significant 8-bits is illustrated as LDR saturation.
The standard codecs alone, or with the Dequantization-Net
post-processor only, saturate at that level. Observe that the
sandwiched codecs rise up to 3 dB above the saturation
line, highlighting the importance of joint training of the pre-
and post-processors and communication between them using
neural codes. Unfortunately the software implementing the
standard codecs precludes the transmission of higher rates.
Neither our JPEG nor HEIC implementation is able to go
beyond ⇠3 bpp on average. For all R-D curves the highest rate
point is where the software cuts off. Using codec implemen-
tations accomplishing higher rates, the gains of the sandwich
are expected to increase further.

D. Compressing 3-channel Normal Maps with Color Codecs

In this subsection, we report the rate-distortion performance
of compressing 3-channel normal maps with standard (color)
codecs, both alone and neural-sandwiched. An example normal
map is shown in Fig. 11. Normal maps in computer graphics
are used to increase the perceived resolution of a mesh [42],
[43]. Each pixel stores a unit-norm vector n = (nx, ny, nz)
representing the tangent-space normal (nz � 0) with respect to
a triangle mesh. Note that three channels are redundant since
n
2
x+n

2
y+n

2
z = 1. To represent these as 8-bit images, we map

each channel [�1, 1] to RGB [0, 255].
Fig. 12 (and Fig. S5) show R-D results using HEIC (and

JPEG) as the standard codec, in terms of PSNR vs bits per
pixel, evaluated on normal maps from the Relightables dataset
[38]. The best results are obtained with the neural-sandwiched
4:4:4 codecs, which exploit the channel redundancy. Neural-
sandwiching codecs with 4:2:0 and 4:0:0 formats provide
significant gains over their respective baselines. YUV 4:2:0
and YUV 4:4:4 codecs use RGB-YUV conversion, which does
not provide any advantage for this dataset. Codecs with 4:4:4
(no color conv.) are better. As before, the neural-sandwiched
codecs do not use color conversion. The best non-neural result
(custom) is obtained by zeroing out the third component nz

during compression, and recovering it in a postprocess as
n̂z = 1 � (n̂2

x + n̂
2
y)

1
2 . However, the best result overall (by

more than 1 dB) uses a neural-sandwiched codec with a 4:4:4
format. Comparing JPEG and HEIC results, it can be seen
(again) that the gains due to neural sandwiching of JPEG are
substantially retained for HEIC, with about 15% reduction in
bitrate compared to HEIC alone.

8

0.5 1 1.5 2 2.5 3 3.5
Rate (bpp)

44

46

48

50

52

54

56

58

60

62
R

G
B-

PS
N

R
 (d

B)

neural-sandwiched JPEG 4:4:4 LDR
neural-sandwiched HEIC 4:4:4 LDR
JPEG 4:4:4 LDR
HEIC 4:4:4 LDR
LDR saturation
JPEG 4:4:4 LDR + DequantizationNet

Fig. 10. R-D performances of compressing HDR
RGB images with LDR codecs, neural-sandwiched
LDR codecs, and LDR codecs post-processed with
Dequantization-Net [41]). LDR saturate indicates
PSNR of rounding d bits to 8 and lossless coding.

(a) Original source (b) Neural code

(c) JPEG 4:4:4 (RGB)(d) Reconstructed source

Fig. 11. Compression of a normal-map image at
0.8 bits/pixel. JPEG 4:4:4 (RGB) achieves 32.2 dB,
whereas the neural-sandwiched 4:4:4 format attains
34.2 dB. Refer to Fig. S5 for full R-D results.

0.3 0.4 0.5 0.6 0.7 0.8 0.9
Rate (bpp)

28

29

30

31

32

33

34

35

36

37

38

39

40

PS
N

R
 (d

B)

neural-sandwiched HEIC 4:4:4
neural-sandwiched HEIC 4:2:0
neural-sandwiched HEIC 4:0:0
HEIC custom
HEIC 4:4:4 (RGB)
HEIC 4:4:4 (YUV)
HEIC 4:2:0 (YUV)

Fig. 12. R-D performances of compressing normal
map images with HEIC and neural-sandwiched
HEIC, in various formats.

E. Compressing 8-channel Texture Maps with 3-channel Color
Codecs and Shaded Distortion

A common technique in computer graphics is to render a
surface using texture mapping, which stores sampled surface
properties in an associated texture atlas image (see Fig. 13).
The texture map often contains not just albedo (RGB color) but
additional surface properties (e.g., surface normals, roughness,
ambient occlusion) that enable more realistic shading. In this
section, we report rate-distortion performance of compressing
8-channel texture maps with and without sandwiching.

We briefly review the rendering process. To render a surface
mesh from a particular view and with particular lighting,
rasterization identifies the screen-space pixels covered by the
mesh triangles. For each pixel, it obtains the interpolated 3D
surface position as well as interpolated texture coordinates.
Then, a pixel shader computes the view direction, the light
direction(s), and the sampled texture attributes for the surface
point. The final shaded RGB color for the pixel is a compli-
cated formula involving all of these inputs.

For compression in this scenario, it is natural to measure
distortion not over the texture image values but over the final
rendered pixel colors. Specifically, we measure the average
RGB MSE of images rendered using a collection of typical
views and lighting conditions. We call this shaded distortion.

In principle, it should be possible to train the neural
sandwich end-to-end by measuring shaded distortion over
rendered images using a differentiable renderer. However, this
proves challenging for the large texture map sizes (up to 4K)
encountered in practice.

Instead, our approach during training is to measure shaded
distortion in the domain of the texture images. That is, we
compute shading using all the 3D parameters of the traditional
rendering, but output the resulting shaded colors onto an image
defined over the texture domain itself (see Fig. 13e). The key
benefit is that the computation is local, so training can use
cropped texture images. (For final evaluation, we measure
shaded distortion over traditionally rendered images.)

In our experiments, we use a texture map with C = 8
channels: 3 RGB albedo channels, 3 normal map channels
(as in the previous subsection), 1 roughness channel, and 1

occlusion channel, as illustrated in Fig. 13. We refer to this as
a [3, 3, 1, 1]-channel texture map.

Fig. 14 shows R-D results in terms of PSNR of the shaded
distortion in dB vs bits per texture map pixel. Compression
with and without neural sandwiching are compared. Without
sandwiching, to compress the 8-channel texture map with a
standard codec, we partition the texture map into its natural
components, here with [3, 3, 1, 1] channels, and compress each
component separately (with one codec using 4:4:4 format
and color conversion, one codec using 4:4:4 format and no
color conversion, and two codecs using 4:0:0 format). With
sandwiching, to compress the 8-channel texture map, for
concreteness we choose 8-channel bottleneck images at the
same resolution as the texture map, and code each of the 8
bottleneck channels as a grayscale image using HEIC 4:0:0. It
can be seen from the figure that neural-sandwiching provides
a 20-30% reduction in bitrate compared to HEIC alone. This
example illustrates that neural sandwiching can be used for
non-RGB images with C > 3 channels and non-standard
distortion measures.

V. COMPLEXITY EXPERIMENTS

In the image compression experiments of Section IV, we
use an MLP in parallel with a U-Net. The MLP is relatively
simple, with two hidden layers, each with 16 hidden channels.
Most of the complexity is in the U-Net, which in its standard
form [33] has four 2-layer 3⇥3 convolutional “encoder” blocks
each followed by a 2⇥ downsampling, followed by five 2-
layer 3 ⇥ 3 convolutional “decoder” blocks separated by 2⇥
upsampling and concatenation with the output of the same-
resolution encoder block. The number of channels output from
the encoder blocks is [32, 64, 128, 256], while the number
of channels output from the decoder blocks is [512, 256, 128,
64, 32], denoted U-Net([32, 64, 128, 256]; [512, 256, 128, 64,
32]). A final 3 ⇥ 3 convolutional layer produces Cout output
channels. These tuples, along with Cin and Cout, can be used
as hyper-parameters to specify the U-Net.

In this section, we perform a sweep over the U-Nets hyper-
parameters to study the tradeoff between the complexity of the
sandwich and its rate-distortion performance. For this study,
we choose a particular application: compressing HR RGB

9

(a) 3-channel albedo (b) 3-channel normals

(c) 1-channel roughness (d) 1-channel occlusion

(e) Shaded using different viewpoints and lights

Fig. 13. Components of 8-channel texture map and
images rendered to measure shaded distortion.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Rate (bpp)

32

33

34

35

36

37

38

39

40

Sh
ad

ed
-D

is
to

rti
on

-P
SN

R
 (d

B)

neural-sandwiched split-channel HEIC
[3, split]-channel HEIC

Fig. 14. R-D performance of compressing 8-
channel texture map images with standard codec
alone and neural-sandwiched.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Rate (bpp)

25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46

R
G

B-
PS

N
R

 (d
B)

 1.6e+07 (100.0%) [32, 64, 128, 256] & [512, 256, 128, 64, 32]
 9.5e+05 (6.0%) [32, 64] & [128, 64, 32]
 3.9e+06 (25.0%) [16, 32, 64, 128] & [256, 128, 64, 32, 16]
 2.4e+05 (1.5%) [16, 32] & [64, 32, 16]
 9.8e+05 (6.3%) [8, 16, 32, 64] & [128, 64, 32, 16, 8]
 6.0e+04 (0.4%) [8, 16] & [32, 16, 8]
postonly (50.0%)
HEVC 4:4:4 LR
HEVC 4:4:4 HR

Fig. 15. R-D performance of compressing HR
RGB images with LR codecs, with neural sand-
wiches of different complexity. Legend shows
parameter counts (for pre-processor plus post-
processor) for different U-Net configurations.

images with LR codecs, as detailed in subsection IV-B. While
our default U-Net([32, 64, 128, 256]; [512, 256, 128, 64, 32])
has almost 8M parameters, many other U-Nets have many
fewer parameters. Fig. 15 shows R-D results for the HR-LR
application, for neural sandwiches with different complexities,
assuming the pre- and post-processors have equal complexity.
We have made trade-offs by reducing the number of blocks
and/or the number of channels in each block. For example, U-
Net([32, 64]; [128, 64, 32]), which has two encoder blocks and
three decoder blocks, with their default number of channels,
has only 491K parameters, a mere 6% of the parameters of the
default U-Net, with less than 0.5 dB loss in R-D performance.
In contrast, reducing complexity by reducing the number of
channels has a less desirable trade-off.

Our experiments here show that massive reductions in the
number of parameters are possible with little loss in perfor-
mance. Of course, optimizing the hyper-parameters, such as
the number of layers or the convolutional filter size, consid-
ering asymmetric models, using depth-separable convolutions,
etc., can significantly improve complexity further (see, e.g.,
[44]). In the next section, on video experiments, we show that
a U-Net([32]; [32, 32]), which we call our slim network with
about 57K parameters, offers orders of magnitude reduction
in complexity with little loss in R-D performance.

(Table S1 illustrates the parameter details of the UNet family
explored in this paper.) Alternative architectures, which are
more efficient in terms of MACs per pixel, are explored in
[44].

VI. VIDEO COMPRESSION EXPERIMENTS

A. Codec Setup and Dataset
We generated a video dataset that consists of 10-frame

clips of YUV video sequences from the AV2 Common Test
Conditions [45] and their associated motion flows, calculated
using UFlow [34]. We use a batch size of 8, i.e., 8 video
clips in each batch. Each clip is processed during the dataset
generation step such that it has 10 frames of size 256x256,
selected from video of fps 20-40. HEVC is implemented using
x265 (IPP.., single reference frame, rdoq and loop filter on.)

within ffmpeg.5 For each considered scenario, the model is
trained for 1000 epochs, with a learning rate of 1e�4, and
tested on 120 test video clips. RD plots are generated similar
to Section IV. We report results in terms of YUV PSNR when
using the `2 norm and “LPIPS (RGB) PSNR” when using
LPIPS (refer to subsection VI-E for LPIPS particulars.)

B. Compressing 3-channel RGB Video with 1-channel (Gray-
scale) Codecs

We start by considering the rate-distortion performance
of the sandwich system on the toy example of transporting
full-color video over a standard codec that can only carry
gray-scale video (HEVC 4:0:0.) As we have already seen
in Fig. 1, the sandwich-introduced modulation patterns are
quite pronounced in terms of spatial extent and in terms of
spatial frequency for the image compression version of this
scenario. The toy example here is hence especially useful
for examining (i) the temporal coherence of the sandwich-
introduced patterns, (ii) the role of training with and without
motion flows, and (iii) understanding the role of the network
receptive field on the final compression scenario.

Video codecs provide the majority of compression gains by
exploiting temporal redundancies via motion correspondences.
Since the sandwich system uses modulation patterns for mes-
sage passing and is deployed in a frame-independent fashion
it is important that the patterns are introduced in a temporally
consistent fashion that can be taken advantage of by standard
codecs. This is clearly visible in Fig. 16, which shows three
frames of compressed bottlenecks, sandwich-reconstructions,
and originals. Observe that the patterns smoothly move with
the scene objects that they are attached to. Through many such
visuals we have noted that the networks operate in a translation
robust manner with patterns moving with the objects and
transitioning over motion/object discontinuities.

Fig.17 demonstrates the significant improvements (+8.5 dB)
that the neural-sandwiched HEVC 4:0:0 obtains over HEVC

5Observe that the rate for each clip reflects (i) an I-frame amortized over
10 frames and (ii) container format metadata though we tried to minimize the
latter. The reader used to video rates where these two factors are amortized
over hundreds of frames should expect higher reported rate numbers per-pixel.

10

Fig. 16. Toy example with gray-scale codec (HEVC 4:0:0). The sandwich
is used to transport full color video over a gray-scale codec. First, fifth, and
tenth frames of compressed bottlenecks, final reconstructions by the post-
processor, and original source videos are shown. Rate=0.10 bpp, PSNR=38.0
dB. The sandwich establishes temporally coherent modulation-like patterns on
the bottlenecks through which the pre-processor encodes color that are then
demodulated by the post-processor for a full-color result.

4:0:0. As an ablation study we trained a sandwich system using
only the image codec proxy for the same scenario, shown
in the Figure as “neural-sandwiched HEVC 4:0:0 (image-
proxy)”. This system is unaware of the motion compen-
sation process used by the codec and assumes the codec
compresses video as a sequence of INTRA frames. Given a
large enough training set, one expects this image-codec-proxy-
trained sandwich to achieve translation robustness, as such a
dataset depicts similar objects at many different translations.
While performing worse than the video-codec-proxy-trained
sandwich note that this version is also significantly better than
HEVC 4:0:0 (⇠8 dB). This confirms the observation that well-
trained pre/post-processors accomplish translation robustness,
which is of fundamental importance in the video scenario.

Fig. 17 also shows the performance of the “slim” simplifi-
cation, again, significantly outperforming HEVC 4:0:0. Note
however that this model performs 3 dB below the full model.
Since the slim model is restricted to the finest two resolutions
as opposed to the full model’s four, its receptive field is
significantly smaller than that of the full model. This in turn
restricts its capacity to deploy spatially large patterns which
appear to be advantageous in this problem.

C. Compressing 3-channel RGB Video with 3-channel Codecs
The rate-distortion performance of HEVC 4:4:4 and neural-

sandwiched HEVC 4:4:4 are also included in Fig. 17. Over a
broad rate-range the sandwich readily obtains ⇠5% improve-
ments in rate at the same distortion. We have observed that the
loop-filter proxy included as part of the video-codec proxy is
performing better than the HEVC loop-filter. In effect, rather
than compensating for the less-potent HEVC loop filter, the

neural-post-processor is trained assuming that the standard
codec has a better loop-filter than it actually does. This
leads to the neural-post-processor leaving some potential post-
processing improvements on the table. Adjusting the loop-filter
proxy to more closely mimic the HEVC loop filter is expected
to marginally improve neural-sandwiched HEVC 4:4:4 results.

D. Compressing High Resolution (HR) RGB Video with Lower
Resolution (LR) Codecs

In subsection IV-B we have seen that the sandwich can
transport high-resolution (HR) images using lower-resolution
(LR) codecs and obtain massive improvements. Using both
JPEG and HEIC, the sandwich is significantly better over
linear-down-codec-linear-up and linear-down-codec-neural-
up transport schemes.

Given the results of subsection VI-B, i.e., that the sandwich
establishes temporally coherent message passing and continues
to obtain massive improvements over the gray-scale codec
in the video setting, we expect the sandwich to likewise
extend subsection IV-B results to video. Not surprisingly we
see this to be the case in Fig. 18, which shows the rate-
distortion performance of transporting high-resolution (HR)
video using a lower-resolution (LR) codec. Compared to
HEVC 4:4:4 LR (Bicubic-down-HEVC4:4:4-Lanczos3-up) the
sandwich obtains more than 6 dB improvements in YUV
PSNR. The slim model is close with ⇠5 dB improvements.
Note the parallels to the image case shown in Fig. 15 albeit in
RGB PSNR.

Fig. 20 compares the visual quality of the reconstructed
sandwich clips to that of HEVC 4:4:4 LR. The INTER
coded fifth frame of each clip is shown. In the first-row note
the significant amount of detail transported by the sandwich
especially as depicted over the crowd and the building. HEVC
4:4:4 LR contains significant blur in those areas. The sandwich
clip is 5 dB better at the same rate. In the second row note
again not only the sharpness but the extra detail that the
sandwich output contains especially toward the far-out points
of the wire-structure. This detail, injected by the neural pre-
processor and later demodulated by the neural post-processor,
is simply missing from HEVC 4:4:4 LR. The sandwich is
better by nearly 8 dB at the same rate.
E. Compressing RGB Video with an Alternative Perceptual
Metric (LPIPS)

PSNR is well-known not to be a reliable metric for human-
perceived visual quality. Alternatives such as the Learned
Perceptual Image Patch Similarity (LPIPS) [46]–[48] and
VMAF [49] are better suited for this task. While VMAF
is not differentiable LPIPS is, and is thus readily suited to
end-to-end gradient-based back-propagation. In this section
we concentrate on LPIPS but also provide results on LPIPS-
optimized sandwich networks on VMAF.

Since LPIPS is intended for RGB, the final decoded YUV
video is first converted into RGB and then LPIPS is computed.
In order to report results on an approximately similar scale to
mean-squared-error results, we derived a fixed linear scaler for
LPIPS so that for image vectors x, y,

sLPIPS(x, y) ⇠ ||x� y||2, if ||x� y||2 < ⌧ (2)

11

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
Rate (bpp)

25

27

29

31

33

35

37

39

41

43

45

47

49
YU

V-
PS

N
R

 (d
B)

neural-sandwiched HEVC 4:4:4
HEVC 4:4:4
neural-sandwiched HEVC 4:0:0
neural-sandwiched HEVC 4:0:0 (image-proxy)
neural-sandwiched HEVC 4:0:0 (slim)
HEVC 4:0:0

Fig. 17. Video rate-distortion performance of the
YUV 4:0:0 sandwich and YUV 4:4:4 sandwich.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
Rate (bpp)

29

31

33

35

37

39

41

43

45

47

49

YU
V-

PS
N

R
 (d

B)

HEVC 4:4:4 HR
neural-sandwiched HEVC 4:4:4 LR
neural-sandwiched HEVC 4:4:4 LR (slim)
HEVC 4:4:4 LR

Fig. 18. Video rate-distortion performance of the
YUV 4:4:4 low-resolution (LR) sandwich.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
Rate (bpp)

31

33

35

37

39

41

43

45

47

LP
IP

S
(R

G
B)

-P
SN

R
 (d

B)

neural-sandwiched HEVC 4:4:4 LPIPS
neural-sandwiched HEVC 4:4:4 LPIPS (slim)
neural-sandwiched HEVC 4:4:4 LPIPS (pre-only)
HEVC 4:4:4 LPIPS

Fig. 19. Video rate-distortion performance of sand-
wich and HEVC with LPIPS.

(a) S: 33.6 dB, 0.46 bpp (b) H: 28.5 dB, 0.48 bpp (c) Original

(a) S: 35.1 dB, 0.50 bpp (b) H: 27.3 dB, 0.51 bpp (c) Original

Fig. 20. Sandwich results for high-resolution video transport using a lower-
resolution codec (HEVC 4:4:4 LR.) (a) Sandwich, (b) HEVC. HEVC 4:4:4
LR is implemented as Bicubic downsampling, followed by HEVC 4:4:4
compression, followed by Lamczos3 upsampling.

where ⌧ is a small threshold and s is the LPIPS linear scaler.
s is calculated once and is fixed for all results.

As mentioned in [47] when comparing single images there
is the potential for adversarial attacks on LPIPS, i.e., an image
x̃, unrelated to x to a certain extent, can be designed to obtain
LPIPS(x̃, y) ⇠ LPIPS(x, y). One hence has to consider the
possibility of an optimization scheme “hacking” the metric.
To that end [47] recommends an ensemble LPIPS score where
rather than calculating a single LPIPS score on the x, y pair,
one calculates several scores by randomly applying slight
geometric and intensity transformations to the pair. These
scores are then averaged for the ensemble score. This ensemble
score is shown to be robust to adversarial attacks.

By their very nature, video clips are typically versions
of scenes with geometric deformations (scene motion) and
color/brightness changes (scene lighting changes.) We hence
report the LPIPS loss of the n

th clip as the average of the
LPIPS losses over its T = 10 frames, i.e.,

Dn =
1

T

T�1X

t=0

sLPIPS(xn(t), yn(t)), (3)

where xn(t), yn(t) are the t
th frames of the decoded and

(a) S: 40.0 dB, 0.68 bpp (b) H: 40.5 dB, 1.01 bpp (c) Original

Fig. 21. Sandwich results for the LPIPS scenario (5th frame in each clip
is shown.). (a) Sandwiched HEVC results, (b) HEVC results. It is difficult
to find significant differences among the results at 40 dB LPIPS-PSNR. The
sandwich clip has ⇠32% lower rate than the HEVC clip.

original clips respectively. We expect this averaging process
to help improve the robustness of the score but we also (i)
evaluate visual quality, (ii) show that the slim network obtains
similar performance (with substantially reduced parameters the
slim network has less room for hacking the metric,) and (iii)
report VMAF results of the LPIPS-optimized sandwich on
an especially meaningful scenario. In what follows we report
“LPIPS (RGB) PSNR” which is the PSNR of the relevant
averaged LPIPS loss.

Fig. 19 compares the rate-distortion performance of the
neural-sandwiched HEVC against HEVC with clip distortion
measured via (3). Observe that the sandwich with the full
model obtains ⇠30% improvements in rate at the same LPIPS
quality. The slim model closely tracks these results with ⇠20-
25% improvements. Lastly we see that a pre-processor only
variant, where we have disabled the neural-post-processor and
trained only a pre-processor, obtains ⇠10-15%. Considering
that a new generation standard codec typically improves ⇠30%
over the previous generation, one can see that the full and slim
networks are offering generational improvements assuming
LPIPS accurately represents human-perceived quality. As in-
terestingly, the pre-processor-only result indicates that a video
streaming service can potentially reduce bandwidth by 10-15%
in a way transparent to its users’ decoders.

In order to vet the correspondence of LPIPS and visual
quality we subjectively examined the clips of the neural-
sandwiched HEVC and HEVC decoded at the same LPIPS
quality. At high LPIPS quality levels we found no significant
differences among sandwich, HEVC, and original clips. A
sample from such a clip is shown in Fig. 21, where all three

12

(a) S: 40.0 dB, 0.68 bpp (b) H: 40.5 dB, 1.01 bpp
Fig. 22. Absolute errors (15x amplified) of the sandwich and HEVC
frames depicted in Fig. 21. The sandwich frame has higher errors which are
nevertheless difficult to perceive in Fig.21 as the visually important structures
such as edges are well-preserved.

samples look similar while the sandwich clip has ⇠32% less
rate than the HEVC clip. Fig. 22 in fact shows that the sand-
wich output contains more absolute-errors. It is nevertheless
hard to discern visual quality differences. At intermediate to
low quality levels it is difficult to pick between the sandwich
and HEVC clips though differences to the original clip become
more noticeable (Fig. S7). Quality degrades in expected ways
and the sandwich retains rate improvements at the same
LPIPS quality until the low quality regime. Supplementary
section VIII-G explores the types of clip and region statistics
where LPIPS may be enabling the gains.

Last but not least, especially since VMAF is typically used
to gauge quality in the streaming scenario, we also evaluated
the VMAF scores of the sandwich pre-processor-only network.
Fig. S6 shows that the pre-processor-only network (optimized
for LPIPS) obtains ⇠10% improvements in rate at the same
VMAF quality. While we have not done so this agreement
between the metrics suggests training the sandwich for LPIPS,
evaluating the models during training for VMAF as well, and
picking a model that has acceptable improvements for both.

VII. DISCUSSION AND CONCLUSION

In this paper, we have proposed sandwiching standard image
and video codecs between neural pre- and post-processors,
trained through a proxy. Remarkably, the neural pre- and post-
processor learn to communicate source images to each other by
sending coded images through the standard codec. The coded
images may have fewer channels, lower resolution, and lower
dynamic range than the source images that they represent. Yet,
even though the coded images are quantized by the standard
codec to a PSNR commensurate with the bitrate, the source
images achieve superior fidelity in the same distortion measure
or in an alternative distortion measure, at that bitrate.

While the sandwich architecture improves upon the standard
codec’s compression of typical color images under the MSE
distortion, the strength of the architecture is that it allows the
standard codec to adapt to coding non-typical images under
possibly non-typical distortion measures. We have provided
an extensive set of simulation results clearly demonstrating
the value of the sandwich. Nevertheless our examples are
not intended to be exhaustive or definitive. For instance, we
did not explore adaptation to medical, hyper-spectral, or other
multi-channel imagery. (However, see [18] for applications of
sandwiching to multi-view compression.) Nor did we explore
adaptation to higher temporal resolution. We note these as
areas for future research.

Our differentiable image codec proxy is modeled after
JPEG. Yet our experimental results consistently show that the
pre- and post-processors trained with this proxy can be used
to sandwich not only JPEG but also — without retraining —
HEIC (and in fact HEVC with the an adaptation of this proxy
to video) with significant rate-distortion gains compared to
the non-sandwiched codec. Furthermore, the sandwich gains
have been shown to extend to wrapping VVC and AV1 codecs
with low-complexity post-processors (500 MACs) [44]. That
is a level of complexity that can allow neural processing to be
included in next generation video compression standards such
as the upcoming AV2.

As standard codecs continue to advance it would be ben-
eficial to design a differentiable codec proxy that is closer
to the target standard codec for even better performance. Of
course one day the standard codec itself may be differentiable.
For example, it may become an end-to-end neural codec.
It is important to note that even in that case, the sandwich
architecture would remain a valid way to adapt, or fine-tune,
the standard codec to alternative source types and distortion
measures (Proposition 1.)

We advocate that future image and video codec standards
be designed with sandwiching in mind. As we have seen, it is
possible to adapt codecs to altogether new image and distortion
types. This can for example be accomplished by specifying
a simple neural post-processor in the compressed bit stream
header. More generally, such a technique could be used at
any level of the bit stream, e.g., GOP-level, picture-level, or
block-level, to signal that specific neural processors be used
in the decoder, possibly matched to specific neural processors
used in the encoder, which have been trained to communicate
with each other through learned neural codes. In these ways,
we advocate for making standard codecs more universal and
thus more broadly applicable to alternative source types and
distortion measures, such as in graphics, augmented/virtual
reality, medical imaging, multi-modal sensing for autonomous
driving, and so forth.

Our results clearly indicate that MSE-optimized codecs can
be easily repurposed to other metrics and scenarios. Hence,
despite the reputation of MSE as an inadequate visual quality
metric, the call for replacing it with other metrics in standard
codec design may not be clear-cut. Given its ease of opti-
mization in incrementally furthering individual compression
tools it may in fact remain the metric of choice in designing
inner compression engines to be generalized as needed by
sandwiching.

The code base for this work is open-sourced at https:
//github.com/google/sandwiched compression [50].

REFERENCES

[1] W. B. Pennebaker and J. L. Mitchell, JPEG Still Image Data Compres-
sion Standard. Van Nostrand Reinhold, 2022.

[2] T. Wiegand, G. J. Sullivan, G. Bjontegaard, and A. Luthra, “Overview of
the H.264/AVC video eoding standard,” IEEE Transactions on Circuits
and Systems for Video Technology, vol. 13, no. 7, pp. 560–576, 2003.

[3] D. Mukherjee, J. Bankoski, A. Grange, J. Han, J. Koleszar, P. Wilkins,
Y. Xu, and R. Bultje, “The Latest Open-Source Video Codec VP9 -
an Overview and Preliminary Results,” in Picture Coding Symp. (PCS).
IEEE, 2013, pp. 390–393.

[4] M. Wien, High Efficiency Video Coding: Coding Tools and Specification.
Springer Publishing Company, Incorporated, 2014.

https://github.com/google/sandwiched_compression
https://github.com/google/sandwiched_compression

13

[5] J. Han, B. Li, D. Mukherjee, C.-H. Chiang, A. Grange, C. Chen, H. Su,
S. Parker, S. Deng, U. Joshi et al., “A technical overview of AV1,”
Proceedings of the IEEE, vol. 109, no. 9, pp. 1435–1462, 2021.

[6] B. Bross, Y.-K. Wang, Y. Ye, S. Liu, J. Chen, G. J. Sullivan, and J.-R.
Ohm, “Overview of the versatile video coding (VVC) standard and its
applications,” IEEE TCSVT, vol. 31, no. 10, pp. 3736–3764, 2021.

[7] D. Minnen, J. Ballé, and G. Toderici, “Joint Autoregressive and Hierar-
chical Priors for Learned Image Compression,” in Advances in Neural
Information Processing Systems 31, 2018.

[8] J. Balle, P. A. Chou, D. Minnen, S. Singh, N. Johnston, E. Agustsson,
S. J. Hwang, and G. Toderici, “Nonlinear Transform Coding,” IEEE J.
Selected Topics in Signal Processing, pp. 1–1, 2020.

[9] Z. Guo, Z. Zhang, R. Feng, and Z. Chen, “Causal Contextual Prediction
for Learned Image Compression,” IEEE TCSVT, pp. 1–1, 2021.

[10] G. Lu, W. Ouyang, D. Xu, X. Zhang, C. Cai, and Z. Gao, “DVC: An
End-To-End Deep Video Compression Framework,” in CVPR, 2019.

[11] Z. Hu, G. Lu, and D. Xu, “Fvc: A new framework towards deep video
compression in feature space,” in CVPR, 2021, pp. 1502–1511.

[12] O. Rippel, A. G. Anderson, K. Tatwawadi, S. Nair, C. Lytle, and
L. Bourdev, “ELF-VC: Efficient Learned Flexible-Rate Video Coding,”
in CVPR, 2021, pp. 14 479–14 488.

[13] D. Minnen and N. Johnston, “Advancing the rate-distortion-computation
frontier for neural image compression,” in ICIP, 2023, pp. 2940–2944.

[14] F. Mentzer, G. D. Toderici, M. Tschannen, and E. Agustsson, “High-
Fidelity Generative Image Compression,” in Advances in Neural Infor-
mation Processing Systems, vol. 33, 2020, pp. 11 913–11 924.

[15] O. G. Guleryuz, P. A. Chou, H. Hoppe, D. Tang, R. Du, P. Davidson,
and S. Fanello, “Sandwiched Image Compression: Wrapping Neural
Networks Around a Standard Codec,” in ICIP, 2021.

[16] ——, “Sandwiched image compression: Increasing the resolution and
dynamic range of standard codecs,” in 2022 Picture Coding Symposium
(PCS), 2022, pp. 175–179.

[17] B. Isik, O. Guleryuz, D. Tang, J. Taylor, and P. Chou, “Sandwiched
video compression: Efficiently extending the reach of standard codecs
with neural wrappers,” in ICIP. IEEE, 2023, pp. 3757–3761.

[18] Y. Hu, O. G. Guleryuz, P. A. Chou, D. Tang, J. Taylor, R. Maxham,
and Y. Wang, “One-click upgrade from 2D to 3D: Sandwiched RGB-D
video compression for stereoscopic teleconferencing,” in submission.

[19] K. Zhang, W. Zuo, Y. Chen, D. Meng, and L. Zhang, “Beyond a Gaus-
sian Denoiser: Residual Learning of Deep CNN for Image Denoising,”
IEEE Trans. Image Processing, vol. 26, no. 7, pp. 3142–3155, 2017.

[20] C. Tian, L. Fei, W. Zheng, Y. Xu, W. Zuo, and C.-W. Lin, “Deep
Learning on Image Denoising: an Overview,” Neural Networks, vol.
131, pp. 251 – 275, 2020.

[21] H. Vu, G. Cheung, and Y. C. Eldar, “Unrolling of Deep Graph Total
Variation for Image Denoising,” in IEEE ICASSP, 2021, pp. 2050–2054.

[22] P. Svoboda, M. Hradis, D. Barina, and P. Zemcı́k, “Compression
Artifacts Removal Using Convolutional Neural Networks,” ArXiv, vol.
abs/1605.00366, 2016.

[23] T. Kim, H. Lee, H. Son, and S. Lee, “SF-CNN: A Fast Compression
Artifacts Removal Via Spatial-to-Frequency Convolutional Neural Net-
works,” in IEEE ICIP, 2019, pp. 3606–3610.

[24] J. Niu, “End-to-End JPEG Decoding and Artifacts Suppression Using
Heterogeneous Residual Convolutional Neural Network,” Int’l Joint
Conf. Neural Networks (IJCNN), pp. 1–8, 2020.

[25] Y. Li, D. Liu, H. Li, L. Li, Z. Li, and F. Wu, “Learning a Convolutional
Neural Network for Image Compact-Resolution,” IEEE Trans. Image
Processing, vol. 28, no. 3, pp. 1092–1107, 2019.

[26] P. Eusébio, J. Ascenso, and F. Pereira, “Optimizing an Image Coding
Framework With Deep Learning-Based Pre- and Post-Processing,” in
European Signal Processing Conf. (EUSIPCO), 2021, pp. 506–510.

[27] K. Qiu, L. Yu, and D. Li, “Codec-Simulation Network for Joint
Optimization of Video Coding With Pre- and Post-Processing,” IEEE
Open J. Circuits and Systems, vol. 2, pp. 648–659, 2021.

[28] Y. Andreopoulos, “Neural Pre and Post-Processing for Video Encoding
With AVC, VP9, and AV1,” in AOM Research Symp, 2022.

[29] Y. Kim, S. Cho, J. Lee, S.-Y. Jeong, J. S. Choi, and J. Do, “Towards the
Perceptual Quality Enhancement of Low Bit-Rate Compressed Images,”
in IEEE/CVF CVPR Workshops, 2020, pp. 565–569.

[30] C. Segall and A. Katsaggelos, “Pre- and Post-Processing Algorithms for
Compressed Video Enhancement,” in Asilomar Conf. Signals, Systems
and Computers, vol. 2, 2000, pp. 1369–1373 vol.2.

[31] S. Park and R. Gray, “Sigma-delta modulation with leaky integration
and constant input,” IEEE Transactions on Information Theory, vol. 38,
no. 5, pp. 1512–1533, 1992.

[32] O. Guleryuz and M. Orchard, “On the dpcm compression of gaussian
autoregressive sequences,” IEEE Transactions on Information Theory,
vol. 47, no. 3, pp. 945–956, 2001.

[33] O. Ronneberger, P. Fischer, and T. Brox, “U-Net: Convolutional Net-
works for Biomedical Image Segmentation,” in Medical Image Comput-
ing and Computer-Assisted Intervention, 2015, pp. 234–241.

[34] S. K. Lodha, A. Pang, R. E. Sheehan, and C. M. Wittenbrink, “Uflow:
Visualizing uncertainty in fluid flow,” in Proceedings of Seventh Annual
IEEE Visualization’96. IEEE, 1996, pp. 249–254.

[35] “The Oxford-IIIT Pet Dataset,” https://www.tensorflow.org/datasets/
catalog/oxford iiit pet, 2022.

[36] “Dataset for the Challenge on Learned Image Compression 2020,” http:
//www.tensorflow.org/datasets/catalog/clic, 2022.

[37] S. W. Hasinoff, D. Sharlet, R. Geiss, A. Adams, J. Barron, F. Kainz,
J. Chen, and M. Levoy, “Burst Photography for High Dynamic Range
and Low-Light Imaging on Mobile Cameras,” ACM TOG, 2016.

[38] K. Guo et al., “The Relightables: Volumetric Performance Capture of
Humans With Realistic Relighting,” in ACM TOG, 2019.

[39] A. Gersho and R. M. Gray, Vector Quantization and Signal Compression.
Kluwer Academic Publishers, 2022.

[40] E. Agustsson and R. Timofte, “NTIRE 2017 Challenge on Single Image
Super-Resolution: Dataset and Study,” in IEEE Conf. Computer Vision
and Pattern Recognition (CVPR) Workshops, July 2017.

[41] Y.-L. Liu, W.-S. Lai, Y.-S. Chen, Y.-L. Kao, M.-H. Yang, Y.-Y. Chuang,
and J.-B. Huang, “Single-Image HDR Reconstruction by Learning to
Reverse the Camera Pipeline,” in IEEE CVPR, 2020.

[42] Wikipedia contributors, “Normal mapping - wikipedia.”
[43] A. C. Beers, M. Agrawala, and N. Chaddha, “Rendering from com-

pressed textures,” in SIGGRAPH, 1996, p. 373–378.
[44] Y. Hu, C. Zhang, O. G. Guleryuz, D. Mukherjee, and Y. Wang, “Standard

compatible efficient video coding with jointly optimized neural wrap-
pers,” in submission to Data Compression Conference. IEEE, 2024.

[45] “Aom common test conditions v2.0,” http://aomedia.org/docs/
CWG-B075o AV2 CTC v2.pdf, accessed: 2022-07-11.

[46] R. Zhang et al., “The unreasonable effectiveness of deep features as a
perceptual metric,” in IEEE CVPR, 2018, pp. 586–595.

[47] M. Kettunen, E. Härkönen, and J. Lehtinen, “E-LPIPS: robust perceptual
image similarity via random transformation ensembles,” CoRR, vol.
abs/1906.03973, 2019.

[48] K. Ding, K. Ma, S. Wang, and E. P. Simoncelli, “Comparison of full-
reference image quality models for optimization of image processing
systems,” IJCV, vol. 129, no. 4, p. 1258–1281, apr 2021.

[49] Z. Li et al., “Toward a practical perceptual video quality metric,” The
Netflix Tech Blog, vol. 6, no. 2, p. 2, 2016.

[50] “Sandwiched Compression Software,” https://github.com/google/
sandwiched compression, 2024.

[51] X. Luo, H. Talebi, F. Yang, M. Elad, and P. Milanfar, “The Rate-
Distortion-Accuracy Tradeoff: JPEG Case Study,” 2020.

[52] G. Toderici, S. M. O’Malley, S. J. Hwang, D. Vincent, D. Minnen,
S. Baluja, M. Covell, and R. Sukthankar, “Variable Rate Image Com-
pression With Recurrent Neural Networks,” in ICLR, 2016.

[53] “TensorFlow API: tf.stopgradient,” https://www.tensorflow.org/api docs/
python/tf/stop gradient, 2022.

[54] Z. He and S. Mitra, “A Unified Rate-Distortion Analysis Framework for
Transform Coding,” IEEE TCSVT, vol. 11, pp. 1221–1236, 2001.

[55] A. Said, M. K. Singh, and R. Pourreza, “Differentiable bit-rate estima-
tion for neural-based video codec enhancement,” in 2022 Picture Coding
Symposium (PCS), 2022, pp. 379–383.

[56] T. Cover and J. Thomas, Elements of Information Theory. Wiley, 2012.
[57] Wikipedia contributors, “Universal approximation theorem,” 2023.
[58] Z. Lu, H. Pu, F. Wang, Z. Hu, and L. Wang, “The expressive power of

neural networks: A view from the width,” in NeurIPS, vol. 30, 2017.
[59] S. Park, C. Yun, J. Lee, and J. Shin, “Minimum width for universal

approximation,” in ICLR, 2021.
[60] P. Chou, T. Lookabaugh, and R. Gray, “Entropy-constrained vector

quantization,” IEEE Transactions on Acoustics, Speech, and Signal
Processing, vol. 37, no. 1, pp. 31–42, 1989.

https://www.tensorflow.org/datasets/catalog/oxford_iiit_pet
https://www.tensorflow.org/datasets/catalog/oxford_iiit_pet
http://www.tensorflow.org/datasets/catalog/clic
http://www.tensorflow.org/datasets/catalog/clic
http://aomedia.org/docs/CWG-B075o_AV2_CTC_v2.pdf
http://aomedia.org/docs/CWG-B075o_AV2_CTC_v2.pdf
https://github.com/google/sandwiched_compression
https://github.com/google/sandwiched_compression
https://www.tensorflow.org/api_docs/python/tf/stop_gradient
https://www.tensorflow.org/api_docs/python/tf/stop_gradient

14

VIII. SUPPLEMENTARY MATERIAL

A. Quantizer and Rate Proxies (Suppl. to Sec. III-A)
Various differentiable quantizer proxies are possible

(Fig. S1). Luo et al. [51] use a soft quantizer Q(Xi)
whose transfer characteristic is a third-order polynomial
spline. Most end-to-end image compression works (e.g., [52]–
[7]) use either additive uniform noise Q(Xi) = Xi +
Ui�, where Ui is i.i.d. ⇠ unif(�1/2, 1/2), or a “straight-
through” quantizer Q(Xi) = Xi + Ui�, where Ui� =
stop gradient(round(Xi/�) � Xi/�)� is the true quantiza-
tion noise and stop gradient(·) is the identity mapping but
stops the gradient of its output from being back-propagated to
its argument [53]. In all cases, the derivative of X̂i = Q(Xi)
with respect to Xi is nonzero almost everywhere. This allows
non-trivial gradients of the end-to-end distortion d(S, Ŝ) with
respect to the parameters of the networks using the chain
rule and back-propagation. These formulations also allow
the stepsize � to receive gradients, which is necessary to
properly minimize the Lagrangian. We use straight-through
quantization in our experiments.

Various differentiable rate proxies are also possible. A
convenient family of rate proxies R(X) estimates the bitrate
for a block of transform coefficients X = [Xi] using affine
functions of kXk22, kXk1, or kXk0. We focus on the latter
in our experiments, since it is shown in [54] that an affine
function of the number of nonzero quantized transform co-
efficients, R(X) = a

P
i 1 {|xi| � �/2} + b, is an accurate

rate proxy for transform codes. In our work, we approximate
the indicator function 1 {|xi| � �/2} by the smooth differ-
entiable function log(1 + |xi| /�). (An alternative would be
to use tanh(|xi| /�).) In sum, our rate proxy for a bottleneck
image B = [X(k)] comprising multiple blocks X

(k) is

R(B) =
X

k

R(X(k)) = a

X

k,i

log
⇣
1 +

���x(k)
i

��� /�
⌘
+ b. (4)

We set b = 0 and determine a for each bottleneck image B

so that the rate proxy model matches the actual bitrate of the
standard JPEG codec on that image, i.e.:

a =
RJPEG(B,�)

P
k,i log

⇣
1 +

���x(k)
i

��� /�
⌘ . (5)

This ensures that the differentiable function R(B) is exactly
equal to RJPEG(B,�) and that proper weighting is given to
its derivatives on a per-image basis. Any image codec besides
JPEG can also be used. Similarly to the gradient of the
distortion, the gradient of R(B) with respect to the parameters
of the pre-processor, and with respect to the stepsize �, can be
computed using back-propagation. An alternative rate proxy is
given in [55].

(a) Soft quantizer

+

(b) Additive noise

+

(c) Straight-through

Fig. S1. Possible quantizer proxies.

(a) Original source image (b) “Bottleneck” image

(c) Reconstructed bottleneck (d) Reconstructed source image

Fig. S2. Even with a simple codec (here JPEG 4:0:0, a single-channel
grayscale codec), the sandwich architecture can accomplish unconventional
results. Whereas 4:0:0 usually accommodates only luminance, the neural
pre-processor is able to encode a full RGB image into a single-channel
luminence-like image of neural codes. The neural codes are low-frequency
dither-like patterns that modulate the color information yet also survive JPEG
compression. At the decoding end, the neural post-processor demodulates the
patterns to recover the original color while also achieving deblocking.

B. HR and HDR Adaptations (Suppl. to Sec. III-A)
In the HR problem, the RGB H ⇥W ⇥ 3 source images

have source bit depth d = 8. Thus they have the standard
dynamic range, [0, 255]. However, the bottleneck images have
lower spatial resolution, H/2 ⇥ W/2 ⇥ 3. In our work, the
resampler in the pre-processor comprises bicubic filtering
and 2x downsampling; the resampler in the post-processor
comprises Lanczos3 interpolation of the half-resolution images
back to full-resolution. Similar down- and up-sampling is done
in [26].

In the HDR problem, the source images have dynamic range⇥
0, 2d � 1

⇤
, where d is the source bit depth. The bottleneck

images have dimensions that match the source images: H ⇥
W⇥3 but are restricted to the standard dynamic range [0, 255].
Since the codec proxy does not pass any information outside
of this range, the pre-processor produces images in this range.

In both the HR and HDR problems, the sandwiched codecs
operate in 4:4:4 mode without a color transform. Regardless,
the baseline (non-sandwiched) codecs that we compare to use
the RGB $ YUV transform when it is beneficial for them in
an R-D sense: In the HR scenario they use the color transform;
in HDR they encode RGB directly.

C. More RGB-Grayscale Image Results (Suppl. to Sec. IV-A)
Fig. S2 provides another example of using a sandwich

to transport 3-channel RGB images through a 1-channel
(grayscale) codec.

D. More HR-LR Image Results (Suppl. to Sec. IV-B)
Fig. S3 and Fig. S4 provide further examples of using a

sandwich to transport high resolution (HR) images through a
lower resolution (LR) standard codec.

15

(a) Originals

(b) Sandwich: (31.4 dB, 0.58 bpp), (27.3 dB, 0.70 bpp), (28.2 dB, 0.57 bpp)

(c) JPEG: (24.7 dB, 0.60 bpp), (22.4 dB, 0.71 bpp), (21.7 dB, 0.58 bpp)

(d) Post-Only: (26.3 dB, 0.60 bpp), (23.2 dB, 0.71 bpp), (23.1 dB, 0.58 bpp)

Fig. S3. Super-resolution sandwich: Original 256 ⇥ 256 source images
and reconstructions by sandwich, JPEG with linear upsampling, and JPEG
enhanced with neural post-processing respectively. With the sandwich visually
relevant ornaments/textures are preserved, images are sharper in a way that
matches the originals, and text in the scene is easier to read. Beyond
significantly improved visual quality the sandwich obtains substantial dB
improvements (+5.1 dB, +4.1 dB, +5.1 dB over neural post-processing) at
the same rate.

Fig. S4. 128⇥128 reconstructed bottleneck images for the super-resolution
sandwich results in Fig. S3 [enlarged for clarity]. Observe that while the bot-
tlenecks appear aliased, noisy etc., the sandwich post-processor has correctly
demodulated this noise in the final pictures.

E. More Normal Map Image Results (Suppl. to Sec. IV-D)

Fig. S5 shows results of compressing normal maps with
sandwiched JPEG. Compare Fig. 12, which shows corre-
sponding results for sandwiched HEIC. The gains due to
sandwiching are preserved in either case.

0.3 0.4 0.5 0.6 0.7 0.8 0.9
Rate (bpp)

28

29

30

31

32

33

34

35

36

37

38

39

40

PS
N

R
 (d

B)

neural-sandwiched JPEG 4:4:4
neural-sandwiched JPEG 4:2:0
neural-sandwiched JPEG 4:0:0
JPEG custom
JPEG 4:4:4 (RGB)
JPEG 4:4:4 (YUV)
JPEG 4:2:0 (YUV)

Fig. S5. R-D performances of compressing normal map images with JPEG
and neural-sandwiched JPEG, in various formats.

U-Net hyperparameters number of MACs per
encoder decoder parameters pixel
[32, 64, 128, 256] [512, 256, 128, 64, 32] 7847491 213943
[32, 64] [128, 64, 32] 472387 112531
[16, 32, 64, 128] [256, 128, 64, 32, 16] 1963043 53981
[16, 32] [64, 32, 16] 118691 28619
[8, 16, 32, 64] [128, 64, 32, 16, 8] 491347 13743
[8, 16] [32, 16, 8] 29971 7399
[32] [32, 32] 57219 43347

TABLE S1
U-NET COMPLEXITY FOR VARIOUS HYPERPARAMETERS.
FIXED HYPERPARAMETERS INCLUDE Cin = Cout = 3,

FILTERS SIZE = 3⇥ 3, AND LAYERS PER BLOCK = 2.

F. Further Information on Complexity (Suppl. to Sec. V)
Table S1 illustrates the parameter details of the UNet family

explored in this paper.

G. More LPIPS Video Results (Suppl. to Sec. VI-E)
Fig. S7 provides further examples of using a sandwich

optimized for LPIPS to transport images through a standard
codec. Whereas Fig. 21 showed 32% rate savings at a quality
visually close to the original, Fig.S7 shows corresponding rate
saving at lower visual quality levels.

To better understand where the sandwich with LPIPS is
getting improvements we considered clips where rate gains
(at the same LPIPS quality) were high, intermediate, and low.
Fig. S8 shows sample clips from each group. As illustrated
the gains are strongly tied to the high frequency and texture
content of the scene. While scenes dense with such content
(top row) have the largest improvements, scenes with even
moderate amounts of high frequency structures (middle row)
induce noticeable gains.

Fig. S6 shows that the pre-processor-only network (opti-
mized for LPIPS) obtains ⇠10% improvements in rate at the
same VMAF quality.

H. Theoretical Limits of Neural Sandwiching (Suppl. to
Sec. II)

In this section, we explore the theoretical limits of neural
sandwiching. In particular, we prove the following Proposition,

16

0 0.1 0.2 0.3 0.4 0.5
Rate (bpp)

75

77.5

80

82.5

85

87.5

90

92.5

95

97.5

100
VM

AF

neural-sandwiched HEVC 4:4:4 LPIPS (pre-only)
HEVC 4:4:4

Fig. S6. VMAF scores of the sandwich trained using LPIPS (pre-processor
only) and HEVC. Over a broad range sandwich shows ⇠ 10% improvements
in rate at same VMAF quality.

which is stronger than Prop. 1 in Section II in that it includes
an arbitrary permutation.

Proposition 2. Let X be a Rn-valued bounded source, let
d be a distortion measure, and let D(R) be the operational
distortion-rate function for X under d. For any ✏ > 0, let
(↵⇤

,�
⇤
, �

⇤) be a rate-R codec for X achieving D(R) within
✏/2. Let (↵,�, �) be a regular codec (e.g., a standard codec,
possibly designed for a different source and different distortion
measure) with bounded codelengths. Then for any permutation
⇡, there exist neural pre- and post-processors f and g such
that the codec sandwich (↵�f, g��, �) has expected distortion
at most D(R)+ ✏ and expected rate at most R+D(p||q)+ ✏,
where p(k) = P ({↵⇤(X) = k}) and q(k) = 2�|�(⇡(k))|.

Remark. D(p||q) is the worst-case rate penalty for having to
re-use the entropy coder from the standard codec.

Remark. By optimizing over the permutation ⇡, the rate
penalty D(p||q) may be minimized. Indeed, the penalty is
minimized when the codelengths |�(⇡(k))| are sorted in the
same order as the codelengths |�⇤(k)|. (See Prop. 3.)

First some definitions: A Rn-valued source X is a random
vector (e.g., an image), where n is the dimension of the
source (e.g., the number of pixels in the image). The source
is bounded if for some finite bound b, X 2 [�b, b]n with
probability 1. A codec for X is given by a triple (↵,�, �),
where the encoder ↵ : Rn ! K maps each source vector
x 2 Rn to a index k 2 K, the decoder � : K ! Rn

maps each index k 2 K to a reproduction vector x̂ 2 Rn;
and the lossless encoder � : K ! C invertibly maps each
element of K to a binary string in a codebook C ⇢ {0, 1}⇤ of
variable-length binary strings satisfying the Kraft inequality,P

k2K 2�|�(k)| 1, where |s| denotes the length in bits
of the binary string s. The Kraft inequality guarantees the
existence of a prefix-free, and hence uniquely decodable (i.e.,
invertible), binary lossless encoder � [56]. Alternatively � may
be considered an arithmetic coder or other entropy coder with
nominal codelengths {|�(k)|}. A quantization cell is the set

{x : ↵(x) = k} of source vectors encoding to index k. A codec
is regular if each of its quantization cells is a non-degenerate
polytope (i.e., the intersection of half-spaces with non-empty
interior). Codecs based on scalar quantization (e.g., transform
coders) as well as nearest-neighbor quantizers are all regular.
A distortion measure d : Rn⇥Rn ! R+ maps a source vector
x and its reproduction, say x̂ = �(↵(x)), to a non-negative
number. The expected distortion of the codec is

D(↵,�) = E[d(X,�(↵(X)))], (6)

and the expected rate of the codec is

R(↵, �) = E[|�(↵(X))|]. (7)

The operational distortion-rate function for X under d is

D(R) = inf
↵,�,�

{D(↵,�) : R(↵, �) R]} . (8)

Proof. Given the Rn-valued bounded source X , the distortion
measure d, the operational distortion-rate function D(R) for
X under d, and any ✏ > 0, let (↵⇤

,�
⇤
, �

⇤) be a near-optimal
codec at rate R, such that

D(↵⇤
,�

⇤) D(R) + ✏/2 (9)
R(↵⇤

, �
⇤) R. (10)

Now given a regular codec (↵,�, �) generally not for the
source X but for some other source Y , which may be Rm-
valued, we need to find a neural pre-processor f : Rn ! Rm

and a neural post-processor g : Rm ! Rn such that the
composition ↵ � f and the composition g � � satisfy

D(↵ � f, g � �) D(R) + ✏ (11)
R(↵ � f, �) R+D(p||q) + ✏, (12)

where p(k) = P ({↵(f(X)) = k}) and q(k) = 2�|�(⇡(k))|.
To accomplish this, we will find f and g so that ↵ � f

approximates the near-optimal encoder ↵⇤, and g � � approx-
imates the near-optimal decoder �

⇤. Optionally we may also
find a permutation ⇡ : K ! K such that the composition
� � ⇡ approximates the optimal lossless encoder �

⇤. Such a
permutation minimizes the bound D(p||q).

First we will prove (11) by showing that if the approxima-
tion is good enough, then the expected distortion increases by
at most ✏/2, namely

D(↵ � f, g � �) D(↵⇤
,�

⇤) + ✏/2. (13)

Together, (9) and (13) imply (11).
To show (13), first we define an “ideal” pre-processor f

⇤

such that for all x 2 Rm, f⇤(x) = yk whenever ↵
⇤(x) = k,

where yk is a point in the interior of the quantization cell
{y : ↵(y) = ⇡(k)}. (The cell has an interior because (↵,�, �)
is assumed to be regular.) We also define an “ideal” post-
processor g

⇤ such that for all k 2 K: g⇤(�(⇡(k))) = �
⇤(k).

The definition of g
⇤(ŷ) for values of ŷ not in the discrete

set {�(⇡(k)) : k 2 K} are arbitrary, as � produces values
only in this set. With these definitions, it can be seen that
↵(f⇤(x)) = ⇡(↵⇤(x)) and g

⇤(�(⇡(↵⇤(x)))) = �
⇤(↵⇤(x)) and

hence
g
⇤(�(↵(f⇤(x)))) = �

⇤(↵⇤(x)), (14)

17

i.e., ⇡�1 � ↵ � f⇤ emulates ↵
⇤ and g

⇤ � � � ⇡ emulates �
⇤.

Thus D(↵ � f⇤
, g

⇤ � �) = D(↵⇤
,�

⇤).
We now argue that there exists a neural pre-processor f

sufficiently close to f
⇤. Indeed, by a Universal Approximation

Theorem for neural networks [57]–[59], there is a neural
network f arbitrarily close to f

⇤ in L2, i.e, for all � > 0
there exists f such that E[||f(X)�f

⇤(X)||2] < �. A fortiori,
as convergence in L2 implies convergence in probability, for
all � > 0, there exists f and a set ⌦ with P (⌦) > 1 � �

such that for all x 2 ⌦, ||f(x)� f
⇤(x)|| < �. Thus whenever

x 2 ⌦ and ↵
⇤(x) = k, by the definition of f

⇤(x), we have
||f(x)�yk|| < �. Since we have chosen yk to be in the interior
of the cell {y : ↵(y) = ⇡(k)}, setting � sufficiently small
guarantees that f(x) lies inside the cell {y : ↵(y) = ⇡(k)}
whenever x 2 ⌦ and ↵

⇤(x) = k. That is, ↵(f(x)) = ↵(f⇤(x))
for all x 2 ⌦. In the unlikely event that x 62 ⌦, there would
be an encoding error. But as the source is bounded, so is
the distortion, by say Dmax. Thus the expected distortion
conditioned on an encoding error is at most Dmax. Since
(1 � P (⌦))Dmax can be made less than ✏/4 by taking �

arbitrarily small, we have

D(↵ � f, g � �) (15)
= E[d(X, g(�(↵(f(X)))))] (16)
 P (⌦)E[d(X, g(�(↵(f(X)))))|⌦] (17)

+(1� P (⌦))Dmax (18)
 E[d(X, g(�(↵(f⇤(X))))] + ✏/4. (19)

We can use a similar argument to show the existence of
a post-processor g sufficiently close to g

⇤. However, if the
number of possible reproductions is finite (which is actually
implied by our assumption that the codelengths are bounded),
then a less sophisticated argument is needed, since then g and
g
⇤ need to be close only on a finite set of points. In such case,

it is clear that for � > 0, there exists g such that for all k 2 K,
||g(�(⇡(k)))� g

⇤(�(⇡(k)))|| < �. Hence by the continuity of
the function h(x̂) = E[d(X, x̂)] in x̂, for sufficiently small
� > 0 we have

E[d(X, g(�(↵(f⇤(X))))] (20)
= E[d(X, g(�(⇡(↵⇤(X))))] (21)
 E[d(X, g

⇤(�(⇡(↵⇤(X))))] + ✏/4 (22)
= E[d(X,�

⇤(↵⇤(X)))] + ✏/4 (23)
= D(↵⇤

,�
⇤) + ✏/4 (24)

Together, (19) and (24) result in (13), and thus (11) is proved.
Next we prove (12), by showing that if the approximation

is good enough, then the expected rate increases by at most
D(p||q), namely

R(↵ � f, �) R(↵⇤
, �

⇤) +D(p||q) + ✏. (25)

Together, (10) and (25) imply (12).

To show (25), we take a similar strategy to showing (13).
First, analogous to (19), we have

R(↵ � f, �) (26)
= E[|�(↵(f(X)))|] (27)
 P (⌦)E[|�(↵(f(X)))||⌦] (28)

+(1� P (⌦))Rmax (29)
 E[|�(↵(f⇤(X)))|] + ✏. (30)

Then, analogous to (24), we have

E[|�(↵(f⇤(X)))|] (31)
= E[|�(⇡(↵⇤(X)))|] (32)

=
X

k

P ({↵⇤(X) = k})|�(⇡(k))| (33)

= �
X

k

p(k) log2 q(k) (34)

= H(p) +D(p||q) (35)
 R(↵⇤

, �
⇤) +D(p||q), (36)

where p(k) = P ({↵⇤(X) = k}) and q(k) = 2�|�(⇡(k))|. We
have also used expressions for the entropy

H(p) = �
X

k

p(k) log2 p(k) (37)

and the Kullback-Leibler divergence

D(p||q) =
X

k

p(k) log2
p(k)

q(k)
. (38)

Together, (30) and (36) result in (25), and thus (12) is proved.

Note that the permutation was not needed anywhere in the
proof. However we get it for free since the yks are arbitrary.
Moreover, we are now able to optimize over the permutation,
to better approximate �

⇤ with � � ⇡. We now show:

Proposition 3. For any given codec (↵⇤
,�

⇤
, � � ⇡), the

minimum rate R(↵⇤
, � � ⇡) is achieved when the codelengths

|�(⇡(k))| have the same order as � log2 P ({↵⇤(X) = k}).

Proof. An expression for the rate is

R(↵⇤
, � � ⇡) =

X

k

P ({↵⇤(X) = k})|�(⇡(k))|. (39)

Thus if there exist k1 and k2 for which P ({↵⇤(X) = k1}) >
P ({↵⇤(X) = k2}) but |�(⇡(k1))| > |�(⇡(k2))|, then the
rate (39) can be strictly reduced by swapping �(⇡(k1)) and
�(⇡(k2)), so that |�(⇡(k1))| < |�(⇡(k2))|.

Note that since �⇤ minimizes the rate, the sequences |�⇤(k)|,
� log2 P ({↵⇤(X) = k}), and |�(⇡(k))| (the latter with a rate-
minimizing permutation) all have the same order, up to ties.

Finally, in this section we present an algorithm for learning
an optimal Codelength Constrained Vector Quantizer (CCVQ)
from data. A CCVQ (↵⇤

,�
⇤
, �

(0) � ⇡) comprises an encoder
↵ : Rn ! K, a decoder � : K! Rn, and a lossless codebook
� : K! {0, 1}⇤ minimizing the Lagrangian functional

J�(↵,�, �) = D((↵,�) + �R(↵, �) (40)

18

subject to � = �
(0) �⇡ being a reordering of a given invertible

lossless codebook �
(0). Our CCVQ design algorithm is sim-

ilar to the Entropy Constrained Vector Quantization (ECVQ)
design algorithm of [60], except that instead of assigning a
codelength � log2 P ({↵(X) = k}) to index k, it must re-use
one of the existing codelengths |�(0)(k)|.

First some notation. For any set of values v(k) indexed by
k 2 K, let k = argsort({v(k) : k 2 K}) denote a list of indices
such that the ith element of the list, ki, is the index k 2 K
of the ith element of the set {v(k) : k 2 K} when sorted
smallest to largest, with ties broken arbitrarily. The algorithm
is shown in Alg. 1.

Algorithm 1 Codelength Constrained Vector Quantization
Input: distribution P , distortion measure d, Lagrange mul-

tiplier �, convergence threshold ✏, index set K, decoder
�
(0) : K! Rn, lossless codebook �

(0) : K! {0, 1}⇤
1: t = 0, J (0) =1, k(0) = argsort({|�(0)(k)| : i 2 K})
2: 8x :↵(t+1)(x) = argmink2K d(x,�(t)(k)) + �|�(t)(k)|
3: k(t+1) = argsort({� logP ({↵(t+1)(X) = k}) : k 2 K})
4: 8i : �(t+1)(k(t+1)

i) = �
(0)(k(0)

i)
5: 8k :�(t+1)(k) = argminx̂ E[d(X, x̂)|↵(t+1)(X)=k]
6: D

(t+1) = E[d(X,�
(t+1)(↵(t+1)(X)))]

7: R
(t+1) = E[|�(t+1)(↵(t+1)(X))|]

8: J
(t+1) = D

(t+1) + �R
(t+1)

9: if (J (t) � J
(t+1))/J (t+1)

> ✏ then t t+ 1 & go to 2
10: end if

Output: encoder ↵
(t+1), decoder �

(t+1) and lossless
codebook �

(t+1) minimizing Lagrangian functional
J�(↵,�, �) subject to � being a reordering of �(0)

19

(a) Sandwich (34.5 dB, 0.34 bpp) (b) HEVC (34.4 dB, 0.44 bpp)

(a) Sandwich (30.4 dB, 0.11 bpp) (b) HEVC (30.3 dB, 0.11 bpp)
Fig. S7. Comparison of sandwich and HEVC clips at lower rates for the scenario in Fig. 21. As the rate is lowered both the sandwich and HEVC clips
have lower LPIPS-PSNR and visual quality. At the same LPIPS quality, it is still difficult to have a firm preference between them. In the top row rate is
approximately half that of Fig. 21. Sandwich is still better by ⇠ 20% in rate. The bottom row shows the low quality regime. Both clips lose texture detail
but HEVC seems to have more artifacts.

20

(a) Sandwich (37.3 dB, 0.30 bpp) (b) HEVC (37.4 dB, 0.48 bpp) (c) Original)

(a) Sandwich (37.8 dB, 0.17 bpp) (b) HEVC (38.0 dB, 0.22 bpp) (c) Original)

(a) Sandwich (38.5 dB, 0.14 bpp) (b) HEVC (38.4 dB, 0.15 bpp) (c) Original)
Fig. S8. Qualifying the sandwich rate gains at same LPIPS quality. Top row: On video clips dense with high frequencies and textures the sandwich obtains
the most significant gains (⇠ 37.6% for this clip). Middle row: On clips with lesser but still significant high-frequency content gains are reduced but remain
significant (⇠ 22.6%.) Bottom row: On clips showing smooth and blurry regions gains are further reduced (⇠ 5.12%.)

	Introduction
	Prelude: The Sandwich as a Codelength Constrained Vector Quantizer
	The Sandwich Architecture
	Sandwich for Image Compression
	Sandwich for Video Compression

	Image Compression Experiments
	Compressing 3-channel RGB Images with C≤3-channel Codecs
	Compressing High Resolution (HR) RGB Images with Lower Resolution (LR) Codecs
	Compressing HDR RGB Images with LDR Codecs
	Compressing 3-channel Normal Maps with Color Codecs
	Compressing 8-channel Texture Maps with 3-channel Color Codecs and Shaded Distortion

	Complexity Experiments
	Video Compression Experiments
	Codec Setup and Dataset
	Compressing 3-channel RGB Video with 1-channel (Grayscale) Codecs
	Compressing 3-channel RGB Video with 3-channel Codecs
	Compressing High Resolution (HR) RGB Video with Lower Resolution (LR) Codecs
	Compressing RGB Video with an Alternative Perceptual Metric (LPIPS)

	Discussion and Conclusion
	References
	Supplementary Material
	Quantizer and Rate Proxies (Suppl. to Sec. III-A)
	HR and HDR Adaptations (Suppl. to Sec. III-A)
	More RGB-Grayscale Image Results (Suppl. to Sec. IV-A)
	More HR-LR Image Results (Suppl. to Sec. IV-B)
	More Normal Map Image Results (Suppl. to Sec. IV-D)
	Further Information on Complexity (Suppl. to Sec. V)
	More LPIPS Video Results (Suppl. to Sec. VI-E)
	Theoretical Limits of Neural Sandwiching (Suppl. to Sec. II)

