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ABSTRACT
Organizations are increasingly looking for ways to simplify collec-
tion and transformation of vast amounts of data collected from a
highly connected internet. Data analytics over continuous streams
of data enables interactive applications and reduces time to insights.
Traditionally, streaming data collection and analysis has been ei-
ther achieved by building systems, or using data warehouses built
for batch processing. In this paper, we present Vortex, a storage
engine that we built inside Google BigQuery to support real-time
analytics. Vortex is a streaming-first storage system that supports
both streaming and batch data analytics. Today, BigQuery uses
Vortex to support petabyte scale data ingestion with sub-second
data freshness and query latency.
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1 INTRODUCTION
Unbounded data sources (eg. mobile devices, web click streams,
telemetry from IoT devices) are creating massive amounts of data
that needs to be stored and analyzed in real-time. Applications
are advancing at a rapid pace to extract continuous insights from
streaming data. Data warehouses and lakehouses provide managed
data analysis services that are scalable, cost effective and easy to
use.

These data warehouses often rely on storage systems such as
distributed file systems or object stores to store massive amounts of
data. Data warehouses typically store data in columnar storage for-
mats [2] (either proprietary or open source). Tables are frequently
partitioned and clustered by the values of one or more columns to
provide locality of access for point or range lookups, aggregations,
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and updates of rows. Mutations (for example, SQL DML) modify
individual rows across one or more blocks.

Streaming data brings unique challenges to analytics. To facilitate
large scale analysis, applications that generate data typically push
the data out to a remote distributed storage as quickly as possible.
Some past systems have been architected to buffer data either locally
or in a transient storage system. The data is then loaded into an
analytic storage system to enable processing over it. While this
works well for batch data, these systems are not entirely sufficient
for streaming data because:

• The offline batch ingestion architecture sacrifices data fresh-
ness, a requirement fundamental to stream processing.

• Data generating applications sometimes run in highly re-
source constrained environments, where there is limited stor-
age for buffering locally. To workaround the limitation, appli-
cations have to resort to techniques such as down-sampling
to reduce data volume, as a result reducing data quality.

• Data is copied multiple times. Starting from the data source,
it is first written to some temporary storage from which it is
imported. This adds latency, impacts efficiency and creates
challenges with data governance.

Contributions of this paper: We present Vortex, a storage engine
that we built with streaming data as a first class concern. Instead
of trying to adapt infrastructure built for batch data to work with
streaming, we observe that it is better to build the storage system
for streaming and then use it for batch. Vortex provides a highly
distributed, regionally replicated storage engine that is optimized
for append-focused ingestion of structured and semi-structured
data. Vortex has been running in production at scale to support
BigQuery. Vortex has the following key properties:

• Consistent: Guarantees ACID properties for all API opera-
tions.

• Unified API for batch and streaming: Vortex offers a sin-
gle unified API with support for both streaming and batch
data.

• Scalable: Vortex implements a fully distributed data and
control plane and as a result supports tables of multiple
petabytes size.

• Performant: The Vortex API offers sub-second tail write
latencies that simplify client side application programming.

The rest of the paper is organized as follows. We present a brief
survey of related work in Section 2. We provide a background of
the architecture of BigQuery in Section 3. The API and design of
Vortex’s storage management system are presented in Section 4,
Section 5 and Section 6 respectively. We then describe Vortex’s inte-
gration with parallel data processing engines in Section 7. We show
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some real production results in Section 8. We present directions for
future evolution of this work in Section 9.

2 RELATEDWORK
Over the past few years, a number of data management systems
have been built and continuously adapted to support data ingestion
and processing for real-time applications such as log analytics.
With the growing volume of data, the throughput requirements of
these applications has increased exponentially. Additionally, we
observe that applications have a broad spectrum of latency and
freshness requirements on access to this data, and varying amounts
of tolerance to fidelity of the results. Traditionally, different systems
have been built to handle these different classes of applications. For
instance, operational log analytics involves generating real time
and historical insights on telemetry and other machine generated
data. Specialized systems such as the Elastic stack [1] were created
to address this segment. More generally, systems have either been
tailored to batch or to streaming. Some systems have attempted to
mimic the behavior of streaming by using a form of micro-batching
[21] of data. Apache Kafka [11] is a distributed messaging system
built for collection and delivery of data for real-time applications.
Kafka’s primary abstraction is a topic which is akin to a table in a
database.

Pravega [9] organizes data into Streams, which are similar to
topics in other messaging systems like Google Pub/Sub or Kafka. It
supports arbitrarily large atomic transactions. Vortex is similar with
its support for both coarse grained and fine grained transactions.
Additionally, our system optimizes for large scale data analysis by
continuously optimizing data and maintaining a combination of
read and write optimized storage systems. Rockset [7] is a real-time
analytics database that is similar to Vortex in that it offers both
batch and streaming ingestion. Like Vortex, it implements a row
store, column store, and uses an inverted index to support a variety
of applications.

3 BACKGROUND
BigQuery is a fully-managed, serverless data warehouse that en-
ables scalable analytics over petabytes of data. BigQuery architec-
ture (shown in Figure 1) is fundamentally based on the principle of
separation of storage and compute. BigQuery’s storage engine is
responsible for managing data. A horizontally scalable set of dis-
tributed compute nodes are responsible for data processing. These
compute nodes can process data stored on variety of distributed
storage systems. BigQuery decouples data shuffle from compute by
building on top of disaggregated distributed memory. The Shuffle
service facilitates communication between compute nodes. A set
of horizontal services - APIs, metadata, security etc. realize the
end-to-end functionality.

3.1 Query Execution Engine
Dremel [12, 13] is a distributed query execution engine that Big-
Query uses to provide interactive latencies for analyzing petabyte
scale datasets. BigQuery uses ANSI standard SQL as its query lan-
guage API. BigQuery’s data model has native support for semi-
structured data [13]. Listing 1 shows a typical Sales table that takes

Figure 1: A high level architecture of BigQuery.

advantage of repeated (ARRAY) and nested (STRUCT) fields and
uses partitioning and clustering.

CREATE TABLE Sales(
orderTimestamp TIMESTAMP,
salesOrderKey STRING,
customerKey STRING,
salesOrderLines ARRAY<
STRUCT<
salesOrderLineKey INTEGER,
dueDate DATE,
shipDate DATE,
quantity INTEGER,
unitPrice NUMERIC>

>,
totalSale NUMERIC,
currencyKey INTEGER)
PARTITION BY DATE(orderTimestamp)
CLUSTER BY customerKey

Listing 1: A typical table definition in BigQuery.

We now describe the major components involved in query pro-
cessing. When a query is submitted, it is routed to one of the Query
Coordinator nodes. As the name implies - the Query Coordina-
tor is responsible for coordinating query execution. It parses the
SQL query and algebrizes it to the Logical Query Plan. The query
planner applies a number of logical plan transformations at that
point, including pushing down computations and filters. The Query
Coordinator then obtains a list of the tables involved in the query,
columns requested from each table, and the filter predicates applied
on top of table scans. The Query Coordinator uses this information
in order to convert the Logical Query Plan to a distributed query
execution plan.

The query plan can be described as a DAG (directed acyclic
graph) of stages, where each stage is replicated across a number of
workers which run the same set of operators over different pieces
of data. The number of workers running for the given stage is the
stage’s degree of parallelism.

To execute the query, the leaf stages of the query plan are dis-
patched in parallel (subject to the amount of parallelism). The leaf
stages of the query plan encapsulates a scan operation over the data
source with any filters and computations that were pushed down.
One such data source is BigQuery storage. Later in this paper, we
discuss the details of the interactions with the Storage Engine.
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3.2 Storage Engine
Dremel is a general purpose distributed query execution engine
that can be used to perform in situ data analysis of semi-structured
data. However, in order to address the problems of data manage-
ment, mutating it with transactional consistency and providing
rich governance features on it, we created the BigQuery storage
engine. BigQuery storage provides a global namespace over all
data in BigQuery. Data is organized into regional containers called
datasets (analogous to schemata in traditional database manage-
ment systems). Tables, logical views, materialized views, search
indexes, stored procedures, machine learning models etc. all reside
in a dataset. Users can access or mutate these objects using ANSI
standard compliant SQL dialect. BigQuery offers APIs to bulk im-
port data from object storage systems into its managed storage.
The write API allows data ingestion and analysis at real time. The
high throughput read API allows analysis of BigQuery tables from
other data analytic engines like Google Cloud Dataflow and Apache
Spark [20]. BigQuery’s storage engine is built on top of Google’s
distributed file system called Colossus [10]. Data is replicated across
multiple failure domains for disaster resilience. BigQuery storage
supports ACID transactions with snapshot isolation. To provide
this, BigQuery storage uses a metadata layer that stores metadata
about user visible objects (Datasets, tables, view etc.) as well as
system metadata about objects.

Figure 2 shows the architecture of BigQuery Storage. BigQuery’s
managed storage offering is a layer on top of BigQuery’s Core Stor-
age Engine. BigQuery tables can be partitioned and clustered by
a set of columns in the table. BigQuery managed storage stores
data in a proprietary columnar storage format called Capacitor [16].
BigLake Managed Tables (BLMTs) offer the fully managed expe-
rience of BigQuery tables while storing data in customer-owned
cloud storage buckets using open file formats. Metadata manage-
ment, data ingestion and data management operations on these
tables are built on top of the same BigQuery core storage engine as
BigQuery managed storage.

BigQuery uses Google’s distributed, scalable and synchronously
replicated database, Spanner to store coarse grained metadata. Big-
Query also uses a columnar index on the metadata, called Big
Metadata, for scale and accelerating query performance [8].

This paper focuses on Vortex, which is a key component of the
BigQuery Core Storage Engine shown in Figure 2. Vortex is Big-
Query’s scalable, distributed and synchronously replicated storage
engine that supports data ingestion, retrieval and curation. We will
describe its api, architecture and its interaction with data process-
ing both directly inside BigQuery as well as other data analytic
engines like Google Cloud Dataflow.

4 STORAGE CONCEPTS AND API
BigQuery’s data model supports tables with semi-structured data
with repeated (ARRAY) and nested (STRUCT) columns. It provides
a rich set of data types such as JSON, RANGE and BYTES, thus
supported both structured and unstructured data. Vortex provides
a stream abstraction on top of a BigQuery table.

4.1 Streams
A Vortex Stream is an entity to which rows can be appended to
the current end. Each row in a Vortex Stream is identified by the
Stream’s identifier and its row offset within the Stream. Readers
can concurrently read a Stream at different row offsets. A table is
an unordered collection of Stream. A client process that wants to
write data to a BigQuery table creates one or more Stream to write
to it. Tens of thousands of clients can concurrently write to a table,
each of them typically using their own dedicated Stream.

4.2 API
We present the key elements of Vortex API below using pseudo
code.

4.2.1 Stream creation. Before writing data to a table, the Vortex
client first creates a Stream on the table. Vortex supports three dif-
ferent types of Streams: UNBUFFERED, BUFFERED and PENDING.
In an UNBUFFERED Stream, when an AppendStream request re-
turns with success, it indicates that the input rows provided in the
request have been durably committed to Vortex. Any subsequent
reads of this table are guaranteed to see these rows. In a BUFFERED
stream, the successful acknowledgement of an AppendStream re-
quest indicates that the input rows have been written to Vortex, but
they aren’t committed. These rows are not visible to subsequent
reads until they are ‘flushed‘. In a PENDING Stream, rows are not
visible until the Stream is committed.

enum StreamType {
STREAM_TYPE_UNBUFFERED = 0,
STREAM_TYPE_BUFFERED = 1,
STREAM_TYPE_PENDING = 2,
};

CreateStreamOptions options;
options.set_stream_type(STREAM_TYPE_UNBUFFERED);
Stream s = CreateStream(table_name, options);

Listing 2: Creating a Vortex Stream

The CreateStream call in Listing 3 shows the creation of a Vor-
tex Stream which returns a Stream object. The table schema is a
property of this object.

4.2.2 Appending rows. Using the schema returned during Stream
creation, the client serializes structured or semi-structured input
data to a binary format. Vortex supports multiple data formats (such
as Protocol buffers and Avro) and is extensible to other formats (e.g,
Arrow).

RowSet row_set;
// Populate row_set from the input data and the schema.
// ...
// Append data to the end of a Stream.
AppendStreamResponse response = AppendStream(s, row_set,

[row_offset]);

Listing 3: Appending to a Vortex Stream

https://cloud.google.com/dataflow
http://spark.apache.org/
http://spark.apache.org/
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Figure 2: A high level architecture of BigQuery Storage.

The optional row_offset parameter allows the client to specify
the offset in the Stream at which it expects the rows to be appended.
As described above, a Stream has a single append point which is
always at the current end of Stream. We call the number of rows
written to a Stream its current length. Using an append offset that
is different from the current length of a Stream will result in an
error. Essentially, if multiple writes (from the same or different
clients) attempt to use the same 𝑟𝑜𝑤_𝑜 𝑓 𝑓 𝑠𝑒𝑡 , only one of them
will succeed, and all others will fail. This is useful also to ensure
exactly-once semantics in the face of duplicate appends that use
the same 𝑟𝑜𝑤_𝑜 𝑓 𝑓 𝑠𝑒𝑡 , which are a common technique for retries in
a distributed environment. Clients can trade-off this idempotency
guarantee in favor of reduced latency by omitting this optional
parameter. In this case, the append is simply written to the current
end of Stream, essentially providing at-least once semantics.

For performance and latency reasons, Vortex allows writes on a
Stream to be pipelined. For example, consider a Stream that has 4
rows in it, i.e., it has a length of 4. The next available row_offset for
append in this Stream is 4. If the first AppendStream call appended
10 rows starting at row_offset 4, a subsequent AppendStream call
that wants to append the next 5 rows at row_offset 14 does not need
to wait for the first AppendStream to finish. However, it is worth
noting that the AppendStream calls must be issued in the order of
row_offset. If the second call, with row offset 14, is received by the
server before the first one (at row_offset 4), the offset validation
logic on Vortex will fail the request because it expects the next
append to use offset 4.

4.2.3 Flushing a stream. Recall that data written to a BUFFERED
stream is not committed until it is flushed. Flushing is achieved by
invoking the FlushStream API.

Status status = FlushStream(s, row_offset)

Listing 4: Flushing a BUFFERED Stream

If FlushStream returns success, it indicates that all rows in the
Stream up-to and including the row at row_offset have been com-
mitted. If the current length of the Stream is less than row_offset,
FlushStream returns an error. The FlushStream operation is idem-
potent, i.e., the same row offset can be flushed multiple times. The
API allows the current length of the Stream, i.e. the number of rows
appended to it so far, to be arbitrarily far ahead of the highest row
offset up to which the Stream has been flushed.

4.2.4 Committing a stream. Data written to PENDING Streams are
not visible until the Stream is marked committed. A common pat-
tern with batch processing is for multiple workers to independently
write to the table concurrently. In order to achieve atomicity of
these parallel distributed writes, each worker creates a PENDING
Stream. It writes all the data to it and reports its completion to a
coordinator node. When the coordinator receives success from all
the workers, it issues a batch commit request to Vortex to commit
all the Streams atomically. This makes the data in all these Streams
atomically visible to the readers.

std::vector<Stream> streams = GetStreams();
Status status = BatchCommitStreams(streams);

Listing 5: Committing PENDING Streams

4.2.5 Finalizing a stream. After a Stream is created, a client can
write to the Stream forever. When the client has finished writing,
it can finalize the Stream to prevent further appends to it.

Status status = FinalizeStream(s);

Listing 6: Finalizing Vortex Stream
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4.2.6 Mutations. So far we have assumed that the row sets that
are supplied to the AppendStream call are all insertions into the
Stream. Vortex supports mutations using the AppendStream API.
Before we describe the specification of our API for mutations, we
note that BigQuery tables support the specification of unenforced
primary key columns on the table. We call it unenforced because
APIs that write data to a table do not enforce the uniqueness of the
primary key.

Vortex defines a special virtual column called _CHANGE_TYPE
in the table schema. This column can be specified for each row in
the row set supplied to an AppendStream request. _CHANGE_TYPE
indicates the type of the row being ingested into the Stream. It takes
three values : INSERT, UPSERT and DELETE. The change type
INSERT, which is the default, indicates that row must be appended
to the table. UPSERT indicates intent to either update an existing
row for the value of the primary key column(s) specified in the row
or insert the new row otherwise. DELETE indicates that all rows
with the primary key matching the value specified in the input row
must be deleted. Absence of any matching row will return success.
When a user uses only the UPSERT and DELETE change types,
uniqueness of primary keys is enforced by construction.

The Vortex write API is available externally as the BigQuery
Storage Write API [19]. It uses gRPC transport for high throughput
transfer of data in binary format. A user stream could grow infinitely
without finalize it.

5 ARCHITECTURE
5.1 Metadata concepts
In Section 4 we introduced the abstraction of a Stream in Vortex. A
Stream is an append-only entity that acts as a conduit for writing
data to a table. Internally, Streams are backed by the following
entities.
Streamlets: Vortex Streams provide durable storage of data. A
BigQuery region consists of 2 or more Borg clusters [18]. Each
append to a Stream is durably written to 2 clusters before it is
reported as success to the client. Data for a Stream can be in any
2 clusters of all the available clusters in a region. A Streamlet is
a contiguous slice of rows in the Stream, all of which are present
in the same 2 clusters. A Stream is an ordered list of one or more
Streamlets. Given the Stream’s append-only semantics, a Stream
has at most one writable Streamlet. The writable Streamlet, if one
exists, is always the last Streamlet in a Stream.
Fragments: Each Streamlet is further split into contiguous blocks
of rows called Fragments. Fragments typically are a range of rows
inside a log file. Log files are stored in Colossus.
Data formats: BigQuery operates broadly with data in two differ-
ent classes of data formats. The write-optimized storage format
(hereafter referred to as WOS) is the format in which data is written
by Vortex’s append API. The read-optimized storage format (here-
after referred to as ROS) is the format in which data is optimized
for data processing. Typically, this is a columnar format. BigQuery
Managed Storage Tables uses Capacitor as ROS, while BigLake
Managed Tables use Parquet as ROS. In the rest of this paper, we’ll
use ROS as a generalization for these read-optimized formats.

Streamlets and Fragments are internal physical metadata entities;
they aren’t visible to the users of Vortex. Metadata for Streams and
Streamlets is managed using a regional Spanner database.

Figure 3 shows the high level architecture of Vortex. The Vortex
system contains the Control Plane which manages the metadata,
the Data Plane which is responsible for writing, reading and man-
agement of the data, a Storage Optimization Service, and a thick
client library that encapsulates the access paths to the control and
data planes. The BigQuery engine directly uses the client library
to access Vortex. Other processing engines use Vortex through the
BigQuery Write API [19]. All services of Vortex run on Borg [18].

5.2 Control Plane
The Stream Metadata Server (SMS) is the control plane of Vortex.
It manages the physical metadata of Streams, Streamlets and Frag-
ments and is backed by a Spanner database which also stores the
table’s logical metadata. The table’s logical metadata includes the
table schema and user defined properties such as data partitioning
and clustering.

Streams provide append points into a table. Multiple clients
can append to the table and each client (typically) appends to its
own Stream. A Stream typically contains a single Streamlet, but an
additional Streamlet is created whenever a Streamlet is closed due
to migrating the table to a new cluster, or due to a Stream Server
restarting, load rebalancing, or an irrecoverable write error.

The SMS assigns a Streamlet to a specific Stream Server. The
Stream Server maintains the set of fragments for the Streamlet.

When a Vortex client sends a request to append to a table, the
SMS hands out a writable Stream handle which has not been as-
signed to another client. If there isn’t one, it creates a new Stream,
picks a Stream Server based on load and health characteristics and
instructs it to create the Streamlet.

The SMS then responds to the client request with the Streamlet
id and the address of the Stream Server with the writable Streamlet.
The client creates a long-lived connection to the Stream Server to
append batches of rows to the Streamlet.

5.2.1 Sharding the control plane. The Vortex SMS is deployed in
multiple Borg clusters in a GCP region. BigQuery’s multi-tenant
architecture is made possible by an assignment algorithm that
continuously determines the best placement of customer workloads
in that region. Each customer workload is assigned a primary and
secondary cluster [17].When data is ingested into Vortex, each table
is assigned to a primary cluster, and Vortex services in that cluster
are responsible for managing data for that table. When a cluster is
transiently unavailable or experiencing issues, Vortex transparently
fails over the management of the table to the secondary cluster. As
a result of the dynamic workload assignment process, Vortex in a
region can be scaled simply by adding more clusters.

Within a single cluster, there aremultiple SMS tasks. As described
above, each table is assigned to a pair of primary and secondary
clusters. Within the cluster, each active table’s metadata is managed
by a single SMS task. Assignment of table’s to SMS tasks is done by
Slicer [3] and is eventually consistent – this means that there can
be rare times when two SMS tasks think that they both manage the
table’s metadata. Vortex is resilient to such inconsistency without
affecting the correctness of the metadata. This is achieved by the
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Figure 3: A high level architecture of Vortex.

ACID semantics offered by the Spanner transactions that are used
to manage Stream and Streamlet metadata. When an SMS task
"owning" a table becomes unavailable, Slicer redistributes the load
by assigning the table to a new SMS task and notifying it. Load
balancing of metadata operations across SMS tasks is achieved by
reporting load information to Slicer, which then uses it to distribute
load to other SMS tasks in the cluster.

5.3 Data Plane
The Stream Server is the data plane of Vortex. It owns a set of
Streamlets and creates Fragments for those Streamlets. The Stream
Server has its own in memory metadata about its Streamlets and
Fragments, and persists this by writing to a transaction log and
periodically writing checkpoints. After writing a checkpoint, old
transaction logs and checkpoints are garbage collected. Fragments,
checkpoints, and transaction logs are all stored in Colossus.

The Stream Server knows which Fragments belong to which
Streamlet, their committed size, the minimum and maximum record
timestamp in each Fragment, whether a Streamlet or Fragment is
finalized, the schema version, and the partitioning and clustering
columns of the table.

Each cluster often contains hundreds of Stream Servers. A given
Stream Server in a cluster can host Streamlets for any table which
uses the cluster as its primary. The SMS chooses the Stream Servers
by balancing between CPU, memory and network traffic load.

When a Stream Server receives a request to create a Streamlet
from the SMS, it persists this to its metadata and responds that the
Streamlet is now ready to accept appends. A client can then start
sending batches of append row data to the Stream Server.

The Stream Server appends row data to the latest Fragment
in the Streamlet, and finalizes a Fragment and creates the next
one when the current one reaches a certain size. The maximum
size of a Fragment is chosen to be small enough that conversion
by the Storage Optimization Service to the ROS format happens

frequently, but not so small that too many Fragments are created
in the metadata.

If an error is encounteredwhile writing to a Fragment, the Stream
Server finalizes the current Fragment and retries the append to the
next Fragment. If subsequent retries fail, the Stream Server finalizes
the Streamlet and fails the append request. The client will ask the
SMS for a new Streamlet, which will most likely be created on a
different Stream Server.

The Stream Server provides an API that returns the list of Frag-
ments in a Streamlet, with the number of valid bytes to read from
each Fragment.

5.4 Client Library
Vortex is accessed through a client library which supports reading
from and writing to Vortex. It is a thick client library which can
retry failed read and write operations. Failures can occur if a server
does not respond quickly enough, or a table migrates to a new
cluster and the current set of writable Streams is closed.

Frontend tasks that handle the BigQuery Storage Write API use
the client library to write data to Vortex. The client library handles
obtaining a writable Streamlet for a table from the SMS. If the table
schema changes while a client is writing to it, the Stream Server
fails the append and tells the client to obtain the latest schema. The
client library obtains the new table schema from the SMS and then
retries the append. Other write failures are handled by finalizing
the current Streamlet, obtaining a new Streamlet from the SMS, and
retrying the write there.

The query engine uses the read functionality of the client library,
which handles reading Fragments and Streamlets. The client library
is responsible for decrypting and decompressing data read from
Fragments. The metadata associated with each Fragment lists all
clusters that store a replica of that Fragment. The client always
tries to read Fragments from the local cluster, but if this fails, it will
automatically retry the read against a different cluster.
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5.4.1 Schema Evolution. Table schema changes are effected on the
SMS. Since the SMS does not have a connection to clients actively
writing to that table, there is no direct way for it to notify the clients.
Instead, when the table schema changes, the SMS first notifies the
Stream Servers with currently writable Streamlets about the new
schema version via heartbeat. The Stream Server then relays this
information to the clients when they try to append. After the client
learns about the new schema version, it fetches the updated schema
from the SMS.

5.4.2 Unary and bi-directional RPC. We observe that only 10% of
the Streams hold 90% of the data. The remaining 90% of the Streams
are small in the volume of data they hold. To support applications
with such a wide variety of write patterns, the Vortex client library
can adaptively switch between using a single directional (unary)
short-lived connection and a bi-directional long-lived connection.

The short-lived unary connection type supports a request-response
mechanism, and optimistically re-uses connections using connec-
tion pooling. This connection type is efficient when append requests
to a table are infrequent, as it does not incur the memory cost of
holding open a persistent connection.

The long-lived bi-directional connection type supports stream-
ing RPCs (such as sending a single large RPC as multiple smaller
pieces), and allows multiple pipelined append requests. A client can
continually append rows as they are received from the front end,
before receiving the response from the previous append request.
A persistent connection is very CPU efficient when processing a
high volume of RPCs, but has a higher memory overhead due to
its persistence and tracking multiple operations on the same con-
nection. It is also more complicated to support, as the server can
simultaneously process multiple incoming requests for the same
Streamlet.

Bi-directional connections also support flow control. The Stream
Server uses flow control to throttle incoming appends when there
is a large amount of data in-flight. In-flight data remains in memory
until it has been committed, but if Colossus is slow, flow control
protects the Stream Server from running out of memory by limiting
the rate of data it will accept. Flow control on a dedicated connection
allows the stream server to limit the rate of data ingress it will accept
on a per connection basis.

5.4.3 Lifetime of data in a Stream. When a client sends a request
to the SMS to create a new Stream, the SMS generates a unique
random id for the Stream, and the first Streamlet in that Stream,
then attaches the stream to the table by persisting it into Spanner.
The SMS sends a RPC to the Stream Server to create a Streamlet
with the provided id. The SMS responds to the client that it can
start appending to the Streamlet with this id on that Stream Server.

After this, the client directly streams data in batches of rows
to the Stream Server. The Stream Server creates new log files as
needed to store the row data. The only time the client ever goes
back to the SMS is to perform reconciliation of failures such as
when the Stream Server is unavailable or when the Stream Server
deemed the Streamlet to have failed irrecoverably.

The Stream Server heartbeats every few seconds with SMS to
inform it of changes to the Streamlets that it had been writing to.

Figure 4: Life of a Vortex Append request

The Storage Optimization Service consults the SMS for a set of
candidate Fragments, converts them to ROS, and commits them as
live while marking the Fragments as deleted.

After a configurable period of time, the SMS tells Stream Servers
via heartbeat to garbage collect the deleted Fragments. When the
Stream Server acknowledges it has deleted the Fragments, the SMS
deletes the Fragments from Spanner. Fragments that are deleted
are kept sufficiently long to ensure that any active queries that are
reading from them do not fail.

User initiated actions such as deletions of tables, datasets and
projects can trigger garbage collection. As a catch all, a "groomer"
job runs periodically to detect Fragments, Streams, or Streamlets
that may be orphaned by these user initiated actions.

The typical heartbeat from Stream Server to SMS only contains
metadata changes observed by the Stream Server since its previous
heartbeat for the same Streamlet. To guard against accidental bugs,
the Stream Server periodically sends a full state snapshot of all
Streamlets it owns to the SMS. If the SMS responds that it is not
aware of a Streamlet existing in any table, the Stream Server deletes
the Streamlet. While performing these deletions, the system ensures
that the Streamlet is sufficiently old. This avoids any in-flight races,
and also provides an opportunity to investigate the reasons for its
occurrence.

5.4.4 Fragment File Format. Each Fragment begins with a header
which contains the File Map. The File Map lists the committed size
and record ranges of all previous Fragments in the same Streamlet
which have not yet been deleted. The File Map is used for disaster
resilience.

The Stream Server buffers up to 2MB of records into a single
write to a Fragment. Buffering 2MB enables better compression and
avoids sending a large number of small writes to the file system. The
write includes a header, which specifies a single server-assigned
TrueTime [6] timestamp for all rows in the write. Use of TrueTime
ensures that records are guaranteed to be assigned a timestamp
with a bounded amount of clock skew in single digit milliseconds,
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regardless of the Stream Server they were written to, and that a
query is guaranteed to return data that was just written.

When a Fragment is finalized, the Stream Server appends a bloom
filter, followed by a fixed length footer which describes the offset in
the Fragment where the bloom filter starts. The bloom filter marks
which key values are present for the partitioning and clustering
columns.

The Fragment data format stores metadata records for Flush-
Stream calls on BUFFERED streams. A flush operation is a metadata
write to the Fragment which advances the committed row offset
making all rows in the Streamlet (and the stream) up to that point
visible.

5.4.5 Compression and Encryption. The Stream Server uses the
Snappy compressor, which has a negligible CPU impact, to com-
press rows before appending them to the Fragment. This is more
effective the larger the size of the batched append, and is highly
effective on string data, which tends to be the majority of a row’s
size.

The typical compression ratio is 4:1 but can be 10:1 if values of
string fields are common betweenmany rows. Compression reduces
not only the physical byte count residing in the WOS system, but
also results in fewer bytes written and read over the network.

After compressing the data, the Stream Server encrypts the data
before writing to Fragments, using either the system’s encryption
key or a customer supplied encryption key. Data is therefore in
encrypted form while being sent over RPC to Colossus, while at
rest, and while being read back.

Vortex uses an end-to-end CRC to protect row data as it is sent
from the client to the Stream Server, and from the Stream Server to
Colossus. The data bytes are sent alongside their CRC, and if one
or the other is corrupted while in memory or in flight, Colossus
will ultimately discover this and fail the write.

To protect against data being corrupted during compression, the
Stream Server decompresses the compressed output and verifies
the CRC was identical to that of the original uncompressed data.

5.4.6 Cross cluster/region read. The Vortex Client Library allows a
reader in any region or cluster to read from any other. Due to net-
work bandwidth limitations, reading cross region can be prohibitive.
BigQuery always prefers to run compute in the region where the
data is. Further, to reduce cross cluster network usage, BigQuery
chooses the placement of compute while balancing flexibility and
network transfer costs.

5.5 Heartbeat and Load balancing
The Stream Server sends a heartbeat to each SMS every few seconds
to inform it about changes to Streamlet metadata as a result of
new appends. These changes include creation of new log files, an
increase in size of existing log files, and column properties of data
in the log files. Along with per-Streamlet metadata, the Stream
Server also sends its current load information (CPU, memory and
append throughput) to the SMS. The Stream Server’s quarantine
status is also passed to the SMS for graceful handling of routine
maintenance tasks such as rollouts and scaling up and down of the
Stream Server task pool.

The SMS caches the Streamlet and Fragment level information
in Spanner. This cache allows it to answer read requests at the time
of query processing, making it possible to easily discover all the
Fragments of that need to be read to answer queries to a table. The
SMS aggregates the stream server’s load information and uses it
to load balance the assignment of new Streamlets to that Stream
Server.

5.6 Disaster Resilience
The Stream Server performs synchronous replication by simultane-
ously writing fragments to two Colossus clusters before returning
success to the client. Data in each Colossus cluster is already repli-
cated to multiple servers and is resilient to the permanent failure of
servers in a cluster. The replication described here is at a layer above
the replication within a single cluster. It provides resilience against
failures of entire clusters. We refer to the copy in each Colossus
cluster as a replica. Vortex uses physical replication, meaning that
the Stream Server log file writes are identical in both clusters. If
either or both writes fail or time out, the current log file is closed,
and the write is retried on the Stream Server to the new Fragment.
The File Map in the header of the new Fragment specifies the com-
mitted final file size of the previous file with the failed writes. If
the Stream Server is unable to continue writing to the Streamlet by
using local retries, such as when a cluster is unavailable, it reports
the failure to the client library. The client library informs the SMS
and starts a reconciliation process. It determines the current length
of the Streamlet by inspecting the metadata blocks in all replicas of
the log files that are reachable. To poison writes from any zombie
Stream Server processes that may still be writing to the log file,
a sentinel record is written to the log files. This sentinel record
invalidates the Stream Server’s assumption that it is the sole writer
to the log file, and causes it to relinquish ownership. After deter-
mining the reconciled length, the SMS records this information
in Spanner. This algorithm ensures the data in the primary and
secondary cluster are logically in sync even in the case of rare IO
events.

6 DATA MANAGEMENT
In this section we’ll describe the data and metadata management
functionalities of Vortex.

6.1 Storage Optimization
A background service continuously optimizes data in Vortex as
it is written. The goal of Storage Optimization is to optimize the
format and layout of the data for large scale analysis. In doing so, it
maintains an LSM[15] tree of Fragments, starting with Fragments
in WOS at the deepest level of the tree, with progressively more
optimized ROS versions as we climb up the tree.

The first step of optimization, shown in Figure 5, converts data
that is in the WOS to ROS. As we mentioned before, ROS uses a
columnar data format that is optimized for data analysis. To do
this conversion, the optimizer first determines a list of unconverted
Fragments as candidates from the SMS. It schedules workers to
convert these Fragments to a smaller number of ROS Fragments.

To track the lifetime of Fragments, each Fragment maintains two
timestamps: a creation_timestamp and a deletion_timestamp.
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Figure 5: Conversion of Write Optimized (WOS) to Read Optimized Storage (ROS).

A Fragment is visible to requests that read the table at a snap-
shot timestamp that is within the interval [𝑐𝑟𝑒𝑎𝑡𝑖𝑜𝑛_𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝 ,
𝑑𝑒𝑙𝑒𝑡𝑖𝑜𝑛_𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝). At each step of the optimization, the opti-
mizer atomically sets the deletion_timestamp for the previous ver-
sion of the fragments and the creation_timestamp for the new
version. This guarantees that a row is included exactly once when
reading the data from storage.

Automatic Reclustering: BigQuery allows users to cluster the
data in a table on a set of specified columns. Clustering defines a
“weak” sort order on the data blocks in the table. In other words,
BigQuery attempts to distribute the data such that the blocks store
non-overlapping ranges of values for the clustering keys. Orga-
nizing data in non-overlapping ranges results in more efficient
processing at read time, by improving partition pruning [14] and/or
by reducing intermediate data transferred between query process-
ing stages. BigQuery automatically determines the clustering key
ranges of these new blocks as data is written. In steady state, most
of the data is in non-overlapping ROS blocks, referred to as the
baseline. The fraction of data that is in such non-overlapping ROS
blocks is referred to as it’s clustering ratio. As new data (referred
to as the delta) is inserted into a table, the new blocks overlap with
the existing blocks in the baseline. Once the delta is sufficiently
large, the optimizer first range partitions the delta locally. After the
deltas have accumulated sufficient data comparable in size to the
size of the current baseline, the baselines and deltas are merged to
generate a new baseline.

Figure 6 shows automatic reclustering of the baseline blocks A
through X with the 2 delta blocks. The baseline blocks are non-
overlapping in the values of the ‘customerKey’ clustering column.
The result of the reclustering is the a new baseline that is non-
overlapping in the clustering columns values and larger than the
original baseline.

Figure 6: Automatic Reclustering.

6.2 Metadata Management
Vortex continuously tracks metadata for Streams, Streamlets, and
Fragments. It maintains the coarse grained metadata such as Stream
and Streamlets in a Spanner database. An example of coarse grained
metadata is the state of a Streamlet that indicates whether the
Streamlet is currently writable and its current length. The source
of truth for Streamlet and Fragment metadata is persisted in the
Vortex stream server’s log. The Streamlet metadata in Spanner is
for the most part a cache, and is not the source of the truth until
the Streamlet is marked finalized. As the storage optimizer moves
data between the layers in the LSM tree, BigQuery’s highly scalable
metadata management system, called Big Metadata [8] manages
fine grained column properties for accelerating query performance.

In steady state, there is a tail of the Fragment and Streamlet
metadata that may have not yet been indexed by Big Metadata.
As the metadata of these blocks churns rapidly, we observe that
scanning through the list of these tail blocks that need to be read
to satisfy the snapshot read, can add latency to query processing.
To address this, we continuously compact the metadata entries for
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the Fragments by keeping the entries corresponding to the live
fragments (i.e. fragments with deletion_timestamp unset) together
in our log. This is done by maintaining a watermark which is
the timestamp of the oldest live Fragment that has not yet been
optimized. The compaction process is triggered by the optimization
of Fragments by the Storage Optimizer.

6.3 Data Verification
Vortex continuously traces requests to detect data correctness issues
such as missing or duplicated records. The system tracks all calls to
the client library and saves aggregated information back to Vortex
itself for large scale data analysis. Further, it also tracks storage
optimization activity, which copies records between generations.

Using the above information, we have data verification pipelines
to continuously validate the correctness of these operations. For
every successful Vortex API call, we verify that the corresponding
Stream, Streamlet and Fragment aree created in the system and
that the appended data exists at the expected location (Stream +
row_offset). We then verify that each append in the system reports
a unique location. Finally, we also verify that each record is reported
as converted exactly once from WOS to ROS. Additionally, for each
conversion, we validate that the output records are consistent with
the input records. These verification pipelines execute continuously
as SQL queries in BigQuery.

6.4 BigLake Managed Tables
The Vortex storage engine also supports BigLake Managed Tables
(BLMTs) which store data in the Apache Iceberg format in customer
owned buckets in cloud storage. The WOS for these tables is in
Colossus, in exactly the same way as BigQuery Managed Storage
Tables. Metadata and data management relies on the same under-
lying service. The process of converting data from WOS to ROS
writes Parquet files to the customer provided cloud storage buck-
ets. Queries over BLMTs read the union of the WOS data and the
Parquet files.

7 DATA ANALYTICS
Dremel is BigQuery’s distributed SQL query processing engine.
BigQuery tables can also be processed using Dataflow, or Dataproc.
At a high level, to process a table, a processing engine requests the
partitioned metadata for the table as of a specific snapshot read time.
When Vortex SMS receives this request, it returns the union of the
data in WOS and ROS. The WOS for a table consists of Streamlets
and Fragments. As explained before, the SMS caches information
about fragments in Spanner. This information is stale, as it receives
heartbeats from a given Stream Server only every few seconds. A
Streamlet could have additional data that is yet unknown to the
SMS. In summary, the SMS returns the list of locations (in Colossus)
for the unfinalized Streamlets and Fragments known to it. To fully
read the WOS, the processing engine reads the Fragments and the
portions of the unfinalized Streamlets that are not present in the list
of Fragments. In the case of Dremel, the Query Coordinator receives
this information and dispatches these Fragments and Streamlets to
different Dremel shards to process them in parallel. Dremel shards
read the data using the mechanism described in Subsection 7.1.

7.1 Reading data
Query processing in BigQuery reads data in Vortex directly from
Colossus through a thick client library without contacting the
Stream Server. If the Stream Server is available, it can serve its
in-memory metadata for the client to determine the Fragments and
offsets to serve the read. This is the common case, but it is purely an
optimization. In the event of transient unavailability of the Stream
Server, a client can find, on Colossus, the latest Fragment that con-
tains data for that Streamlet. The File Map of the latest log file
includes the committed final size of each of the previous Fragments.
This serves as a replica of the information that would otherwise
be available from the Stream Server. Clients will not read past the
logical finalized size of a Fragment in the File Map, so will ignore
failed or partial writes at the end of a Fragment.

The Stream Server only continues writing to a Fragment if the
previous write succeeded to both replicas. In addition, the Stream
Server performs a separate write of a "commit" record after each
append. In the common case, i.e. an active Streamlet, this commit
record is combined with the next data append. Otherwise, it is
written after a small period of inactivity.

Given the above logic, if a reader sees that a Fragment contains
any additional data after an append it just read, it knows that
append is considered committed by the system. When reading
the final append in the Fragment, it will typically see there is a
commit record afterwards, and know the append was written
to both replicas. If a reader encounters an append timestamp
greater than the read snapshot timestamp, it can stop reading.
This is common for an active table constantly receiving new records.

Reconciliation of the final append: When the client needs to
read the final append in a Fragment, but the replicas have different
sizes, or one replica is unavailable, it cannot make a local decision.
A different client could see only one replica (and it could be a
different replica) and come to a different conclusion about whether
the append is committed. Vortex guarantees that it will return the
same rows regardless of which replica is used for reading.

In these cases the client requests the SMS to reconcile the state of
the final append. The SMS runs the reconciliation protocol described
in Subsection 5.6 to determine the length of the Streamlet and the
physical sizes of the Fragments. This allows the client to then decide
whether the final append needs to be read or not.

7.2 Partition Elimination
Partition elimination (sometimes called partition pruning) [14] is
a common technique to improve query performance. In partition
elimination, the query coordinator inspects the filter condition
and eliminates scan (and sometimes dispatch) of the partitions
which cannot possibly satisfy the filter condition. In the context of
Vortex, a partition refers to each of the Fragments and Streamlets
returned by the SMS. Vortex performs partition elimination by
maintaining column properties such as min/max values and bloom
filters for columns on which the data is partitioned or clustered in
BigQuery. These properties are maintained by the Stream Server
for each Streamlet as data is written to it. Once a Fragment is
marked finalized, these properties are communicated to the SMS,
for caching. The properties for the tail of a Streamlet are maintained
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by the Stream Server. As described in Big Metadata [8], when a
query is received, BigQuery uses the filters specified in the query
to construct derivative expressions on the column properties. The
stored column properties are used to evaluate these expressions for
each Fragment and Streamlet returned by the SMS to determine
whether it is relevant to the query.

7.3 Mutations
BigQuery supports mutating SQLDML statements such as UPDATE,
DELETE and MERGE. To enable this, Vortex allows a range of rows
in a Fragment or Streamlet to be marked as deleted. A DELETE
statement first determines the candidate rows to be marked deleted
and at commit time persists a deletion mask to the Streamlet or Frag-
ment metadata. To limit the size of these deletion masks, sometimes
rows unaffected by the DML statement may also be marked deleted.
We call these reinserted rows. In this case, copies of reinserted rows
are written and committed to the table atomically along with the
commit of the deletion mask. UPDATE statements are implemented
as a combination of deletion of the old rows and an insertion of the
updated rows.

The mechanism described above assumes that the SMS is already
aware of the Fragments affected by the DML. Recall that the SMS
may not be aware of some of the most recent Fragments in the
Streamlet since they are asynchronously reported by the Stream
Server via heartbeat. We call this unreported portion of the Stream-
let its tail. When a DML statement needs to delete records in the
Streamlet tail, the SMS marks the entire Streamlet tail as deleted,
and similarly to the Fragments, the reinserted rows in the tail are
copied over by the DML. The DML statement’s commit is completed
at this point. Subsequently, when the Stream Server’s heartbeat
informs the SMS about the Fragments in the tail, the SMS maps
the deleted record range recorded in the Streamlet as part of DML
commit, to deletion masks of the Fragment.

On a subsequent read following this deletion, the client library
receives the deletion masks corresponding to each of the Streamlets
and Fragments from the SMS. The reader applies the deletion mask
to filter out the deleted rows.

As described in Subsection 6.1, during Storage Optimization,
Vortex marks old Fragments as deleted and commits optimized
Fragments. Marking Fragments as deleted can race with concur-
rently running DML operations which have already marked parts
of a Fragment as deleted. Since Storage Optimization operates con-
tinuously, it would create conflicts for DML. We address this by
yielding Storage Optimization to DML; whenever a DML statement
is running, storage optimizer will not commit.

This introduces a problem when there is a single long running
DML statement or a continuous stream of DML statements. In
this scenario, the Optimizer might accumulate a large backlog of
work, resulting in data not being optimized quickly for analysis
in turn causing poor read performance on the table. To address
this, Vortex supports a stable 1:1 conversion from a Fragment in
WOS to a Fragment in a ROS. This prevents any issues due to the
race, since the DML can still set the deletion masks on the read
optimized Fragment, the same way it would have otherwise set on
the original one in WOS.

7.4 Exactly-once Processing
The Vortex API described in Section 4 allows analytic engines such
as BigQuery and Dataflow [5] to achieve end-to-end exactly once
processing for both ingress and egress. This section will describe
how we achieve this in the context of streaming Dataflow. Dataflow
is based on the open source Apache Beam project. Beam provides a
number of sinks to which data can be written. To output data to
BigQuery, the user implements an application that looks similar to
the code in Listing 7.

String tableName = getTableName();
PCollection<TableRow> tableRows = getTableRows();
tableRows.apply(BigQueryIO.writeTableRows())

.to(tableName)

.withWriteDisposition(WRITE_APPEND);

Listing 7: Sample Beam code that writes to a BigQuery Table

Dataflow guarantees exactly-once semantics for data processing
through the pipeline. However, when data is output to a sink it
creates a side-effect in an external system. Achieving end-to-end
exactly once guarantees relies on that external system. The ‘Big-
QueryIO.writeTableRows()‘ function in the Beam BigQuery sink is
implemented using the Vortex API. To achieve exactly-once, the
sink operates in two stages. The first stage, called the Append stage,
receives a partitioned stream of rows from its input. Rows in this
stream are deterministically partitioned and partitions of the key
space (or groups thereof) are each handled by a single worker. In
rare scenarios, a worker may enter a zombie state due to network
partitions etc., leading to a single partition’s key range being han-
dled by multiple workers at the same time. Each worker in the
Append stage creates its own dedicated BUFFERED stream on the
table. Along with the Stream identifier, it also keeps track of the
row offset of the next write. It reads the next batch of rows (called
a bundle) from Shuffle [4] and writes to its dedicated Stream at the
row offset. It advances the row offset in its state by the number
of rows in the bundle. Recall that with a BUFFERED stream, rows
are not committed when a successful response is received from
AppendStream. A subsequent FlushStream call that includes all
the rows up to the end row offset will mark them committed. The
Beam sink will perform this FlushStream call in a separate stage,
called the Flush stage. After each successful AppendStream call the
worker:

• Marks the rows in the input bundle as processed.
• Writes the Stream’s identifier and the row offset for the
FlushStream call to shuffle. This will make them available to
the Flush stage.

• Updates the Stream’s new length and offset in a state store.
Dataflow guarantees that these three modifications are commit-
ted atomically. Rarely, zombie workers may process input rows
that were already previously marked as processed. This guaran-
tee ensures that such workers cannot commit the results of this
processing. In the context of the Append stage, the results of the
processing the same row may be appended multiple times to the
same Vortex Stream (at different offsets), but only one worker will
succeed in marking that row as processed. This will prevent the
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Figure 7: Vortex Append latency distribution

stream identifier and row offset for FlushStream call from being
written to Shuffle.

7.5 Unifying batch and streaming
Apache Beam [5] introduced a unified model for defining parallel
data processing pipelines for streaming and batch analysis. The
Vortex API brings that same unification to data ingestion into a
data warehouse. With PENDING streams, Vortex guarantees ACID
semantics on arbitrarily large transactions. Large transactions are
common in batch ETL processes that do a periodicmerge of data and
require atomic commits of the changes. With BUFFERED Streams,
as described in Subsection 7.4, Vortex provides Stream level micro-
transactions with the same atomicity guarantees for smaller transac-
tions. This API unification helps simplify application development
without requiring the use of different systems for batch and stream
processing.

8 RESULTS
Vortex serves BigQuery streaming traffic in production for petabyte
scale datasets and supports throughput of multiple GB/sec over a
given table. In this section we’ll share some results that we see in
our production environment.

Figure 7 shows the 50th, 90th, 95th and 99th percentile latency of
Vortex Stream append requests over a 2 week period. As the graph
shows, Vortex achieves very low latencies with a 50th percentile
latency of 10 milliseconds and a 99th percentile of approximately 30
milliseconds. Furthermore, along with these low latencies, Vortex
offers read-after-write consistency.

Figure 8 shows the latency distribution for tables grouped by
their throughput. The tail latencies at the 99th percentile are labeled
p99 in the graph. We see that across a wide range of throughput
starting from tables with less than 1MB/sec throughput to over
1GB/sec, the p99 latency is under 30 milliseconds.

9 CONCLUSIONS AND FUTUREWORK
We present a system called Vortex for highly scalable ingestion
and low latency retrieval of streaming data for real-time analysis.
Vortex supports long running coarse and short running fine-grained
transactions, allowing a variety of applications to be built over a
unified API. Vortex was built based on the idea that rich insights are
possible by combining streaming data and batch data into a single

Figure 8: VortexAppend latency distribution byAppend rate

storage system. Furthermore, instead of adapting a batch system
for streaming where we run into fundamental challenges around
metadata overhead, we built the system for streaming first, and
are able to tune it easily for the cost tradeoffs of batch scenarios.
Vortex supports semi-structured data types, making it ideal for log
analytics. Vortex brings streaming directly into the data warehouse.
This allows applications to query their streaming and batch data
through a expressive SQL interface. In BigQuery, we have been
using Vortex for the last few years for both batch and streaming
scenarios.

While Vortex provides competitive performance at the scale of
ingestion that it supports, we see potential for further optimizations
in data partitioning, resource consumption and tail latencies. We
continue to push the envelope in these aspects for real time data. At
the scales at which Vortex operates, in a multi-tenant environment,
caching is a challenging problem. For some streaming applications,
the most recent data is also the most interesting to read. Colossus
already provides caching, but we are looking into further avenues
to build query aware caching on top of our ingestion servers. We
see Vortex as a building block for continuous stream analytics, as
well as fine grained metadata management that we introduced in
[8]. We also see opportunities in the monitoring space where low
latency is preferred over 100% data availability.
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