Model-Free Preference Elicitation

Carlos Martin?', Craig Boutilier', Tuomas Sandholm?34° | Ofer Meshi!
'Google Research
2Carnegie Mellon University
3Strategy Robot, Inc.
4Optimized Markets, Inc.

®Strategic Machine, Inc.
{cgmartin, sandholm } @cs.cmu.edu, {cboutilier, meshi} @ google.com

Abstract

In recommender systems, preference elicitation
(PE) is an effective way to learn about a user’s pref-
erences to improve recommendation quality. Ex-
pected value of information (EVOI), a Bayesian
technique that computes expected gain in user util-
ity, has proven to be effective in selecting useful
PE queries. Most EVOI methods use probabilistic
models of user preferences and query responses to
compute posterior utilities. By contrast, we develop
model-free variants of EVOI that rely on function
approximation to obviate the need for specific mod-
eling assumptions. Specifically, we learn user re-
sponse and utility models from existing data (of-
ten available in real-world recommender systems),
which are used to estimate EVOI rather than rely-
ing on explicit probabilistic inference. We augment
our approach by using online planning, specifically,
Monte Carlo tree search, to further enhance our
elicitation policies. We show that our approach
offers significant improvement in recommendation
quality over standard baselines on several PE tasks.

1 Introduction

Recommender systems (RSs) play a vital role in making mas-
sive amounts of online content accessible to users in do-
mains such as ecommerce, news, movies, videos, and others
[Schafer et al., 1999; Sarwar et al., 2000; Herlocker et al.,
2004; Ekstrand et al., 2011; Abel et al., 2011; Hallinan and
Striphas, 2016; Linden et al., 2003; Pal et al., 2020; Coving-
ton et al., 2016]. Such systems typically leverage past user
interactions to learn about a user’s preferences and improve
their future recommendations. However, in many cases, in-
formation about such preferences is lacking, for example,
with new users who have little interaction history, or when
privacy constraints limit the use of past interactions, a prob-
lem known as cold-start [Lam et al., 2008; Bobadilla et al.,
2012]. Moreover, past interactions may not represent a user’s
taste accurately, for instance, when accounts are shared with
others or when preferences change.

T Part of the work done while at Google.

Rather than relying solely on passively observing user be-
havior, an RS can use preference elicitation (PE) to ask
users questions about their preferences, thus increasing user
agency by allowing them to directly communicate their pref-
erences [Keeney and Raiffa, 1976; Salo and Himéldinen,
2001; Rashid et al., 2008]. Various types of queries can be
used for PE, for example, those involving individual items
(“Do you like movie X 7”’) or item comparisons (“Do you
prefer movie X to Y'?”). In this work, we focus on attribute-
based queries (e.g., “Do you like science fiction movies?”).

The challenge, then, is how fo select queries. In general,
this can be viewed as a sequential decision problem, since
the value of a query (hence, the optimal query) at any point
will be influenced by the value of the ultimate recommen-
dation to the user, and may also be influenced by subse-
quent queries and responses [Boutilier, 2002; Holloway and
III, 2003]. Despite this, most query selection approaches in
the literature are myopic, applying one-step lookahead with
various criteria. Among these are information gain meth-
ods [Rokach and Kisilevich, 2012; Zhao et al., 2018; Canal
et al., 2019], entropy-based methods [Abbas, 2004], polyhe-
dral/volumetric methods [Iyengar et al., 2001; Toubia et al.,
2003], ellipsoidal methods [Salo and Hdmélidinen, 2001], and
minimax-regret methods [Boutilier et al., 2004, 2006].

In this work, we focus on the use of expected value of
information (EVOI) as our query selection criterion. EVOI
scores queries based on the expected improvement in rec-
ommendation quality that would result by incorporating the
user’s query response [Howard and Matheson, 1984; Guo and
Sanner, 2010; Viappiani and Boutilier, 2010; Vendrov et al.,
2020]. As a Bayesian method, EVOI typically requires main-
taining a probabilistic user model and implementing posterior
updates given user responses. However, such posterior up-
date is intractable even for simple distributions, such a multi-
variate Gaussian, requiring approximation [Cohn et al., 2014;
Doshi-Velez et al., 2012; Guo and Sanner, 2010].

To address these limitations, we propose a model-free ap-
proach that obviates the need to make specific assumptions
regarding the form of the user distribution. Specifically, we
demonstrate the feasibility of training predictive models that
capture user response behavior and recommendation utility
directly from observational data. These models subsequently
serve for query selection, eliminating the need for explicit
distributional assumptions. Beyond this, we extend the typi-

cal myopic usage of EVOI by incorporating multi-step plan-
ning to consider the value of information associated with a
sequence of queries. We do this using online Monte Carlo
tree search (MCTS) [Coulom, 2007].

The rest of the paper is organized as follows. We formulate
the PE problem in Section 2 and briefly discuss related work
in Section 3. We review the typical method for myopic EVOI-
based query selection in Section 4, and the model-based ap-
proach to predicting user responses and utilities in Section 5.
In Section 6, we describe our model-free technique in general
terms, and outline the novel use of various neural network ar-
chitectures we adopt to this end, while in Section 7, we detail
our non-myopic approach to query selection using MCTS. In
Section 8, we describe our experimental setting and present
our experimental results. We conclude with Section 9 and
suggest directions for future research.

2 Problem Formulation

We assume an RS that can recommend items from set X, but
can also engage in PE by posing queries to a user about their
preferences. We let Q be the set of queries from which the RS
can choose, and let R, be the set of possible user responses
to any ¢ € Q. In our formulation, we assume that Q is fi-
nite and, for each ¢ € Q, R, is finite. The RS’s interaction
with a user proceeds as follows. Given the prior queries and
user responses, the RS poses a query ¢ € Q, to which the
user then provides a response r € R,. This process repeats
for T" steps (where T is a finite bound on the number of RS
queries) or until the user decides to terminate the process. We
include a special response token 7o, € R4 forall g € Q to
reflect user-initiated interaction termination. We assume that
users are sampled from some prior distribution, for example,
as determined by a dataset of user-RS interactions.

A history is a sequence of at most 7' query-response pairs
(g,7) such that r € R, and 7p occurs only (if at all) in the
final pair. A history is called ferminal if and only if it ends
with 7gp or has length T.! Let H” be the set of terminal his-
tories, HY be the set of partial (i.e., non-terminal) histories,
and H = HT U HE be the set of all histories.

At the end of the session with terminal history h € HT,
the RS recommends an item x € X to the user, who derives
some (scalar) utility from 2, which we denote by EU(z|h).
We wish to design an RS that poses queries and issues recom-
mendations that have high utility to the user. Since we wish to
focus on the elicitation aspect of this problem, we assume that
the item recommendation policy is fixed and can be treated as
a black box Tiem : HT — X. Given this fixed policy Titem,
we can associate utility with any terminal history h € HT
in the obvious way, EU(h) = EU(jem(h)|h).2 We discuss
item utility further in Section 5. Here, we only assume that
Titem returns high-value or near-optimal items conditioned on

"The RS itself could decide to terminate PE itself before 1" steps
and move to a recommendation; but for ease of exposition, we use a
fixed maximum horizon 7.

*In fact, our formulation supports a more general notion of util-
ity, not necessarily item-based. The only requirement is that the
utility is derived from the interaction between the user and the RS,
which takes A as input to guide its recommendations.

its history. In what follows, we assume that e, can be ap-
plied to partial histories h € H in the obvious way. We note
that Tiem (and Tquery defined below) will generally depend on
additional user context and prior history—we ignore this to
streamline the presentation, but nothing below hinges on this
simplification.

We represent queries in an embedding space R?. For
attribute-based queries, this means attributes that are similar
(e.g., “Thriller” and “Horror””) are more likely to be close to-
gether in embedding space than attributes that are different
(e.g., “Comedy” and “War”). For convenience, queries and
items are embedded in the same space, and both are com-
puted using collaborative filtering (CF) techniques. We will
provide more details in Section 8.

Our problem is how to choose optimal queries via a PE
policy mquery : HY — Q. Since this is a sequential decision
problem [Boutilier, 2002; Holloway and III, 2003], in princi-
ple, we could apply model-free reinforcement learning (RL),
with the set of queries Q as the action space and histories 7
as the state space. However, in our setting we can leverage
the specific structure of the problem to derive a more efficient
approach. Specifically, we exploit the fact that each episode
consists of queries followed by user responses, and a final
recommendation which determines user utility. We also use
multi-step planning at execution time, which has been shown
to improve performance in many settings [Tamar et al., 2016;
Guez et al., 2018, 2019; Farquhar et al., 2018; Oh et al., 2017;
Silver et al., 2016a]. This is because it is prohibitively com-
plex to do such reasoning for all paths in advance (or to learn
a purely reactive policy that can perform as well), but one can
often afford to do focused search starting from nodes on the
path that are actually reached.

3 Related Work

Considerable work on PE has been done in multi-criteria
decision analysis, management science, operations research
and artificial intelligence, including for RSs. We distin-
guish two broad classes of work. Our work focuses on the
types of content RSs in which users often seek many recom-
mendations over time, and that exploit generalization across
users, as exemplified by CF and related methods [Salakhutdi-
nov and Mnih, 2007; He et al., 2017; Yang et al., 2020a].
These settings tend to be lower stakes (e.g., movies, mu-
sic). By contrast, PE has been more widely studied in set-
tings where a user tends to make a single decision and is pre-
pared to invest more time engaging in with a PE process [Salo
and Haméldinen, 2001; Toubia er al., 2003; Boutilier et al.,
2004; Dubus et al., 2009; Boutilier, 2013], and generaliza-
tion across users is less valuable. That said, we do draw on
notions like EVOI that are more commonly applied in one-
shot, higher-stakes settings.

PE in the latter settings is typically approached in a my-
opic fashion, with several approaches for query optimization
considered in the literature. Among these, maximum informa-
tion gain uses a distribution over user preferences, selecting
the query whose expected response maximizes some mea-
sure of information [Rokach and Kisilevich, 2012; Zhao et
al., 2018; Canal et al., 2019], as do related entropy-based

methods [Abbas, 2004]. Other approaches include polyhe-
dral/volumetric methods [Iyengar et al., 2001; Toubia et al.,
2003], ellipsoidal algorithms [Salo and Hémaélédinen, 2001],
coverage maximization [Meshi et al., 2023], and minimax-
regret-based techniques [Boutilier et al., 2004, 2006; Braziu-
nas and Boutilier, 2010; Boutilier, 2013], while Bourdache et
al. [2019] propose a Bayesian logistic-regression technique,
and Chajewska et al. [1998] cast PE as a classification prob-
lem using decision trees.

Several approaches have been developed for PE, that like
ours, optimize the sequence of queries. These methods have
tended to focus on offline computation of full PE policies (in
contrast to our online method). Early approaches formulated
the PE problem as a partially observable Markov decision
process (MDP) [Boutilier, 2002; Holloway and III, 2003],
taking a Bayesian approach to modeling uncertainty over a
user’s preferences. More recently, Vayanos et al. [2020] pro-
posed mathematical programming models for multi-turn PE
assuming polyhedral uncertainty; these methods are compu-
tationally intense, but may be well suited to one-off, high-
stakes decisions. Within the setting of CF models for content
RSs, various techniques have been developed that use PE to
improve the quality of recommendations. Some of this work
focuses on onboarding new users to help resolve the cold-
start problem [Lam ez al., 2008; Bobadilla et al., 2012]. Other
research deals more directly with in-session interactive rating
[Boutilier et al., 2003; Zhao et al., 2013].

The problem of asking good elicitation questions has also
been addressed more recently for questions generated by a
language model. Rao and III [2018] build a neural network
model to rank clarification questions, inspired by expected
value of perfect information. However, they do not handle
multi-turn question sequences. Yu et al. [2019] tackle in-
teractive classification by selecting questions using entropy
minimization, while Aliannejadi et al. [2019] study the prob-
lem of asking good clarifying questions using an informa-
tion retrieval framework. Kuleshov and Ellis [2023] intro-
duce an inference-time algorithm that helps large language
models (LLMs) infer user preferences by posing informative
questions. It uses a probabilistic model whose conditional
distributions are defined by prompting an LLM, and returns
questions that minimize expected entropy and model change.

With respect to complexity of using EVOI, it has been
noted that EVOI-based query selection is difficult in part be-
cause of computationally demanding Bayesian inference for
individual query response updates, which itself typically re-
quires approximations [Cohn ef al., 2014; Doshi-Velez et al.,
2012]. Guo and Sanner [2010] note that Bayesian PE meth-
ods that maintain a belief distribution over utility functions
and update beliefs using a realistic query confusion model
are a natural way to handle noise, although exact inference in
these Bayesian models is often intractable.

4 Expected Value of Information

As noted above, while computing optimal queries can be cast
as a sequential decision problem [Boutilier, 2002; Holloway
and III, 2003], most approaches select queries myopically ac-
cording to some criterion. One criterion which has been used

successfully in the past is EVOI [Chajewska et al., 2000; Guo
and Sanner, 2010; Viappiani and Boutilier, 2010; Vendrov et
al., 2020]. To define (myopic) EVOI, we first define the pos-
terior expected utility (PEU) of a query ¢ € Q given a history
h e HP as

PEU(q|h) = 32, er, P(rlh, EU(R| (g, 7)) . (D)

Here, h||(g,7) denotes h with (g, r) appended, EU(h) is the
expected utility under h, and P(r|h, q) is the probability of
the user responding with r given the history & and query gq.
PEU measures the utility of a query by taking an expectation
over all possible user responses. This is effectively one-step
lookahead in the query space.

The EVOI of a query ¢ given h is

EVOI(g|h) = PEU(q|h) — EU(h) .)

The query that maximizes PEU(g|h) also maximizes
EVOI(q|h) since EU(h) does not depend on ¢. EVOI mea-
sures the improvement in expected utility offered by ¢ rela-
tive to not asking any query. It serves not only as a means for
ranking potential queries, but also as a useful stopping crite-
rion for elicitation (e.g., when it is sufficiently small).

5 Model-Based Prediction

In this section we review a generic model-based approach to
the prediction of user responses and utilities. We assume a
user is represented as a distribution over user embeddings
U, where U C R< is the space of possible embeddings,
which capture any relevant latent state (e.g., item utilities) as
in, say, standard CF approaches [Salakhutdinov and Mnih,
2007]. The user response model specifies the probability
P,(r|u,q) of u € U responding to ¢ € Q with r € R,
while the user utility model v(x,u) specifies the utility of
item z € X tou € U. Notice that the response model P,
is different than P(r|h,q) from Section 4 in that it depends
directly on the user rather than the history h. This can be
viewed as an application of Bayesian inference: P(r|h,q) =
J P(ulh)P,(r|u, q)du. (Here, P(ulh,q) = P(u|h) because
q is an action the RS takes, and is assumed not to give us any
additional information about the user.)

In model-based PE, the RS starts with a prior belief P(u).
At each step of a session, the RS poses a query ¢ to which
the user responds with » € R4. Given the induced history
h € H, the RS updates its user belief using Bayes’ rule to
obtain posterior P(u|h). If the utility function is linear, that
is, v(z,u) = u-x, then the expected utility of recommending
xr € X at that point is

Eypv(z,u) =Eyp(u-2z) = (Eu|hu) cx=a-x, (3)

where 4 = E,,jpu. If h € HT is terminating, we assume the
item with highest expected utility is recommended, defining
the history’s utility EU(h) = max,cx @ - .

If the posterior is a multivariate Gaussian, then @ is its
mean. However, posterior update is intractable even in this
simple case. It can be approximated using the Laplace ap-
proximation [Kass et al., 1991], or one can sample users
from the posterior using Markov chain Monte Carlo (MCMC)

[Metropolis et al., 1953; Hastings, 1970] and use these sam-
ples to estimate the required expectations.

These approaches are model-based because they explicitly
model a user u via a distribution P(u|h). They also assume a
specific form of utility, e.g., linear, as in Vendrov et al. [2020].
However, the linearity and Gaussianity assumptions might be
too restrictive to capture realistic user preferences. For ex-
ample, the mean of the user distribution might not capture a
user’s preferences well when the user has multiple interests
in the item space. Moreover, even with these simplifications,
posterior computation is still intractable. It is these restrictive
assumptions and computational challenges we address next.

6 Model-Free Prediction

Our model-free approach obviates the need for the strict
modeling assumptions and computational demands of model-
based methods, which were outlined in Section 5. It is mo-
tivated by real-world settings, where an existing PE policy
is deployed and can be used to collect training data for new
policies [e.g., Meshi et al., 2023]. We assume access to a
dataset of episodes, each containing a full history h and the
utility of the ultimate RS recommendation x, as measured by
user satisfaction with x (through user surveys, proxy mea-
sures like engagement, etc.). With this data, we can fit a
function approximator to directly predict both P(r|h,q) and
EU(h), which can be used to compute PEU (Equation 1).
Compared to Bayesian approaches, this obviates the need to
model the full posterior P(ul|h), replacing model-based pos-
terior computation using Bayesian inference with model-free
prediction. This avoids posterior approximations and unnec-
essary, restrictive assumptions about user utility.

We formalize the prediction and function approximation
problems as follows. Let R = |J .o R, denote the set
of possible responses. A response prediction model f. :
H x Q — AR takes as input a history and a query and out-
puts a distribution over responses.® A utility prediction model
fv + H — R maps histories to expected values/utilities. For
response prediction, we convert its input (h, ¢) to a pseudo-
history h||(q, Tpseudo), Where Tpseudo 1S @ pseudo-response to-
ken that is not in R. This ensures that both response and
utility prediction have the same input form (), which allows
us to treat both using the same model architectures.

We consider five distinct neural network architectures to
learn response and utility predictions. Each takes a history (or
pseudo-history) as input. The history’s queries are converted
to query embeddings in R%, where the embeddings can be
either learned or given to the model.

Affine. This architecture sums the query embeddings asso-
ciated with each possible response, concatenates the results,
and passes the resulting vector to an affine layer:

affine(cat ({3, [re = rlembedding(g:)},), (@)

where {x;}; denotes the sequence whose entry at ¢ is z, and
[-] is the indicator function.

Recurrent. This applies a recurrent neural network (RNN)
[Rumelhart ez al., 1986; Werbos, 1988] to the history. We use

3 Any additional context or side information about the user can
also be input, but we do not assume any such information here.

the gated recurrent unit (GRU) [Cho et al., 2014]:
RNN({embedding(g:)|lonehot(rs)}+), 3)

where onehot (k) is the kth standard basis vector. RNNs are
permutation sensitive and can therefore learn temporal depen-
dencies if they exist. We use GRUs, which tend to be com-
petitive with most RNNs [Yang et al., 2020b].

DeepSets. Murphy et al. [2018] introduce Janossy pool-
ing, a unifying framework for methods that learn strictly
permutation-invariant functions (or suitable approximations).
Janossy pooling considers all possible permutations 7w of
its input elements. Each permutation is separately passed
through a fixed permutation-sensitive function ¢, and the out-
puts are aggregated by averaging (or some other global pool-
ing operation). A second network is then applied to predict
the final output. This guarantees permutation invariance with-
out imposing restrictions on any network component. Instead
of dealing with all (factorially many) permutations, one may
consider only k-ary interactions. DeepSets [Zaheer et al.,
2017], a special case of Janossy pooling with k£ = 1, applies
an encoder to each element of the input, aggregates the out-
puts through a pooling operation (such as summation), and
applies a decoder to the result. In our case, the input elements
are the queries concatenated with their respective responses.
For the encoder and decoder, we use fully-connected multi-
layer perceptrons (MLPs):

decoder(} ", encoder(embedding(g;)||onehot(r;))). (6)

Attention. This architecture uses multi-head self-attention
[Vaswani et al., 2017], which works as follows. The attention
module accepts a sequence of queries @, keys K, and values
V', and computes the following sequence:
. QKT
attention(Q, K, V) = softmax(V). @)
Vdy
The multi-head attention (MHA) module receives input se-
quences X, Y, and Z, and has several heads, each of which
linearly transforms the input sequences into queries, keys,

and values. It then applies the attention module to each, con-
catenates the results, and applies a linear transformation:

MHA(X,Y, Z) = concat(head, . .., head,)W©,
where head; = attention(XW2, YW/, ZWY).

®)

In our case, we perform self-attention on the query-response
history, where each element of the sequence is the query em-
bedding concatenated with its corresponding response:

X =Y = Z = {embedding(¢:)|onehot(r:)}+ . (9)

We use LayerNorm [Ba et al., 2016], specifically, pre-layer
normalization (Pre-LN) [Xiong et al., 2020] to normalize ac-
tivations.

Multisets. This architecture converts the history to table of
counts |Q| x |R| — N for each query-response pair, flattens
this table, and passes it to a feed-forward network:

MLP(} ", onehot(g;) ® onehot(ry)), (10)

where a ® b denotes the outer product of vectors a and b.

To each of these architectures, we append a fully-
connected layer that outputs a scalar utility prediction & € R
and a vector of probabilities p € RI®! for response prediction.
For the utility prediction, which is a regression problem, we
use a squared error loss. For the response prediction, which
is a classification problem, we use a cross entropy loss.

7 Multi-Step Planning

Instead of implementing one-step lookahead with respect to
user responses, as in standard myopic approaches to EVOI
usage, we can perform multi-step lookahead search to bet-
ter detemerine the value of a (conditional) sequence of PE
queries or PE policy, in the spirit of non-myopic PE ap-
proaches [Boutilier, 2002; Holloway and III, 2003]. We focus
on the use of online search, were we employ algorithms such
as depth-limited search (DLS) and Monte Carlo tree search
(MCTS) [Coulom, 2007]. The latter allows the search tree to
grow asymmetrically toward more promising paths. The user
response model is used at the search tree’s chance nodes, and
the utility model is used at its leaves. “Classic” myopic EVOI
is equivalent to DLS with a one-step lookahead.

Recent MCTS variants use value function approximation to
guide the search [Silver et al., 2016b, 2017, 2018; Danihelka
et al., 2022]. Stochastic MuZero [Antonoglou et al., 2022],
which extends MuZero [Schrittwieser et al., 2020] to plan
with a stochastic model, is especially appropriate in our set-
ting, since user responses are stochastic. In our experiments,
we use the open-source implementation found in DeepMind’s
JAX library mctx* [Babuschkin et al., 2020].

The MCTS Algorithm. MCTS iteratively grows a search
tree. Each node of this tree is either a decision node, corre-
sponding to a point at which the agent chooses an action, or a
chance node, corresponding to a point at which the environ-
ment chooses an outcome. The root of the tree is a decision
node. In our setting, decision nodes represent points at which
the RS chooses a query ¢ € Q, and chance nodes denote the
user selecting a response r € R4. Thus, the path to a deci-
sion node is a history A € H, while the path to a chance node
is a history-query pair (h,q) € H x Q. A decision node h
contains, for each query ¢ € Q, a visit count N (h, q), value
estimate Q(h, ¢), and prior probability P(h, q).

The algorithm proceeds over B iterations, where B is the
simulation budget. Each iteration of the algorithm consists of
three phases: selection, expansion, and backpropagation.

Selection. Starting from the root, the algorithm traverses
the tree until it reaches a leaf edge. At a decision node h,
it selects the query ¢ that maximizes the upper confidence
bound [Silver et al, 2016a]: UCB(h,q) = Q(h,q) +
VIFS yeo Nhd Jeo N(hg)+ea+1

P(h7q) +§i—]\7€(%,q)(v (Cl + log Zoce (Cz Lo)

Here, ¢; and co are constants that control the relative
importance of the value estimates and prior probabilities;
we use the same values as Antonoglou et al. [2022]. Once
g is selected, the chance node (h,q) becomes the new
node, at which a response r € R, is sampled according
to a black-box response model P(r|h,q) (an input to the

*https://github.com/google-deepmind/mctx

algorithm). Once r is selected, the decision node hl|(q,r)
becomes the new node.

Expansion. When a leaf edge is reached, a new node is added
to the search tree. Its value estimate is computed from a
black-box value model (an input to the algorithm). In our set-
ting, this is a prediction of the user utility of the item iiem (h)
that would be recommended by the RS if the episode were
to end at that point. If the new node is a decision node, its
lookup table is initialized with N (h,q) = 0 and Q(h,q) =0
for each query ¢ € Q. Optionally, we can also specify a prior
probability P(h,q) for each action, which can reflect prior
knowledge about which queries are better than others. In our
case, we use a uniform prior.

Backpropagation. The value estimate v of the newly-added
edge, which is determined by the utility prediction model, is
propagated up the tree to the root. At each decision node

h € H on this path, the algorithm updates the statistics for

each query ¢ € Q as follows: Q(h,q) + %,

N(h,q) <= N(h,q) + 1.

After B iterations, the size of the search tree is B + 1, and
we select an action from the root. To do this, we use the same
strategy as MuZero [Schrittwieser et al., 2020] and Stochas-
tic MuZero [Antonoglou et al., 2022] to sample an action at
the root, as implemented in Google DeepMind’s JAX library
mctx [Babuschkin ef al., 2020]. This strategy samples actions
from the root according to their visitation counts.

8 Experiments

We empirically compare the performance of our model-free
approach (Section 6) to the model-based approach (Section
5) in terms of the expected utility to the user of the recom-
mended item at the end of an episode. To do this, we use
three datasets.

MovieLens 1M. The MovieLens 1M dataset [Harper and
Konstan, 2016] consists of movie ratings by users as well as
a set of genres for each movie.> For this dataset, the RS’s PE
queries to the user take the form “Do you like genre X?”, and
the user responds with either “yes” (1) or “no” (0).

MovieLens 25M. The MovieLens 25M dataset [Harper
and Konstan, 2016] is analogous to the MovieLens 1M
dataset but with a greater number of ratings, tags, and items.
Here RS’s PE queries are again binary (yes/no), but query-
ing movie tags rather than genres. (Examples of tags include:
‘post-apocalyptic’, “World War II’, and ‘alternate reality’.)

Amazon Reviews. The 2018 Amazon review dataset [Ni
et al., 2019] contains product reviews and metadata from
Amazon. We use the “CDs and Vinyl” dataset, with RS
binary queries focusing on music primary genres and first-
level sub-genres. (Examples of subgenres include: ‘piano
blues’, ‘electronica’, and ‘baroque pop’.) Dataset statistics
are shown in Table 1. (“Attributes” refers to genres, tags, or
genres/subgenres in the three datasets as described above).
We use the 100 most common attributes and 1000 most com-
mon items for each dataset.

>The genres are action, adventure, animation, children’s, com-
edy, crime, documentary, drama, fantasy, film-noir, horror, musical,
mystery, romance, sci-fi, thriller, war, and western.

https://github.com/google-deepmind/mctx

Dataset Users Items Attributes Ratings
ML IM 6,041 3,953 18 1,000,209
ML 25M 162,542 209,172 1,129 25,000,095
Amazon 1,944,316 412,325 511 4,543,369

Table 1: Dataset statistics.

To simulate user responses and utilities, we use CF to em-
bed users, items, and queries in a joint embedding space
of dimension 50. We use probabilistic matrix factorization
[Salakhutdinov and Mnih, 2007] to computing embeddings,
solving the optimization problem:

argminw, Lr(UT X, R) + wa£A(XTQ, A)
UX,Q (11)
+wsl|U3 + wa|| XI5 + ws | QI3 -

where U, X, Q, R, A are matrices representing user embed-
dings, item embeddings, query embeddings, user-item rat-
ings, and item-attribute association, respectively. As a pre-
processing step, we rescale ratings to the unit interval using
min-max normalization. We use Lr(z,y) = (o(x) — y)? as
a regression loss for ratings, where o is the logistic sigmoid
function. Our classification loss for attributes, £ 4, uses sig-
moid binary cross-entropy loss. The last three terms reflect
L regularization. We solve for U, X, () using gradient de-
scent. As shown in Figure 1, we obtain low regression and
classification errors.

Given user, item, and query embeddings, we generate syn-
thetic episodes by sampling queries from a default PE policy
and user response model. The system and user interact for
T = 10 rounds, or until the user stops the process. At that
point, the RS recommends an item and observes the user’s
utility for that item. In practice, trajectories will be obtained
from a deployed policy interacting with real users and utility
will be measured using some proxy [e.g., Meshi et al., 2023].

For simplicity, we employ a random policy for data gen-
eration, where the query is selected uniformly at random. In
practice, a deployed elicitation policy will have a lower cov-
erage of the query space, but here we use a random policy
for illustration. The response of user u to query q is either the
special stop response 7 With a fixed probability (we use 0.1
at each time step), or sampled from a Bernoulli distribution
with parameter o(u - ¢). Given recommended item x € X,
user u’s utility is the dot product of the corresponding user
and item embedding u - x—we use a linear utility for sim-
plicity, but, as noted above, our approach supports non-linear
utilities, or more complex evaluation of user value.

We assume a Bayesian recommender which uses a multi-
variate Gaussian to represent users, with an MCMC-based ap-
proximation for posterior update P(u|h). To recommend an
item, it computes # and returns the best item, argmax, y -
z. Our approach is general and uses the recommender as a
black box. Therefore, any recommender which recommends
items based on histories h can be incorporated. Each episode
consists of the history A together with the user utility of the
recommended item. We emphasize that the user embeddings
are only used for generating the synthetic dataset. Neither
the RS, nor its elicitation module, have access to the user

3.01 B combined loss
rating loss
2.5 B regularization loss
B relevance loss
2.01
1.51
1.0
0.5 1
0.0
0 25 50 75 100 125 150 175 200
iteration
3.04 B combined loss
rating loss
W regularization loss
251 B relevance loss
2.01
1.54
1.0
0.5 A
0.0
0 25 50 75 100 125 150 175 200

iteration

Figure 1: Embedding losses for MovieLens 1M (top) and Amazon
reviews (bottom) over the course of fitting. Each iteration is a gradi-
ent descent optimization step for the embeddings.

embeddings—they see only histories 2. Model Details. All

of our models use a hidden layer of size 1024 where appli-
cable, and four heads for the attention model. We use the
Radam optimizer [Liu et al., 2019] (based on Adam [Kingma
and Ba, 2014]) with a learning rate of 10~° and weight decay
1073, We train using 100 epochs, a batch size of 32, 20 tri-
als, and 10% of the dataset for validation. Where needed by
the network, we use recitified linear unit (ReLU) activation
functions [Fukushima, 1975].

For model-based response and utility prediction models,
we sample users from the posterior and compute expecta-
tions. To do this, we use MCMC, which constructs a Markov
chain that has the desired distribution P(u|h) as its station-
ary distribution. We use Hamiltonian Monte Carlo (HMC)
[Duane et al., 1987], specifically the implementation in Ten-
sorFlow Probability [Abadi et al., 2015] for JAX [Bradbury
et al., 2018]. HMC uses the derivatives of the density being
sampled to generate efficient transitions spanning the poste-
rior. It numerically integrates a Hamiltonian dynamics (we
use the leapfrog method) to propose new points in the sample
space and then performs a Metropolis acceptance step.

Results. We first examine the performance of the various
neural network architectures, outlined in Section 6, in learn-
ing to predict responses and utilities on the MovieLens 1M
dataset. Figure 2 shows the utility and response loss on the
validation set for the different architectures over the course

of training. Solid lines show the mean across trials, with
bands indicating a 0.95 confidence interval. The latter is com-
puted using bias-corrected and accelerated (BCa) bootstrap-
ping [Efron, 1979, 1987]. We see that the DeepSets architec-
ture performs best with respect to the sum of both losses.

B affine
0.65 1 Il recurrent
deepsets
BN multiset
I attention
0.60
0 0.55
Lo
2
]
> 0.50
0.45 1
0.40 1
0 20 40 60 80 100
epoch
BN multiset
0.702 4 I attention
deepsets
0.700 4 B affine
Il recurrent
0.698 1
@
2 0.696
[
)
c
o
& 0.694
e
0.692 4
0.690 1 L
0.688 1
0 20 40 60 80 100
epoch

Figure 2: Losses on the episode validation set for MovieLens 1M
over the course of training for various architectures. Legend labels
are ordered according to the loss of the final epoch.

We next combine DeepSets, the best-performing architec-
ture, with different algorithms (DLS or MCTS with various
depths and simulation budgets, respectively) to create differ-
ent elicitation policies. We evaluate the resulting policy by
running it against synthetic users and recording the resulting
episode utilities. Results are shown in Figure 3. Here, dots
show means across trials and error bars show a 0.95 confi-
dence interval for this mean. In these plots: the “mb-" pre-
fix denotes “model-based,” “mf-" denotes “model-free,” the
notation“mcts:n” denotes MCTS with simulation budget of
n, and “dls:n” denotes DLS with depth n. We also include
a random query policy as a very simple baseline. We use
3000 episodes for each policy, and execute them on a sin-
gle NVIDIA A100 SXM4 40GB GPU. We show run times in
Figure 4. We include various simulation budgets for MCTS.

1.20 +
115
1.10
z
5105
i
3
g 1.00 + +
< ¢
5 0.95 ¢
3
E ¢
0.90 +
0.85 + + ¢ + + ¢
feerette b by
i e o
R R R g I R R I R I I s I
CEEEECCCisa?3EEEECCCBLBEE
eebEEe2ggdglepiEfEgegesdtEe
fEEE8gassEEE EEEELCLEEE
EEELE L EEELEE
query policy
L
0.91
2
ERYY
P
3
k]
a
5
£0.7
g
L] ¢¢¢
0.6 1 o *
¢
L) ¢¢¢¢¢¢¢ ® %49
e o
B R A
I fIiEEERUCEIIEIiIEEERLTUE
EEEE oo EEEFEEEEC L EEE
EEELEE EEEEEE

query policy

-
-
——

g
=}

2097
E
v 0.8
i :
3
207
f pit
206 ¢
0.5 ++
041 $ 409,00 p et L4
oy o
LG I B B S B I I R I B I I S B
2000888y 338000888y .y 453
s EEEERRBELSECCLEEEEREEELU T E
248825 F T EEEEEEEEL LT EEE
EEEEL L2 EEEEEEE“'—“'—'¢
EEELEE £ E
query policy

Figure 3: Mean episode utility of each query policy. Top to bottom:
MovieLens 1M, MovieLens 25M, Amazon reviews.

Our results show that the model-free policies perform com-
parably or better than the model-based policies. Specifically,
for DLS or MCTS with a given simulation budget, the model-
free policy is usually both faster than its model-based coun-
terpart and also attains a higher mean episode utility. We also
observe that DLS outperforms MCTS with respect to util-
ity, but scales poorly in terms of computational cost. In fact,
DLS becomes infeasible beyond depth O (i.e., myopic selec-
tion), except with the MovieLens 1M dataset, which has the
smallest number of queries. In settings where compute bud-
gets are constrained and a large query space (like the full set
of Movielens 25M tags) makes multi-step DLS intractable,

MCTS will generally outperform DLS. Furthermore, on de-
vices where hardware parallelization is limited (e.g., on CPUs
rather than GPUs), DLS cannot evaluate its search tree leaves
in parallel, and must process them sequentially like MCTS
does. DLS, even for single-step lookahead (that is, O depth),
requires traversing all queries, and is therefore costly in terms
of runtime when the query space is large. Depending on the
simulation budget, MCTS might attain lower performance,
but does not require traversing all queries, and can therefore
potentially be faster, which puts it on the Pareto frontier of
performance versus runtime cost.

300 4

- N N}
o o a
=3 =3 =)

runtime (seconds)

-
=)
=3

504

random
5:256
5:512

uuuuu

mb-mcts:1
mb-mcts:32
mb-mcts:64

mb-mcts:256
mb-mcts:512

mb-mcts:128

mf-mcf
mf-mcf

query policy

le3

1.2

1.0

0.8+

0.6

runtime (seconds)

=3 =3
=) N

s:0
sll
s5:2 |
s:4
s:8

mf-mcts:4 |

uuuuu

random |
mb-mcts:1 |
mb-mcts:2 |
mb-mcts:4 |
mb-mcts:8 |
mb-mcts:16 |
mb-mcts:32 |
mb-mcts:64 ‘I
mb-mcts:128
mb-mcts:256
b-mcts:512
mf-mcts:8 |
mf-mcts:16 |
mf-mcts:32 |
mf-mcts:64 |
mf-mcts:128 |
mf-mcts:256
mf-mcts:512
mf-dls:0

cm

query policy

600 -

500 4

400

300 4

runtime (seconds)

200 4

100 1

o - N T ®
IR

@
uuuuu

random

mb-mcts:1
mf-dls:0

=1
a
€

mb-mcts:2
mb-mcts:4
mb-mcts:8
mb-mcts:16
mb-mcts:32
mb-mcts:64
mb-mcts:128
mb-mcts:256
mb-mcts:512
mf-mcts:16
mf-mcts:32
mf-mcts:64
mf-mcts:128
mf-mcts:256
mf-mcts:512

query policy

Figure 4: Runtime of each query policy. Top to bottom: MovieLens
1M, MovieLens 25M, Amazon reviews.

These results suggest that our model-free approach yields
significant improvements in recommendation quality, as mea-
sured by the utility of the recommended items to users. The
model-free methods also exhibit much lower runtimes than
model-based techniques This is due to the fact that, while
each response or utility prediction of the model-based ap-
proach requires performing Bayesian inference and sampling
from the posterior, the model-free approach requires only a
forward pass through a neural network.

9 Conclusions and Future Research

We have proposed a model-free approach to preference elici-
tation that avoids the simplistic, restrictive modeling assump-
tions typical of model-based methods, and instead leverages
function approximation to learn the quantities needed for PE.
We explored multiple network architectures and two (classes
of) planning algorithms, demonstrating significant improve-
ments in recommendation quality with respect to a natural
baseline.

A summary of the process is as follows. We generated
user, tag, and item embeddings from the dataset, then gen-
erated trajectories (queries, responses, utilities) given a query
policy (in a real application, trajectories would be induced
by a deployed policy interacting with users). Next, we ran
a model to predict user responses and utilities, which was
used inside planning algorithms (DLS and MCTS) to create a
planning-based query policy. Finally, we evaluated this pol-
icy by measuring the mean item recommendation utility of
newly-generated trajectories.

In future work, we plan to explore the use of more in-
formed, but less diverse, query policies for generating tra-
jectories for training. We also hope to analyze the relation-
ship between the quality of predictive models and the per-
formance of the induced query policies. Another important
direction is training in an online fashion (as in AlphaZero
and MuZero) with simulated users to learn more accurate
value/policy functions. Finally, we hope to test an approach
that first learns an environment dynamics model (user re-
sponses and item recommendation utilities) from offline data,
and then applies online reinforcement learning against this
learned model. We conjecture an ensemble of such models
(or an uncertainty-aware model, such as a Bayesian neural
network) will help prevent overfitting the policy to a learned
model that is different from the true environment.

Acknowledgements

We thank Chih-wei Hsu and Yinlam Chow from Google Re-
search for useful discussions. Tuomas Sandholm’s and part of
Carlos Martin’s research is supported by the Vannevar Bush
Faculty Fellowship ONR N00014-23-1-2876, National Sci-
ence Foundation grants RI-2312342 and RI-1901403, ARO
award WI911NF2210266, and NIH award A240108S001.

References

Martin Abadi, Ashish Agarwal, Paul Barham, Eugene
Brevdo, et al. TensorFlow: Large-scale machine learning
on heterogeneous systems, 2015.

Ali Abbas. Entropy methods for adaptive utility elicitation.
IEEE Transactions on Systems, Science and Cybernetics,
2004.

Fabian Abel, Qi Gao, Geert-Jan Houben, and Ke Tao. Ana-
lyzing user modeling on Twitter for personalized news rec-
ommendations. In ACM Conference on User Modeling,
Adaptation and Personalization (UMAP), 2011.

Mohammad Aliannejadi, Hamed Zamani, Fabio Crestani,
and W Bruce Croft. Asking clarifying questions in open-
domain information-seeking conversations. In ACM SIGIR
Conference on Research and Development in Information
Retrieval, 2019.

Toannis Antonoglou, Julian Schrittwieser, Sherjil Ozair,
Thomas K Hubert, and David Silver. Planning in stochas-
tic environments with a learned model. In International
Conference on Learning Representations (ICLR), 2022.

Jimmy Lei Ba, Jamie Kiros, and Geoffrey Hinton. Layer nor-
malization. arXiv:1607.06450, 2016.

Igor Babuschkin, Kate Baumli, Alison Bell, Surya Bhupati-
raju, et al. The DeepMind JAX Ecosystem, 2020.

Jests Bobadilla, Fernando Ortega, Antonio Hernando, and
Jestis Bernal. A collaborative filtering approach to mitigate
the new user cold start problem. Knowledge-based systems,
2012.

Nadjet Bourdache, Patrice Perny, and Olivier Spanjaard. In-
cremental elicitation of rank-dependent aggregation func-
tions based on Bayesian linear regression. In International
Joint Conference on Artificial Intelligence (IJCAI), 2019.

Craig Boutilier, Richard S Zemel, and Benjamin Marlin. Ac-
tive collaborative filtering. In Conference on Uncertainty
in Artificial Intelligence (UAI), 2003.

Craig Boutilier, Tuomas Sandholm, and Rob Shields. Elicit-
ing bid taker non-price preferences in (combinatorial) auc-
tions. In AAAI Conference on Artificial Intelligence, 2004.

Craig Boutilier, Relu Patrascu, Pascal Poupart, and Dale
Schuurmans. Constraint-based optimization and utility
elicitation using the minimax decision criterion. Artifical
Intelligence, 2006.

Craig Boutilier. A POMDP formulation of preference elici-
tation problems. In AAAI Conference on Artificial Intelli-
gence, 2002.

Craig Boutilier. Computational decision support: Regret-
based models for optimization and preference elicitation.
In Comparative Decision Making: Analysis and Support
Across Disciplines and Applications. Oxford University
Press, 2013.

James Bradbury, Roy Frostig, Peter Hawkins, Matthew James
Johnson, et al. JAX: composable transformations of
Python+NumPy programs, 2018.

Darius Braziunas and Craig Boutilier. Assessing regret-based
preference elicitation with the UTPREF recommendation
system. In ACM Conference on Economics and Computa-
tion (EC), 2010.

Gregory Canal, Andy Massimino, Mark Davenport, and
Christopher Rozell. Active embedding search via noisy
paired comparisons. In International Conference on Ma-
chine Learning (ICML), 2019.

Urszula Chajewska, Lise Getoor, Joseph Norman, and Yuval
Shahar. Utility elicitation as a classification problem. In
Conference on Uncertainty in Artificial Intelligence (UAI),
1998.

Urszula Chajewska, Daphne Koller, and Ronald Parr. Making
rational decisions using adaptive utility elicitation. In AAAT
Conference on Artificial Intelligence, 2000.

Kyunghyun Cho, Bart van Merriénboer, Dzmitry Bahdanau,
and Yoshua Bengio. On the properties of neural ma-
chine translation: encoder-decoder approaches. In Eighth
Workshop on Syntax, Semantics and Structure in Statistical
Translation (SSST-8), 2014.

Robert Cohn, Satinder Singh, and Edmund Durfee. Char-
acterizing evoi-sufficient k-response query sets in decision
problems. In International Conference on Artificial Intel-
ligence and Statistics (AISTATS), 2014.

Rémi Coulom. Efficient selectivity and backup operators in
Monte-Carlo tree search. In Computers and Games, 2007.

Paul Covington, Jay Adams, and Emre Sargin. Deep neural
networks for YouTube recommendations. In ACM Confer-
ence on Recommender Systems (RecSys), 2016.

Ivo Danihelka, Arthur Guez, Julian Schrittwieser, and David
Silver. Policy improvement by planning with Gumbel.
In International Conference on Learning Representations

(ICLR), 2022.

Finale Doshi-Velez, Joelle Pineau, and Nicholas Roy. Re-
inforcement learning with limited reinforcement: Using
Bayes risk for active learning in POMDPs. Artificial In-
telligence, 2012.

Simon Duane, Anthony Kennedy, Brian Pendleton, and Dun-
can Roweth. Hybrid Monte Carlo. Physics letters B, 1987.

Jean-Philippe Dubus, Christophe Gonzales, and Patrice
Perny. Multiobjective optimization using GAI models.
In International Joint Conference on Artificial Intelligence
(IJCAI), 2009.

Bradley Efron. Bootstrap methods: Another look at the jack-
knife. The Annals of Statistics, 1979.

Bradley Efron. Better bootstrap confidence intervals. Journal
of the American Statistical Association (JASA), 1987.

Michael Ekstrand, John Riedl, Joseph Konstan, et al. Collab-
orative filtering recommender systems. Foundations and
Trends in Human-Computer Interaction, 2011.

Gregory Farquhar, Tim Rocktaeschel, Maximilian Igl, and
Shimon Whiteson. TreeQN and ATreeC: Differentiable
tree planning for deep reinforcement learning. In Inter-
national Conference on Learning Representations (ICLR),
2018.

Kunihiko Fukushima. Cognitron: A self-organizing multilay-
ered neural network. Biological Cybernetics, 1975.

Arthur Guez, Theophane Weber, Ioannis Antonoglou, Karen
Simonyan, et al. Learning to search with MCTSnets. In
International Conference on Machine Learning (ICML),
2018.

Arthur Guez, Mehdi Mirza, Karol Gregor, Rishabh Kabra,
et al. An investigation of model-free planning. In Interna-
tional Conference on Machine Learning (ICML), 2019.

Shengbo Guo and Scott Sanner. Real-time multiattribute
Bayesian preference elicitation with pairwise comparison
queries. In International Conference on Artificial Intelli-
gence and Statistics (AISTATS), 2010.

Blake Hallinan and Ted Striphas. Recommended for you:
The Netflix prize and the production of algorithmic culture.
New Media & Society, 2016.

F Maxwell Harper and Joseph Konstan. The MovieLens
datasets: History and context. ACM Transactions on In-
teractive Intelligent Systems (TiiS), 2016.

W Keith Hastings. Monte Carlo sampling methods using
Markov chains and their applications. Biometrika, 1970.

Xiangnan He, Lizi Liao, Hanwang Zhang, Ligiang Nie, Xia
Hu, and Tat-Seng Chua. Neural collaborative filtering. In
ACM Web Conference, 2017.

Jonathan Herlocker, Joseph Konstan, Loren Terveen, and
John Riedl. Evaluating collaborative filtering recom-
mender systems. ACM Transactions on Information Sys-
tems (TOIS), 2004.

Hillary Holloway and Chelsea White III. Question selec-
tion for multiattribute decision-aiding. European Journal
of Operational Research (EJOR), 2003.

Ronald Howard and James Matheson, editors. Readings
on the Principles and Applications of Decision Analysis.
Strategic Decision Group, 1984.

Vijay Iyengar, Jon Lee, and Murray Campbell. Q-Eval: Eval-
uating multiple attribute items using queries. In ACM Con-
ference on Economics and Computation (EC), 2001.

Robert Kass, Luke Tierney, and Joseph Kadane. Laplace’s
method in bayesian analysis. Contemporary Mathematics,
1991.

Ralph Keeney and Howard Raiffa. Decisions with Multi-
ple Objectives: Preferences and Value Trade-offs. Wiley,
1976.

Diederik Kingma and Jimmy Ba. Adam: A method for
stochastic optimization. arXiv:1412.6980, 2014.

Volodymyr Kuleshov and Kevin Ellis. Active preference in-
ference using language models and probabilistic reasoning.
arXiv:2312.12009, 2023.

Xuan Nhat Lam, Thuc Vu, Trong Duc Le, and Anh Duc
Duong. Addressing cold-start problem in recommendation
systems. In ACM International Conference on Ubiquitous

Information Management and Communication (ICUIMC),
2008.

Greg Linden, Brent Smith, and Jeremy York. Amazon.com
recommendations: Item-to-item collaborative filtering.
IEEE Distributed Systems Online, 2003.

Liyuan Liu, Haoming Jiang, Pengcheng He, Weizhu Chen,
Xiaodong Liu, Jianfeng Gao, and Jiawei Han. On
the variance of the adaptive learning rate and beyond.
arXiv:1908.03265, 2019.

Ofer Meshi, Jon Feldman, Li Yang, Ben Scheetz, Yanli Cai,
Mohammadhossein Bateni, Corbyn Salisbury, Vikram Ag-
garwal, and Craig Boutilier. Preference elicitation for
music recommendations. In International Conference on
Machine Learning 2023 Workshop The Many Facets of
Preference-Based Learning, 2023.

Nicholas Metropolis, Arianna Rosenbluth, Marshall Rosen-
bluth, Augusta Teller, and Edward Teller. Equation of state
calculations by fast computing machines. The Journal of
Chemical Physics, 1953.

Ryan Murphy, Balasubramaniam Srinivasan, Vinayak Rao,
and Bruno Ribeiro. Janossy pooling: Learning deep
permutation-invariant functions for variable-size inputs.
arXiv:1811.01900, 2018.

Jianmo Ni, Jiacheng Li, and Julian McAuley. Justifying
recommendations using distantly-labeled reviews and fine-
grained aspects. In Conference on Empirical Methods in
Natural Language Processing and International Joint Con-
ference on Natural Language Processing, 2019.

Junhyuk Oh, Satinder Singh, and Honglak Lee. Value predic-
tion network. In Conference on Neural Information Pro-
cessing Systems (NeurlPS), 2017.

Aditya Pal, Chantat Eksombatchai, Yitong Zhou, Bo Zhao,
Charles Rosenberg, and Jure Leskovec. PinnerSage: Multi-
modal user embedding framework for recommendations at
Pinterest. In ACM SIGKDD International Conference on
Knowledge Discovery & Data Mining, 2020.

Sudha Rao and Hal Daumé III. Learning to ask good ques-
tions: Ranking clarification questions using neural ex-
pected value of perfect information. arXiv:1805.04655,
2018.

Al Mamunur Rashid, George Karypis, and John Riedl. Learn-
ing preferences of new users in recommender systems: An
information theoretic approach. ACM SIGKDD Explo-
rations Newsletter, 2008.

Lior Rokach and Slava Kisilevich. Initial profile generation
in recommender systems using pairwise comparison. [EEE
Transactions on Systems, Man, and Cybernetics, 2012.

David Rumelhart, Geoffrey Hinton, and Ronald Williams.
Learning representations by back-propagating errors. Na-
ture, 1986.

Ruslan Salakhutdinov and Andriy Mnih. Probabilistic matrix
factorization. In Conference on Neural Information Pro-
cessing Systems (NeurlIPS), 2007.

Ahti Salo and Raimo P Haméldinen. Preference ratios in mul-
tiattribute evaluation (PRIME)—elicitation and decision
procedures under incomplete information. IEEE Transac-
tions on Systems, Science and Cybernetics, 2001.

Badrul Sarwar, George Karypis, Joseph Konstan, and John
Riedl. Application of dimensionality reduction in recom-

mender system-a case study. Technical report, University
of Minnesota, 2000.

J Ben Schafer, Joseph Konstan, and John Riedl. Recom-
mender systems in e-commerce. In ACM Conference on
Economics and Computation (EC), 1999.

Julian Schrittwieser, Ioannis Antonoglou, Thomas Hubert,
Karen Simonyan, Laurent Sifre, Simon Schmitt, Arthur
Guez, Edward Lockhart, Demis Hassabis, Thore Graepel,
et al. Mastering Atari, Go, chess and shogi by planning
with a learned model. Nature, 2020.

David Silver, Aja Huang, Chris Maddison, Arthur Guez, et al.
Mastering the game of Go with deep neural networks and
tree search. Nature, 2016.

David Silver, Aja Huang, Chris Maddison, Arthur Guez, Lau-
rent Sifre, George van den Driessche, Julian Schrittwieser,
Ioannis Antonoglou, Veda Panneershelvam, Marc Lanctot,
et al. Mastering the game of Go with deep neural networks
and tree search. Nature, 2016.

David Silver, Julian Schrittwieser, Karen Simonyan, Ioannis
Antonoglou, et al. Mastering the game of Go without hu-
man knowledge. Nature, 2017.

David Silver, Thomas Hubert, Julian Schrittwieser, Ioannis
Antonoglou, et al. A general reinforcement learning algo-
rithm that masters chess, shogi, and Go through self-play.
Science, 2018.

Aviv Tamar, Yi Wu, Garrett Thomas, Sergey Levine, and
Pieter Abbeel. Value iteration networks. In Conference on
Neural Information Processing Systems (NeurIPS), 2016.

Olivier Toubia, Duncan I Simester, John R Hauser, and Ely
Dahan. Fast polyhedral adaptive conjoint estimation. Mar-
keting Science, 2003.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszko-
reit, Llion Jones, Aidan Gomez, FLukasz Kaiser, and Illia
Polosukhin. Attention is all you need. Conference on Neu-
ral Information Processing Systems (NeurIPS), 2017.

Phebe Vayanos, Yingxiao Ye, Duncan McElfresh, John Dick-
erson, and Eric Rice. Robust active preference elicitation.
arXiv:2003.01899, 2020.

Ivan Vendrov, Tyler Lu, Qingqing Huang, and Craig
Boutilier. Gradient-based optimization for Bayesian pref-
erence elicitation. In AAAI Conference on Artificial Intel-
ligence, 2020.

Paolo Viappiani and Craig Boutilier. Optimal Bayesian rec-
ommendation sets and myopically optimal choice query
sets. In Conference on Neural Information Processing Sys-
tems (NeurIPS), 2010.

Paul Werbos. Generalization of backpropagation with appli-
cation to a recurrent gas market model. Neural Networks,
1988.

Ruibin Xiong, Yunchang Yang, Di He, Kai Zheng, et al.
On layer normalization in the transformer architecture.
In International Conference on Learning Representations
(ICLR), 2020.

Ji Yang, Xinyang Yi, Derek Zhiyuan Cheng, Lichan Hong,
Yang Li, Simon Xiaoming Wang, Taibai Xu, and Ed H
Chi. Mixed negative sampling for learning two-tower neu-
ral networks in recommendations. In ACM Web Confer-
ence, 2020.

Shudong Yang, Xueying Yu, and Ying Zhou. LSTM and
GRU neural network performance comparison study: Tak-
ing yelp review dataset as an example. In International

Conference on Electronic Communication and Artificial
Intelligence (ICECAI), 2020.

Lili Yu, Howard Chen, Sida Wang, Tao Lei, and Yoav Artzi.
Interactive classification by asking informative questions.
arXiv:1911.03598, 2019.

Manzil Zaheer, Satwik Kottur, Siamak Ravanbakhsh, Barn-
abas Poczos, Russ R Salakhutdinov, and Alexander Smola.
Deep Sets. Conference on Neural Information Processing
Systems (NeurIPS), 2017.

Xiaoxue Zhao, Weinan Zhang, and Jun Wang. Interactive
collaborative filtering. In Conference on Information and
Knowledge Management (CIKM), 2013.

Zhibing Zhao, Haoming Li, Junming Wang, Jeffrey Kephart,
Nicholas Mattei, Hui Su, and Lirong Xia. A cost-
effective framework for preference elicitation and aggre-
gation. arXiv:1805.05287, 2018.

	Introduction
	Problem Formulation
	Related Work
	Expected Value of Information
	Model-Based Prediction
	Model-Free Prediction
	Multi-Step Planning
	Experiments
	Conclusions and Future Research

