
Identifying the Factors that Influence Trust in AI Code
Completion

Adam Brown
adambrovvn@google.com

Google
USA

Sarah D’Angelo
sdangelo@google.com

Google
New Zealand

Ambar Murillo
ambarm@google.com

Google
Germany

Ciera Jaspan
ciera@google.com

Google
USA

Collin Green
colling@google.com

Google
USA

ABSTRACT
AI-powered software development tooling is changing the way that
developers interact with tools and write code. However, the ability
for AI to truly transform software development may depend on
developers’ levels of trust in these tools, which has consequences
for tool adoption and repeated usage. In this work, we take a mixed-
methods approach to measure the factors that influence developers’
trust in AI-powered code completion. We found that characteristics
about the AI suggestion itself (e.g., the quality of the suggestion),
the developer interacting with the suggestion (e.g., their exper-
tise in a language), and the context of the development work (e.g.,
was the suggestion in a test file) all influenced acceptance rates
of AI-powered code suggestions. Based on these findings we pro-
pose a number of recommendations for the design of AI-powered
development tools to improve trust.

CCS CONCEPTS
• Human-centered computing→ Empirical studies in HCI.

KEYWORDS
Artificial Intelligence (AI), Code Completion, Logs based analysis,
Software Engineering, Trust

ACM Reference Format:
Adam Brown, Sarah D’Angelo, Ambar Murillo, Ciera Jaspan, and Collin
Green. 2024. Identifying the Factors that Influence Trust in AI Code Comple-
tion. In Proceedings of the 1st ACM International Conference on AI-Powered
Software (AIware ’24), July 15–16, 2024, Porto de Galinhas, Brazil. ACM, New
York, NY, USA, 9 pages. https://doi.org/10.1145/3664646.3664757

1 INTRODUCTION
AI-powered software development tooling is transforming the way
that developers write code [4, 17]. With the creation of tools like
GitHub Copilot [10], Amazon CodeWhisperer [2], and Google Duet

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
AIware ’24, July 15–16, 2024, Porto de Galinhas, Brazil
© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0685-1/24/07.
https://doi.org/10.1145/3664646.3664757

[11], generative AI has been placed directly into a developer’s Inte-
grated Development Environment (IDE) and the capabilities of this
technology are expanding. Most, if not all, hypotheses around the
impact of these technologies suggest that leveraging these systems
will lead to sizable improvements in developer productivity. Many
early results appear to support these hypotheses, either in terms of
objective measurements (e.g., time to complete a development task)
or self-reported productivity [5, 7, 25, 28]. While these early re-
sults are encouraging, the ability for AI to truly transform software
development may depend on developers’ levels of trust in these
tools. Prior work has proposed that trust is a key factor for adopt-
ing tools [3, 12, 19], which suggests that developers may not reap
the maximum benefit of these technological advances unless they
develop an appropriate level of trust in AI-powered tools, leading
to increased usage of them in day-to-day work.

It is critical that when we talk about trust in AI, we focus on
helping developers build an appropriate level of trust. Too much
trust when it is not warranted is risky [9, 15]. We still want develop-
ers to appropriately review AI-powered suggestions. For example,
prior work has shown that developers can write less secure code
when they use AI-powered coding tools [21, 22]. With this in mind,
we should aim to support developers in building the appropriate
level of trust, rather than simply increasing trust in AI without an
upper bound. In order to achieve this goal, we need to understand
trust in AI in the context of software engineering and, if possible,
do so passively and at scale. In this work, we aim to answer the
question: "How do we measure the trustworthiness of AI-powered
software development tools?"

In order to tackle this question, we first sought to understand
the factors that influence developers level of trust in AI. Based on
prior work [12] and our own preliminary research, we identified
three main drivers of trust in AI-powered development tools:

(1) characteristics of the suggestion (e.g. quality or length of
suggestions)

(2) characteristics of the developer (e.g. their level of expertise
or familiarity with AI)

(3) the development context (e.g. how complex or sensitive is
the task)

Next, we aimed to determine which of these factors we could quan-
tify from logs data to enable measurement at scale. In support of
developing a logs-based measurement of trust to enable this analy-
sis, we specifically examined trust in AI-generated code completion

https://doi.org/10.1145/3664646.3664757
https://doi.org/10.1145/3664646.3664757

AIware ’24, July 15–16, 2024, Porto de Galinhas, Brazil Adam Brown, Sarah D’Angelo, Ambar Murillo, Ciera Jaspan, and Collin Green

suggestions and leveraged the acceptance rate of suggestions as a
proxy for trust. In this paper, we outline our mixed-methods ap-
proach to measuring trust in AI-powered code completion. Section
3 reports a preliminary study that defines the characteristics that
developers consider when evaluating their trust in AI. Section 4
builds on the results of the preliminary study by extracting behav-
ioral data from logs that correspond to these characteristics and
identifies which ones are related to trust when interacting with an
AI-powered tool during development work. Based on these results,
we make recommendations for the design of AI-powered tooling
that support building the appropriate level of trust.

2 RELATEDWORK
The rapid growth of AI-powered development tools has generated
a wealth of research aimed at understanding the impact of the
presence of AI in development workflows. Much of this research
has investigated how the inclusion of AI in developer tools impacts
productivity outcomes and tool adoption [4, 7, 8]. For example,
research has shown a positive impact of interacting with code
completion suggestions on self-perceived productivity [25, 28] and
coding iteration time [24]. While other studies have revealed that
developers may spendmore time reviewing suggestions than saving
time [17] or that their interactions with code suggestions depend
on whether they are engaged in exploratory work to understand
how to complete a task or relying on AI to accelerate work that they
already know how to complete [5]. These studies demonstrate that
while there is an opportunity for AI to change the way developers
work, it is not a panacea for productivity and there is considerable
nuance in understanding how developers are engaging with AI-
powered tools.

Thus, we should think holistically about developers’ interac-
tions with AI. While productivity is one of the desired outcomes
of these interactions, we propose that trust is a core driver of this
outcome: trust influences adoption and repeated use of tools both
in the context of AI-powered tools and software development more
generally [3, 12, 15, 19, 20]. Accordingly, a deeper understanding of
trust may lead to a better understanding of the impact of AI more
broadly. Prior work has leveraged various behavioral indicators
in order to measure trust in the output from ML- and AI-based
systems [14, 26, 27]. Specifically, these studies have used measures
of how often an individual uses the information provided by these
systems as their own answer, suggesting that the act of accept-
ing a prediction from a model may represent a form of trust. In
terms of the relationship between trust and productivity, recent
work has shown the acceptance rates for AI-generated code sug-
gestions, which may represent a proxy for trust in this context,
predict developers’ perceptions of their productivity [28]. Together,
these findings suggests that if we can understand what influences
whether or not a developer trusts AI output, leading them to accept
suggestions from these systems, we may be able to develop a better
understanding of how to increase productivity with AI.

Recent work has introduced a framework for building trustwor-
thy software tools [12] that proposes trustworthy tools have specific
qualities that span five pillars: Personal, Interaction, Control, Sys-
tem, and Expectations (PICSE). This framework aligns with other

research that has demonstrated how showing additional informa-
tion regarding model confidence can increase trust in AI [27], as
well as information about the individual interacting with these tools
(e.g., gender or level of expertise) can influence trust [3, 23]. From
a more granular perspective, researchers have investigated which
suggestions are most likely to be accepted by developers based on
the characteristics of the suggestion (e.g., length, quality, etc.) and
how to optimize models for these characteristics in order to increase
acceptance rates, which may be one method for increasing trust
in these systems [18]. However, there is an opportunity to further
expand our understanding of the characteristics of the developers
and contextual factors of the code, which are a critical part of how
developers experience AI-powered suggestions.

Building on the prior work in this space, we aim to identify
the logs-based factors that influence acceptance rates for Google’s
internal AI-powered code completion [24]. Based on these findings
we will expand our understanding of how developers interact with
AI, which will enable us to make informed design decisions that
support developers in building an appropriate level of trust in AI
and potentially unlocking large benefits to productivity.

3 PRELIMINARY STUDY: UNDERSTANDING
DEVELOPER TRUST IN AI

In order to measure trust and quantify the factors that influence
trust, we first need to understand how developers describe aspects
of interacting with AI-powered technologies that they believe shape
trust. For example, what makes them more or less likely to trust the
outputs of AI powered developer tooling and incorporate these out-
puts into their ownwork? To address these questions, we conducted
a preliminary study in which we asked developer what influences
their level of trust in AI. We then analyzed the results with a focus
on factors that could be quantified using logs data.

3.1 Method
We recruited 12 software developers employed at Google to partici-
pate in a sixty-minute remote-moderated semi-structured interview.
In the interviews, we asked participants a series of questions on
their experience with and perceptions of AI-powered developer
tooling. Prior to participating in the study, participants gave writ-
ten consent. The interviews were transcribed and we conducted
a thematic analysis with inductive coding [13] to identify factors
that were common across participants.

3.2 Results
Based on our interviews we identified three factors that influence
developers’ levels of trust in AI-powered developer tools that ap-
peared to be good candidates for measurement: (1) characteristics
of the suggestions, (2) characteristics of the individual developer
and (3) the development context. These are consistent with prior
work [12], which also highlights personal and system-level factors.
Compared to prior work, we have a adopted a more limited set of
factors that are good candidates for logs-based measurement and
more tailored to interactions with code completion tools.

Identifying the Factors that Influence Trust in AI Code Completion AIware ’24, July 15–16, 2024, Porto de Galinhas, Brazil

3.2.1 Characteristics of the Suggestion. The most common factor
from the interviews was characteristics of the suggestion. Specifi-
cally, when determining their level of trust in AI-powered sugges-
tions, a majority of developers commented on the quality of the
suggestion. Many expressing that they are more likely to trust high
quality or accurate suggestions and less likely to trust incorrect
suggestions. For example one participant commented:

“I think it’s the more errors that I see the more likely
I will trust it less.”

In addition to quality, developers also mentioned suggestion
length, expressing that longer suggestions have a higher risk asso-
ciated with them because they take a long time to review.

3.2.2 Characteristics of the Developer. Participants also commented
on personal characteristics that played a role in their level of trust.
For example, their understanding of particular language and their
confidence in their ability to evaluate an output influenced their
level of trust. If they didn’t feel confident in their knowledge it
limited their ability to trust AI. For example, one participant com-
mented:

"Something that would help enhance my trust is my
ability to evaluate. In the C++ case, my ability to eval-
uate was low and so I couldn’t determine if this was a
good suggestion or not. So I had very low trust in it."

In addition to level of expertise in a given language or domain,
developers also cited their familiarity with the tool playing a role
in their level of trust; the more familiar they were with how the
tool performed, the more appropriate their level of trust became.

3.2.3 Development Context. Lastly, developers mentioned that the
context in which they encounter a suggestion matters, for example,
if they are working on more critical or complex tasks compared to
simple tasks. Developers expressed that they were more likely to
trust AI for simple tasks and less likely to trust AI for complex or
sensitive tasks. For example, one participant commented:

"It’s very much specific to a particular domain, right?
When it’s something more general, I’m fine giving
away some control. If it’s something very critical to
the domain or it needs a lot of domain expertise, in
that case, I would prefer keeping the control with me."

Ultimately, the combination of the characteristics of the sug-
gestion, the individual developer, and the context inform trust. To
successfully measure trust, we should incorporate signals of all
three and identify the relative strengths of their importance for
trust. As one participant explained:

"It’s a mix of individual ability to evaluate and more
experiences with it going well."

4 LOGS BASED ANALYSIS OF TRUST
Building on the findings from the preliminary study, we approach-
ed identifying factors that influence trust that represented all three
themes: the characteristics of the suggestion, the developer, and
the context. We also required a reasonable proxy for developers’
trust in AI. For this analysis, we used accepted suggestions as this
proxy. We propose that this is a valid proxy because accepting a
suggestion demonstrates that the developer is being vulnerable to

taking on code written by AI that they believe will benefit them,
which is consistent with prior definitions of trust [16]. Additionally,
as described in Section 2, a number of studies have used acceptance
of output from ML/AI systems as a measure for trust [14, 26, 27].
We acknowledge the limitations of this approach in our discussion.

Developer behavior is complex and no single feature is likely
to capture the complete story about what influences trust in code
completion suggestions. However, we wanted to build on the in-
sights presented in the preliminary research and attempt to better
understand whether there are certain situations or characteristics
of development or developers that are associated with higher levels
of trust in code completion suggestions. In order to address these
questions, we constructed a dataset using data from developers at
Google that combined information about the developer, the sug-
gestion, and the broader context of the work being completed to
model how this information influences the acceptance of sugges-
tions. In selecting these factors we prioritized data availability and
alignment with insights from our preliminary study. We recognize
this is only a subset of all possible factors but it is reflective of our
logs coverage and qualitative research.

4.1 Method
4.1.1 Data. To construct our dataset for this research, we com-
bined logs-based signals from Google’s internal code completion
service [24] with existing data about developers and aspects of
their work. We sampled 1M multi-line code completion sugges-
tions1 that were seen by 59k individual developers. Each sugges-
tion was required to be associated with an eventual code change.
When available, the issue tracking information associated with the
change was also matched back to an individual suggestion2. At a
high level, we aimed to generate model features that were about
the characteristics of the code completion suggestion, character-
istics of the developer, and characteristics of the code change and
issue tracking information. In each case, we placed an emphasis on
generating features that were related to quality, control, expertise,
and familiarity. The full list of features can be found in Table 1.

For the completion suggestion information, we extracted the
model quality score associated with the suggestion (the model pro-
duced log-probability of the suggestion being accepted), the charac-
ter length of the suggestion, the character position in a line of code
where the suggestion was displayed, and the line position in the
file where the suggestion was displayed. For the developer informa-
tion, we included the number of code completion suggestions that
they had previously seen overall, within the file they were working
on, on the current day, and in the current file on the current day.
These features were designed to get at the concept of familiarity of
interacting with this technology at different levels of granularity.
We developed a number of features related to developer language
and codebase expertise. First, we created a measure of language
expertise by identifying the percentage of total Lines of Code (LOC)

1These code completions, as the name suggest, span multiple lines of code. We focused
on these suggestions specifically because they were a newer addition to development
workflows, which we hypothesized would make trust a more central construct when
interacting with them.
285% of the code suggestions were successfully associated back to an issue. Models
were constructed such that we introduce a categorical variable indicating that this
information was missing.

AIware ’24, July 15–16, 2024, Porto de Galinhas, Brazil Adam Brown, Sarah D’Angelo, Ambar Murillo, Ciera Jaspan, and Collin Green

Table 1: Complete list of features generated for analysis.

Metric Category Metrics

Code Completion
Suggestion

Model Quality Score
Character Length
Line Position in File
Character Position in Line

Developer Characteristics
and Experience

Familiarity with Code Completion
• Number of Suggestions Seen Overall
• Number of Suggestions Seen on day
• Number of Suggestions Seen within current
file

• Number of Suggestions Seen on day within
current file

Language Experience
• % LOC in Suggestion Language
• Readability in Suggestion Language (Y/N)

Familiarity with Current Code
• Pct. Recent Code Changes in Codebase
• Pct. Recent Code Changes in File

Job Level
Tenure

Development
Context

Test File (Y/N)
Change Size
Bug Information (Type & Priority)

submitted in different languages in the 90 days leading up to when
a suggestion was shown. These percentages were split into differ-
ent buckets that mapped onto different levels of experience (e.g.,
"No Usage" = 0%; "Primary Usage" = >25%). Second, our company
enforces mandatory style guidelines for specific languages, such
that all code in these languages is subject to review for adherence
to these guidelines. Developers can demonstrate their knowledge of
the best practices and function as reviewers for style; this process
is known as readability. If a changelist author modifies a file in a
language for which they do not have readability, the changelist
must be approved by a reviewer with readability in that language.
For each code completion suggestion, we identified whether the
developer had readability in the language the code suggestion was
shown in. We derived two features related to how familiar the de-
veloper was with the code they were interacting with using data
from the 30 days leading up when they saw a suggestion: (1) the
percentage of their code changes that included the file the sugges-
tion appeared in and (2) the percentage of their changes that were
associated with the codebase project the current file was associated
with. We also included each developer’s employment tenure and
job level as covariates. In terms of changelist and issue tracking
data, we classified whether the code suggestion was shown in a
test file, the size of the eventual code change associated with each
suggestion (as Small, Medium, Large sizes based on LOC), the type
of issue listed (e.g., bug fix, feature, etc.) and the priority of the
issue.

4.1.2 Model. The features from the previous section were entered
in a mixed-effects logistic regression that modeled individual devel-
opers as a random effect (intercepts) and included a temporal spline
to account for changes over time. Two completion information
features (suggestion length and line position in file) were modeled
non-linearly due to patterns revealed during exploratory data anal-
ysis, as well as reasonable hypotheses that these relationships could
take on more of an inverted-U shape than a linear pattern. In each

case, these features were split into Low/Medium/High buckets us-
ing terciles and modeled as categorical variables using the Medium
level as a reference. All p-values were adjusted to control for the
false discovery rate with the Benjamini & Yekutieli method [6].

5 RESULTS
The regression results are shown in Table 2. Reference groups
are specified for each categorical input to the model. The model
intercept represents a multi-line code completion with the mean
model quality score at the reference levels shown in the table.

Table 2: Table containing all Odds Ratios (ORs) and 95% CIs
for ORs

Dependent variable:

Accepted Suggestion?

Intercept 1.039 (0.999, 1.080)
Model score (Z-transformed) 1.231∗∗∗ (1.225, 1.236)
Suggestion Length (ref = p33-p66)
p0-p33 Suggestion Length 0.784∗∗∗ (0.776, 0.793)
p66-p100 Suggestion Length 0.785∗∗∗ (0.776, 0.793)
Line Position (ref = p33-p66)
p0-p33 Line Position 0.859∗∗∗ (0.849, 0.868)
p66-p100 Line Position 0.938∗∗∗ (0.927, 0.949)
Character Position 0.991∗∗∗ (0.991, 0.992)
Overall Suggestion Number 1.000∗∗∗ (1.000, 1.000)
Suggestion Number on Day 0.994∗∗∗ (0.993, 0.995)
Suggestion Number in File on Day 1.008∗∗∗ (1.006, 1.009)
Is Test File (Y) 0.792∗∗∗ (0.784, 0.800)
Pct. Code Changes with Codebase 1.000∗∗∗ (0.999, 1.000)
Pct. Code Changes with File 1.000 (0.999, 1.000)
Language Usage (ref = Working Usage (10% - 25%)
No Language Usage 0.909∗∗∗ (0.875, 0.942)
Some Language Usage (<10% LOC) 0.959∗∗ (0.939, 0.980)
Primary Language Usage (>25% LOC) 1.041∗∗∗ (1.022, 1.060)
Readability in Language (Y) 1.305∗∗∗ (1.262, 1.349)
Change Size (ref = Size S)
Change Size XS 0.870∗∗∗ (0.832, 0.909)
Change Size M 1.095∗∗∗ (1.074, 1.116)
Change Size L 1.146∗∗∗ (1.124, 1.169)
Change Size XL 1.148∗∗∗ (1.117, 1.178)
Change Size U 0.875 (0.194, 1.555)
Bug (ref = No Bug Information)
Bug Priority P0 1.002 (0.972, 1.032)
Bug Priority P1 0.999 (0.977, 1.022)
Bug Priority P2 1.016 (0.994, 1.037)
Bug Priority P3 0.954 (0.914, 0.994)
Bug Priority P4 1.054 (0.962, 1.146)
Bug Type - Bug Fix 0.959∗∗∗ (0.942, 0.977)
Bug Type - Feature Request 1.007 (0.989, 1.024)
Bug Type - Internal Cleanup 0.845∗∗∗ (0.817, 0.873)
Job Level (ref = Level 4)
Job Level 3 0.975 (0.946, 1.005)
Job Level 5 1.027 (0.995, 1.058)
Job Level 6 1.043 (0.986, 1.100)
Job Level 7+ 1.176 (1.025, 1.328)
Tenure (ref = 1-3yrs)
Tenure<6 months 1.073∗∗ (1.034, 1.111)
Tenure 6 months-1yr 0.996 (0.967, 1.025)
Tenure 3-5yrs 0.956∗ (0.926, 0.986)
Tenure 5-8yrs 0.958 (0.920, 0.996)
Tenure 8+yrs 1.011 (0.963, 1.058)
Spline 0.554∗∗∗ (0.541, 0.567)

Pseudo 𝑅2 0.182
Observations 1,000,098

Note: p-values are adjusted for FDR ∗p<0.05; ∗∗p<0.01; ∗∗∗p<0.001

Identifying the Factors that Influence Trust in AI Code Completion AIware ’24, July 15–16, 2024, Porto de Galinhas, Brazil

5.1 Code Suggestion Characteristics
All four features generated from characteristics of the code com-
pletion suggestion were significant predictors of accepting a sug-
gestion. The model quality score, which was Z-transformed, was a
significant positive predictor of accepting a suggestion; a one stan-
dard deviation increase in model score was associated with a 23.1%
increase in the odds of accepting a suggestion, OR = 1.231, 95% CI
[1.225, 1.236]. This was one of the strongest predictors of accepting
a suggestion. The position in a line was a negative predictor of
accepting the suggestion, with each additional character position
leading to a decrease in the odds of accepting the suggestion OR =
0.991, 95% CI [0.991, 0.992]. Suggestions that were in the bottom
33rd percentile and top 33rd percentile in length were less likely
to be accepted than suggestions of intermediate length. A similar
pattern (i.e., an inverted-U) emerged for suggestions that were in
the top and bottom 1/3 of a file.

5.2 Developer Characteristics
5.2.1 Familiarity with Code Completion. Developer’s familiarity
with multi-line code completion, as measured by the number of
times they were exposed to suggestions, was a positive predictor of
accepting suggestions. The current analysis found that the overall
count of multi-line suggestions that a developer had seen was a
small, but significant positive predictor of accepting a suggestion,
OR = 1.0002, 95%CI = [1.0001, 1.0003]. A one standard deviation
increase for this input (SD = 101.15) would lead to a 2% increase
in the odds to accept a suggestion. Additionally, we saw that the
number of code completion suggestions a developer saw on a given
day within a given file was a positive predictor of this behavior, OR
= 1.008, 95%CI = [1.006, 1.009], suggesting that familiarity can have
a positive impact both globally and more locally within specific
files on specific days. However, we also saw that seeing more sug-
gestions on a specific day was negatively associated with accepting
suggestions, OR = 0.994, 95%CI = [0.993, 0.995], which may suggest
seeing many suggestions across a number of different files actually
comes at a cost to trust. Familiarity was one of the key aspects for
developing trust in AI assistance tooling that was found in our qual-
itative research. This finding was largely replicated at scale using
more quantitative data, however it is worth noting that these effects
are relatively small compared to some of the other relationships
found in this research. This is revisited in the discussion.

5.2.2 Language and Codebase Expertise. Another of the stronger
predictors of whether or not a developer would accept a multi-line
code completion suggestionwaswhether or not they had readability
in the language the suggestion was shown in, OR = 1.305, 95%CI
= [1.262, 1.349]. In order to gain readability, developer must go
through a lengthy review process in which their code changes are
specifically critiqued for adherence to the company style guide3.
Given that code completion models are trained only on code that
has made it into the codebase, and likely follows the style guide due
to this, it appears possible that individuals that are trained to look
for certain style-based signatures might be more likely to accept

3All production code is subject to readability review, but not all reviewers are granted
the ability to provide approvals for readability

suggestions due to their presence. It also seems likely that these
individuals are heavy users and experts in this language.

We also found that experience working with a given language
was a predictor of accepting or rejecting suggestions. Compared
to developers who showed Working Usage Experience (between
10% and 25% LOC in the previous 90 days), developers who were
Primary Users of a language (>25% LOC) were more likely to accept
a suggestion OR=1.041, 95% CI =[1.022, 1.060], whereas developers
that had Some Usage (between 0% and 10%) and No Usage in the
previous 90 days were less likely to accept a suggestion, OR = 0.959,
95% CI = [0.939, 0.980] and OR = 0.909, 95% CI = [0.875, 0.940],
respectively.

The percentage of code changes in the 30 days leading up to the
suggestion that were linked to the codebase project of that change
showed a very small relationship with accepting a suggestion, OR =
1.000, 95% CI = [0.999, 1.000]. Given the sample size of this analysis
and the range of possible values that this feature can take, we have
decided not to interpret this effect due to its potentially limited
practical significance. The percentage of code changes that involved
the file that a suggestion was shown in did not show a significant
relationship with accepting a suggestion. Together, these findings
suggest that familiarity with the code that is being worked on does
not influence how likely a developer is to accept code completion
suggestions.

5.3 Development Context
As a proxy for the context of the work being completed when a
developer saw a suggestion (e.g., how critical a code change was)
we collected information about the type of work being completed,
its priority, and its scope. We found that the priority of the work,
according to the company’s issue tracking software, was not a sig-
nificant predictor of accepting code completion suggestions. Work
priority is one proxy for criticality, but it is possible that this infor-
mation does not quite capture what developers think about when
they describe a task as "critical." We return to this in the discussion.

When a developer was working on a code change that was listed
as a Bug Fix or an Internal Cleanup, both representing smaller
scopes, they were less likely to accept suggestions than when this
information was not present, OR = 0.959, 95% CI = [0.942, 0.977] and
OR = 0.845, 95% CI = [0.817, 0.873], respectively. In each case, we
hypothesize that the code change being worked on is potentially
more constrained (i.e., a small, specific behavior is targeted), which
makes longer code completion suggestions undesirable. This finding
appears consistent with the ones above related to the size of the
change being made.

We also found that code completions that occurred within in
test files were less likely to be accepted OR = 0.792, 95% CI = [0.784,
0.800]. This was one of the strongest negative predictors of accept-
ing a suggestion. Similar to the effects described above regarding
smaller scopes, it is possible that tests are also more constrained
than feature code (i.e., tests may look to elicit one narrow behavior,
which a developer may have stronger plans about earlier in the
development process).

5.3.1 Work Demographics. We included two covariates dealing
with the developer’s work tenure and job level as additional mea-
sures of experience, but also to generally control for these features.

AIware ’24, July 15–16, 2024, Porto de Galinhas, Brazil Adam Brown, Sarah D’Angelo, Ambar Murillo, Ciera Jaspan, and Collin Green

Many analyses for developer productivity tend to control for these
features when possible and often researchers make hypotheses sur-
rounding how being more senior or having a longer tenure might
influence various developer experience metrics. Here, we did not
find significant effects of job level, but found that tenure had some
impact on acceptance rate, such that very new developers with less
than 6months of tenure were more likely to accept suggestions than
those with 1 to 3 years of tenure at the company, OR = 1.073, 95%
CI = [1.034, 1.111]. Developers with 3 to 5 years of tenure, were less
likely to accept suggestions than this reference group, OR = 0.956,
95% CI = [0.926, 0.986]. No other tenure groups showed a differ-
ence compared to this reference group. This pattern of results may
suggest a trend that newer employees are more susceptible to code
completion suggestions, whereas more tenured employees are less
susceptible to them. We suggest that these findings should be con-
sidered in the broader context of learning a new skill, which is one
of the proposed areas of benefit of working with these technologies.
However, this finding is potentially at odds with other experience
and expertise results described above, where we found havingmore
experience was positively related to accepting suggestions, not less.

6 DISCUSSION
In our preliminary study, through interviews with developers, we
identified three aspects that influence trust in AI-powered tools: (1)
characteristics of the suggestions, (2) characteristics of the devel-
oper and (3) the development context. We developed a dataset that
collected signals that aligned with each of these characteristics and
modeled how this information influenced trust in the suggestion, as
proxied by whether or not the suggestion was ultimately accepted.

Our results underscore that developer behavior is complex and
no single feature is likely to capture the complete story about what
influences trust in AI-powered tools. However, these findings ex-
pand prior research on predicting when code completion sugges-
tions are useful to developers by including a number of features
about the developers themselves, as well as the contexts in which
they work [18]. Much attention in this area has been given to the
systems and models involved in surfacing AI-generated code to
developers, while little work has investigated which individual and
situational aspects of the development process may play a role in
how much trust there is in these systems. Our findings introduce
the notion that these additional features are important when think-
ing about trust of these technologies and suggest that certain design
decisions may be available to bolster trust in AI-powered tooling;
we discuss these opportunities below.

We found that one of the strongest positive predictors of accept-
ing a suggestion was the model quality score for that completion
(i.e., whether the underlying AI model thought the code would
be accepted). This finding makes sense intuitively and replicates
prior analyses that suggest model score is an important feature
when predicting acceptance [18]. It seems likely that performance
of code generation models will only continue to improve over time,
however, when considering the impact of quality on trust it seems
worthwhile to think about the behaviors at either extreme of the
quality spectrum (i.e., at very low and very high quality). Specif-
ically, we see that even when the model predicts with extremely
high confidence that a developer will accept a suggestion, that the

acceptance rate is only 50%. This pattern of behavior introduces the
importance of personal preferences in the code completion space.
Specifically, some developers may be bothered or distracted by see-
ing a high number of these suggestions, even when they are high
in quality, while other developers may not mind evaluating sugges-
tions that do not meet a higher threshold for being accepted. On
the other end of the quality spectrum, developers are being shown
suggestions that are predicted to be unlikely to be accepted. In both
cases, we should consider delivering more control to developers
that allow them to control how often they are exposed to these
suggestions and, potentially, let them define how regularly they
wish to see suggestions of various quality. Furthermore, similar
to prior work estimating trust in AI output, there is an opportu-
nity here to provide information within the IDE that shows the
predicted accuracy (or model confidence) in the AI-generated code
suggestion.

The three additional characteristics of the code completion sug-
gestion were also significant predictors of whether or not a devel-
oper would accept a suggestion. Together these findings replicate
and extend the importance of features of the suggestion itself seen
in prior work [18]. Additionally, these findings suggest that there
are certain places within a line of code or a file that developers are
less susceptible to AI generated code completions. One hypothesis
for the pattern exhibited for character position in a line revolves
around the idea that a developer may be planning a few steps ahead
of what they are currently typing, and once the mental work is
done, the benefit of accepting a suggestion is decreased. On the
one hand, these features could be tuned by teams that train code
completion models in an attempt to optimize against whether de-
velopers accept a suggestion. On the other hand, these features may
introduce an interesting opportunity for personalization and user
controls. Users settings could dictate the length, position in a line,
or where in a file developers wish to see code suggestion generated
by AI.

A number of effects suggested expertise plays an interesting role
in trusting AI-generated code completions. The strongest positive
predictor of accepting a multi-line code suggestion was whether or
not the developer had been awarded readability in the language of
the suggestion. We also saw that recent usage of a language had a
positive impact on accepting suggestions. These effects replicate
the results of our preliminary study using quantitative data at scale.
However, the two features we generated to measure expertise with
the code being generated (both in terms of experience with the
codebase and experience with the specific file being edited) did not
reveal significant relationships with accepting a suggestion. We
hypothesize that the disconnect between language-based effects
and codebase effects may stem directly from what AI-generated
code completion models aim to achieve (i.e., to best predict what
code comes next, rather than codebase-specific outcomes). It is also
worth noting that our operationalization of codebase expertise was
generated based on data availability, but could likely be defined
in many other ways. Again, with an eye towards designing these
systems for trust, there appears to be an opportunity to leverage
information about the developer’s expertise in a given language
when surfacing suggestions. It is possible that this finding could
extend to other types of expertise where we would anticipate the

Identifying the Factors that Influence Trust in AI Code Completion AIware ’24, July 15–16, 2024, Porto de Galinhas, Brazil

AI-generated material to be more aligned with the expertise being
considered.

A number of features that were related to the scope of the work
being completed were significant predictors of accepting a sugges-
tion. Developers working on smaller code changes were less likely
to accept multi-line completion suggestions and became more likely
to accept them as the size of the change grew. One hypothesis for
these results is that smaller changes are more straightforward to
implement, which leads developers to have clearer ideas on the
functionality they are adding, making multi-line suggestions less
impactful. One of the strongest negative predictors of accepting a
suggestion was whether or not the developer was editing a test file.
Similar to the influence of smaller scopes, test code may be more
constrained than feature code, making multi-line code suggestions
less valuable. Another possible explanation for this pattern is that
there may be misalignment between what the AI is attempting to
complete and what the developer is hoping to achieve when writing
tests. Code suggestions may ignore local codebase specific practices
and attempt to provide suggestions that leverage more global best
practices. More research is needed to understand why developers
are less likely to accept code completion suggestions when writing
tests, especially given the growing in interest in having generative
AI tooling write tests for developers [1]. Similar to what we have
described above, designing a system that allows developers to indi-
cate the scope of what they are working on or how important more
local practices are to the eventual goal of the code may help reduce
the number of suggestions that a developer sees in contexts where
they are unlikely to accept them.

There were two effects that did not replicate our initial study.
First, the priority of the work being completed, as captured by our
issue tracking software, was not a significant predictor of accepting
a suggestion. We hypothesized that higher priority work is more
critical work and therefore should be related to how developers
interact with AI-generated code. However, similar to the our discus-
sion of codebase familiarity, we acknowledge that this definition
may not fully capture the criticality of the work. For example, a de-
veloper may be working on a top priority new feature that does not
have an urgent deadline. Future work should continue to explore
how task urgency and/or criticality influences interactions with
AI-powered developer tools. Second, developers described their
familiarity with these tools are being highly important in their
interactions with them. However, the effects in our quantitative
study were quite small, suggesting that while this relationship may
exist, it may not be as important as initially described. Addition-
ally, we saw that familiarity (as measured by exposures to code
completion suggestions) did not always have a positive impact.
Specifically, seeing more suggestions on a given day spread across
a wider number of files was potentially associated with decreases
in accepting a suggestion. This finding may suggest that developers
may be interested in controlling when and where (in terms of files)
that AI-generated code is shown. From a design perspective, this
file-level settings could be surfaced or simply an option to turn
these suggestions on or off depending on the file being edited.

6.1 Quality, Familiarity, and Control
When taken together, our results indicate that the relationships
between trust in AI-powered developer tooling and characteris-
tics of the developer and development task are multi-faceted and
depend on a number of features. Quality of suggestions was the
most important for predicting the acceptance. This proposes that as
quality increases, developers may be more willing to cede control
to these systems when the context is appropriate. Critically, we are
still learning what those contexts are and in the short-term should
consider delivering more control to developers that allow them to
configure how often they are exposed to suggestions that are lower
quality or do not match their current goals (e.g., seeing suggestions
when working on smaller scoped tasks). When considering the role
of familiarity, we hypothesize that exposure to these tools may be
largely beneficial early after a developer begins interacting with
them, but once they tune their expectations, aspects of expertise
and control become more relevant. Our interview study was con-
ducted when some of these technologies were first being introduced
to developers, which would support this notion. Alternatively, it
is possible that attitudes regarding familiarity are over-estimated
relative to the behavioral impact. Collectively, these results give in-
sights into opportunities to improve trust while highlighting areas
that may require additional user research to better understand how
developers might interact with future AI offerings.

7 LIMITATIONS
This research was conducted at Google which has specific developer
tooling and best practices. It is possible that some of these find-
ings would not generalize to other development contexts and with
other populations (e.g., student developers). That said, this setting
allowed for this research to incorporate signals of the developer
into these analyses, which may have been previously unexplored
in AI-generated code completion studies.

The data leveraged in our analysis, specifically the features that
were generated for modeling, were largely limited by the prelimi-
nary study and the existing literature. Due to this, our model may be
missing a number of factors that could influence our interpretations
of the results. A wider scope could have been adopted, however, we
decided to place an emphasize on signals that developers described
when discussing trust in these technologies rather than including a
wider array of metrics for the sake of exploring hypotheses. That
said, future work in this space should continue to evolve and ex-
pand model inputs. Additionally, we leveraged the acceptance of
AI-generated code as a definition of trust, which was aligned with
prior definitions of the construct, but may not tell a comprehensive
story about this behavior. For example, a developer may accept a
suggestion and then immediately delete it from the file they are
working on. We did not explore the persistence of AI-generated
code, but propose that future research should explore whether the
features investigated in this research influence the persistence of
code, both in the short-term (i.e., before the code is submitted) and
in the longer-term (i.e., after it is submitted, does it persist in the
codebase?).

Additionally, despite covering a fairly large number of inputs,
these results are strictly correlational in nature. Future studies may
work towards generating causal estimates of these effects in order

AIware ’24, July 15–16, 2024, Porto de Galinhas, Brazil Adam Brown, Sarah D’Angelo, Ambar Murillo, Ciera Jaspan, and Collin Green

to establish where in the developer workflow we can intervene to
influence developer trust in AI-powered tools. We anticipate that
the current work provides a starting point for these efforts.

Finally, our study focused solely on multi-line code completions.
Code completion suggestions also exist as single-token or single-
line completions, but were not investigated in the current research.
It is an open question which features described in this research
carryover to impact single-line suggestions.

8 FUTUREWORK
8.1 Evaluating Design and Model Changes
With this approach in place, future work is proposed to evaluate
the impact of model updates and design changes in terms of trust
measurements. This research has proposed a number of possible
design updates that place more control into the hands of develop-
ers that is anticipated to lead to higher acceptance rates and, by
extension, increases in developer productivity. We propose that
design changes in this space should pay attention to how accep-
tance rates change, whether the same predictors described in the
current work continue to show similar relationships, and, critically,
how developers’ sentiments and descriptions of trust are shaped
by these changes.

8.2 Looking at AI-generated Code Persistence
As described in the discussion section, the current work placed
an emphasis on accepting a code completion suggestion, but did
not evaluate whether code that was accepted persisted through
to being submitted. One potential pattern of behavior would be
that a developer accepted a code completion suggestion only to
heavily edit this code and move on. Future work will be designed
to investigate how often this behavior occurs and if the features
described in our current analysis shape the whether or not code
generated by AI persists.

8.3 Expanding to Other AI-powered Tools
The current work focused specifically on code completion behavior,
but AI-powered tools exist in many different parts of the develop-
ment workflow. For example, developers are using these tools to
gather information via chat interactions and to generate unit tests,
to name a few. Trust is proposed to play a role in how develop-
ers choose to engage with these tools and how they incorporate
the information they receive from these tools into their work. The
current research has started to identify what developers consider
when they think about trusting AI-powered tools and developing
features that quantitatively capture these components. We propose
that future research should continue to build on this approach for
other interactions between developers and AI-powered tools.

9 CONCLUSION
Developing trust in AI is a critical precursor to unlocking antic-
ipated productivity gains of adopting and using this technology,
eventually transforming the field of software development. In this
work, we take a mixed-methods approach to measuring the factors
that influence developers trust in AI-powered code completion.
We present evidence that features about the developer (e.g., their

expertise) and the development context (e.g., fixing a bug) shape
their levels of trust in AI-generated code. Based on the findings we
highlight the importance of personalization in AI powered devel-
oper tools, particularly when considering future designs of these
tools. Allowing developers to have more control over when and
what suggestions they are shown will enable them to customize
their experience based on their personal preferences and get the
most out of AI offerings.

ACKNOWLEDGMENTS
Wewould like to thankMicheal Bachman, AndrewMacvean,Maxim
Tabachnyk, and the Engineering Productivity Research team for
their valuable feedback.

REFERENCES
[1] Nadia Alshahwan, Jubin Chheda, Anastasia Finegenova, Beliz Gokkaya, Mark

Harman, Inna Harper, Alexandru Marginean, Shubho Sengupta, and Eddy Wang.
2024. Automated Unit Test Improvement using Large Language Models at Meta.
arXiv:cs.SE/2402.09171

[2] Amazon. 2024. ML-powered coding companion for developers - Amazon Code-
Whisperer Features. https://aws.amazon.com/codewhisperer/features/

[3] Matin Amoozadeh, David Daniels, Daye Nam, Aayush Kumar, Stella Chen,
Michael Hilton, Sruti Srinivasa Ragavan, and Mohammad Amin Alipour. 2024.
Trust in Generative AI among students: An exploratory study. In Proceedings of
the 55th ACM Technical Symposium on Computer Science Education V. 1. 67–73.

[4] Johannes Bader, Sonia Seohyun Kim, Frank Sifei Luan, Satish Chandra, and Erik
Meijer. 2021. AI in Software Engineering at Facebook. IEEE Software 38, 4 (2021),
52–61. https://doi.org/10.1109/MS.2021.3061664

[5] Shraddha Barke, Michael B James, and Nadia Polikarpova. 2022. Grounded
copilot: How programmers interact with code-generating models. arXiv preprint
arXiv:2206.15000 (2022).

[6] Yoav Benjamini and Daniel Yekutieli. 2001. The control of the false discovery
rate in multiple testing under dependency. The Annals of Statistics 29, 4 (2001),
1165 – 1188. https://doi.org/10.1214/aos/1013699998

[7] Alexia Cambon, Brent Hecht, Ben Edelman, Donald Ngwe, Sonia Jaffe, AmyHeger,
Mihaela Vorvoreanu, Sida Peng, Jake Hofman, Alex Farach, et al. 2023. Early
LLM-based Tools for Enterprise Information Workers Likely Provide Meaningful
Boosts to Productivity. Technical Report. MSFT Technical Report. https://www.
microsoft. com/en-us/research

[8] Omer Dunay, Daniel Cheng, Adam Tait, Parth Thakkar, Peter C Rigby, Andy Chiu,
Imad Ahmad, Arun Ganesan, Chandra Maddila, Vijayaraghavan Murali, et al.
2024. Multi-line AI-assisted Code Authoring. arXiv preprint arXiv:2402.04141
(2024).

[9] Mary T Dzindolet, Scott A Peterson, Regina A Pomranky, Linda G Pierce, and
Hall P Beck. 2003. The role of trust in automation reliance. International journal
of human-computer studies 58, 6 (2003), 697–718.

[10] Nat Friedman. 2021. Introducing github copilot: Your AI pair programmer. https:
//github.blog/2021-06-29-introducing-github-copilot-ai-pair-programmer/

[11] Google. 2024. AI-assisted application development. https://cloud.google.com/
duet-ai

[12] Brittany Johnson, Christian Bird, Denae Ford, Nicole Forsgren, and Thomas
Zimmermann. 2023. Make Your Tools Sparkle with Trust: The PICSE Framework
for Trust in Software Tools. In 2023 IEEE/ACM 45th International Conference on
Software Engineering: Software Engineering in Practice (ICSE-SEIP). IEEE, 409–419.

[13] Michelle E Kiger and Lara Varpio. 2020. Thematic analysis of qualitative data:
AMEE Guide No. 131. Medical teacher 42, 8 (2020), 846–854.

[14] Vivian Lai and Chenhao Tan. 2019. On human predictions with explanations and
predictions of machine learning models: A case study on deception detection. In
Proceedings of the conference on fairness, accountability, and transparency. 29–38.

[15] John D Lee and Katrina A See. 2004. Trust in automation: Designing for appro-
priate reliance. Human factors 46, 1 (2004), 50–80.

[16] Roger C Mayer, James H Davis, and F David Schoorman. 1995. An integrative
model of organizational trust. Academy of management review 20, 3 (1995),
709–734.

[17] HusseinMozannar, Gagan Bansal, Adam Fourney, and Eric Horvitz. 2022. Reading
Between the Lines: Modeling User Behavior and Costs in AI-Assisted Program-
ming. arXiv preprint arXiv:2210.14306 (2022).

[18] Hussein Mozannar, Gagan Bansal, Adam Fourney, and Eric Horvitz. 2023. When
to Show a Suggestion? Integrating Human Feedback in AI-Assisted Programming.
arXiv:cs.HC/2306.04930

[19] Emerson Murphy-Hill, Chris Parnin, and Andrew P Black. 2011. How we refactor,
and how we know it. IEEE Transactions on Software Engineering 38, 1 (2011),

http://arxiv.org/abs/cs.SE/2402.09171
https://aws.amazon.com/codewhisperer/features/
https://doi.org/10.1109/MS.2021.3061664
https://doi.org/10.1214/aos/1013699998
https://github.blog/2021-06-29-introducing-github-copilot-ai-pair-programmer/
https://github.blog/2021-06-29-introducing-github-copilot-ai-pair-programmer/
https://cloud.google.com/duet-ai
https://cloud.google.com/duet-ai
http://arxiv.org/abs/cs.HC/2306.04930

Identifying the Factors that Influence Trust in AI Code Completion AIware ’24, July 15–16, 2024, Porto de Galinhas, Brazil

5–18.
[20] John O’Donovan and Barry Smyth. 2005. Trust in recommender systems. In

Proceedings of the 10th international conference on Intelligent user interfaces. 167–
174.

[21] Hammond Pearce, Baleegh Ahmad, Benjamin Tan, Brendan Dolan-Gavitt, and
Ramesh Karri. 2022. Asleep at the keyboard? assessing the security of github
copilot’s code contributions. In 2022 IEEE Symposium on Security and Privacy
(SP). IEEE, 754–768.

[22] Neil Perry, Megha Srivastava, Deepak Kumar, and Dan Boneh. 2023. Do users
write more insecure code with AI assistants?. In Proceedings of the 2023 ACM
SIGSAC Conference on Computer and Communications Security. 2785–2799.

[23] Crystal Qian and James Wexler. 2024. Take It, Leave It, or Fix It: Measuring Pro-
ductivity and Trust in Human-AI Collaboration. arXiv preprint arXiv:2402.18498
(2024).

[24] Maxim Tabachnyk and Stoyan Nikolov. 2022. ML-enhanced code completion im-
proves developer productivity. https://ai.googleblog.com/2022/07/ml-enhanced-
code-completion-improves.html

[25] Priyan Vaithilingam, Tianyi Zhang, and Elena L Glassman. 2022. Expectation vs.
Experience: Evaluating the Usability of Code Generation Tools Powered by Large
Language Models. In CHI Conference on Human Factors in Computing Systems
Extended Abstracts. 1–7.

[26] Ming Yin, Jennifer Wortman Vaughan, and Hanna Wallach. 2019. Understanding
the effect of accuracy on trust in machine learning models. In Proceedings of the
2019 chi conference on human factors in computing systems. 1–12.

[27] Yunfeng Zhang, Q. Vera Liao, and Rachel K. E. Bellamy. 2020. Effect of confidence
and explanation on accuracy and trust calibration in AI-assisted decision making.
In Proceedings of the 2020 Conference on Fairness, Accountability, and Transparency
(FAT* ’20). Association for Computing Machinery, New York, NY, USA, 295–305.
https://doi.org/10.1145/3351095.3372852

[28] Albert Ziegler, Eirini Kalliamvakou, X Alice Li, Andrew Rice, Devon Rifkin,
Shawn Simister, Ganesh Sittampalam, and Edward Aftandilian. 2022. Productivity
assessment of neural code completion. In Proceedings of the 6th ACM SIGPLAN
International Symposium on Machine Programming. 21–29.

Received 2024-04-05; accepted 2024-05-04

https://ai.googleblog.com/2022/07/ml-enhanced-code-completion-improves.html
https://ai.googleblog.com/2022/07/ml-enhanced-code-completion-improves.html
https://doi.org/10.1145/3351095.3372852

	Abstract
	1 Introduction
	2 Related Work
	3 Preliminary Study: Understanding Developer Trust in AI
	3.1 Method
	3.2 Results

	4 Logs Based Analysis of Trust
	4.1 Method

	5 Results
	5.1 Code Suggestion Characteristics
	5.2 Developer Characteristics
	5.3 Development Context

	6 Discussion
	6.1 Quality, Familiarity, and Control

	7 Limitations
	8 Future Work
	8.1 Evaluating Design and Model Changes
	8.2 Looking at AI-generated Code Persistence
	8.3 Expanding to Other AI-powered Tools

	9 Conclusion
	Acknowledgments
	References

