
CanQuery Expansion Improve Generalization
of Strong Cross-Encoder Rankers?

Minghan Li
University of Waterloo

Waterloo, Canada
m692li@uwaterloo.ca

Honglei Zhuang
Google

Mountain View, US
hlz@google.com

Kai Hui
Google

Mountain View, US
kaihuibj@google.com

Zhen Qin
Google

New York, US
zhenqin@google.com

Jimmy Lin
University of Waterloo

Waterloo, Canada
jimmylin@uwaterloo.ca

Rolf Jagerman
Google

Amsterdam, Netherlands
jagerman@google.com

Xuanhui Wang
Google

Mountain View, US
xuanhui@google.com

Michael Bendersky
Google

Mountain View, US
bemike@google.com

ABSTRACT
Query expansion has beenwidely used to improve the search results
of first-stage retrievers, yet its influence on second-stage, cross-
encoder rankers remains under-explored. A recent study shows
that current expansion techniques benefit weaker models but harm
stronger rankers. In this paper, we re-examine this conclusion and
raise the following question: Can query expansion improve gener-
alization of strong cross-encoder rankers? To answer this question,
we first apply popular query expansion methods to different cross-
encoder rankers and verify the deteriorated zero-shot effectiveness.
We identify two vital steps in the experiment: high-quality keyword
generation and minimally-disruptive query modification. We show
that it is possible to improve the generalization of a strong neural
ranker, by generating keywords through a reasoning chain and
aggregating the ranking results of each expanded query via self-
consistency, reciprocal rank weighting, and fusion. Experiments on
BEIR and TREC Deep Learning 2019/2020 show that the nDCG@10
scores of both MonoT5 and RankT5 following these steps are im-
proved, which points out a direction for applying query expansion
to strong cross-encoder rankers.
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Methods DL19 DL20

RankT5base [49] 0.737 0.736
- w/ RM3 [19] 0.681 0.695
- w/ query2doc [40] 0.572 0.637
- w/ query2keyword [17] 0.690 0.688
- w/ Ours 0.751 0.752

MonoT5base [28] 0.695 0.720
- w/ RM3 0.673 0.693
- w/ query2doc 0.473 0.613
- w/ query2keyword 0.672 0.682
- w/ Ours 0.724 0.730

Table 1: nDCG@10 on TREC DL 2019/2020. Directly ap-
plying existing query expansion methods on strong cross-
encoder rankers can cause effectiveness deterioration.

1 INTRODUCTION
Query expansion has been a core technique in information re-
trieval for over half a century [1, 33, 35]. The goal is to increase the
retrieval accuracy by adding additional terms to the query. Con-
ventional methods such as RM3 [19] leverage Pseudo-Relevance
Feedback (PRF) to select terms from the documents retrieved for
the original query as expansions [20]. Recently, large language
models (LLMs) demonstrate their effectiveness in generating ex-
pansion terms for retrieval, which is known as generative query
expansion [17, 40]. However, both methods or their combinations
are mainly considered for improving the recall and precision of
first-stage retrievers, yet their influence on the generalization of
second-stage, cross-encoder rerankers remains under-explored.

This problem is interesting as additional terms usually contain
more information about the query, yet they are rarely used in cross-
encoder ranking. A recent study from Weller et al. [44] explores
generative query expansion for different retrievers and rankers.
They found that weaker models benefit more from expansions while
stronger rankers are hurt in most cases. This counter-intuitive
observation calls for further examination of current expansion
methods and whether there is a way to improve the results of
strong rankers using query expansion. To verify the conclusion, we
also apply some popular query expansion methods to two state-of-
the-art cross-encoder rankers, RankT5 [49] and MonoT5 [28]. As
shown in Table 1, the results are consistent with Weller et al. [44]
where we observe that the nDCG@10 scores of both rankers on
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TREC DL 2019/2020 and BEIR are compromised using either PRF
or LLMs. More results are shown in Section 4 and 5.

In this work, we identify two important steps for successfully
using query expansion in cross-encoder rankers, which are not well
explored by existing work focusing on retrievers: high-quality key-
word generation andminimally-disruptive querymodification. First,
cross-encoder rankers mainly aim to improve precision-related
metrics such as nDCG@10 which are sensitive to noisy keywords,
while retrievers care more about recall where some low-quality
expanded keywords are less influential. Therefore, strong rankers
such as RankT5 have higher demand on the generation quality. Sec-
ond, cross-encoder rankers are heavily based on token interactions,
making them sensitive to the distributional shift in queries (e.g.,
number of tokens, input formats) compared to retrievers. Therefore,
inserting documents in a query [40] might be less desirable.

In our experiments, we find that the most effective way is to first
use an LLM to generate high-quality, short keywords through a
reasoning chain [43]. We then follow self-consistency [42] to run
the above process multiple times to filter noisy keywords and select
top-k candidates, ensuring the quality of the generated keywords.
To mitigate distributional shift in query, we insert each keyword in-
dependently with the query and use reciprocal rank weighting [10]
to combine the ranking results. Our pipeline manages to improve
the nDCG@10 over the baselines for cross-encoder rankers such
as RankT5 [49] on both BEIR and TREC DL 2019/2020, while other
baselines that have been found effective for retrievers fail to im-
prove such strong rankers. Our study provides a preliminary yet
novel research foundation for researchers to explore query expan-
sion for cross-encoder rankers.

2 RELATEDWORK
Query Expansion and Fusion. Early research on query expansion

concentrated on utilizing either lexical knowledge bases [6, 7, 39] or
Pseudo-Relevance Feedback (PRF) [16, 34, 46]. Recent studies show
that scaling up LLMs through pre-training with more extensive and
higher-quality corpora [8, 14, 29, 30, 38] can result in higher capabil-
ities. Researchers have used large language models for generating
keywords in the context of query expansion [9, 17, 40, 41].

The effectiveness of query variant fusion has been proven in
previous works. Belkin et al. [3] pioneered the fusion of multiple
query variations into a single ranked list. Bailey et al. [2] intro-
duced Rank Biased Centroids for effective query variation fusion.
Benham and Culpepper [5] furthered this by applying reciprocal
rank fusion [10] and CombSUM [3] with double fusion.

LLM-Based Neural Rankers. MonoBERT [27] stands out as one of
first cross-encoders for text reranking tasks. CEDR [25] introduces
a more intricate approach by incorporating token representations at
all layers of the Transformer using pre-BERT neural rerankers [15].
More potent rankers based on LLMs have emerged to directly score
the relevance between queries and documents [28, 45, 49]. Most re-
cently, LLMs have showcased remarkable efficacy when tasked with
few/zero-shot text ranking such as LRL [24], RankGPT [36], RG-
𝑘L [48], RankVicuna [31], and RankLlama [23]. Alternatively, they
can perform pairwise comparisons between passages, as demon-
strated by PRP [32]. Despite the zero-shot effectiveness, themultiple
decoding passes render them slow and non-parallelizable.

3 FRAMEWORK AND IMPLEMENTATION
3.1 Cross-Encoder Ranking
Given a query 𝑞, the text retrieval or ranking task is to return a
sorted list of documents {𝑑1, 𝑑2, ..., 𝑑𝑘 } from a large text corpus C
to maximize a metric of interest. In this paper, we assume a set
of candidate documents {𝑑1, 𝑑2, ..., 𝑑𝑘 } generated by a first-stage
retriever are given and focus on the second-stage reranker to re-
order the candidate documents. The query-document pairs are
encoded together for fine-grained token-level interactions:

𝑠 (𝑞, 𝑑) = 𝜙 (concat(𝑞, 𝑑)), (1)

where 𝜙 is the reranker and 𝑠 is the similarity score. The “con-
cat” function is implemented using special tokens as indicators,
such as “Question: 𝑞 Document: 𝑑”. In the following subsection, we
will introduce the framework we use for keyword generation and
selection to improve the results of cross-encoders.

3.2 High-Quality Keyword Generation
The first step of query expansion is to generate keywords {𝑤1,𝑤2, ...,
𝑤𝑖 } semantically similar to the query 𝑞. There are generally two
sources of signals: The classical approach which involves corpus-
based signals through Pseudo-Relevance Feedback (PRF) or more
recent approaches leveraging signals from LLMs by prompting [17].
Notice that some LLM-based methods like Q2D [40] and HyDE [13]
generate much longer passages or documents rather than keywords,
which drift too much from the distribution of queries and deterio-
rate cross-encoder reranker effectiveness. In the following compo-
nents of this framework, we do not consider expansion other than
keywords, but will show the results of using excessively long expan-
sion in Section 4. We explore four different methods for keyword
generation, including both LLM-based and PRF-based methods, as
well as their combinations:

• PRF-basedmethods like RM3 [19] to extract keywords from
the retrieved documents 𝑑1, 𝑑2, ....

• LLM-based methods to generate keywords 𝑤1,𝑤2, ... like
Q2K [17].

• PRF+D2K, which uses an LLM to extract keywords𝑤1,𝑤2, ...
from the retrieved documents 𝑑1, 𝑑2, ....

• Q2D2K, which uses the LLM to generate detailed documents
𝑑 ′1, 𝑑

′
2, ... first and then selects a set of keywords𝑤1,𝑤2, ....

PRF + D2K and Q2D2K are inspired by Q2D [40] and HyDE [13].
These methods are problematic when the generated documents are
directly used as queries for cross-encoder rankers due to the query
distribution shift, but are useful when the generated documents are
summarized into keywords for expansions. The assumption is that
documents generated by a well pre-trained LLM can already answer
the question or at least contain helpful keywords. The intuition is
also similar to recitation-augmented language models [37] where
more knowledge can be elicited before fulfilling the task.

As mentioned in Section 1, the precision-related metrics, which
cross-encoder rankers aim to optimize, are more sensitive to the
noise in the expanded keywords. If there are noisy keywords gener-
ated from the previous stage, the effectiveness of rankers are more
likely to be affected compared to retrievers. Hence, we argue that
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Methods AA SF NQ Fe Qu HQ FQ CF BA SD T2 TN S1 DB NF R0 TC BEIR Wiki+News

RankT5base 0.323 0.750 0.565 0.826 0.814 0.732 0.414 0.255 0.541 0.174 0.383 0.439 0.299 0.448 0.375 0.525 0.782 0.508 0.557
- w/ RM3 0.330 0.722 0.546 0.817 0.831 0.689 0.377 0.257 0.473 0.165 0.360 0.443 0.291 0.393 0.358 0.481 0.746 0.487 0.539
- w/ query2doc 0.271 0.671 0.511 0.810 0.749 0.640 0.300 0.184 0.358 0.140 0.275 0.419 0.231 0.367 0.331 0.447 0.716 0.437 0.502
- w/ query2keyword 0.315 0.739 0.546 0.841 0.807 0.725 0.381 0.257 0.500 0.168 0.353 0.470 0.280 0.398 0.365 0.496 0.741 0.493 0.556
- w/ Ours 0.324 0.752 0.577 0.846 0.822 0.744 0.412 0.261 0.542 0.176 0.390 0.454 0.292 0.452 0.377 0.541 0.781 0.514* 0.570*

MonoT5base 0.242 0.713 0.553 0.808 0.785 0.705 0.364 0.216 0.495 0.161 0.406 0.417 0.286 0.423 0.312 0.415 0.685 0.470 0.519
- w/ RM3 0.249 0.698 0.544 0.817 0.799 0.666 0.354 0.219 0.453 0.156 0.390 0.427 0.291 0.412 0.314 0.396 0.632 0.465 0.511
- w/ query2doc 0.188 0.640 0.508 0.784 0.353 0.594 0.302 0.108 0.353 0.127 0.339 0.398 0.242 0.368 0.293 0.391 0.590 0.392 0.459
- w/ query2keyword 0.232 0.697 0.542 0.828 0.774 0.702 0.341 0.215 0.449 0.156 0.378 0.453 0.284 0.397 0.293 0.359 0.642 0.455 0.517
- w/ Ours 0.240 0.720 0.569 0.831 0.793 0.719 0.369 0.223 0.499 0.163 0.404 0.431 0.288 0.443 0.313 0.420 0.671 0.476* 0.532*

Table 2: nDCG@10 scores on BEIR. TC=TREC-COVID, NF=NFCorpus, NQ=NaturalQuestions, HQ=HotpotQA, FQ=FiQA,
AA=ArguAna, T2=Touché-2020, Qu=Quora, DB=DBPedia, SD=SCIDOCS, Fe=FEVER, CF=Climate-FEVER, SF=SciFact,
S1=Signal-1M, BA=BioASQ, R0=Robust04, TN=TREC-NEWS. ∗: pass the paired t-test against the other baselines (𝑝 < 0.01).

it is necessary to add a filtering stage in this framework to remove
noisy keywords and increase the reliability of the expansion. We
leverage self-consistency [42] in LLM literature for filtering. For
LLM-based keyword generation methods which involves stochas-
ticity, we repeat the keyword generation method multiple times
and select the top-k keywords that have the highest majority votes
(i.e., frequency). For deterministic methods like RM3, we simply
take the keywords with the highest RM3 keyword weights.

3.3 Minimally-Disruptive Query Modification
Oneway to insert keywords is to directly concatenate themwith the
query. The concatenation functionwe use is “Question:𝑞𝑤1𝑤2 ...𝑤𝑖

Document: 𝑑”. However, as mentioned in Section 1, the increasing
number of keywords or excessively long expansion may overwhelm
the original query, especially for cross-encoder models which rely
more on query-document token-interaction. In Section 4, we will
show that even increasing the number of keywords to 3 will result
in degraded precision. To mitigate the distributional shift in query,
another way is to concatenate each keyword individually with the
query and fuse the final ranking results together [22]. Inserting
only 1 keyword is the minimally-disruptive expansion we found
for cross-encoder, which is proved to be very robust on multiple
datasets. Specifically, the new similarity scoring function will be:

𝑠 (𝑞, 𝑑) =
∑
𝑖

𝛼𝑖 · 𝜙 (concat(𝑞,𝑤𝑖 , 𝑑)), (2)

where the concatenation function concat(𝑞,𝑤𝑖 , 𝑑) is implemented
as “Question: 𝑞 𝑤𝑖 Document: 𝑑” and 𝛼𝑖 is the weight for the expan-
sion𝑤𝑖 . We find this formulation more effective than concatenating
all keywords at once as the number of keywords increases.

Previous works [4, 47] have also found that ensembling runs
from different models or data augmentation can be effective for
ranking. After obtaining the candidate keywords, we concatenate
each keyword independently with the original query and then
feed it in the cross-encoder ranker model to rerank the top-1000
candidate documents retrieved by BM25 to get a ranked list. For the
fusion weights in Equation (2), we follow the previous work [10, 12]
to weight the ranked lists using the reciprocal rank of the top-1
document in retrieved list: 𝛼𝑖 = 1

Rank(𝑑+,𝐷𝑖 ) where Rank(𝑑
+, 𝐷𝑖 ) is

the rank of the top-1 document 𝑑+ retrieved for the original query
in a candidate list of expansion𝑤𝑖 . Finally, we combine the ranking
list of the original query in case all the expansions are not helpful.

Methods DL19 DL20 BEIR Wiki+News

Q2D2K-fusion 0.751 0.752 0.514 0.570
Q2K-fusion 0.750 0.748 0.510 0.5628
PRF + D2K-fusion 0.745 0.733 0.510 0.565
RM3-fusion 0.741 0.737 0.510 0.560

Table 3: nDCG@10 score of Q2D2K, Q2K, RM3, and PRF +
D2K with fusion based on RankT5.

4 EXPERIMENTS
Models and Datasets. For the keyword generation, we use Flan-

PaLM2-S [14]. For cross-encoder ranking, we test two different
rankers: MonoT5 [28] and RankT5 [49]. We reproduce the MonoT5
model using the point-wise loss in Zhuang et al. [49]. For in-domain
evaluation, we evaluate on TREC DL 2019 and 2020 [11], containing
43 and 54 test queries, respectively. The relevance sets are densely
labelled with scores from 0 to 4. For out-of-domain evaluation, we
evaluate on 17 datasets from BEIR.

Evaluation. We report the nDCG@10 metric [18] as datasets in
BEIR and TREC DL are densely labeled, and the top-10 setting re-
flects the common use case in applications. As the LLM is fine-tuned
on instructions set which has large overlap with the Wikipedia and
News corpus in BEIR, we also report the average score on Natural
Questions, FEVER, Climate-FEVER, HotpotQA, TREC-News, and
Robust04 datasets (Wiki+News) besides the main score.

Inference Pipeline. We use BM25’s top-1000 retrieval results as
the candidates for reranking using Pyserini [21]. For RM3, we use
Pyterrier [26] to extract keywords from the retrieved documents.

For keywords generation method Q2D2K, we follow the instruc-
tion template in Promptagator [12] and ask Flan-PaLM2-S to gen-
erate 2 documents based on the query and then extract 5 keywords
for each document. We then repeat the process 3 times to obtain 30
keywords. For keyword generation method PRF + D2K, we replace
the generated documents by BM25 retrieved documents. By default,
we use Q2D2K as the keyword generation component. We then
run self-consistency and select the top-3 keywords from the key-
word candidates and concatenate each of them individually with
the query before feeding them into the ranker.

For fusion, we use the reciprocal ranks of the top-1 document
retrieved for the original query in each expansion’s reranked list
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Methods DL19 DL20 BEIR Wiki+News

RankT5base 0.737 0.736 0.508 0.557
+mean pooling 0.748 0.750 0.514 0.572
+reciprocal rank 0.751 0.751 0.514 0.573
+original query 0.751 0.752 0.514 0.570

MonoT5base 0.695 0.720 0.470 0.519
+mean pooling 0.700 0.727 0.471 0.533
+reciprocal rank 0.713 0.733 0.475 0.532
+original query 0.724 0.730 0.476 0.532

Table 4: Incremental ablation on the keyword fusion process.
Details are introduced in Section 5.

as weights. We finally fuse the aggregated expansion results with
the original reranking list from the cross-encoder ranker as regu-
larization, with a coefficient of 0.3. Coefficients range from 0.1 to
0.3 work similarly but not included due to space limit.

Results. Table 1 and 2 show the main results on TREC DL19/20
and BEIR benchmark, where directly applying the query expansion
pipeline in retrieval to cross-encoder ranker reranking results in
deteriorated effectiveness even with top-3 keyword concatenation,
while our method can improve over the original cross-encoder
ranker scores on both TREC DL and BEIR. The improvement on
TREC DL and Wiki+News BEIR datasets are more significant com-
pared to other datasets in BEIR, which results from the instruction
fine-tuning step of PaLM2 as previously mentioned.

5 ABLATION ANALYSIS
RQ1: Whether to use LLMs or PRF for keyword generation? To

compare the keyword generation quality of different methods, we
fix the keyword insertion and fusion procedure while varying the
keyword generation methods. Table 3 shows the comparison re-
sults. We can see that the keywords generation quality is reflected
in the nDCG@10 scores, where our Q2D2K method manages to
outperform other LLM or PRF based methods on DL 19/20 and
BEIR, reflecting higher keyword quality. Besides that, fusion is also
very important for maintaining cross-encoder ranker zero-shot
effectiveness which will be discussed in detail in RQ2.

RQ2: How to use these keyword expansions? Figure 1 plots the
number of keywords used for ranking fusion and its influence on
the final nDCG@10 score. We can see that the improvement of our
proposed method (which uses Reciprocal Rank Weighting) peaks at
3 expanded keywords and gradually diminishes with the addition of
more keywords. Although the generated keywords are useful, they
still bring noise which escalates as the keyword number increases.

Table 4 shows the ablation of the keyword fusion process, which
mainly includes ranking average, reciprocal rank weighting, and
combining with original query ranking results. Adding mean fusion
and reciprocal weighting consistently brings improvement to the
model. As for the original query fusion, we view it as an expansion
and combine its ranking with the other expansion’s ranking results
using a default value of 0.3 for zero-shot evaluation. The improve-
ment is less consistent as we did not perform hyper-parameter
search on the fusion coefficient due to zero-shot evaluation, but
instead use a default value of 0.3 for combining with the original

Methods DL19 DL20

Mean pooling 0.748 0.750
Reciprocal rank 0.751 0.751

Top-k overlap 0.741 0.750
Ranker’s entropy 0.729 0.746
KL divergence 0.741 0.749
WS distance 0.743 0.751

Table 5: Weighting methods for fusion on DL 19/20 based on
RankT5. nDCG@10 scores are reported.

1 2 3 4 5 6 7 8 9
Number of Keywords

0.62

0.64

0.66

0.68

0.70

0.72

0.74

0.76

ND
CG

@
10

Mean Pooling Reciprocal Rank Weighting Concatenation

Figure 1: nDCG@10 score on DL19 using different number
of keywords for RankT5.

query ranking results. Figure 1 also shows that fusion is more robust
compared to keyword concatenation as the keywords increase.

Table 5 shows different fusion methods we tried on TREC DL
19/20. Mean pooling and reciprocal rank weighting are reported in
Table 4. For top-k overlap, we take the overlap between the original
query’s candidate list and the other expansion’s candidate lists as
weights for 𝛼𝑖 in Equation (2). For ranker’s entropy, we normalized
the retrieved scores into a distribution for each expansion and use
the reciprocal entropy of the distribution as weights. For KL diver-
gence and Wasserstein distance, they are similar to the ranker’s
entropy except that they calculate the distances between the origi-
nal query’s distribution and the other expansion’s distributions. We
also take the reciprocal of this distance as weights for fusion. We
can see that among all the fusion techniques, the reciprocal rank
weighting method has the best nDCG@10 scores on both DL 19
and 20, demonstrating the robustness of this simple fusion method.

6 CONCLUSION
In this paper, we examine the possibility of improving the gener-
alization of cross-encoder rankers using query expansion based
on the study of Weller et al. [44]. Our solution is to leverage an
LLM to generate high-quality, concise keywords through a rea-
soning chain and individually evaluate the ranking scores of each
expansion before aggregating them together. We observe signifi-
cant improvement on BEIR and TREC DL 2019/2020 over directly
using the popular query expansion methods.
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