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Abstract
We are accustomed to thinking of computers as fail-stop, es-
pecially the cores that execute instructions, and most system
software implicitly relies on that assumption. During most of
the VLSI era, processors that passed manufacturing tests and
were operated within specifications have insulated us from
this fiction. As fabrication pushes towards smaller feature
sizes and more elaborate computational structures, and as
increasingly specialized instruction-silicon pairings are intro-
duced to improve performance, we have observed ephemeral
computational errors that were not detected during manu-
facturing tests. These defects cannot always be mitigated by
techniques such as microcode updates, and may be correlated
to specific components within the processor, allowing small
code changes to effect large shifts in reliability. Worse, these
failures are often “silent” – the only symptom is an erroneous
computation.

We refer to a core that develops such behavior as “mercu-
rial.” Mercurial cores are extremely rare, but in a large fleet
of servers we can observe the disruption they cause, often
enough to see them as a distinct problem – one that will re-
quire collaboration between hardware designers, processor
vendors, and systems software architects.

This paper is a call-to-action for a new focus in systems re-
search; we speculate about several software-based approaches
to mercurial cores, ranging from better detection and isolat-
ing mechanisms, to methods for tolerating the silent data
corruption they cause.
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1 Introduction
Imagine you are running a massive-scale data-analysis pipeline
in production, and one day it starts to give you wrong answers
– somewhere in the pipeline, a class of computations are yield-
ing corrupt results. Investigation fingers a surprising cause: an
innocuous change to a low-level library. The change itself was
correct, but it caused servers to make heavier use of otherwise
rarely-used instructions. Moreover, only a small subset of the
server machines are repeatedly responsible for the errors.

This happened to us at Google. Deeper investigation re-
vealed that these instructions malfunctioned due to manu-
facturing defects, in a way that could only be detected by
checking the results of these instructions against the expected
results; these are “silent" corrupt execution errors, or CEEs.
Wider investigation found multiple different kinds of CEEs;
that the detected incidence is much higher than software engi-
neers expect; that they are not just incremental increases in
the background rate of hardware errors; that these can mani-
fest long after initial installation; and that they typically afflict
specific cores on multi-core CPUs, rather than the entire chip.
We refer to these cores as “mercurial."

Because CEEs may be correlated with specific execution
units within a core, they expose us to large risks appearing
suddenly and unpredictably for several reasons, including
seemingly-minor software changes. Hyperscalers have a re-
sponsibility to customers to protect them against such risks.
For business reasons, we are unable to reveal exact CEE rates,
but we observe on the order of a few mercurial cores per
several thousand machines – similar to the rate reported by
Facebook [8]. The problem is serious enough for us to have
applied many engineer-decades to it.

While we have long known that storage devices and net-
works can corrupt data at rest or in transit, we are accustomed
to thinking of processors as fail-stop. VLSI has always de-
pended on sophisticated manufacturing testing to detect defec-
tive chips. When defects escaped, or manifested with aging,
they were assumed to become fail-stop or at least fail-noisy:
triggering machine-checks or giving wrong answers for many
kinds of instructions. When truly silent failures occurred, they
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were typically obscured by the undiagnosed software bugs
that we always assume lurk within a code base at scale.

Why are we just learning now about mercurial cores? There
are many plausible reasons: larger server fleets; increased at-
tention to overall reliability; improvements in software devel-
opment that reduce the rate of software bugs. But we believe
there is a more fundamental cause: ever-smaller feature sizes
that push closer to the limits of CMOS scaling, coupled with
ever-increasing complexity in architectural design. Together,
these create new challenges for the verification methods that
chip makers use to detect diverse manufacturing defects – es-
pecially those defects that manifest in corner cases, or only
after post-deployment aging.

While the assumption of fail-stop CPUs has always been
a fiction, we can no longer ignore the CEE problem. The
problem will continually get harder, as we continue to push
the limits on silicon, and innovate with architectural solutions
to the clock-speed wall created by the end of Moore’s Law.
The trade-off between performance and hardware reliability
is becoming more difficult, and prudence demands that we
not rely on chip vendors to always get it right. Moreover,
there is already a vast installed base of vulnerable chips, and
we need to find scalable ways to keep using these systems
without suffering from frequent errors, rather than replacing
them (at enormous expense) or waiting several years for new,
more resilient hardware. We are also entering an era in which
unreliable hardware increasingly fails silently rather than fail-
stop, which changes some of our fundamental assumptions.

This is a new opportunity for operating systems researchers;
in this paper we describe the context for, scale of, and risks
due to this challenge, and suggest avenues to address two ma-
jor challenges: how to rapidly detect and quarantine mercurial
cores, and how to create more resilience to tolerate CEEs.
(“Make the hardware better” is a good topic for a different
paper.)

1.1 CEEs vs. Silent Data Corruption
Operators of large installations have long known about “Silent
Data Corruption” (SDC), where data in main memory, on disk,
or in other storage is corrupted during writing, reading, or at
rest, without immediately being detected.

In §8 we will discuss some of the SDC literature in more
detail, but until recently, SDCs have primarily been ascribed
to random causes such as alpha particles and cosmic rays, and
intentional practices such as overclocking. We view SDCs
as symptoms, with high-rate CEEs as a new cause of SDCs,
creating new challenges for system software.

2 Impacts of mercurial cores
We have observed various kinds of symptoms caused by mer-
curial cores. We classify them below, in increasing order of
risk they present:

• Wrong answers that are detected nearly immediately,
through self-checking, exceptions, or segmentation faults,
which might allow automated retries.

• Machine checks, which are more disruptive.
• Wrong answers that are detected, but only after it is too

late to retry the computation.
• Wrong answers that are never detected.
Often, defective cores appear to exhibit both wrong re-

sults and exceptions. Wrong answers that are not immediately
detected have potential real-world consequences: these can
propagate through other (correct) computations to amplify
their effects – for example, bad metadata can cause the loss of
an entire file system, and a corrupted encryption key can ren-
der large amounts of data permanently inaccessible. Errors in
computation due to mercurial cores can therefore compound
to significantly increase the blast radius of the failures they
can cause.

Our understanding of CEE impacts is primarily empirical.
We have observations of the form “this code has miscomputed
(or crashed) on that core." We can control what code runs
on what cores, and we partially control operating conditions
(frequency, voltage, temperature, or “f, V, T”).1 From this,
we can identify some mercurial cores. But because we have
limited knowledge of the detailed underlying hardware, and
no access to the hardware-supported test structures available
to chip makers, we cannot infer much about root causes. Even
worse, we cannot always detect bad computations immedi-
ately.

We have a modest corpus of code serving as test cases, se-
lected based on intuition we developed from experience with
production incidents, core-dump evidence, and failure-mode
guesses. This corpus includes real-code snippets, interesting
libraries (e.g., compression, hash, math, cryptography, copy-
ing, locking, fork, system calls), and specially-written tests,
some of which came from CPU vendors. However, we lack a
systematic method of developing these tests.

We have observed defects scattered across many functions,
though there are some general patterns, along with many ex-
amples that (so far) seem to be outliers. Failures mostly appear
non-deterministically at variable rate. Faulty cores typically
fail repeatedly and intermittently, and often get worse with
time; we have some evidence that aging is a factor. In a multi-
core processor, typically just one core fails, often consistently.
CEEs appear to be an industry-wide problem, not specific to
any vendor, but the rate is not uniform across CPU products.

Corruption rates vary by many orders of magnitude (given
a particular workload or test) across defective cores, and
for any given core can be highly dependent on workload
and on f, V, T. In just a few cases, we can reproduce the

1Modern CPUs tightly couple f and V; these are not normally independently
adjustable by users, while T is somewhat controllable.
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errors deterministically; usually the implementation-level and
environmental details have to line up. Data patterns can affect
corruption rates, but it’s often hard for us to tell.

Some specific examples where we have seen CEE:
• Violations of lock semantics leading to application data

corruption and crashes.
• Data corruptions exhibited by various load, store, vector,

and coherence operations.
• A deterministic AES mis-computation, which was “self-

inverting”: encrypting and decrypting on the same core
yielded the identity function, but decryption elsewhere
yielded gibberish.

• Corruption affecting garbage collection, in a storage sys-
tem, causing live data to be lost.

• Database index corruption leading to some queries, de-
pending on which replica (core) serves them, being non-
deterministically corrupted.

• Repeated bit-flips in strings, at a particular bit position
(which stuck out as unlikely to be coding bugs).

• Corruption of kernel state resulting in process and kernel
crashes and application malfunctions.

CEEs are harder to root-cause than software bugs, which
we usually assume we can debug by reproducing on a different
machine.

3 Are mercurial cores a novel problem?

There has always been unreliability in the bottom layer of our
storage and networking stacks. We have solved storage-failure
problems via redundancy, using techniques such as erasure
coding, ECC, or end-to-end checksums; generally these do
not require large increases in hardware costs or latencies. For
media prone to wear-out, we can isolate bad sectors/pages
and remap accesses to preserve the utility of the medium, and
“scrub” storage to detect corruption-at-rest [21].

Similarly, to cope with corrupted bits on network links,
we use coding schemes (such as CRCs) to detect errors, and
retransmissions to keep trying in the hope that the same error
won’t strike twice.

Why are computational errors a harder problem? First,
because with storage and networking, the “right result” is
obvious and simple to check: it’s the identity function. That
enables the use of coding-based techniques to tolerate moder-
ate rates of correctable low-level errors in exchange for better
scale, speed, and cost.

Detecting CEEs, conversely, naively seems to imply a fac-
tor of two of extra work. Automatic correction seems to pos-
sibly require triple work (e.g. via triple modular redundancy).
(§6 and §7 cover detection and mitigation, respectively.) And
most computational failures cannot be addressed by coding;
some can be handled using a different approach [2].

Storage and networking can better tolerate low-level er-
rors because they typically operate on relatively large chunks
of data, such as disk blocks or network packets. This al-
lows corruption-checking costs to be amortized, which seems
harder to do at a per-instruction scale.

4 The right metrics

Improvements in system reliability are often driven by metrics,
but we have struggled to define useful metrics for CEE. Here
are some potential metrics and challenges:
• The fraction of cores (or machines) that exhibit CEEs.

Challenge: depends on test coverage (especially in the
face of “zero-day” CEEs– those that cause corruption be-
fore we know to test for them), how many cycles devoted
to testing, and the ongoing arrival of new kinds of CPU
parts in the population.

• Age until onset. Challenge: if many CEEs stay latent
until chip have been in use for several years, this metric
depends on how long you can wait, and requires continual
screening over a machine’s lifetime.

• Rate and nature of application-visible corruptions – how
often does a CEE corrupt the results of a “real” workload?
And are corruptions “sticky,” in the sense that one CEE
propagates through subsequent computations to create
multiple application errors? Challenge: more a property
of programs than of CEEs.

Assuming metrics can be defined, quantifying their values
in practice is also difficult and expensive, because it requires
running tests on many machines, potentially for a long time,
before one can get high-confidence results – we don’t even
know yet how many or how long, and the order in which the
tests are run and swept through the (f, V, T) space can impact
time-to-failure.

To limit the resources used, we should represent the com-
plexity of real-application software in a concise set of tests.
Given our poor understanding of what software constructs
trigger CEEs, today this is hit-or-miss. Because seemingly-
small changes to software appear to cause significant changes
in the CEE rates for real workloads, today we don’t know
how to create a small set of tests that will reliably measure
these rates.

Can we develop a model for reasoning about acceptable
rates of CEEs for different classes of software, and a model for
trading off the inaccuracies in our measurements of these rates
against the costs of measurement? We have always tolerated
a few errors, but mercurial cores make these questions more
pressing. Many applications might not require zero-failure
hardware, but then, what is the right target rate? Could we
set this so that the probability of CEE is dominated by the
inherent rate of software bugs or undetected memory errors?
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How can we assess the risks to a large fleet, with various CPU
types, from several vendors, and of various ages?

5 What causes mercurial cores?

We understand some reasons why testing of CPU cores ap-
pears to have become more porous, and we can speculate
about others:
• Steady increases in CPU scale and complexity.
• Silicon feature sizes are now measured in nanometers,

leaving smaller margins for error [16], and perhaps more
risk of post-burnin (latent) failures.

• Novel techniques, such as stacked layers, add complexity
and manufacturing risks.

• CPUs are gradually becoming sets of discrete accelerators
around a shared register file. This makes some CEEs
highly specific in the behavior they disrupt, while the
majority of the core remains correct, so there is a larger
surface of behaviors to verify.

Temperature, frequency, and voltage all play roles, but
their impact varies: e.g., some mercurial core CEE rates
are strongly frequency-sensitive, some aren’t. Dynamic Fre-
quency and Voltage Scaling (DFVS) causes frequency and
voltage to be closely related in complex ways, one of sev-
eral reasons why lower frequency sometimes (surprisingly)
increases the failure rate.

We have found more than one case where the same mer-
curial core manifests CEEs both with certain data-copy op-
erations and with certain vector operations. We discovered
that both kinds of operations share the same hardware logic,
but often the mapping of instructions to possibly-defective
hardware is non-obvious.

In some ways, mercurial cores can be analogous to Spectre
and Meltdown [14], in that implementation details are leaking
past the architectural specification. But those problems are
not manufacturing defects; they are present in every chip
rather than silently arising at random, and perhaps they can
be avoided in future designs now that we know how to think
carefully about speculative execution [24]. It might (or might
not) be possible to design hardware that is similarly resistant
to CEE – that is an open research question. In either case,
the short-term solutions might require us to avoid certain
hardware features that make software run faster.

We hope that vendors will find cost-effective ways to pro-
vide high-confidence verification, restoring us to a world
where the mercurial-core rate is vanishingly small, but we
probably cannot count on that, especially for defects that ap-
pear late-in-life. As long as there is a non-negligable risk of
CEEs, we will need at least an early-warning system, built on
the detection mechanisms we discuss in the next section.

6 Detecting and isolating mercurial cores
Given our belief that mercurial cores will be a fact of life for
the foreseeable future, the first line of defense is necessarily a
robust infrastructure for detecting mercurial cores as quickly
as possible; in effect, testing becomes part of the full lifecycle
of a CPU, not just an issue for vendors or burn-in testing. If
we can detect mercurial cores, we can then (§6.1) isolate them,
to prevent further damage and to support deeper analysis.

Hardware-based detection can work; e.g., some systems
use pairs of cores in “lockstep” to detect if one fails, on the
assumption that both failing at once is unlikely [26]. But in
this paper we assume existing hardware and focus on software-
based detection.

Mercurial-core detection is challenging because it inher-
ently involves a tradeoff between false negatives or delayed
positives (leading to failures and data corruption), false pos-
itives (leading to wasted cores that are inappropriately iso-
lated), and the non-trivial costs of the detection processes
themselves.

We categorize detection processes on several axes: (1) auto-
mated vs. human; (2) pre-deployment vs. post-deployment; (3)
offline vs. online; and (4) infrastructure-level vs. application-
level.
Automated vs. human screening: Ideally, mercurial-core
detection would be fully automated, for scale, cost, and accu-
racy. We, like many enterprises, regularly run various auto-
mated screening mechanisms on our fleet.

However, the complexity-related causes of mercurial cores
suggests that there will occasionally be novel manifestations
of CEE, which will have to be root-caused by humans.2 The
humans running our production services identify a lot of sus-
pect cores, in the course of incident triage, debugging, and so
forth. In our recent experience, roughly half of these human-
identified suspects are actually proven, on deeper investiga-
tion, to be mercurial cores – we must extract “confessions”
via further testing (often after first developing a new automat-
able test). The other half is a mix of false accusations and
limited reproducibility.

We currently exploit several different kinds of automatable
“signals” indicating the possible presence of CEEs, especially
when we can detect core-specific patterns for these signals.
These include crashes of user processes and kernels and anal-
ysis of our existing logs of machine checks. Code sanitizers in
modern tool chains (e.g., Address Sanitizer [22]), capable of
detecting memory corruption (e.g. buffer-overflow, use-after-
free), also provide useful signals. Recidivism – repeated sig-
nals from the same core – increases our confidence that a core
is mercurial. One might conceivably improve reproducibility

2Dixit et al. [8] describe in detail how they root-caused a specific case of
CEE.
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and triage based on inferences from known implementation
details.
Pre-deployment vs. post-deployment screening: CPU man-
ufacturers can do quite a lot of automated testing before they
ship chips to customers, but clearly this can be improved. Chip
makers do not have easy access to diverse large-scale work-
loads they can directly observe to learn about shortcomings
in their testing. Without such a feedback loop, their testing is
at best “self consistent,” catching a high fraction of what was
modeled. We will need to broaden the set of tests that depend
on operating environment and/or workload, and either find a
way to “upstream” these tests to the manufacturers, or to add
them to the acceptance testing and burn-in processes that are
already common among customers of chip vendors.

Not all mercurial-core screening can be done before CPUs
are put into service – first, because some cores only become
defective after considerable time has passed, and second, be-
cause new tests might be developed, in response to newly-
discovered defect modes, after deployment. Our regular fleet-
wide testing has expanded to new classes of CEEs as we and
our CPU vendors discover them, still a few times per year.
Offline vs. online screening: Post-deployment testing can
either be done when the CPU or core is “offline” (not schedu-
lable for real tasks) or online, using spare cycles as a low-
priority task. Online screening, when it can be done in a way
that does not impact concurrent workloads, is free (except for
power costs), but cannot always provide complete coverage
of all cores or all symptoms.

Offline screening can be more intrusive and can be sched-
uled to ensure coverage of all cores, and could involve ex-
posing CPUs to operating conditions (f, V, T) outside normal
ranges. However, draining a workload from the core (or CPU)
to be tested can be expensive, especially if machine-specific
storage must be migrated when the corresponding tasks are
migrated.
Infrastructure-level vs. application-level screening: Tests
to detect CEE can either be carried out by the infrastruc-
ture (operating system and daemon processes) or, in some
cases, online by the applications themselves. Infrastructure-
level screening can be more pervasive, can detect bugs in
privileged execution, and places less burden on application
authors. However, application-level screening can be more
focused, more easily fine-tuned, and can enable application-
level mitigations (see §7).

Many of our applications already checked for SDCs; this
checking can also detect CEEs, at minimal extra cost. For
example, the Colossus file system [13] protects the write
path with end-to-end checksums. The Spanner distributed
database [7] uses checksums in multiple ways. Other systems
execute the same update logic, in parallel, at several replicas
to avoid network dependencies and for fail-stop resilience,
and we can exploit these dual computations to detect CEEs.

We also use self-screening mechanisms in some cryptographic
applications.

One of our particularly useful tools is a simple RPC ser-
vice that allows an application to report a suspect core or
CPU. Reports that are evenly spread across cores probably
are not CEEs; reports from multiple applications that appear
to be concentrated on a few cores might well be CEEs, and
become grounds for quarantining those cores, followed by
more careful checking.

Fig. 1 shows both user-reported and automatically-reported
rates for CEE incidents per machine in our fleet (normalized
to an arbitrary baseline). The rate seen by our automatic
detector is gradually increasing, but we do not know if this
reflects a change in the underlying rate.

Figure 1: Reported CEE rates (normalized)

6.1 Isolation techniques
It is relatively simple for existing scheduling mechanisms to
remove a machine from the resource pool; isolating a specific
core could be more challenging, because it undermines a
scheduler assumption that all machines of a specific type have
identical resources. Shalev et al. [23] described a mechanism
for removing a faulty core from a running operating system.

More speculatively, one might identify a set of tasks that
can run safely on a given mercurial core (if these tasks avoid a
defective execution unit), avoiding the cost of stranding those
cores. It is not clear, though, if we can reliably identify safe
tasks with respect to a specific defective core.

7 Mitigating CEEs
Although today we primarily cope with mercurial cores by
detecting and isolating them as rapidly as possible, that does
not always avoid application impact, and detection is unlikely
to be perfect. Can we design software that can tolerate CEEs,
without excessive overheads?

We suspect automatic mitigations are likely to follow from
several starting points:
• Placing some burden on application-specific mechanisms,

applying the “End-to-End Argument” [20], which states
correctness is often best checked at the endpoints rather
than in lower-level infrastructure.

• System support for efficient checkpointing, to recover
from a failed computation by restarting on a different
core.
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• Cost-effective, application-specific detection methods, to
decide whether to continue past a checkpoint or to retry
– e.g., computing an invariant over a database record to
check for its corruption (likewise, for filesystem meta-
data) before committing a transaction. Blum and Kan-
nan [2] discussed some classes of algorithms for which
efficient checkers exist.

For example, one could run a computation on two cores, and
if they disagree, restart on a different pair of cores from a
checkpoint.

One well-known approach is triple modular redundancy [15],
where the same computation is done three times, and (under
the assumption that at most one fails) majority-voting yields
a reliable result. Perhaps a compiler could automatically repli-
cate computations to three cores, and use techniques from the
deterministic-replay literature [4] to choose the largest possi-
ble computation granules (i.e., to cope with non-deterministic
inputs and to avoid externalizing unreliable outputs). How-
ever, this relies on the voting mechanism itself being reliable.

All the methods we can imagine appear to have significant
resource costs, for duplicated computation and/or storage.
Since our software systems already replicate some compu-
tations for reasons unrelated to CEEs, triple replication for
mitigating CEEs in critical code does not always triple the
existing costs. However, certain computations are critical
enough that we are willing to pay the overheads of double or
even triple computation.

To allow a broader group of application developers to lever-
age our shared expertise in addressing CEEs, we have devel-
oped a few libraries with self-checking implementations of
critical functions, such as encryption and compression, where
one CEE could have a large blast radius.

7.1 Hardware mitigations
CEEs cannot be fully mitigated in software; systems researchers
must work with hardware designers and vendors towards more
robust hardware, including:
• Design-for-test, to make it easier to detect cores with

subtle manufacturing defects, and exposing these test fea-
tures to end users (for “scrubbing” in-service machines);

• Continuous verification, where functional units always
check their own results;

• Conservative design of critical functional units, trad-
ing some extra area and power for reliability. For example,
the IBM z990 apparently had duplicated pipelines and
custom changes to cache controllers to make them more
resilient; these changes increased the instruction cycle
time [9].

Such hardware features, while they add costs, might still be
much more efficient than replicating computations in soft-
ware.

We believe systems researchers can also help CPU design-
ers to re-think the machine-check architecture of modern
processors, which today does not handle CEEs well, and to
improve CPU telemetry (and its documentation!) to make it
far easier to detect and root-cause mercurial cores.

8 Related work
Dixit et al. [8] recently published their experiences with CEEs
at Facebook; their observations are consistent with ours. Their
paper focused on the challenge of root-causing an application
failure to a CEE.

The high-performance computing community has done
a lot of work on silent data corruption caused by random
events such as alpha particles and cosmic rays, especially
those affecting storage (DRAM, registers, disks, SSDs). Fang
et al. [10] discussed a systems approach to SDCs. Other
papers describe SDC-resilience for sorting algorithms [11]
and matrix factorization [27], and radiation-induced SDCs in
GPUs [25]. We did not find prior work related to mercurial
cores in HPC.

Bartlett et al. [1] presented principles behind their fault-
tolerant operating systems, most of which would also apply to
CEE-tolerant software. Byzantine fault tolerance [3] has been
proposed as a means for providing resilience against arbitrary
non-fail-stop errors [6]; BFT might be applicable to CEEs in
some cases.

Rinard et al. [19] described “failure-oblivious” techniques
for systems to keep computing across memory errors; it is not
clear if these would work for CEEs.

Gunawi et al. [12] discussed the prevalence of hardware
“performance faults” (not correctness errors); they noted “We
find processors are quite reliable and do not self-inflict fail-
slow mode,” which seems to be contradicted by our more-
recent experience with CEEs.

Nightingale et al. [17] analyzed hardware failures from
consumer PCs, and briefly speculated about designing an
“operating system designed with faulty hardware as a first-
order concern.” They did not discuss CEEs; perhaps their data
was insufficient to detect these (or perhaps the CPUs from a
decade ago did not yet exhibit CEEs).

Much prior work (e.g., [5, 18]) addresses transient errors
in high-noise environments (e.g., automobiles). These differ
from CEEs in that they do not differentially affect a small,
semi-stable subset of cores; even so, some approaches might
work in both domains.

9 Next steps and research directions
Do you have to be a hyperscaler to do research in this area?
We hope not, although that in itself is an interesting challenge.
Perhaps hyperscalers who isolate mercurial-core servers from
their fleets could make these available to researchers, thereby
removing the need to buy lots of servers to study just a few
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cases. Access could be via IaaS (as VMs or bare-metal cloud),
with mechanisms to avoid accidentally assigning mercurial
cores to unsuspecting cloud customers (or triggering VM
breakouts).

We might be able to develop cycle-level CPU simulators
that allow injection of known CEE behavior, or even finer-
grained simulators that inject circuit-level faults likely to lead
to CEE. Similarly, we could develop fault injectors for testing
software resilience on real hardware.

One way in which the systems research community can
contribute is to develop methods to detect novel defect modes,
and to efficiently record sufficient forensic evidence across
large fleets.

Perhaps compilers could detect blocks of code whose cor-
rect execution is especially critical (via programmer anno-
tations or impact analysis), and then automatically replicate
just these computations. More generally, can we extend the
class of SDC-resilient algorithms beyond sorting and matrix
factorization [11, 27]? That prior work evaluated algorithms
using fault injection, a technique that does not require access
to a large fleet.

Much computation is now done not just on traditional
CPUs, but on accelerator silicon such as GPUs, ML accelera-
tors, P4 switches, NICs, etc. Often these accelerators push the
limits of scale, complexity, and power, so one might expect
to see CEEs in these devices as well. There might be novel
challenges in detecting and mitigating CEEs in non-CPU
settings.
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