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Here we explore which heuristic quantum algorithms for combinatorial optimization might be most
practical to try out on a small fault-tolerant quantum computer. We compile circuits for several variants
of quantum-accelerated simulated annealing including those using qubitization or Szegedy walks to quan-
tize classical Markov chains and those simulating spectral-gap-amplified Hamiltonians encoding a Gibbs
state. We also optimize fault-tolerant realizations of the adiabatic algorithm, quantum-enhanced popu-
lation transfer, the quantum approximate optimization algorithm, and other approaches. Many of these
methods are bottlenecked by calls to the same subroutines; thus, optimized circuits for those primitives
should be of interest regardless of which heuristic is most effective in practice. We compile these bottle-
necks for several families of optimization problems and report for how long and for what size systems
one can perform these heuristics in the surface code given a range of resource budgets. Our results dis-
courage the notion that any quantum optimization heuristic realizing only a quadratic speedup achieves an
advantage over classical algorithms on modest superconducting qubit surface code processors without sig-
nificant improvements in the implementation of the surface code. For instance, under quantum-favorable
assumptions (e.g., that the quantum algorithm requires exactly quadratically fewer steps), our analysis sug-
gests that quantum-accelerated simulated annealing requires roughly a day and a million physical qubits
to optimize spin glasses that could be solved by classical simulated annealing in about 4 CPU-minutes.
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I. INTRODUCTION

The prospect of quantum-enhanced optimization has
driven much interest in quantum technologies over the
years. This is because discrete optimization problems are
ubiquitous across many industries and faster solutions
could potentially revolutionize fields as broad as logis-
tics, finance, machine learning, and more. Since com-
binatorial optimization problems are often NP hard, we
do not expect that quantum computers can provide effi-
cient solutions in the worst case. Rather, the hope is
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that there may exist ensembles of instances with struc-
ture that enable a significant quantum speedup on average,
or for which a quantum computer can approximate better
solutions.

Among the most studied algorithms for quantum opti-
mization are those that can function as heuristics. The
objective of a heuristic algorithm is to produce a solution
given a reasonable amount of computational resources that
is “good enough” (or at least the best one can afford) for
solving the problem at hand. While heuristics are often
able to efficiently find the exact solution, sometimes they
might fail to do so and instead only approximate the exact
solution (potentially in an uncontrolled fashion). But such
techniques are still valuable because finding some usable
result does not require a prohibitively long time. Accord-
ingly, heuristics are often used without regard for rigorous
bounds on their performance. Indeed, the NP hardness of
many combinatorial optimization problems makes heuris-
tics the only viable option for many problems that need to
be routinely solved in real-world applications.
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While some heuristic algorithms have a strong theoret-
ical basis, many of the most effective heuristics are based
on intuitive principles and then honed empirically through
data and experimentation. However, today, our ability to
evaluate quantum heuristics through experimentation is
limited since the only available quantum computers are
small and noisy [1]. We can perform numerics on small
instances but extrapolation from those small system size
numerics can be potentially misleading [2]. Still, it is rea-
sonable to ask the question: what are some of the most
compelling quantum heuristics for optimization that we
want to attempt on a small fault-tolerant quantum com-
puter, and how many resources are required to implement
their primitives?

There are many prominent approaches to combinato-
rial optimization on a quantum computer. These include
variants of Grover’s algorithm [3,4], quantum annealing
[5,6], adiabatic quantum computing [7,8], the shortest-
path algorithm [9], quantum-enhanced population transfer
[10,11], the quantum approximate optimization algorithm
[12], quantum versions of classical simulated annealing
[13,14], quantum versions of backtracking [15,16] as well
as branch and bound techniques [17], among many oth-
ers. While often these works focus on the asymptotic
scaling of exact quantum optimization, in many cases
one can use these algorithms heuristically through trivial
modifications of the approach. For instance, the quantum
adiabatic algorithm requires that one evolve the system for
an amount of time scaling polynomially with the inverse of
the minimum spectral gap of the adiabatic evolution. How-
ever, one can instead use this algorithm as a heuristic by
choosing to evolve for a much shorter amount of time, and
hoping for the best (this is similar to the strategy usually
employed with quantum annealing).

What essentially all forms of quantum optimization have
in common is the requirement that the quantum algorithm
query some function of the cost function of interest. This
is how the quantum computer accesses information about
the energy landscape. For instance, if our cost function is
H and H |x〉 = Ex |x〉 so that Ex is the value of the cost
function for bit string |x〉, then often we need to phase the
computational basis by a function f (·) of Ex, e.g.,

∑
x

ax |x〉 �→
∑

x

e−if (Ex)ax |x〉 . (1)

For example, f (Ex) ∝ Ex is required to implement the
quantum approximate optimization algorithm, quantum-
enhanced population transfer, digitized forms of quan-
tum annealing, and the shortest-path algorithm. Alterna-
tively, f (Ex) ∝ arccos(Ex) describes something related to
the quantum walk forms of those algorithms. If f (Ex) ∝
(−1)(Ex≤K) this primitive is the bottleneck subroutine for

amplitude amplification to boost our support on ener-
gies less than K . In most quantum approaches to opti-
mization, a unitary like this is interleaved with a much
cheaper operation, which does not commute with the
operation in Eq. (1). Some algorithms instead call for
simultaneously evolving under a function of the cost func-
tion together with a simple noncommuting Hamiltonian,
but still the bottleneck is usually the complexity of the
cost function Hamiltonian. The difference between many
of these algorithms often comes down to the choice of
f (·) and the choice of the much cheaper noncommuting
unitary.

The quantum algorithms for simulated annealing (e.g.,
Ref. [13]) work slightly differently as those algorithms
are based on making local updates to the wavefunc-
tion. For instance, the quantum version of a simulated
annealing algorithm that updates with single bit flips
requires

∑
x

ax |k〉 |x〉 |0〉 �→
∑

x

ax |k〉
[√

1 − f
(
Ex, Exk

) |x〉 |0〉

+
√

f
(
Ex, Exk

) |xk〉 |1〉
]

, (2)

where xk is defined as the bit string x with the kth bit
flipped, i.e., |xk〉 = NOTk |x〉, with k = 0 corresponding to
no bit flip. But again, these approaches are still typically
bottlenecked by our ability to compute these functions of
the cost function f (·).

This paper does not address the important question
of how well various heuristic quantum optimization
approaches might perform in practice. Rather, our main
motivation is to compile common bottleneck primitives for
these approaches to quantum circuits suitable for execu-
tion on a small fault-tolerant quantum computer. In doing
this, we see that most contemporary approaches to quan-
tum optimization are actually bottlenecked by the same
subroutines [e.g., those required for Eqs. (1) and (2)],
and thus improved strategies for realizing those subrou-
tines are likely of interest regardless of which paradigm of
quantum optimization is ultimately found to be most effec-
tive in practice. In essentially all heuristic approaches to
quantum optimization there is a primitive that is repeated
many times in order to perform the optimization. Instead
of investigating how many times those primitives must be
repeated, we focus on the best strategies for realizing those
primitives within a fault-tolerant cost model. For all algo-
rithms we consider, we report the constant factors in the
leading-order scaling of the Toffoli and ancilla complexity
of these primitives.

For some algorithms studied, such as for the quantum
algorithms for simulated annealing, this work is the first
to give concrete implementations, which determine con-
stant factors in the scaling. In other cases our contribution
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is to optimize the scaling for certain problem Hamiltoni-
ans or improve details of the implementation. We focus
on Toffoli complexity since we imagine realizing these
algorithms in the surface code [18,19], where non-Clifford
gates such as Toffoli or T gates require considerably more
time (and physical qubits) to implement than Clifford
gates.

A. Overview of results

The goal of this paper is to estimate the performance of
an early universal quantum computer for key steps of com-
binatorial optimization. To achieve this goal, we consider
prominent heuristic-based methods for combinatorial opti-
mization on a quantum computer and how their key steps
could be executed on early hardware. We consider the fol-
lowing heuristic-based methods: amplitude amplification
[20] as a heuristic for optimization and in combination
with other approaches; quantum approximate optimization
algorithms (QAOA) [12]; time-evolution approaches such
as adiabatic algorithms [2] (including a variant incorpo-
rating a Zeno-like measurement [21]), quantum-enhanced
population transfer [11], and “shortest-path” optimization
[9]; and three quantum methods for simulated annealing
(QSA), namely, a Szegedy walk-based [22] implementa-
tion of Markov chain Monte Carlo [13], a qubitized form
of the Metropolis-Hastings approach [23], and simulation
of a spectral-gap-amplified Hamiltonian [14]. We review
existing approaches in detail and develop several new
methods or improvements. For each approach, we compile
the primitive operations into quantum circuits optimized
for execution in the surface code [19].

For concreteness, we focus our analysis on four families
of combinatorial optimization problems: the L-term spin
model, in which the Hamiltonian is specified as a real lin-
ear combination of L tensor products of Pauli-Z operators;
quadratic unconstrained binary optimization (QUBO),
which is an NP-hard special case of a two-local L-term spin
model; the Sherrington-Kirkpatrick (SK) model, which is a
model of spin-glass physics and an instance of QUBO that
has been well studied in the context of simulated annealing
[24]; and the low autocorrelation binary sequence (LABS)
problem, which is a problem with many terms but signifi-
cant structure that is known to be extremely challenging in
practice. For each of the above problems, we design sev-
eral methods of calculating the cost function on a quantum
computer depending on how a given algorithmic primitive
is supposed to query and process the cost of a candidate
solution. We present these methods in Sec. II.

Our analysis has produced several novel techniques that
yield improvements over previous approaches. We recount
the main ones here in order of appearance. In Sec. II A 2,
we reduce by a logarithmic factor the cost of calculating
the Hamming weight of a bit string using our method from
Ref. [25]. This new technique leads to improvements in

several other parts of our paper. In Sec. II E, we introduce
a new technique for evaluating costly arithmetic functions
when computational cost matters more than accuracy. Our
new technique is based on approximating the function
using linear interpolation between classically precomputed
points that can be accessed using quantum read-only mem-
ory (QROM) [26], or a new variant of QROM designed for
sampling at exponentially growing spacings.

In Sec. III B, we introduce a method of cost function
evaluation for QAOA based on amplitude estimation. This
technique gives a quadratic improvement over the original
approach. In Sec. III C, we introduce a heuristic method for
adiabatic optimization that is likely to be computationally
cheaper for some applications of early quantum computers,
although we do not expect an asymptotic advantage over
other state-of-the-art approaches. The idea is to simulate
the adiabatic path generated by the arccosine of the given
Hamiltonian, not by the Hamiltonian directly, by “strobo-
scopically” simulating time evolution with short time steps
produced by evolving under a qubitized walk.

In Sec. III D we give a new method for constructing
the Szegedy walk operator suggested in Ref. [13]. Our
key technique is a state preparation circuit that avoids
expensive on-the-fly calculations by using the techniques
introduced in Ref. [27]. In Sec. III E, we introduce an alter-
native method for executing the controlled qubit-rotation
step in the qubitized Metropolis-Hastings approach intro-
duced in Ref. [23]. Our approach is preferable in cases
where the Hamiltonian has a higher connectivity; i.e.,
when the probability of accepting a proposed transi-
tion depends on many bits in the candidate solution. In
those cases the approach of Ref. [23] have exponential
complexity. In Sec. III F, we give an explicit linear com-
bination of unitaries- (LCU) based oracle for the spectral-
gap-amplified Hamiltonian introduced in Ref. [14]. This
explicit oracle enables a cost analysis of the approach,
which we provide. Apart from assisting with our goal of
estimating early quantum computer performance, many of
these innovations produce asymptotic improvements to the
approaches we consider.

Having compiled the primitive operations of our chosen
approaches and established how to query cost functions for
our chosen problems, we are able to numerically estimate
the computational resources needed to execute these prim-
itives on a quantum computer. Based on our assumption
that the quantum computer is built from superconducting
qubits and employs the surface code to protect the compu-
tation from errors, we focus on minimizing the number of
ancilla qubits and non-Clifford gates that is required. This
approach is founded on the knowledge that non-Clifford
operations are significantly harder than Clifford operations
to perform in the surface code.

We summarize our ultimate findings in Tables I and II.
In Table I we provide the leading-order scaling of the num-
ber of Toffoli gates needed to perform an update using
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five of the heuristics that we consider for two benchmark
problems—LABS and SK. In Table II we give asymptotic
scalings for the two more general benchmark problems we
consider—the L-term spin model and QUBO. The scalings
are reproduced from Table VIII and presented in a simpli-
fied form where we assume that the working precision for
various calculations is a constant.

Table I also reproduces key figures from Tables IX and
X to show how we expect these estimated complexity
scalings translate into the runtime of an early quantum
computer. We show the estimated number of steps of the
chosen algorithmic primitive that could be executed in a
single day on a quantum computer for a problem size of
N = 256, a relatively small problem size that is reasonable
to execute with only a single Toffoli factory as we assume
in Tables IX and X. We also present the estimated num-
ber of physical qubits needed. Our estimation is based on
the assumption that the runtime of the quantum computer
is dominated by the cost of executing non-Clifford gates,
and so we have chosen to treat the Clifford operations
as free. Future researchers should plan to count Clifford
operations as more sophisticated compilers are developed
[28,29]. Such research could also allow for performance
assessment on other target architectures [30].

We find that, despite great efforts made to optimize
our compiled quantum circuits, the costs involved in
implementing heuristics for combinatorial optimization is
taxing for early quantum computers. Not surprisingly, to
implement problems between N = 64 and N = 1024 we
find that hundreds of thousands of physical qubits are
required when physical gate-error rates are on the order
of 10−4 and sometimes over a million are required for
physical gate-error rates on the order of 10−3. But even

more concerning is that the number of updates that we can
achieve in a day (given realistic cycle times for the error-
correcting codes) is relatively low, on the order of about
ten thousand updates for the smallest instances consid-
ered of the cheapest cost functions. With such overheads,
these heuristics need to yield dramatically better improve-
ments in the objective function per step than classical
optimization heuristics. From this we conclude that, bar-
ring significant advances in the implementation of the
surface code (e.g., much faster state distillation), quantum
optimization algorithms offering only a quadratic speedup
are unlikely to produce any quantum advantage on the
first few generations of superconducting qubit surface code
processors.

B. Organization of paper

Our paper is divided into essentially two parts. In the
first part (Sec. II) we introduce and provide explicit com-
pilations for a wide variety of subroutine or “oracle”
circuits, which perform operations related to specific prob-
lem Hamiltonians. In the second part of our paper (Sec. III)
we describe a variety of heuristic algorithms for quan-
tum optimization and discuss how the oracle circuits of
Sec. II can be called in order to implement these algo-
rithms. We see that the same “oracle” circuits are required
by many algorithms. The results of Sec. III essentially pro-
vide query complexities to implement the primitives of
common quantum optimization heuristics with respect to
the oracles of Sec. II. Thus, while the results of Sec. II are
adapted to particular problem Hamiltonians, the results of
Sec. III are fairly general. We now describe our results in
slightly more detail.

TABLE I. We compare the cost of implementing various types of heuristics optimization primitives in a fault-toleration cost model.
For concreteness, we give results for two problems: the SK model and the LABS. We simplify the complexity scaling estimates from
Table VIII by treating as constant the bits of precision for numerical values. Note that depending how they are used, it might be
appropriate to scale the Hamiltonian walk steps by a factor of λ, which is roughly λSK ≈ N 2/2 and λLABS ≈ N 3/3. The numerical
values from Tables IX and X are based on a problem size of N = 256, a surface code cycle time of 1 μs, and a physical gate-error rate
of 10−3 (there are other assumptions as well, covered in more detail in Sec. IV).

(Tables IX and X) (Table VIII)

Problem Algorithm primitive Steps per day Physical qubits Toffoli count

SK Amplitude amplification (Sec. III A) 4.8 × 103 8.1 × 105 2N 2 + N+O(log N )
QAOA/first-order Trotter (Sec. III B) 4.7 × 103 8.6 × 105 2N 2 + 4N+O(1)

Hamiltonian walk (Sec. III C) 3.3 × 105 8.0 × 105 6N+O(log2 N )
QSA/qubitized (Sec. III E) 3.3 × 105 8.4 × 105 5N+O(log N )

QSA/gap amplification (Sec. III F) 3.9 × 105 8.4 × 105 5N+O(log N )
LABS Amplitude amplification (Sec. III A) 3.3 × 103 8.0 × 105 5N 2/2 + 7N/2+O(log N )

QAOA/first-order Trotter (Sec. III B) 3.4 × 103 8.4 × 105 5N 2/2+O(N )
Hamiltonian walk (Sec. III C) 4.9 × 105 8.0 × 105 4N+O(log N )

QSA/qubitized (Sec. III E) 1.7 × 103 8.8 × 105 5N 2+O(N )
QSA/gap amplification (Sec. III F) 1.7 × 103 8.8 × 105 5N 2+O(N )
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TABLE II. A brief summary of our results for the L-term spin model and QUBO; see Table VIII for details. We present the Toffoli
complexity of the algorithm primitives to leading order in the problem parameters. Our algorithms require the user to specify the
number of bits of precision at various stages of the algorithms, each of which are denoted in Table VIII by a parameter b with a
subscript indicating which step requires the specification. Here we simplify by supposing the user chooses a single parameter b that
dictates all these other precision parameters. Unlike in Table I, we do not estimate the runtime for these algorithm primitives on a fixed
problem size as doing so requires arbitrary choices about which instances to simulate.

Problem Algorithm primitive Toffoli count

L-term spin Amplitude amplification (Sec. III A) 2bL + N+O(b)
QAOA/first-order Trotter (Sec. III B) 1.15(log L + b)L+O(N + log L + b2)

Hamiltonian walk (Sec. III C) 3L+O(log L + b)
QSA/qubitized (Sec. III E) 4bL + N+O(log N + b2)

QSA/gap amplification (Sec. III F) 4bL + N+O(log N + b2)

QUBO Amplitude amplification (Sec. III A) bN 2+O(bN )
QAOA/first-order Trotter (Sec. III B) (1.15 log N + 0.575b)N 2+O(N 2)

Hamiltonian walk (Sec. III C) (2 log N + b)N+O(N )
QSA/qubitized (Sec. III E) (2b + 1)N+O(log N + b2)

QSA/gap amplification (Sec. III F) (2b + 1)N+O(log N + b2)

Section II details strategies for realizing five straightfor-
ward oracle circuits, which are detailed therein for each
of four problem Hamiltonians in Table IV. The specific
problems we focus on are introduced at the beginning
of Sec. II. These five oracles correspond to the follow-
ing: (Sec. II A) the direct computation of a cost function
into a quantum register, (Sec. II B) the computation of the
difference between the cost of two computational basis
states, which differ by a specific single bit, (Sec. III C)
an operation that phases the computational basis by an
amount proportional to the cost, (Sec. III D) the realiza-
tion of a qubitized quantum walk [31], which encodes
eigenvalues of the cost function, and (Sec. II E) the com-
putation of arithmetic functions of an input value using
QROM [26]. Our approach to computing arithmetic opera-
tions using QROM is likely useful in other contexts and
is a new technique from this work. The culmination of
Sec. II is Table V, which gives leading-order constants
in the scaling of Toffoli, T, and ancilla complexities for
all five of these oracles and for all four of the problems.
Even though the first two cost functions we introduce in
Sec. II have fairly general specifications, they do not cap-
ture exploitable structure in all optimization problems of
interest. Still, we imagine that the motifs developed in
Sec. II is helpful for any future work seeking to develop
similar circuits for other cost functions.

Section III describes how the oracle circuits of Sec. II
are queried in order to realize the essential primitives
of many fault-tolerant quantum heuristics for optimiza-
tion. This section contains a mixture of new results and
a review of established methods. Sec. III A reviews how
one can use amplitude amplification [20] heuristically for
optimization and also discusses how and why one might
combine amplitude amplification with other algorithms in
this section. Section III B discusses strategies for executing
QAOA [12] within fault-tolerant cost models. While most

of this section is review, we also discuss the combination
of QAOA with amplitude-amplification-based methods for
more efficiently extracting the cost function value.

Section III C discusses several approaches to quantum
optimization that are based on time evolution or quantum
walks generated by a cost function and simple driver. First,
we review the adiabatic algorithm [2] and well-known
methods for how it might be digitized using product-
formula-type circuits. We then introduce a method of simu-
lating the adiabatic algorithm based on qubitized quantum
walks. Next, we review how the adiabatic algorithm can be
combined with a Zeno-like measurement approach, which
corresponds to evolution under static Hamiltonians for ran-
dom durations [21], and give some new results about how
to optimally choose the distribution of those durations.

The remainder of Sec. III focuses on three approaches
to a quantum algorithm, which accelerates classical sim-
ulated annealing. In terms of implementation, these are
the most complex algorithms studied in the paper. For
the three variants of the quantum simulated annealing
algorithms, we provide the first complete compilation
of circuits, which execute the heuristic primitive. In
Sec. III D we analyze and compile the original version
[13] of these algorithms, which is based on Szegedy
quantum walks [22]. As anticipated, this approach is
the least efficient of the three studied. In Sec. III E we
focus on what is essentially a qubitized version of the
Szegedy quantum walk. The primary characteristics of
this approach were independently described in Ref. [23]
(a paper that came out during the preparation of our
own) but we go beyond that work to determine (and
in some ways improve upon) constant factors in the
scaling. Finally, in Sec. III F we compile the algorithm
for quantum simulated annealing based on spectral-gap
amplification [32], using an improvement based on qubiti-
zation. The results of Sec. III are summarized in Tables VII
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and VIII, which give the query complexities with respect to
the oracles of Sec. II and overall gate and ancilla complex-
ities of all algorithms of Sec. III for all of the cost functions
of Sec. II.

Finally, we conclude in Sec. IV with a discussion of
these results. Our discussion includes an attempt to con-
textualize the ultimate cost of these heuristic primitives by
giving the Toffoli count, ancilla count, and the total num-
ber of physical qubits and wallclock time that is required to
realize these primitives given various resource budgets and
assumptions in the surface code. These concrete resource
estimates are given in Tables IX and X. We then finish with
a discussion of how these results lead to a fairly pessimistic
outlook on the viability of obtaining quantum advantage
for optimization by using a small quantum computer unless
one is able to obtain significantly better than a quadratic
speedup over classical alternatives.

II. ORACLES AND CIRCUIT PRIMITIVES FOR
SPECIFIC COST FUNCTIONS

While many paradigms of quantum optimization require
the same bottleneck subroutines for their implementation,
aspects of these subroutines are always specific to the
particular problem that one intends to optimize. Thus,
in order to give concrete implementations and develop
a sense of how many resources are required for steps
of common quantum heuristics, aspects of our work are
adapted to particular problem Hamiltonians (equivalently
here, “cost functions”) of interest. There are four main
types of Hamiltonians that we consider in this paper.

The first two types of Hamiltonians we study are of
interest because they are programmable instances of opti-
mization problems that one might encounter in practical
situations. The second two types of problems we study
are of interest more to those who study statistical physics
and for different reasons: because they define ensembles
of instances for which the average case has known and
interesting properties. While solutions to specific instances
of the latter two problems are probably not of much value,
we anticipate they are interesting problems on which to
investigate the performance of a quantum computer. The
four problems we study are described below.

1. L-term spin model: The most general Hamiltonian
we consider is the one we refer to simply as the
“L-term spin model.” This Hamiltonian is a lin-
ear combination of L tensor products of Pauli-Z
operators,

HL =
L∑
�=1

w�
∏
i∈q�

Zi, (3)

where w� are real scalars, Zi is the Pauli-Z opera-
tor on qubit i, N is the number of qubits in the cost

function, and q� is a unique set of up to N integers,
which also take values between 1 and N (it is a set
of integers corresponding to the indices of qubits on
which term � acts). One might anticipate that it is
helpful to also specify this Hamiltonian in terms of
its many-body order k = max|{q�}|. However, per-
haps surprisingly, none of the algorithms discussed
in this paper have a Toffoli complexity that scales
explicitly in k.

2. Quadratic unconstrained binary optimization:
We also consider an NP-Hard example of HN 2/2
known as QUBO. The QUBO Hamiltonian is
expressed as

HQUBO =
∑
i≤j

wij

(
1 − Zi

2

)(
1 − Zj

2

)

=
∑
i<j

Jij ZiZj +
∑

i

hiZi + K , (4)

where K is a constant term that we ignore from this
point forward as this never needs to be explicitly
simulated or computed for the purposes of optimiz-
ing the model, and the coefficients Jij and hi can be
computed from the wij . This form of the model is
also known as the Ising model but we refer to it
here as QUBO since the Ising model can also mean
a model with more limited connectivity and regular
coefficients in some contexts.

3. Sherrington-Kirkpatrick: This problem corre-
sponds to a widely studied model of spin-glass
physics [24]. The SK model is an example of the
following QUBO Hamiltonian:

HSK =
∑
i<j

wij ZiZj , wij ∈ {−1, 1} ,

‖HSK‖ ≤ N 2/2, (5)

and the values of wij are usually chosen at ran-
dom. The SK model is the focus of many studies
on heuristic optimization, especially ones focusing
on variants of simulated annealing. There is also a
variant of the SK model, which has the same statis-
tical properties where the coefficients are Gaussian
distributed real numbers.

4. Low autocorrelation binary sequences: We think
it is interesting to use a quantum computer to
attempt to optimize problems that are very challeng-
ing on average. One problem is the LABS problem,
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also known as the Bernasconi model in physics [33]:

HLABS =
N−1∑
k=0

H 2
k Hk

=
N−k∑
i=1

ZiZi+k, ‖HLABS‖ ≈ N 3/3, (6)

which is an instance of HN 3 . This model is known
to be extremely difficult; in fact the best classical
algorithm has scaling like �(1.73N ) and has only
been run for problem sizes up to N = 66 [34]. How-
ever, we note that the model is not really a “prob-
lem” in the usual computer science sense because
there is only one instance defined for each prob-
lem size. A variant of the LABS problem that we
consider is when the squared operators are instead
replaced with absolute values, as one can verify
that the ordering of the low-energy solutions are
unchanged by this modification, and it is sometimes
less expensive to simulate with a quantum computer.

The remainder of Sec. II discusses concrete circuit real-
izations for “oracles,” which provide information about
these cost functions of interest. Here we slightly abuse the
term “oracle” to mean a circuit primitive, which is repeat-
edly queried throughout an algorithm, usually revealing
information about the problem we are solving. These ora-
cles are used by multiple algorithms throughout our paper.
In Sec. II A, we explain how to implement cost function
oracles that are required to return the cost of a specific
candidate solution x. We refer to such oracles as “direct-
energy oracles.” In Sec. II B, we explain how to implement
cost function oracles that are required to return the differ-
ence in cost between two candidate solutions that differ by
exactly one bit. In Sec. III C, we explain how to imple-
ment cost function oracles that are required to return the
cost function as a phase, rather than as a value written
to a separate quantum register. In Sec. III D, we explain
how to implement cost function oracles that are required
to implement the cost function as a direct application of
the Hamiltonian onto a target quantum register. Finally,
in Sec. II E, we consider the cost of evaluating functions
whose input is the difference in cost of candidate solutions
as described in the other parts of this section.

We summarize the content of this section using three
tables. In Table III we give a list of the symbols we use for
reporting our computational complexity results. This table
aids in the interpretation of the following two tables. In
Table IV, we summarize the definitions of the various dif-
ferent kinds of oracles considered in this section. Finally, in
Table V, we summarize the complexities of each of the 16
cost function oracles (four types of oracles for each of four

types of cost functions) as well as the complexity of cal-
culating functions of those oracle outputs. In these tables,
and throughout the paper, we use log to indicate logarithms
base 2.

A. Oracles for direct cost function evaluation

Many of the algorithms considered in this work are
formulated in terms of a query to an oracle, which com-
putes the value of the cost function C (for instance, one
of the Hamiltonians discussed above) in a binary register.
For instance, if we have a wavefunction |ψ〉 = ∑

x ψx |x〉
where the computational basis states |x〉 are eigenstates of
C such that C |x〉 = Ex |x〉 then we define the direct-energy
evaluation oracle Odirect as a circuit, which acts as

Odirect
∑

x

ψx |x〉 |0〉⊗bdir �→
∑

x

ψx |x〉 |Ẽx〉 , (7)

where Ẽx is a binary approximation to Ex using bdir
bits. We provide some strategies for how to realize this
oracle for specific problems with low Toffoli complex-
ity. We refer to the Toffoli complexity of this oracle as
Cdirect. However, first we discuss an efficient method for
performing reversible in-place addition of a constant. This
routine is critical to our implementation.

TABLE III. A list of common symbols we use throughout this
paper.

symbol meaning

x bit string corresponding to a candidate solution of the
optimization problem

N number of bits needed to specify a candidate solution
Ex cost (a.k.a. energy) of candidate solution x as speci-

fied by a cost function
Hcf Hamiltonian operator corresponding to a cost function

“cf”
b number of bits used to specify the precision of an

oracle
L number of terms in a spin model (type of cost func-

tion)
λ the normalization parameter for LCU methods,

related to the Hamiltonian 1-norm
β inverse temperature in simulated annealing
C Toffoli or T cost of some oracle
A ancilla required to implement some oracle that must

be kept
B temporary ancilla required to implement some oracle
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TABLE IV. Quick definitions of the most important “oracle” circuits discussed in this work. Here, we slightly abuse the term “oracle”
to mean a circuit primitive, which is repeatedly queried throughout an algorithm, usually revealing information about the problem
we are solving. Throughout the paper we use C to denote Toffoli (or occasionally T) complexity while A and B denote persistent
and temporary ancilla costs, respectively. For some of these oracles there are different Toffoli costs when performing them in the
forward and reverse directions. We always pair a forward oracle with a reverse oracle, so give the average cost. In some cases the
computation may introduce ancilla qubits not shown here, that are erased in the inverse computation. For the function evaluation
oracle we incorporate multiplication by the inverse temperature β. The approximation f̃ is given to bsm bits, but for generality we
allow an error 2−bfun , which may be larger than 2−bsm .

Oracle Oracle definition Precision definition

Odirect Odirect ∑
x ψx |x〉 |0〉⊗bdir �→ ∑

x ψx |x〉 |Ẽx〉
∣∣Ex − Ẽx

∣∣ ≤ 2−bdir maxx |Ex|
Odiff

k Odiff
k

∑
x ψx |x〉 |0〉⊗bdif �→ ∑

x ψx |x〉 |δ̃E(k)x 〉 , |y〉 = Xk |x〉
∣∣∣δ̃E(k)x − Ex + Ey

∣∣∣ ≤ 2−bdif maxx,y |Ex − Ey |
Ophase(γ ) Ophase(γ )

∑
x ψx |x〉 �→ ∑

x e−iγ̃Exψx |x〉 ∣∣γ̃Ex − γEx
∣∣ ≤ 2−bpha

OLCU 〈0|⊗ log L OLCU |0〉⊗ log L = H̃/λ, H̃ = ∑L
�=1 w̃�U�, λ = ∑L

�=1 |w�|
∣∣√w� − √

w̃�
∣∣ ≤ 2−bLCU

Ofun
β Ofun

β |z〉 |0〉⊗bsm �→ |x〉 |f̃ (βz)〉
∣∣∣f (βz)− f̃ (βz)

∣∣∣ ≤ 2−bfun

1. Direct-energy oracle for L-term spin model and
QUBO

We now explain how to implement the direct-energy
oracle for the HL Hamiltonian with low Toffoli complex-
ity. We represent the energy Ẽx in the two’s-complement
binary representation, as this encoding enables efficient
methods for addition [35]. In the two’s-complement pos-
itive integers have a normal binary representation whereas
negative integers are the complement of that representation
minus one. For instance, in 4-bit two’s complement 310 =
00112 whereas −310 = 11002 + 1 = 11012. Zero still cor-
responds to all bits zero. The fact that we need to add one
for negative numbers complicates our approach but this
representation is still preferable for our purposes.

The main idea behind our approach is to add or subtract
the value of each term’s coefficient w� to a b-bit output
register based on the parity of the string

∏
i∈q�

Zi. To per-
form addition or subtraction controlled on a qubit, we use
the fact that one can switch between addition and subtrac-
tion by applying NOT gates to the target register in two’s
complement representation. That is, applying NOT gates to
all qubits of a register change |v〉 to |−v − 1〉. Adding w
to this register gives |w − v − 1〉, then applying NOT gates
to all qubits again yields |v − w〉. To perform addition or
subtraction controlled on a qubit, one can use the proce-
dure shown in Fig. 4(a) of Ref. [35] (see Appendix D 2).
The complete procedure to compute the energy is then as
given in Algorithm 1.

After performing this for L terms one can verify that this
produces the intended state |v〉 = |Ẽx〉 in the output regis-
ter. Toffoli gates enter only through the adder in step 3.
Thus, in total our approach has Toffoli complexity Cdirect

L
and ancilla requirements Adirect

L ,Bdirect
L given by

Cdirect
L = L(bdir − 2) < Lbdir, (8)

Adirect
L = bdir, (9)

Bdirect
L = bdir − 1 < bdir, (10)

where the ancilla refer to the carry bits for the adder in
addition to the bdir bits required to output the energy. We
note that for this oracle these costs have no dependence
on the many-body order of the Hamiltonian HL since this
only affects the number of CNOT gates used to compute the
parity of the terms.

This exact same reasoning can be used to determine
the complexity of computing the energies for the QUBO
Hamiltonian. Due to the relative lack of structure in
QUBO, there is no obvious way to improve over this gen-
eral complexity. There we have L = N (N + 1)/2 terms
and so from Eqs. (8)–(10) we require a number of Toffolis
and ancillas equal to

Cdirect
QUBO = N 2bdir

2
+ Nbdir

2
− N (N + 1)

= N 2bdir

2
+ O(Nbdir), (11)

Adirect
QUBO = bdir, (12)

Bdirect
QUBO = bdir − 1 < bdir. (13)

2. Direct-energy oracle for the SK model

Here we show that the energy for the SK model can be
computed with only N 2 Toffolis and a logarithmic number
of ancillas. The method we use is a sum of tree sums of
bits. It is also possible to just use a tree sum with a Toffoli
cost of about N 2/4, but the drawback is that this method
needs N 2/2 ancilla qubits, which is prohibitive.

For the SK model it is convenient to replace −1 with 0,
so the sum takes values between 0 and L. That corresponds
to dividing the Hamiltonian by 2 and shifting it, which
does not change the optimization problem, but means we
are only summing bits. If we were to sum the bits in
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Algorithm 1. Energy evaluation for the L-term spin model and QUBO.

the obvious way, the Toffoli complexity is approximately
N 2 log N . However, we can take advantage of the fact we
are summing bits to reduce the complexity to O(N 2).

Our methods are based on tree sums of bits. In Ref. [25]
it was shown that it is possible to sum L bits using L − 1
Toffoli gates and L − 1 ancilla qubits, and this sum can
be uncomputed with no Toffoli cost. As discussed in Ref.
[25], it is also possible to perform sums in approaches that
reduce the number of ancilla at the price of increasing the
number of Toffoli gates. In particular, we can subdivide
the bits we are summing into about L/ log L groups of size
log L, start by using the tree sum approach to sum each
of the groups, add it into a running sum, and uncompute
it. The number of ancillas needed is reduced to approxi-
mately log L for each of the tree sums. There is also a cost
of approximately L for adding the tree sums, giving a total
complexity of approximately 2L.

To be more specific, taking into account that L need
not be a power of 2, we can use M = L/log L�� − 1
groups of size log L�, except for a remaining group of size
J ≤ log L� such that Mlog L� + J = L. That is, there are
L/log L�� groups, and J can be smaller than log L�. The
Toffoli cost of computing each of these sums is

Mlog L� − M + J − 1 = L − M − 1 = L − L/log L��.
(14)

The cost of the additions is

M∑
j =1

[log(J + j log L� + 1)� − 1]

≤ M [log(L + 1)� − 1]

≤ Mlog L�
< (L/log L�)log L� = L. (15)

We assume that L > 1 and hence log L > 0. The first line
of Eq. (15) comes from starting with the sum over J bits

and then adding each of the sums over log L� to it. After
adding j of the sums over log L� bits, the maximum value
of the sum is J + j log L�, so the number of bits needed to
store the result is log(J + j log L� + 1)�, and the number
of Toffolis needed for that sum is one less than that. The
inequality in the first line comes from the fact that the total
number is never less than L, so the cost of the additions
is never greater than log(L + 1)� − 1. The inequality in
the second line is because log(L + 1)� − 1 ≤ log L. The
inequality in the third line is using M < L/log L�.

Therefore, the total Toffoli cost is less than 2L. The
ancilla cost of each tree sum is log L� − 1, there are
log(L + 1)� ancilla needed for the total, and log(L +
1)� − 1 temporary ancillas for the addition of the tree sum
into the total. Since the ancillas in the tree sum are uncom-
puted, they contribute to an overall temporary ancilla cost,
meaning the temporary ancilla cost is 2 log L + O(1) and
the persistent ancilla cost (for the total) is log L + O(1).

Since L = N (N − 1)/2, if we use a tree sum the cost
is less than N 2/2, but the ancilla cost is approximately
N 2/2. The sum could be uncomputed without ancillas, giv-
ing an average (compute and uncompute) cost of N 2/4. We
expect that the tradeoff is not worth it in this case. How-
ever, by using the sum of tree sums, we get a Toffoli cost
less than N 2, and an ancilla cost that is logarithmic in N .
That gives costs for the SK model of

Cdirect
SK < N 2, (16)

Adirect
SK ≤ 2 log N , (17)

Bdirect
SK < 4 log N . (18)

3. Direct-energy oracle for LABS model

Next we show that for the LABS problem it is possible
to compute the energy with a Toffoli cost of 5N (N + 1)/4
for N ≥ 64, with a logarithmic number of ancilla qubits.
We improve over the application of our general technique
by specializing the implementation to the LABS problem.
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Since the LABS problem has L = O(N 3) with maximum
integer energy values of O(N 3), we expect a complexity
of O(N 3). Instead, we show that it is possible to perform
the direct-energy evaluation at cost O(N 2). We focus on
the form of the LABS Hamiltonian that is expressed as∑N

k=1 |Hk|, where Hk is as defined in Eq. (6) (as we men-
tion, this form of the problem has the same ordering of the
low-energy landscape).

In the following we use Ek to denote the eigenvalue of
Hk. It is most efficient to use the sum of the tree sums
approach described above. Here we need to find Ek by
using +1 and −1 rather than +1 and 0, because we need
to take the absolute value, so we need an extra bit for the
sign. Therefore, after summing bits, we need to multiply
by 2 (which has no Toffoli cost), followed by subtracting
the number of bits. The overall approach is then as follows.
We sum k starting at k = N − 1 and go down to zero, so the
number of bits at each step is minimized. For each value of
k we perform Algorithm 2.

In step 1, the Toffoli complexity computing each Ek
is approximately 2(N − k) plus the cost of subtracting
N − k. In two’s complement we can determine whether
the number is negative or positive by looking at the high-
est bit; if the highest bit is 1 then we know the value is
negative. This justifies the operations in step 2. Since step
2 requires no non-Clifford operations, it can be neglected
in our cost analysis. In step 3, the state is |u〉 |u + v〉
if u ≥ 0 or |u〉 |v − u〉 if u < 0; equivalently we now
have the state |u〉 |v + |u|〉. The output register is of size
log[(N − k)(N − k + 1)/2 + 1]� + 1 so the Toffoli cost
is log[(N − k)(N − k + 1)/2 + 1]�.

The output register is significantly larger than the
scratch register. However, with a slight modification of
the procedure in Appendix D 2 we can allow this register
to be smaller with no additional Toffoli cost. First, con-
sider expanding the number of qubits |u〉 is encoded on.
This is of course trivial for positive numbers. For nega-
tive u, for n bits it is encoded as 2n + u. Therefore, if we
have a number that is negative and we need to map it to
a negative number on some larger number of bits n′, then
we need to map 2n + u to 2n′ + u, which means adding
2n′ − 2n = ∑n′−1

j =n 2j . This means that bits n + 1 to n′ of

the negative number encoded on the n′ bits need to be
ones. These can be set by using CNOTs controlled by bit n,
which means no additional Toffoli cost is needed to encode
the number into more qubits. A further simplification can
be used to eliminate the need for those extra qubits. First,
rearrange the addition circuit as in Fig. 18 so that the qubits
of |u〉 are only used as controls and not changed. Since all
of the additional qubits for |u〉 contain the same value as
the sign qubit of |u〉, we may use that sign qubit as the
control instead of any of those additional qubits. Then the
additional qubits are not used, and can be omitted.

There is an improvement that we can make when we
take into account that each computation needs to be paired
with an uncomputation. This is because, in step 5, if we are
computing an energy that we later uncompute, then we can
use the strategy of Ref. [35] to erase |u〉 using X measure-
ments and no Toffoli cost. A phase correction is required,
but that can be done when we later uncompute the LABS
energy. This means that in step 5 we have a cost of N − k
in uncomputing the LABS energy, but no Toffoli cost in
computing the LABS energy. Because each computation is
paired with an uncomputation, it is therefore convenient to
give the average complexity of N − k. The largest tempo-
rary ancilla cost is when we need to uncompute the overall
Hamiltonian, when it is 2 log(N − k)+ O(1). That is still
less than the temporary ancilla cost in step 3, so can be
ignored.

After repeating this for the N values of k one can ver-
ify that the output register contains the energy of the
LABS Hamiltonian. Toffoli gates enter only through steps
1, 3, and 5. The primary contribution to the complexity
is the computation of Ek in steps 1 and 5. Ignoring the
complexity of subtracting N − k, the Toffoli complexity is

N−1∑
k=0

3(N − k) = 3N (N + 1)/2. (19)

The cost of the subtractions as well as the additions in
step 3 increases the cost, but also 2(N − k) is an overes-
timate of the cost of adding n − k bits. In particular, we
can use tree sums of as many as approximately log N bits,
rather than just log(N − k), with no penalty in terms of the

Algorithm 2. Energy evaluation for LABS model.

020312-11



YUVAL R. SANDERS et al. PRX QUANTUM 1, 020312 (2020)

(a) (b)

200 400 600 800 1000
N1.00

1.05

1.10

1.15

1.20
Toffolis/[N(N+1)]

200 400 600 800 1000
N1.2

1.3

1.4

1.5

1.6
Toffolis/[N(N+1)]

FIG. 1. Toffoli costs for direct evaluation of the LABS Hamiltonian by computing Hk with a sum of tree sums. The average cost
when computing and uncomputing the Hamiltonian is shown in (a). The cost of just computing and uncomputing Hk (omitting the cost
of summing the absolute values), when we just compute the Hamiltonian, is given in (b).

temporary ancilla cost. The computed costs are shown in
Fig. 1(a), and it is found for the range of N we are inter-
ested in (64–1024), the constant factor on N (N + 1) is less
than 1.2, rather than 1.5 (in fact, this bound is good for
N ≥ 45). In particular, the constant factors for N = 64,
128, 256, and 1024 are 1.16466, 1.12673, 1.13945, and
1.0901, respectively. To simplify the expressions we give
the slightly looser bound in the table

Cdirect
LABS < 5N (N + 1)/4, (20)

with the caveat that it is for N ≥ 45. The number of ancilla
we require is

Adirect
LABS = log[N (N + 1)/2 + 1]� ≤ 2 log N + 1, (21)

Bdirect
LABS = log[N (N + 1)/2 + 1]� + log(N − k + 1)�

+ 2 ≤ 3 log N + 3. (22)

The persistent ancilla are for the output value. Approxi-
mately 2 log N of the temporary ancilla are for carry bits
in the addition and log N are for the scratch register. We
assume N > 1 for the inequalities, which omits the triv-
ial case. This example illustrates how taking advantage of
problem structure can lead to advantages over the imple-
mentation of an oracle intended to handle a more general
case.

B. Energy-difference oracles

For some of the algorithms discussed in this work
(specifically the quantum versions of simulated annealing)
we often need the direct-energy oracle only as means to
compute a difference between the energies of two different

states, which differ in only one bit. The ultimate objective
in that context is a circuit that performs the mapping

Odiff
k

∑
x

ψx |x〉 |0〉⊗bdif �→
∑

x

ψx |x〉 |δ̃E(k)x 〉 , δE(k)x

= Ex − Ey , |y〉 = Xk |x〉 , (23)

where (as usual) Xk is the NOT operation on qubit k and
δ̃E(k)x is a binary approximation to δE(k)x using bdif bits.
Especially when the many-body order is 2-local, it is more
efficient to consider a specialized implementation of Odiff

k
than to try to realize this operation using one call to Odirect

and one call to OdirectXk.
First, we discuss the energy-difference oracle for

QUBOs. In this case, δE(k)x is the eigenvalue of the operator

δH (k) = 2hkZk + 2
∑
i�=k

JikZiZk. (24)

We see that δH (k) is itself a simple cost function, which
is an example of HN (the L-term spin model with L =
N ). Thus, to compute the eigenvalue of this operator
(equivalent to implementing Odiff

k ) we require

Cdiff
QUBO = N (bdif − 2) < Nbdif, (25)

Adiff
QUBO = bdif, (26)

Bdiff
QUBO = bdif − 1. (27)

This scaling is much less than the N 2bdif + O(Nbdif) Tof-
foli gates that are required by making two queries to the
direct-energy oracle for QUBO.

For the SK model we can simplify the QUBO result.
We then have the difference operator 2

∑
i�=k wikZiZk, so we
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just need to sum N − 1 bits, and can take bdif = log N�.
We also need to subtract N − 1 from the bit sum to obtain
the energy difference, but the cost of that subtraction plus
the cost of the bit sum is still no more than the upper
bound of 2N we gave previously on the cost of the bit sum.
Therefore, the energy-difference oracle has cost

Cdiff
SK < 2N , (28)

Adiff
SK = log N� ≤ log N + 1, (29)

Bdiff
SK ≤ 2 log N + O(1). (30)

For higher many-body-order Hamiltonians like LABS
or the HL model of many-body order greater than 2, the
best strategy probably involves two applications of the
direct-energy oracle Odirect. However, rather than actually
use two registers to output the energy and then perform
subtraction one can instead just compute the energy of x
first and then in the same register compute the energy of y
while subtracting all of the terms instead of adding them.
There is a slightly greater Toffoli cost because the sub-
traction is on a slightly larger number of qubits, but that
cost is small enough to be ignored. This leads to Toffoli
complexity of 2Cdirect but requires no additional ancilla.

C. Oracles for phasing by cost function

In some contexts our goal is to phase each computational
state on which the wavefunction has support by an amount
proportional to the energy of that computational basis state
(this task is equivalent to performing evolution under a
diagonal Hamiltonian for unit time). We refer to circuits
that achieve this task as a “phase” oracle and define them
to act as

Ophase (γ )
∑

x

ψx |x〉 �→
∑

x

e−iγ̃Exψx |x〉 ∣∣γ̃Ex − γEx
∣∣

≤ 2−bpha . (31)

To simplify the following discussion, we assume that
Ex is shifted such that it is non-negative. Such a shift
corresponds to an unobservable global phase.

To realize this oracle, one strategy is to first approxi-
mately compute Ex into a register using Odirect, then multi-
ply by γ , and perform further logic to phase the system by
the amount in the register. For instance,

(
Odirect)† [

1 ⊗ Uphase (γ )
]

Odirect
∑

x

ψx |x〉

�→
∑

x

e−iγ̃Exψx |x〉 (32)

where the phasing operation needed is

Uphase (γ ) =
2bdir−1∑

k=0

exp
(

2π ikγ̃
2bdir

)
k. (33)

The value of 2πkγ̃ /2bdir corresponds to the approxima-
tion of γEx, with k the integer approximating Ex (so k ≈
2bdirEx/Emax) and γ̃ = γEmax/(2π) is a scaled form of γ .
We limit ourselves to simulations where the phase factor is
no more than a factor of 2π , so γ̃ ≤ 1. Using the “phase
gradient” trick of Refs. [35,36], it is possible to apply a
phase by adding into a reusable ancilla register initialized
to the state

|φ〉 = 1√
2bgrad

2bgrad−1∑
�=0

e−2π i�/2bgrad |�〉 . (34)

Here we use bgrad rather than bdir in this state to allow for
needing to use more bits to obtain the required precision in
the phase. For details see Appendix A. In this case we need
to multiply by the classically specified number γ̃ to obtain
the required phase. This number can be given by log γ̃ +
bpha + O(1) digits in order to obtain error < 2−bpha . There
is error due to the finite number of digits for Ex, the finite
number of bits for γ̃ , and the multiplication.

Rather than performing the multiplication by γ̃ , adding
into the phase-gradient state, then uncomputing the mul-
tiplication, a more efficient method is to perform the
multiplication by repeated addition into the phase-gradient
state. For each nonzero bit of γ̃ , we can add a bit-shifted
copy of k into the phase gradient state. Each addition
into the phase-gradient state has cost bgrad − 2, and on
average approximately half the bits of γ̃ are zero, giving
cost roughly bgrad(log γ̃ + bpha)/2. To address cases where
more bits of γ̃ are nonzero, we can write γ̃ as a sum of
powers of 2 with plus and minus signs. In that case it is pos-
sible to use no more than (log γ̃ + bpha)/2 + O(1) addi-
tions, giving cost bgrad(log γ̃ + bpha)/2 + O(bgrad). The
error due to omission of bits in the multiplication is
no more than approximately 2−bgrad(log γ̃ + bpha)π , so
to obtain error < 2−bpha one should take bgrad = bpha +
O(log bpha). That gives an overall cost for the multiplica-
tion

bpha(log γ̃ + bpha)

2
+ O(bpha log bpha). (35)

For more details see Appendix A. Note finally that the
state |φ〉 can be initialized prior to simulation and reused
throughout, with a negligible additive one time cost scaling
as O(b2

grad). This one time cost comes from synthesizing
bgrad arbitrary rotations. However, since this is additive to
the overall cost (whereas all other oracle costs are mul-
tiplicative with the number of queries), we expect this is
negligible.
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For the L-term spin Hamiltonians and QUBOs, the cost
of the multiplication by γ can be eliminated by simply
including it in the coefficients of the problem Hamiltonian.
However for these cases an even more efficient approach
is to simulate each term explicitly in a Trotter-like fashion
and perform rotation synthesis to decompose each rota-
tion into a sequence of T gates. In that case, one requires
a number of T gates equal to the number of terms times
the cost of rotation synthesis, which gives a complexity of
O(L(bpha + log L)). Using the repeat until success circuits
of Ref. [37], this gives T gate and ancilla complexities of
roughly

Cphase
L = 1.15L(bpha + log L)+ 10.925L + O (1)

= 1.15L(bpha + log L)+ O(L), (36)

Aphase
L = 0, (37)

Bphase
L = 1. (38)

There is a single temporary ancilla qubit used by the repeat
until success circuits. The measure of error in Ref. [37]
is the Frobenius distance d(U, V) =

√
1 − |Tr(UV†)|/2.

A phase error of 2−bpha gives |Tr(UV†)|/2 = |1 +
exp(2−bpha i)|/2 = cos(2−bpha/2). Expanding in a series
gives a Frobenius distance of 2−bpha/

√
8 + O(2−3bpha).

That means the cost becomes 1.15
[
bpha + log(

√
8)
] +

9.2 = 1.15bpha + 10.925, which is why the second term
above is different than in Ref. [37]. Because Toffoli gates
require roughly twice the resources to distill as T gates
[38], this approach is likely to be more efficient in practice.
This gives T and ancilla complexities for QUBO of

Cphase = 0.575N (N + 1){bpha + log[N (N + 1)]}
+ 4.9N (N + 1)+ O (1)

= 0.575N 2(bpha + 2 log N )+ O(N 2), (39)

Aphase = 0, (40)

Bphase = 1, (41)

assuming N > bpha.
For the SK model it is better to compute the energy, add

the energy into the phase gradient state, then uncompute
the energy. That has Toffoli complexity 2N 2, with 2 log N
persistent ancillas and 4 log N temporary ancillas. The cost
of the multiplication directly into the phase gradient state
is bpha

2/2 + O(bpha log bpha) (with γ̄ ≤ 1), with bgrad per-
manent ancillas for the phase-gradient state and bgrad − 1
temporary ancillas for the addition. That gives costs for SK
of

Cphase
SK = 2N 2 + bpha

2/2 + O(bpha log bpha), (42)

Aphase
SK = 2 log N + bpha + O(log bpha), (43)

Bphase
SK = max

[
4 log N , bpha + O(log bpha)

]
. (44)

For the parameters we consider for examples of gate
counts, 4 log N ≥ bpha, so we give that in Table V.

For the LABS model we still need to explicitly compute
the partial sum for Hk and then take the absolute value.
Instead of adding the absolute value of that to an output
register we can CNOT the highest bit (indicating the sign
of the partial sum u) into a single ancilla. Then, we can
negate the whole partial sum controlled on this ancilla so
that we have the state |u〉 |0〉 if u ≥ 0 or |−u − 1〉 |1〉 if u <
0. Then, we can add this ancilla to the partial sum register
giving us either |u〉 |0〉 if u ≥ 0 or |−u〉 |1〉 if u < 0. At this
point we can multiply by γ and add the value of u to the
|φ〉 register and perform phase kickback in order to phase
the system by the absolute value of the partial sum. Then,
we need to invert adding the sign qubit register to the sum
register and uncompute |u〉 and the ancilla.

Using the sum of tree sums, we numerically find that the
Toffoli cost to compute and uncompute the partial sums
is no greater than 8N (N + 1)/5 for N in the range 64 to
1024 that we consider. The numerically computed ratios
are shown in Fig. 1(b), and for 64, 128, 256, and 1024
we obtain 1.35962, 1.38507, 1.45027, and 1.43186. Multi-
plying by γ̄ directly into the phase gradient state has cost
bpha

2/2 + O(bpha log bpha), giving a total cost

Cphase
LABS ≤ 8N (N + 1)/5 + Nbpha

2/2 + O(Nbpha log bpha).
(45)

The number of ancillas needed is bgrad persistent ancillas
for the phase-gradient state, bgrad − 1 temporary ancillas
for the addition, log N + O(1) for the temporary ancilla
with the partial sum for Hk, and 2 log N + O(1) for the
temporary ancillas used for the sum of tree sums. The
ancillas for the partial sum for Hk are needed at the same
time as those for the addition into the phase-gradient state,
but the temporary ancillas for the sum of tree sums are not.
The temporary ancillas for the sum of tree sums is less than
those for the addition into the phase-gradient state, so can
be ignored. That gives us a total of bgrad + log(N + 1)� +
1 temporary ancillas for a total

Aphase
LABS = bgrad = bpha + O(log bpha), (46)

Bphase
LABS = bgrad + log(N + 1)� + 1 = bpha

+ log N + O(log bpha). (47)

For 9N/5 < bpha
2, it is more efficient to just compute the

entire energy, multiply by γ̄ , then uncompute the energy,
as explained above. Then we obtain complexity

Cphase
LABS ≤ 5N 2/2 + O(Nbpha log bpha), (48)

where the cost of multiplying by γ̄ is absorbed into the
order term. Because this is smaller than that given above
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for 9N/5 < bpha
2, we should give the cost as the minimum

of the two complexities

Cphase
LABS ≤ 8N (N + 1)/5 + min

(
Nbpha

2/2,
9
10

N 2
)

+ O(Nbpha log bpha). (49)

In that case we need 2 log N + O(1) temporary ancillas
for the energy, and bgrad − 1 temporary ancillas for the
addition into the phase-gradient state at the same time.
There are also 3 log N + O(1) temporary ancillas for com-
puting the energy, which are not used at the same time
as bgrad − 1 temporary ancillas. That gives a number of
temporary ancillas increased to

Bphase
LABS = max(bpha, 3 log N )+ 2 log N + O(log bpha).

(50)

We give this cost in Table V to account for the pos-
sibility of using either method. In the table we assume
3 log N ≥ bpha, because that is true for most combinations
of parameters we consider.

D. Oracles for linear combinations of unitaries

A number of approaches to quantum simulation are
based on accessing the Hamiltonian as a linear combina-
tion of unitaries. This so-called LCU query model [39] has
been used for Taylor series simulation [40], interaction pic-
ture simulation [41], and generalized to block encodings
for “qubitization” [31]. These approaches begin from the
observation that any Hamiltonian can be decomposed as a
linear combination of unitaries,

H =
L∑
�=1

w�U�, (51)

where w� are real scalars and U� are unitary operators.
Here we consider an approach to forming quantum

walks known as qubitization [31]. The quantum walk
involves LCU using queries to two oracles, followed by
a reflection operation as shown in Fig. 2. The first ora-
cle circuit, the “preparation oracle,” acts on an empty
ancilla register of log L� qubits and prepares a particular

superposition state related to the notation of Eq. (51),

PREPARE |0〉⊗ log L �→
L∑
�=1

√
w�
λ

|�〉 , λ ≡
L∑
�=1

|w�| . (52)

The quantity λ has significant ramifications for the overall
algorithm complexity; specifically, the qubitization oracles
need to be repeated a number of times proportional to λ in
order to realize the intended quantum walk.

The second oracle circuit we require acts on the ancilla
register |�〉 as well as the system register |ψ〉 and directly
applies one of the U� to the system, controlled on the
ancilla register. For this reason, we refer to the ancilla reg-
ister |�〉 as the “selection register” and name the second
oracle the “Hamiltonian selection oracle,”

SELECT |�〉 |ψ〉 �→ |�〉 U� |ψ〉 . (53)

Using two queries to PREPARE and a single query to
SELECT we are able to implement a controlled quantum
walk W , which encodes the eigenvalues of H as a func-
tion of its own eigenvalues [31]. Specifically, in a subspace
this quantum walk has eigenvalues equal to the arccosine
of the eigenvalues of the problem Hamiltonian divided by
λ.We now discuss the realization of this quantum walk for
the problems discussed in Sec. II.

1. LCU oracles for L-term Hamiltonian

Using the strategy for unary iteration introduced in
Ref. [26] we can implement SELECT for HL with Toffoli
complexity of exactly L − 2 and log L� − 1 extra ancilla
qubits (or L − 1 and log L� if the operation needs to be
controlled by another ancilla, as it is in Ref. [26]). The cir-
cuit given there has log L� ancilla. The other ancilla is
just a control, it is not needed for the iteration. If we do
not want to make it controlled, then the number of ancilla
needed is log L� − 1. Also, the Toffoli cost is only L − 2
if we do not need to make it controlled. The operator we
are to implement is

SELECT |�〉 |ψ〉 �→ |�〉
∏
i∈q�

Zi |ψ〉 . (54)

A simple way to understand the strategy is to first map the
binary representation of |�〉 to a one-hot unary register (a

FIG. 2. A circuit realizing the qubitized quantum walk operator W controlled on an ancilla qubit [26,31]. Here R is a reflection
about the zero state for the entire |�〉 register, and therefore has Toffoli complexity log L + O(1), where log L� is the size of the |�〉
register. However, that overhead is negligible compared to the cost of the PREPARE and SELECT operators in the constructions of this
paper.
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register that contains L qubits, which are all OFF except for
qubit �, which is ON). Then, one could control the applica-
tion of the Zi associated with i ∈ q� on this qubit with only
Clifford gates. This strategy has low Toffoli complexity but
requires L ancilla. The basic insight of the unary iteration
circuits in Ref. [26] is that one can stream through bits of
this unary register using just log L� − 1 extra ancilla. A
circuit primitive is repeated L times and at iteration j , a
particular ancilla is equal to ON if and only if � = j . At
that point in the circuit we can use Clifford gates to control
the application of Hamiltonian terms like ZiZj Zk.

In Ref. [26] a strategy referred to therein as “coherent
alias sampling” is introduced and explicit circuits are pro-
vided, which allow one to realize PREPARE for an arbitrary
model with a Toffoli cost of L + bLCU + log L + O (1).
We need approximately log L ancillas for the state being
prepared, log L for the alternate index values, and log L
for the temporary ancillas in the QROM. There are bLCU
ancillas for the keep probabilities in the coherent alias sam-
pling and bLCU for the equal superposition state. Another
temporary ancilla is used for the result of the inequality
test. SELECT uses L Toffolis and log L temporary ancilla,
but these can be reused from the temporary ancilla used
by PREPARE. Here, bLCU is a parameter that scales the
precision of the cost function. In particular, this strat-
egy generates the state in Eq. (52) but with approximate
coefficients w̃� in place of the exact coefficients w� such
that

∣∣∣√w� −
√

w̃�
∣∣∣ ≤ 2−bLCU. (55)

Per the realization depicted in Fig. 2, the quantum walk
of interest is realized using two queries to PREPARE and
one query to SELECT. Thus, the strategy we outline requires
Toffoli and ancilla counts of

CLCU
L = 3L + 2bLCU + 2 log L + O (1) , (56)

ALCU
L = 2log L� + 2bLCU + O(1), (57)

BLCU
L = log L� = log L + O(1). (58)

2. LCU oracles for QUBO and using dirty ancilla

In some cases, especially when there is some structure
in the Hamiltonian terms and one is willing to reduce gate
complexity at the cost of space complexity, another method
of implementing PREPARE might be appropriate. In partic-
ular, we can combine the coherent alias sampling ideas
of Ref. [26] with the on-the-fly “dirty QROAM” of Ref.
[42] (which is a concrete realization of an idea in Ref.
[43], which builds on the QROM idea of Ref. [26] and is
named “QROAM” since it incorporates attributes of both
QROM and QRAM). Using Theorem 1 of [42] in conjunc-
tion with the coherent alias sampling of Ref. [26] with cost
bLCU + O(log N ), we see that it is possible to implement

PREPARE with

2L
k

+ 4bLCUk + O (bLCU + k log L) (59)

Toffolis and (k − 1)bLCU dirty ancilla in addition to
2bLCU + log(L/k)+ O(1) clean ancilla (not counting the
selection register), where k ∈ [1, L] is a free parameter
that must be a power of 2. This sort of QROAM can be
uncomputed faster than it can be computed [42]. Combin-
ing Theorem 3 in Ref. [42] with coherent alias sampling
[26] leads us to the result that the Toffoli cost of uncom-
puting PREPARE is less than the complexity quoted above
by 4(bLCU − 1)k and can reuse the same ancilla. The num-
ber of dirty ancilla is reduced to k − 1, which means that
the value of k can be taken to be larger, reducing the Tof-
foli complexity. See Table VI for detailed costs of various
types of QROAM.

We use this dirty QROAM strategy for the QUBO
Hamiltonian. Our approach involves indexing the terms
and coefficients with two registers, each of size log N�
so that |�〉 = |i〉 |j 〉. This makes applying SELECT partic-
ularly easy as we can use two applications of the unary
iteration strategy that we discuss for implementing Eq.
(54) to realize SELECT with Toffoli complexity 2N − 4
and log N� − 1 ancilla (again, not counting those in the
selection register). Because the QROAM strategy needs a
single register that takes a contiguous set of values, we
need to compute a new register for QUBO. For QUBO
where i ≤ j one calculates j (j − 1)/2 + i. (Note that this
is with indexing starting from 1, which we do to simplify
the sums, but 1 is represented in binary as 00 . . . 00, and so
forth.) We apply the QROAM to this register, then uncom-
pute it afterwards. The cost of computing and uncomputing
this register is O(log2 N ) due to the multiplications. Since
L = N (N + 1)/2 for QUBO, the Toffoli cost of imple-
menting SELECT, in addition to implementing (and later
uncomputing) PREPARE, is

2N 2

k
+ 4bLCUk + 2N + O

(
bLCU + log2 N

)
(60)

and requires kbLCU + O(1) dirty ancilla and 2bLCU +
2 log(N/k)+ 2 log N + O(1) clean ancilla. For simplicity
we are taking k to be the same for the computation and
uncomputation here, though it is more efficient to take k
larger for the uncomputation. Minimizing k by taking the
derivative gives us

4bLCU − 2N 2/k2 = 0, k = N/
√

2bLCU, (61)

which leads to Toffoli complexity for the entire walk
(including SELECT) going like

4N
√

2bLCU + 2N + O
(
bLCU + log2 N

)
= 4N

√
2bLCU + O(N ) (62)
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and ancilla complexity for the entire walk going like

N
√

bLCU/2 + 2bLCU + 2 log bLCU + 2 log N + O(1)
= N

√
bLCU/2 + O(log(bLCUN )), (63)

where the first term in the ancilla scaling corresponds to
the dirty ancilla, and thus can use the system qubits. For
simplicity we use the exact optimal value of k here; there is
a slight increase to the complexity because k needs to be a
power of 2 so cannot be taken exactly equal to N/

√
2bLCU.

While this result optimizes the Toffoli complexity of our
implementation it does so at a fairly high cost; we increase
the space complexity from N + O(bLCU) to N

√
bLCU/2 +

O(bLCU). In many cases this is not a sensible tradeoff and
one should instead choose a smaller k so that the total num-
ber of qubits is not increased. For instance, k = N/bLCU
never increases the spatial complexity because we always
have N system qubits available in the system register that
are not acted upon while we apply PREPARE. In some cases
(for instance, the quantum simulated annealing algorithm
realized by Szegedy quantum walks) we actually have 2N
qubits available for use during PREPARE and so we can
safely take k = 2N/bLCU without increasing the spatial
complexity.

Next we give a more detailed explanation of the cost-
ing. The QROAM costings are, for output size M , given in
Table VI. The value of L is L = N (N + 1)/2 for QUBO.
The output consists of bLCU qubits for the keep probabil-
ity in the state preparation, plus 2log N� qubits for the
alternate values of i and j , so

M = bLCU + 2log N�. (64)

With clean ancilla qubits, the optimal value of k for
preparation limited to powers of 2 is

kc1 = 2round(log
√

L/M ), (65)

and for inverse preparation is

kc2 = 2round(log
√

L), (66)

The other Toffoli costs in other parts of the LCU (beyond
the QROAM) are as follows.

(a) There is O(log N ) cost to prepare the equal super-
position states over i and j with i ≤ j .

(b) There is 2(bLCU + 2 log N )+ O(1) Toffoli cost for
the inequality test and controlled swaps for the state
preparation and inverse preparation.

(c) The cost of the arithmetic for producing the contigu-
ous ancilla is O(log2 N ).

(d) The SELECT has a Toffoli cost of 2N − 4, or 2N − 2
if it needs to be made controlled.

Altogether these costs give a Toffoli cost with clean ancilla
of

N (N + 1)
2kc1

+ N (N + 1)
2kc2

+ M (kc1 − 1)+ kc2

+ 2bLCU + 2N + O
(
log2 N

)
, (67)

with the values of M , kc1, and kc2 in Eqs. (64)–(66). If we
ignore the rounding in kc1 and kc2, then the Toffoli cost is

√
2bLCUN + O

(
N + bLCU + bLCU

−1/2N log N
)

. (68)

The rounding in kc1 and kc2 can potentially increase the
cost by a factor of 1/

√
2 + 1/

√
8, or about 6%.

In costing the total number of ancillas for the state
preparation, we also need to account for the following (in
addition to those in Table VI).

(a) There are 2log N� qubits needed for the prepared
state.

(b) There are bLCU qubits used for the register in equal
superposition that we use to perform an inequality
test with in the state preparation.

(c) The M output qubits.
(d) There are log L� temporary ancilla qubits used for

the contiguous register.
(e) There are bLCU − 1 temporary ancillas used in com-

puting the inequality test for the state preparation.

There are also log N temporary registers needed for the
SELECT step, but many of the qubits are only temporarily
used by the QROAM, and these can be reused, so we do
not get an additional ancilla cost for SELECT. The ancillas
additional to those in Table VI can therefore be given as
2M persistent ancillas and max(log L, bLCU)+ O(1) tem-
porary ancillas. The ancillas in Table VI are temporary as

TABLE VI. QROAM complexities from Ref. [42], where L is the number of items, k is a power of 2, and M is the output size. This
table omits the log L ancilla from the selection register and the M -qubit output.

Type of ancilla Type of computation Toffolis Clean ancilla Dirty ancilla

clean forward L/k� + M (k − 1) log(L/k)� + M (k − 1) 0
dirty forward 2L/k� + 4M (k − 1) log(L/k)� M (k − 1)
clean reverse L/k� + k log(L/k)� + k 0
dirty reverse 2L/k� + 4k log(L/k)� + 1 k − 1
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well, and the bLCU qubits are not needed at the same time,
giving a maximum of

log(L/kc1)+ M (kc1 − 1)+ log L + O(1), (69)

temporary ancillas. Ignoring the rounding in kc1 for sim-
plicity gives the leading-order term as N

√
M/2 temporary

ancillas. Next we consider the cost with N dirty ancilla.
The optimal value of k for the QROAM computation is

kd1 = 2�log(N/M+1)�. (70)

For the uncomputation cost it is optimal to take kd2 =√
L/2, which gives a cost of 4

√
2L, ignoring rounding of

kd2 to a power of 2. With L = N (N + 1)/2, the optimal
kd2 is

√
N (N + 1)/4 < N , so there are enough dirty ancilla

available. With rounding the value of kd2 for uncomputa-
tion is

kd2 = 2round(log
√

N (N+1)/4). (71)

Together with the additional Toffoli costs for the state
preparation, the Toffoli cost for LCU is

N (N + 1)
kd1

+ N (N + 1)
kd2

+ 4M (kd1 − 1)+ 4kd2

+ 2bLCU + 2N + O(log2 N ). (72)

To simplify the expression, we use N/M rather than
N/M + 1 in the expression for kd1, and do not take into
account rounding k to a power of 2. Then we get a
computation Toffoli cost of

CLCU
QUBO = N (bLCU + 2 log N )+ O(N ). (73)

For the ancilla cost, the persistent ancilla cost is again
2M , and the temporary ancilla cost loses the term M (k −
1) because dirty ancilla are used for that, so it does not
increase the ancilla cost. The temporary ancilla cost is

max[log(L/kd1)+ log L, bLCU] + O(1). (74)

Using L = N (N + 1)/2 and kd1 = N/M gives log(L/kd1)

= log(N + 1)+ log M − 1. Then log(N + 1) = log N +
O(1/N ). Using M = bLCU + 2 log N + O(1) then gives

ALCU
QUBO = 2bLCU + 4 log N + O(1), (75)

BLCU
QUBO = max(3 log N , bLCU)+ O(log bLCU). (76)

In Table V we just give 3 log N for the temporary ancilla
cost, because it is true (or close to true) for the combina-
tions of parameters we consider.

3. LCU oracles for the SK model

For the SK model we can considerably improve over
the naive implementation. Because the SK-model coeffi-
cients only need to give a sign, we just need to apply a
sign to the terms in the superposition. That corresponds to
the phase fixup used for the QROAM uncomputation, and
the cost is the same. Another advantage of this approach
is that we eliminate the 2(bLCU + 2 log N )+ O(1) cost
for the inequality test and controlled swaps that is other-
wise needed for the coherent alias sampling. Therefore, the
Toffoli cost with clean ancilla is

N (N − 1)
2kc2

+ kc2 + 2N + O
(
log2 N

)
. (77)

If we ignore the rounding in kc2 then we obtain the
complexity

(2 +
√

2)N + O
(
log2 N

)
. (78)

Beyond the ancillas needed for the QROAM, we just need
the 4 log N + O(1) qubits for the i, j , and contiguous
registers. Again SELECT can use the same temporary ancil-
las as the QROAM and does not add to the ancilla cost.
Therefore, the ancilla cost is

log(L/kc2)+ kc2 + 4 log N + O(1). (79)

Ignoring the rounding in kc2 for simplicity gives

N/
√

2 + O (log N ) . (80)

If we are using dirty ancilla, then the Toffoli cost becomes

N (N − 1)
kd2

+ 4kd2 + 2N + O
(
log2 N

)
. (81)

Ignoring the rounding in kd2 we obtain the complexity

CLCU
SK = 6N + O

(
log2 N

)
. (82)

The persistent ancilla cost is only 2 log N for the i
and j registers, and there is temporary ancilla cost of
2 log N for the contiguous register and log(L/kd2) ≈
log N from the QROAM. The total ancilla costs are
therefore

ALCU
SK = 2 log N + O(1), (83)

BLCU
SK = 3 log N + O(1). (84)
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4. LCU oracles for the LABS model

The LABS problem has L = O(N 3) terms in it, which
leads to a high complexity quantum walk if our general
strategy were applied. Fortunately, there is much structure
in this problem. We start by rewriting Eq. (6) as

HLABS =
N−1∑
k=0

N−k∑
j =1

N−k∑
i=1

ZiZi+kZj Zj +k. (85)

Instead of linearly indexing all O(N 3) terms, we use three
registers, each of size log N , which store the values of i, j ,
and k. Thus, our SELECT operation acts as

SELECT |i〉 |j 〉 |k〉 |ψ〉 �→ |i〉 |j 〉 |k〉 ZiZi+kZj Zj +k |ψ〉 .
(86)

To accomplish this, we simply need four applications of
the unary iteration primitive described in Ref. [26]. Each
of these primitives require N − 1 Toffoli gates. The only
nuance is that we need to compute the values i + k and
j + k before implementing the primitive to perform Zi+k
and Zj +k.

These additions can be performed in place (and then
uncomputed) in the i and j registers and introduce a neg-
ligible additive 4 log N cost to the cost of unary iteration,
where the cost of addition is log N� − 1 ≤ log N . Thus,
the total Toffoli cost of our SELECT implementation is
4N + 4 log N . We require approximately 3 log N persistent
ancilla for the i, j , and k registers, another log N tempo-
rary ancilla for computing the i + k and j + k (since they
are computed in place), and log N temporary ancilla for
the addition. The unary iteration uses log N� − 2 < log N
ancillas, which can be reused from the temporary ancil-
las for the addition so do not add to the cost. Because all
terms have the same coefficient, PREPARE needs to initial-
ize a superposition over a number of items that is not a
power of 2. The Toffoli cost is O(log N ). The only unfortu-
nate aspect is that for the LABS problem the corresponding
normalization λ, is quite large and this enters into the com-
plexity of our quantum walks as the number of times the
quantum walk must be repeated to realize the intended uni-
tary. In total then the cost to realize the quantum walk in
Fig. 2 is

CLCU
LABS = 4N + O(log N ), (87)

ALCU
LABS = 3 log N + O(1), (88)

BLCU
LABS = 2 log N + O(1), (89)

λLABS ≈ N 3/3. (90)

E. QROM-based function evaluation

Now that we have explained how to implement ora-
cles for various cost functions of interest, we turn to

the question of how to calculate functions of the cost.
This is important for several possible approaches to
heuristic-based combinatorial optimization. In simulated
annealing, for instance, the probability of moving from one
candidate solution to another is proportional to an expo-
nential of the energy difference between the two solutions,
multiplied by an inverse temperature β. We thus require
the quantum computer to calculate an exponential of the
output of the relevant energy-difference oracle.

Because we are implementing heuristic approaches to
combinatorial optimization, we do not expect that the func-
tions of the cost need to be calculated to a high degree
of accuracy so long as the functions we compute are
still monotonic in the cost (to make sure that the energy
landscape is not inverted in any way). We instead want
to minimize the computational complexity of evaluating
these functions given rather weak requirements on the
accuracy of the output. Here we describe a general strategy
for such cheap approximate function evaluation.

Our overall strategy is to approximate a function f of a
b-bit input z by a piecewise linear approximation, f̃ . This
approximation f̃ is calculated based on a choice of sam-
ple points z0 < z1 < · · · < zg , where z0 ≤ z < zg . These
sample points separate the interval [z0, zL) into g different
subintervals of the form [z�, z�+1)with � = 0, 1, . . . , g − 1.
The input z belongs to exactly one of these subintervals,
and so we find an � such that z� ≤ z < z�+1. Having found
�, we use some data that can be looked up in order to cal-
culate f̃ (z) = αf (z�)+ (1 − α)f (z�+1) for α = (z�+1 −
z)/(z�+1 − z�). That is, the function f̃ is defined by inter-
polating between known values f (z�) and f (z�+1) of the
target function f .

QROM [26] can be used to obtain the region that z is in
(i.e., the correct value of � above), and for that region the
QROM outputs a slope and intercept for the linear approx-
imation. The Toffoli cost of looking up one of g different
possible values in the scheme of Ref. [26] is g − 2, or
g − 1 if the output is controlled by a qubit. This Toffoli
count relies on a technique from Ref. [35] in which cer-
tain naively expected Toffolis can be replaced with Clifford
gates plus measurement. Also note that the Toffoli count
of QROM-based lookup is independent of the number of
bits of data output, meaning that we are free to choose any
number of bits to represent the slope and intercept without
introducing a Toffoli cost from the QROM. We choose the
number of bits in order to obtain bsm bits for f̃ . That is, f̃
may be a rough approximation of f , but we give f̃ to more
bits than needed by that approximation so f̃ has smooth
behavior.

We do not use QROM precisely as specified in Ref. [26]
but rather a variant of it. To explain the distinction, we
begin with some terminology. QROM is a method for exe-
cuting a quantum circuit that operates on two registers,
an input register and an output register. The input
register has an initial value of � encoded into it and the
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output register starts in the all-zero state. Each value of
� corresponds to some piece of data d� that has been speci-
fied classically before the quantum circuit was constructed.
The effect of the QROM is

QROM : |�〉input |0〉output �→ |�〉input |d�〉output . (91)

Our variant of QROM is designed for the case in which
there are data collisions. That is to say, we consider the
case where d� = d�′ for several different pairs � and �′.
In Fig. 3(a) we explain how this QROM variant works
for L = 16 in the case where d4 = d5, d6 = d7, d8 = d9 =
d10 = d11, and d12 = d13 = d14 = d15. In this variant, we
imagine that we have distinct parts of the iteration: iterate
by � �→ �+ 1, iterate by � �→ �+ 2, iterate by � �→ �+ 4,
and so on for each power of 2. This variant of QROM is
appropriate for our purposes because we want to improve
computational efficiency by spacing z� unevenly. This is
equivalent to treating many pieced of data d� as being
equal, as the data is simply the information needed to cal-
culate a linear function. The total number of Toffoli gates
is still g − 2 for g distinct regions, provided these regions
correspond to ignoring bits of the input. For example, we
can use a region such as {4, 5}, but not {3, 4}, because
4 ≡ 100 and 5 ≡ 101, so grouping 4 and 5 corresponds to
ignoring the least significant bit, but the least significant bit
changes between 3 and 4.

A further subtlety is that all regions need to be a size
corresponding to a power of 2 for this cost. In some cases
we may wish to have a final region that is larger than half,

so it is not a size that is a power of 2. That occurs because
we can have a large energy difference, but the exponential
gives a transition probability that can just be approximated
as zero for a wide range of energies. Then the cost can be
larger. For example, if we are distinguishing 0 from 1–15,
then it takes three Toffolis. The cost can be seen from the
diagram where the size of the regions increases in pow-
ers of 2, shown in Fig. 3(b). There one can choose the
numbers used for d4–7 and d8–15 to be equal, which gives
a region for 4–15. This choice corresponds to a situation
where the gap between neighboring interpolation points z�
grows exponentially.

For many of the piecewise approximations, we can
obtain accurate approximations using just powers of 2,
as in Fig. 3(b). Two main types of function that we aim
to approximate are the exponential and the arcsine of the
exponential. For the exponential the piecewise approxima-
tion can use points at argument values of 0, 1/2, 1 and
so on and achieve a piecewise linear approximation within
about 0.03. The arcsine of the exponential is more difficult
to approximate because the slope diverges at an argument
of 0, but using piecewise linear approximation points start-
ing at 1/211 and going up by powers of 2 gives similar
precision as for the exponential.

To estimate the number of interpolation points needed
for higher precision, note that the error of interpolation of
function f (z) is approximately

(δz)2

8
f ′′(z), (92)

(b)(a)

FIG. 3. (a) This figure shows how to perform QROM with variable spacing for the example where there are 4 bits, and we aim to
group the input numbers as 0, 1, 2, 3, {4, 5}, {6, 7}, {8, 9, 10, 11}, {12, 13, 14, 15}. That is, we output the same data for inputs of 4 and
5, and so forth. The first four lines are the four input bits and the fifth is a control register. There are six Toffolis needed in this example
for eight data points, with one more Toffoli for a control. (b) This figure shows how to perform QROM with variable spacing for the
example where there are 4 bits, and we group the input numbers by powers of 2 as 0, 1, 2–3, 4–7, and 8–15. There are three Toffolis
needed in this example for five data points, with one more Toffoli for a control.
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where δz is the width of the interval. To obtain error no
greater than 2−bfun , we can therefore take

δz = 2−bfun/2
√

8√
f ′′(z)

. (93)

We can therefore estimate the number of intervals needed
to approximate the function by

2bfun/2

√
8

∫ ∞

0
dz
√

f ′′(z). (94)

In the case where we are approximating arcsin[exp(−z/2)],
then we get g ≈ 1.31103 × 2bfun/2, and if we were approxi-
mating exp(−z), then we have g ≈ 2(bfun−1)/2. For the three
functions used for spectral-gap amplification, 1/

√
1 + e−z,

e−z/
√

1 + e−z, and e−z/2/
√

1 + e−z we get 2−bfun/2g of
0.346002, 0.566302, and 0.517075, respectively. The vari-
ation of 2−bfun/2g with bfun is shown in Fig. 4(a). In
practice, we need to limit the intervals to sizes that increase
by factors of 2 as described above. That increases the val-
ues of 2−bfun/2g to around 1.0, 1.9, 0.5, 0.8, and 0.7 for the
five cases, as can be seen in Fig. 4(b), an increase of around
44%. Nevertheless, it is reasonable to give the scaling of g
as O(2bfun/2), with the constant factor somewhere between
0.5 and 2.

In the linear interpolation, the primary cost is that of
multiplication of the argument times the slope. This cost
depends on how many digits are used for the slope and the
argument. For simplicity, consider the case where bits of
the argument can be divided between those before the dec-
imal point and those after the decimal point. The maximum
value needed for the argument is O(bsm), because beyond
that the functions are within 1/2bsm+1 of their asymptotic
values. That means only log bsm + O(1) bits are needed
before the decimal point. The number of digits after the
decimal point depends on the maximum value of the slope.
In the case of the exponential the maximum slope is 1, so

only bsm bits are needed. Because the slope could be mul-
tiplied by an argument that is O(bsm), it could need bsm +
log bsm + O(1) bits after the decimal point. Both numbers
need approximately bsm + log bsm + O(1) bits. This gives
a cost of multiplication of bsm

2 + O(bsm log bsm) Toffoli
gates.

The same result is obtained for all other functions we
consider except the arcsine. The arcsine has a slope that
goes to infinity, but the linear interpolation only uses a
finite slope. The minimum interpolation point needs to be
O(2−2bfun), which gives a maximum slope of O(2bfun), so
the argument requires another bfun + O(1) bits after the
decimal point. The slope needs bfun + O(1) bits before the
decimal point, and bsm + log bsm + O(1) bits after the dec-
imal point to account for the maximum argument. Then
both numbers need bfun + bsm + log bsm + O(1) bits. We
take bfun similar to bsm, giving a multiplication cost of
(bsm + bfun)

2 + O(bsm log bsm) Toffoli gates.
To estimate the numbers of bits needed, we perform sim-

ulation of the technique of Sec. III E with the SK Hamilto-
nian on 16 qubits, as shown in Fig. 5. In that technique,
we need an approximation of the arcsine of the transi-
tion probability to control a qubit rotation, rather than the
transition probability itself. Choosing interpolation points
such that the error in the approximation of the rotation
angle is no more than 0.01, the success probabilities are
almost unchanged. So far we assume that the energy dif-
ference has been multiplied by the inverse temperature β
before being input to the procedure. It is possible to bun-
dle the multiplication by β into the oracle, and as shown
in Fig. 5 that again has similar performance. There is also
the question of how many bits are needed in the function
approximating the transition function. We again find that
low-precision approximations have very little impact on
the success probability.

The overall complexity of the interpolation excluding
the QROM is therefore bsm + O(bsm log bsm) or (bsm +
bfun)

2 + O(bsm log bsm) when the arcsine is needed. To

(b)(a)

FIG. 4. The numbers of intervals multiplied by 2−bfun/2 for the five functions we consider. In (a) we allow the intervals to have
general endpoints, and in (b) we restrict the intervals to change by factors of 2, to be consistent with the QROM method we use. This
demonstrates that the number of intervals scales as 2bfun/2 with a scaling constant around 1.
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FIG. 5. Effect of various methods of function approximation on optimization performance. We numerically simulate the quantum
simulated annealing technique of Sec. III E using various methods of approximating the transition probability. We consider the per-
formance when the rotation angle is calculated to machine precision (“exact”), with piecewise linear approximation chosen to ensure
the worst-case error does not exceed 0.01 (“interpolated”), incorporating the inverse temperature β into the definition of the function
so that we are interpolating f (z) = arcsin[exp(−βz/2)] rather than f (z) = arcsin[exp(−z/2)] to avoid a multiplication (“include β”),
and when we round off the output of the function to 7 bits (“rounded output”). Each of these approximations builds upon the previous
approximation, so we perform linear interpolation in all but the exact method. We simulate the performance averaging over 4096
random SK instances on 16 qubits, with β linearly increasing over 50 steps from 0 to 1.2. We report the average failure probabil-
ity (bottom) as well as an estimate of the computational cost (top) in which we calculate the number of annealing steps divided by
the probability of success. We observe that the differences in performance are not meaningfully affected by the method of function
approximation, suggesting that we can pick the computationally cheapest option for our cost analysis.

estimate the QROM complexity, we need to account for
the final region not being a size that is a power of 2. In the
worst case the additional cost can be no larger than bdif,
which is the total size of the input register. We can there-
fore bound the QROM complexity as bdif + O(2bfun/2),
giving total interpolation complexity of

Cfun = bsm
2 + bdif + O(bsm log bsm + 2bfun/2), (95)

or, for the case where the arcsine is needed,

Cfun = (bsm + bfun)
2 + bdif + O(bsm log bsm + 2bfun/2).

(96)

For the number of ancilla qubits needed, except for the
arcsine case there are 2bsm + O(log bsm) needed for the
slope and intercept, and 2bsm + O(log bsm) used as tempo-
rary ancillas for the arithmetic. We need bdif − 1 temporary
ancillas for the QROM, which is more than the number
used for the arithmetic. The output for the transition prob-
ability can be added into the slope, so does not increase the

ancilla cost. Therefore, the ancilla costs are

Afun = 2bsm + O(log bsm), (97)

Bfun = bdif − 1. (98)

These considerations give the costs for function evaluation
in Table V. For the arcsine case we need 2bsm + bfun +
O(log bsm) ancillas for the slope and intercept, because we
need another bfun ancilla for the slope. Again the temporary
ancilla cost is primarily for the QROM, so the ancilla costs
are

Afun = 2bsm + bfun + O(log bsm), (99)

Bfun = bdif − 1. (100)

III. Optimization Methods

In this section we review proposals for heuristic quan-
tum optimization algorithms and explain how those algo-
rithms can be implemented in terms of the oracles we
describe in Sec. II. By this we include methods based on
Hamiltonian walks, those based on time evolution, and
methods related to simulated annealing. In most cases we

020312-22



COMPILATION OF HEURISTICS FOR QUANTUM OPTIMIZATION PRX QUANTUM 1, 020312 (2020)

suggest improvements to these methods, but an important
motivation for this section is to give a complete analysis
of the complexity of these algorithms, which includes con-
stant factors so that we can estimate the resources required
to realize them in the surface code in Sec. IV. We describe
the complexities of these methods in terms of the ora-
cles from the previous section in Table VII, then give the
complexity in terms of Toffoli or T gates in Table VIII.

As this section incorporates a wide variety of sophisti-
cated techniques, we begin with a brief summary of the
approaches we are considering.

(a) Amplitude amplification (Sec. III A). We start by
considering amplitude amplification, which can be
used to directly amplify the amplitude of the solu-
tion. Unlike the other methods, it takes no advantage
of the structure of the solution, so is a useful ref-
erence point to compare to the other optimization
approaches. Amplitude amplification can also be
used in combination with the other optimization
approaches, by performing amplitude amplification
on the output of the optimization.

(b) The quantum approximate optimization algorithm
(Sec. III B). The steps of this approach (QAOA)
are equivalent to Trotter steps, so the costing for
QAOA and Trotter steps is given in the same lines
in Table VII and Table VIII. Trotter steps can be
used for adiabatic approaches, which are consid-
ered in the next subsection. But here we also focus
on strategies for efficiently estimating the QAOA
objective value that are more appropriate for a
fault-tolerant cost model than standard approaches.

(c) Adiabatic quantum optimization (Sec. III C). We
review the quantum adiabatic algorithm [2] and
the most straightforward way of implementing that
approach using a Trotter method that queries the
phase oracles presented in Sec. II. We then suggest
a strategy for implementing the adiabatic algorithm
using the LCU oracles presented in Sec. II. The
LCU oracles have a different costing to Trotter and
QAOA, so are given in separate lines in Tables VII
and VIII. Next, we review a method for digitizing
the adiabatic algorithm while suppressing certain
types of errors that is based on inducing quan-
tum Zeno-effect-like projection to the ground state
by randomizing phases [21]. We suggest how this
approach can be improved by using carefully chosen
probability distributions to eliminate the errors that
manifest from incorrect measurements in the Zeno
approach. The time-evolution oracles used by these
methods are also suitable for the quantum-enhanced
population-transfer algorithm and the shortest-path
algorithm. Since we do not introduce new tech-
niques for those algorithms, but rather review how
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our oracles can be queried within those frameworks,
we discuss that content in Appendix E.

(d) Szegedy walk-based quantum simulated anneal-
ing (Sec. III D). Simulated annealing is a classical
algorithm that mimics a physical cooling process via
Markov chain Monte Carlo techniques. The quan-
tum algorithm of Somma et al. [13] is to replace
the Markov chain with a corresponding Szegedy
walk. If the spectral gap of the Markov transition
operator is �, the number of Szegedy walk steps
grows as O(1/

√
�) in contrast with the best known

bound on the worst-case scaling of the number of
Markov transitions needed in the classical approach,
which goes like O(1/�). Thus, the result appears
to be a quadratic speedup over simulated annealing.
We note that the O(1/�) scaling of classical simu-
lated annealing is known to be a very loose bound
for a broad class of problems. Typically, simulated
annealing is used heuristically by lowering the tem-
perature much faster than suggested by this bound.
Our results constitute the first complete cost analy-
sis for this algorithm that involves constant factors
in the complexity.

(e) LHPST qubitized-walk-based quantum simulated
annealing (Sec. III E). Lemieux, Heim, Poulin,
Svore, and Troyer (LHPST) [23] give a Metropolis-
Hastings-like qubitized-walk approach, which is
significantly more efficient than the direct Szegedy
approach. We refer to this method by their initials,
but we provide an improved technique that is effi-
cient for more complicated problem Hamiltonians
with high connectivity. LHPST consider a method
that is efficient for simpler problem Hamiltonians
with low connectivity, but have exponential cost for
the problem Hamiltonians considered here.

(f) Spectral-gap-amplification-based quantum simu-
lated annealing (Sec. III F). In Ref. [14], the authors
construct an inverse-temperature-dependent Hamil-
tonian whose ground state in the zero-temperature
limit is a superposition of solution configurations.
By performing spectral-gap amplification on their
Hamiltonian, they obtain a gap that is similar to that
for the quantum walk approach, indicating a similar
speedup. Our main purpose is to outline these tech-
niques and summarize the work needed to execute
such algorithms in general and for specific problems
of interest as outlined in the Introduction. We also
suggest a variant of this algorithm where one can
use qubitized quantum walks rather than time evo-
lution for the adiabatic evolution. In both cases, our
results provide the first constant factor bounds on
the complexity of implementing these algorithms.

We summarize the outcomes of this section in Table VII.
The entries of Table VII show how the Toffoli complexity

and ancilla cost of each of the above named algorithm
primitives depend on the relevant costs of oracles pre-
sented in Table V. We can then use Table VII together with
Table V to calculate the overall Toffoli complexity and
ancilla cost of each algorithm primitive for each type of
cost function. The results of this analysis are summarized
in Table VIII. In giving the complexities in this table, we
assume 2bfun/2 < bsm log bsm < brot to simplify the order
terms, which is reasonable for the examples we consider
in Sec. IV.

A. Amplitude amplification

1. Combining amplitude amplification with quantum
optimization heuristics

All of the optimization heuristics discussed in this paper
can be seen as methods of preparing a quantum state with
overlap on a low-energy subspace of interest. We refer to
the subspace of interest as S . Sometimes this subspace of
interest is actually the lowest-energy state (or states) and
other times it is any state with energy less than a cer-
tain threshold. Furthermore, all algorithms discussed in
this paper are heuristics that can be systematically refined.
Let us refer to an algorithm for quantum optimization that
is run for duration t as U(t). Let us assume that these
algorithms always begin in the state |+〉⊗N and denote
the output state of the algorithm by |ψ(t)〉 = U(t) |+〉⊗N .
Thus, after running our algorithm U(t) and sampling in the
computational basis, the probability of measuring a state in
the subspace of interest S is

p0 (t) =
∑
x∈S

|〈x |ψ (t)〉|2 . (101)

When we say that these heuristics can be systemati-
cally refined what we mean is that we can (on average)
increase p0(t) by increasing t. This refinement comes at a
cost C(t) > 0, which we define as the complexity of imple-
menting U(t). This complexity is greater than zero because
preparing the initial state |+〉⊗N requires nonzero time
even if we do nothing further. We can also boost the prob-
ability of seeing a state in S by repeating U(t) more times
and sampling. On average we need to run our algorithm
U(t) a number of times equal to 1/p0(t) in order to see a
state in S . Thus, on average the cost to sample a state S is
given by

C (t)
p0 (t)

. (102)

There is a compromise to be reached between the dura-
tion t of the optimization heuristic U(t) and the success
probability p0(t); heuristics run for more time can reach a
higher success probability and therefore be repeated fewer
times, but increasing t beyond a certain point has a neg-
ligible impact on its success probability p0(t). While past
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work [23] has discussed this dichotomy in terms of a min-
imum time to solution metric, which is parameterized in
terms of a target success probability, here we focus on
the mean cost to succeed because this seems more reason-
able to consider in a context where p0(t) is unknown. Still,
given knowledge of p0(t) one could optimize this mean
time by choosing t to minimize Eq. (102). But rather than
simply repeating the state preparation 1/p0(t) times, one
could instead boost the success probability with amplitude
amplification.

Amplitude amplification is an idea that generalized
Grover search and can be used to boost the probability
of a marked state or subspace. For instance, we might
define these marked states to be any state in S . In this
context, amplitude amplification allows us to perform a
series of m reflections [involving two preparations of the
state |ψ(t)〉], which boosts the probability of measuring the
marked subspace to

pm (t) = sin2
{
(2m + 1) arcsin

[√
p0 (t)

] }
. (103)

For instance, if we hoped to boost the probability to 1 then
by using repeated sampling we need roughly O(1/p0(t))
repetitions. However, by using amplitude amplification we
need only

m ≈ π

4 arcsin
[√

p0 (t)
] − 1 = O

(
1√

p0 (t)

)
(104)

iterations if p0(t) is small (this is akin the usual quadratic
Grover speedup).

For each round of amplitude amplification one needs to
reflect about a qubit marking the subspace of interest S . In
our context the idea is to amplify either a target energy (if a
target energy, e.g., the ground-state energy, is known) or to
amplify all states with energy less than a certain threshold.
To do this, one needs to compute the energy value into a
register and perform either an equality or inequality test to
determine whether we have reached a marked state. The
energy can be computed simply by using the direct-energy
oracles introduced in Sec. II A. However, both that step and
the cost of the equality or inequality evaluation typically
have a negligible additive cost to the cost C(t) of actually
running the quantum algorithm U(t). Moreover, the ancilla
used for storing the value of the energy can be borrowed
from ancilla used in other parts of the algorithm.

For amplitude amplification to be most effective one
should have an estimate of the overlap p0(t) in order
to avoid “overshooting” the peak of the function in Eq.
(103). Unfortunately, a reliable estimate of p0(t) is not
known in advance in general. In some rare cases one might
instead have a somewhat tight estimate of a lower bound
to p0(t) and in those cases some advantages can be real-
ized by using a variant of amplitude amplification known

as fixed-point amplitude amplification [44]. However, one
can confirm that fixed-point amplitude amplification has
no advantages in our context compared to the exponential
search heuristic proposed in Ref. [20] when the best lower
bound that is available is p0(t) > 0. The idea behind the
approach in Ref. [20] is to run amplitude amplification for
m = 2j iterations for j = 0, 1, 2, 3, . . . and so on until we
sample a marked state. The cost of each iteration of ampli-
tude amplification is 2C(t) and so if we need to repeat this
procedure until m = 2k it has a total cost that goes like

2C (t)
k∑

j =0

2j = 2C (t)
(
2k − 1

)
. (105)

Therefore, since the probability of failure in a single run
with m = 2j iterations is 1 − p2j (t), we see that the overall
mean cost of the procedure is

2C (t)
∞∑

k=1

(
2k − 1

) k−1∏
j =1

[
1 − p2j −1 (t)

] = O
( C (t)√

p0 (t)

)
.

(106)

Though the left side of this expression cannot be simpli-
fied analytically, it converges quickly and can be easily
numerically computed for any p0(t) > 0.

Comparing Eq. (102) to Eq. (106) we can see that there
is a clear asymptotic advantage to using amplitude ampli-
fication over classical sampling and expect this advantage
is realizable in practice in many contexts of interest for us.
Like with Eq. (102), if one has knowledge of p0(t) then one
can minimize Eq. (106) with respect to t to make the opti-
mal tradeoff between running the algorithm U(t) for longer
and using more rounds of amplitude amplification. In some
cases it might actually be the case that the optimal choice is
t = 0, which corresponds to using amplitude amplification
directly as a heuristic for optimization. The only down-
side to using amplitude amplification in conjunction with
other heuristic quantum algorithms for optimization is that
we trade incoherent repetitions of the primitive of U(t) for
coherent repetitions of the primitive of U(t). In some cases
this means that we need to target a higher error rate to make
the calculation fault tolerant by using an error-correcting
code.

2. Directly using amplitude amplification

In the prior section we describe how amplitude amplifi-
cation can be combined with any of the other optimization
heuristics in this paper in order to boost overlap on a tar-
get low-energy subspace of interest. However, one can
also use amplitude amplification by itself as a heuris-
tic for optimization. This heuristic provides an interesting
point of comparison to other algorithms because it offers a

020312-26



COMPILATION OF HEURISTICS FOR QUANTUM OPTIMIZATION PRX QUANTUM 1, 020312 (2020)

quadratic advantage over classical brute-force search with-
out leveraging any structure that might be available in a
particular optimization problem. Thus, it is asymptotically
the optimal strategy for solving totally unstructured prob-
lems like those described by the typical Grover oracle (all
computational basis states have energy zero except for a
solution with energy −1) or the random energy model
(all computational basis states have a unique, Gaussian
distributed energy).

To use amplitude amplification on its own all one needs
to do is to regard the algorithm U(t) as the preparation of
the symmetric superposition state |+〉⊗N , which requires
only Clifford gates. In the analysis of Sec. III 1 we assume
that the cost of directly computing the energy and then per-
forming the comparison operation is negligible compared
to the cost of applying U(t) but that is not the case when
we aim to directly apply amplitude amplification. Here,
the main cost of a step is the cost to compute (and then
later uncompute) the energy. Following Eq. (106), in this
context we find that the mean cost of applying amplitude
amplification directly then scales like

[
2Cdirect + N + O (bdir)

] ∞∑
k=1

(
2k − 1

) k−1∏
j =1{

1 − sin2

[(
2j + 1

)
arcsin

(√
1

2N

)]}

= O
( [

Cdirect + N + bdir
]√

2N

)
, (107)

where we use p0(t) = 1/2N . The cost 2Cdirect + N +
O (bdir) comes from cost Cdirect to directly compute the
energy, cost O (bdir) to apply the inequality operator to
determine whether the energy is below the target thresh-
old, cost Cdirect to uncompute the energy, and cost N − 2
to reflect about the equal superposition state. Note that this
procedure is exactly the heuristic approach introduced in
Ref. [20]. When the subspace S contains only a single state
this algorithm reduces exactly to standard Grover search
[3]. For later comparisons in this paper we refer to the cost
of a single step of amplitude amplification as having

2Cdirect + N + O (bdir) (108)

Toffoli complexity and requiring Adirect + Bdirect + O(1)
ancilla.

B. The quantum approximate optimization algorithm

The QAOA is another popular approach to quantum
optimization, introduced in Ref. [12]. The QAOA ini-
tially attracted significant interest after it was shown to
produce a better approximation ratio for a specific com-
binatorial optimization problem of bounded occurrence,

Max E3LIN2, than any known efficient classical method
[12]. While a more efficient classical algorithm was pre-
sented shortly afterwards [45], interest in QAOA has only
increased since then. While bounds on the performance of
QAOA are sometimes available, in most contexts it is stud-
ied as a heuristic in the sense that the intention is to use the
algorithm without knowing how well it performs in prac-
tice. Part of the appeal of QAOA has been that it is an
easy-to-implement algorithm that can be tested on noisy
intermediate-scale quantum (NISQ) devices even before
fault tolerance is available [46]. Nonetheless, QAOA is
still interesting algorithm to perform within error correc-
tion.

The QAOA is more straightforward than other algo-
rithms discussed in this work. The QAOA consists of
two components that are repeatedly applied. The first
component is parameterized evolution under the diagonal
problem Hamiltonian C,

UC (γ ) = e−iγC = Ophase (γ ) , (109)

where in the last equality we emphasize that UC(γ ) is
equivalent to the phase oracle Ophase(γ ) that we introduce
and provide explicit circuit constructions for in Sec. III C.

The second component is parameterized evolution under
a local transverse-field driver Hamiltonian B,

UB (β) = e−iβB B =
N∑

j =1

Xj . (110)

The QAOA is a variational algorithm that uses repeated
application of these unitaries to prepare a parameterized
state that is then optimized. The depth of the varia-
tional algorithm is usually denoted as “p” in the QAOA
literature. Specifically, for depth p we prepare a state
parameterized by γ = (γ1, . . . , γp) and β = (β1, . . . ,βp),

|γ , β〉 = UB
(
βp
)

UC
(
γp
)
. . .UB (β1)UC (γ1) |+〉⊗N ,

(111)

where |+〉⊗N is the symmetric superposition of all 2N

computational basis states.
For a given p , we attempt to find parameters that

minimize the expectation value of the cost

〈C〉 = 〈γ , β| C |γ , β〉 . (112)

The QAOA proposes to use the quantum computer to
estimate this expectation value and then to use a clas-
sical processor to perform a classical optimization, in a
fashion similar to other variational algorithms [47,48]. In
general finding the globally optimal values of γ and β

could prove to be very challenging. However, QAOA is a
heuristic algorithm and the idea is that even locally optimal
parameter settings might provide good approximations.
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The original implementation of QAOA suggested that
one directly sample the cost function C to estimate 〈C〉.
Using this method, if one wishes to converge an unbi-
ased estimator 〈C̃〉 so that |〈C̃〉 − 〈C〉| ≤ �C then the state
|γ , β〉 must be prepared and sampled a number of times
equal to

σ 2/�2
C where σ 2 = 〈C2〉 − 〈C〉2. (113)

While one does not know σ 2 in advance, one can obtain
a reasonable estimate of σ 2 after only a handful of mea-
surements and use that to determine how many more
measurements are required.

The cost of QAOA is always dominated by the number
of times that one must repeat the unitary UC(γ ); the cost to
implement UB(β) is essentially free in comparison. Thus,
if J is the number of outer-loop optimization iterations,
which each require a query of the energy accurate to within
�C then in total we require Toffoli complexity

pJCphaseσ 2

�2
C

. (114)

It is difficult to say what an appropriate choice of the
quantities J and �C should be as this depends on the
problem, the choice of optimizer one is using, and how
aggressively one is attempting to optimize. However, in
many circumstances one might not need to perform the
outer-loop optimization at all and can thus take J = 1.
This is the case when optimal (or “good enough”) param-
eters can be inferred before running the algorithm. Such a
situation often arises when running large instances of opti-
mization problems that are characteristic of a well-defined
ensemble (for example, if one is running instances of the
Sherrington-Kirkpatrick model). This is due to the obser-
vation that normalized energy landscapes (proportional to
〈C〉 as a function of γ and β) concentrate to instance and
size-independent average values for large N [49,50]. Thus,
surprisingly, it is possible to find the optimal values of γ

and β by optimizing much smaller (presumably classically
tractable) instances of these problems. Another possibility
is that one simply use γ and β parameters that are obtained
from a Trotterization of the quantum adiabatic algorithm;
in fact, there is evidence that these parameters become
optimal as one increases p [51]. Thus, for problems where
it is appropriate to forgo the outer-loop optimization step
of QAOA, we can approximate the Toffoli complexity as
pMCphase where M is the number of samples we desire.
The number of logical qubits required for its implementa-
tion is N (not counting any extra ancilla used for the phase
oracle).

Within the context of NISQ computations it makes
sense to use this method of sampling to estimate the cost
function expectation value and then to perform the opti-
mization on a classical computer. The reason is because

both strategies minimize the size of each quantum cir-
cuit that must be executed, although potentially at a cost
of needing a larger number of repetitions compared to
other strategies. However, within cost models appropri-
ate for fault tolerance the primary resource to consider
is the total number of gates required by the computation
and no particular distinction is made whether those gates
are involved in repeated applications of short quantum
circuits or a single application of a longer quantum cir-
cuit. Thus, on a fault-tolerant quantum computer it may
make sense to consider more elaborate versions of QAOA
in which the expectation-value estimation and potentially
even the optimization is also performed on a quantum com-
puter. For instance, perhaps the variational parameters γ

and β can be stored in a quantum register on which the
QAOA unitary is controlled. Such a scheme is consid-
ered in Ref. [52] where it is shown that such a method
can enable quadratically faster resolution of the gradient
than otherwise required, however with significant constant
overhead. Similarly, by using the amplitude amplification
based Monte Carlo techniques discussed in Ref. [53] (see
Theorem 5 therein) one can reduce the number of state
preparations needed for an estimate of the cost function
to O((σ/�C) log3/2(σ/�C) log log(σ/�C)), an almost
quadratic improvement over the naive sampling strategy.
However, as that method requires a number of copies of the
system register scaling as O(log(σ/�C) log log(σ/�C)),
it might prove to be prohibitively expensive for real-
ization on small fault-tolerant quantum computers. We
now consider two alternative ways to measure the energy
in QAOA, which might prove more practical for small
fault-tolerant quantum computers.

1. Amplitude-estimation-based direct-phase oracle
evaluation

Apart from sampling, the next most natural algorithm
for estimating the energy is using amplitude estimation to
compute the expectation value of each term in the cost
function in sequence. Let us assume that the cost func-
tion takes the form, C = ∑L

�=1 w�U�, where U� is a unitary
operator (and is typically a sum of diagonal Pauli oper-
ators), as in Eq. (51). Further we take λ = ∑

� |w�|. The
algorithm that we employ is simple, for each � from 1
to L we compute the quantity 〈ψ | U� |ψ〉 within error
�C/(L|w�|). An unbiased estimate of the cost function
is then given by

∑
� w� 〈ψ | U� |ψ〉 and from the triangle

inequality the error is at most �C.
An estimate of 〈ψ | U� |ψ〉 can be obtained by perform-

ing the Hadamard test (as shown in Fig. 6). Specifically, the
probability of measuring the ancillary qubit to be zero is
(1 + Re(〈ψ | U� |ψ〉))/2. If amplitude amplification is used
to mark the zero state for this circuit then the eigenphases
of the resultant walk operator (within the two-dimensional
space spanned by the initial state and the marked state) is
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FIG. 6. Hadamard test circuit for computing the expectation
value of one of the terms in the cost function. Here Uψ is a unitary
operation that prepares the ansatz state: Uψ |0〉 = |ψ〉.

[20]

φ = ±2 arcsin(
√

P0) = ±2 arcsin

[√
1 + Re (〈ψ | U� |ψ〉)

2

]
.

(115)

We then have that

2 sin2(φ/2)− 1 = Re(〈ψ | U� |ψ〉). (116)

From calculus we then see that

∂φ[2 sin2(φ/2)] = 2 sin(φ/2) cos(φ/2) ≤ φ. (117)

Thus from Taylor’s remainder theorem we have that for
any δ ≥ 0

|2 sin2(φ/2)− 2 sin2[(φ + δ)/2]| ≤ δ (118)

and if φ → φ + δ for some error δ we have that the
uncertainty that propagates to the expectation value is at
most

|Re(〈ψ | U� |ψ〉)− Re(〈ψ | U� |ψ〉)est| ≤ δ. (119)

Therefore, if we wish to estimate the energy of a config-
uration within error ε it suffices to use phase estimation
with an error of ε on the Grover operator. Finally, as dis-
cussed above we take ε = �C/(L|w�|) to ensure that the
error sums up to �C as required.

Using the quantum-Fourier-transform- (QFT) based
phase-estimation algorithm in Ref. [26] we find that, if we
neglect the cost of the QFT and any additional costs due to
additional precision required in the QROM then the num-
ber of queries to the Grover oracle needed is (for ε ≤ π )
2m ≤ 2 �π/ε� ≤ 2π/ε. Here the factor of 2 comes from

the fact that the need to round to a power of 2 leads to,
in the worst-case scenario, a factor of 2 in the number of
iterations required.

Next the Grover oracle requires two reflection operators,
one that reflects about the state yielded by the Hadamard
test circuit and another that reflects about the target space,
which is marked by the top qubit in Fig. 6 being zero (i.e.,
R0 = 1 − 2 |0〉〈0| ⊗ 1). The Grover walk operator is a
product of these two operators W = −R1R0 and as a result,
if we neglect the cost of the additional Hadamard and Tof-
foli gates needed to implement the conditional phase flip,
the costs of this process are entirely due to the reflection
about the initial state, which requires two applications of
the preparation of the initial state. We further follow the
assumption in the previous section that the cost of state
preparation dwarfs the cost of applying prepare or select.
Thus under these assumptions, and taking the uncertainty
in the objective function to be �C the Toffoli complexity
for the entire simulation is approximately

L∑
�=1

4pJπ |w�|LCphase

�C
= 4pJπλLCphase

�C
. (120)

Thus, under these assumptions, direct-energy evaluation
yields an advantage over sampling if

σ 2 ≥ 4πλ�CL. (121)

We expect this to occur when the error tolerance is small
and the number of terms is relatively modest. On the other
hand if the variance is small, target uncertainty is large, or
L is large then sampling is preferable to the direct-phase
oracle-evaluation process.

2. Amplitude-estimation-based LCU evaluation

One inexpensive approach that can be used to esti-
mate the expectation value comes from combining the
Hadamard test circuit and amplitude estimation [20].
Here we use a slightly generalized form of a general-
ized Hadamard test circuit shown in Fig. 7. The expec-
tation value of the first qubit for the above circuit is
1/2 + Re(〈ψ | C |ψ〉)/2. In order to see this, consider the
following,

|0〉 |0〉 |ψ〉 �→ |0〉
(∑

�

√
w�
λ

|�〉
)

|ψ〉 �→ |0〉 + |1〉√
2

(∑
�

√
w�
λ

|�〉
)

|ψ〉

�→ |0〉√
2

(∑
�

√
w�
λ

|�〉
)

|ψ〉 + |1〉√
2

(∑
�

√
w�
λ

|�〉 U� |ψ〉
)
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�→ |0〉
2

[
(PREPARE |0〉) |ψ〉 +

∑
�

√
w�
λ

|�〉 U� |ψ〉
]

+ |1〉
2

×
[
(PREPARE |0〉) |ψ〉 −

∑
�

√
w�
λ

|�〉 U� |ψ〉
]

�→ |0〉
2

(
|0〉 |ψ〉 + PREPARE†

∑
�

√
w�
λ

|�〉 U� |ψ〉
)

+ |1〉
2
(|0〉 |ψ〉 − |junk〉) . (122)

Therefore, the probability of measuring 0 in the top-most qubit in Fig. 7 is

1
4

[
2 + 〈0| 〈ψ | PREPARE†

∑
�

√
w�
λ

|�〉 U� |ψ〉 +
(

〈0| 〈ψ | PREPARE†
∑
�

√
w�
λ

|�〉 U� |ψ〉
)∗]

=
1 + Re

(
〈ψ |C|ψ〉

λ

)
2

. (123)

If amplitude estimation is used, the number of invo-
cations of PREPARE and SELECT needed to estimate this
probability within ε error is O(λ/ε), which is a quadratic
improvement over the sampling bound in Eq. (113).

Following the same reasoning used to derive Eq. (119)
we find that the overall Toffoli count is then, under the
assumptions that the Toffoli count is dominated by applica-
tions of the PREPARE, SELECT, and phase-circuit operations
and further that the cost of adding an additional control to
SELECT is negligible, given by

4πpJλ(Cphase + CSel + 2CPrep)

�C
. (124)

Here CSel and CPrep are the Toffoli counts for SELECT and
PREPARE, respectively.

Equation (124) shows that the favorable scalings of
the sampling approach and the direct-phase evaluation
methods can be combined together in a single method.
However, this advantage comes potentially at the price of a
worse prefactor owing to the additional complexity of the
PREPARE and SELECT circuits. In particular, we find that
this approach is preferable to sampling and direct-phase

FIG. 7. Generalized form of a Hadamard test that we use for
our QAOA implementation using LCU oracles. Here Uψ is a
unitary operation that prepares the ansatz state: Uψ |0〉 = |ψ〉.

estimation, respectively, when

σ 2 ≥ 4πλ�C

(Cphase + CSel + 2CPrep

Cphase

)
, (125)

L ≥ Cphase + CSel + 2CPrep

CPhase
. (126)

In general, we suspect that in fault-tolerant settings this
approach is preferable to direct-phase oracle evaluation
because the costs of the prepare and select circuits is often
comparable, or less than, that of Uψ as we see in the fol-
lowing section where we provide explicit constructions for
the PREPARE and SELECT oracles.

C. Adiabatic quantum optimization

1. Background on the adiabatic algorithm

The adiabatic algorithm [54] works by initializing a sys-
tem as an easy-to-prepare ground state of a known Hamil-
tonian, and then slowly (adiabatically) deforming that
system Hamiltonian into the Hamiltonian whose ground
state we wish to prepare. For instance, we might use a
Hamiltonian parameterized by s ∈ [0, 1],

H(s) = (1 − s)H0 + sH1, (127)

where H0 is a Hamiltonian with an easy-to-prepare ground
state and H1 is a Hamiltonian whose ground state we wish
to prepare. We start the system in the ground state of
H(0) = H0 and then slowly deform the Hamiltonian by
increasing s from 0 to 1 until H(1) = H1. If this is per-
formed slowly enough, then the system is in the ground
state of H1 at the end of the evolution.
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The main challenge with the adiabatic algorithm is that
we may need to turn s on extremely slowly in order for
the procedure to succeed. The rate at which we can turn
on s depends on features of the spectrum of H(s), includ-
ing its derivatives and the minimum gap � between the
ground-state eigenvalue and first excited-state eigenvalue.
It is often empirically observed that the total time of the
evolution T should scale as O(1/�2). Indeed, this result
has been proven using the so-called boundary adiabatic
theorem. This result analyzes the adiabatic algorithm in
terms of phase randomization between the different paths
that describe quantum dynamics for a slowly varying time-
dependent Hamiltonian. This randomization causes paths
that lead different excitations to destructively interfere,
which effects a mapping from the eigenvectors of an initial
Hamiltonian to the corresponding eigenvectors of the tar-
get Hamiltonian in the limit of slow evolution relative to a
relevant gap in the instantaneous eigenvalues of the time-
dependent Hamiltonian. The boundary adiabatic theorem
holds that if we let |ψk(s)〉 be the kth instantaneous eigen-
vector of any Gevrey-class time-dependent H(s) then we
have that [55]

∥∥∥T e−i
∫ 1

0 H(x)Tdx |ψk(0)〉 − |ψk(1)〉
∥∥∥ ∈ Õ

(
1
�2T

)
, (128)

where � is the minimum eigenvalue gap between the state
|ψk(s)〉 and the remainder of the spectrum. It then fol-
lows if we pick an appropriate value for T ∈ O(1/�2ε)

then we can make the error less than ε for an arbitrary
gapped adiabatic path. Alternatively, if very high preci-
sion is required then the time required for adiabatic state
preparation can also be improved for analytic Hamilto-
nians to Õ(poly(‖Ḣ‖, ‖Ḧ‖, . . .)(1/�2 + log(1/ε)/�)) by
adaptively choosing the adiabatic path to have to obey
‖∂q

s H(0)‖ = ‖∂q
s H(1)‖ = 0 for all positive integers less

than Q(ε) ∈ O(log(1/ε)); however, this approach requires
small error tolerance on the order of ε ∈ O(�) in order to
see the benefits of these improved adiabatic paths [56–58].

Note that the boundary adiabatic theorem only tells us
about the state at the end of the evolution, and does not
actually tell us anything about the state we are in at the
middle of the evolution. For that there are “instantaneous”
adiabatic theorems, which bound the probability of being
in the ground state throughout the entire evolution. For
instance, one such way to show this is based on the Zeno-
stabilized adiabatic evolutions described in Sec. III 3 [21].
These instantaneous adiabatic theorems have complexity
O(L2/(ε�)), where

L =
∫ 1

0
‖ψ̇(s)‖ds (129)

is the path length. In the case of simulated annealing,
one can show that the path length is independent of �,

whereas in general the worst-case bound is L ≤ ‖Ḣ‖/�,
which yields O(‖Ḣ‖2/�3) complexity [21]. It is not com-
pletely clear which style of adiabatic evolution gives the
best results when using the approach as a heuristic, and so
we discuss both here. With either approach we typically
take H1 to be the cost function of interest and take H0 to
be a simple-to-implement Hamiltonian that does not com-
mute, with an easy-to-prepare ground state. For instance,
a common choice is to take H0 = ∑N

i=1 Xi where Xi is the
Pauli-X operator, so that the initial state is |+〉⊗N . Other
H0 Hamiltonians (or more complicated adiabatic paths) are
also possible.

The simplest way to use the adiabatic algorithm as a
heuristic is to discretize the evolution using product for-
mulas. For instance, if we assume the adiabatic schedule
in Eq. (127) then we could attempt to prepare the ground
state as

M∏
k=1

exp
[
−i

(
M − k

M 2

)
H0T

]
exp

[
−i

(
k

M 2

)
H1T

]
|ψ0(0)〉 ,

(130)

where M is the number of first-order Trotter steps used to
discretize the adiabatic evolution. The idea of the heuristic
is to choose M based on available resources. T also needs
to be chosen heuristically rather than based on knowledge
of the gap, which we do not expect to have in general. For
fixed M , smaller T enables more precise approximation of
the continuous-time algorithm, but smaller T also means
the system is less likely to stay adiabatic.

Of course, one can also easily extend this strategy to
using higher-order product formulas, or to using either
different adiabatic interpolations or adiabatic paths. For
example, if we define

U2

(
k − 1

M
,

k
M

)
= exp

[
−i

(
M − k − 1/2

2M 2

)
H0T

]

× exp
[
−i

(
k + 1/2

M 2

)
H1T

]
exp

[
−i
(

M − k − 1/2
2M 2

)
H0T

]
,

(131)

then we have that
∥∥∥∏M

k=1 U2
( k−1

M , k
M

) − T exp[−i
∫ T

0

H(t)dt]‖ ∈ O(T3/M 2). Higher-order versions of such
integrators of order can be formed via Suzuki’s recursive
construction (for any s ∈ [0, 1]):

Uρ(s, s + δ) := Uρ−2[s + (1 − γρ)δ, s

+ δ]Uρ−2[s + (1 − 2γρ)δ, s + (1 − γρ)δ]

× Uρ−2[s + 2γρδ, s + (1 − 2γρ)δ]Uρ−2(s

+ γρδ, s + 2γρδ)Uρ−2(s, s + γρδ). (132)

Here γρ = (4 − 41/(ρ−1))−1, which approaches 1/3 as the
order of the formula, ρ, goes to infinity. Furthermore, we
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have that the error in the Trotter-Suzuki algorithm scales
as

∥∥∥∥∥
M∏

k=1

Uρ

(
k − 1

M
,

k
M

)
− T exp[−i

∫ T

0
H(t)dt]

∥∥∥∥∥
∈ O

(
Tρ+1/Mρ

)
, (133)

which results in near linear scaling with T in the limit as T
approaches infinity.

In practice, however, since the number of exponentials
in the Trotter-Suzuki formula grows exponentially with
the order there is in practice an optimal tradeoff in gate
complexity that is satisfied by a finite-order formula for
a fixed ε and T. For simplicity, we assume that the time
evolution under H0 is much cheaper to implement than the
time evolution under H1. As H1 can be implemented using
the phase oracles Ophase discussed in Sec. II, the total cost
of the procedure is approximately MCphase. This implies
that, for a finite value of M , the cost of performing the
heuristic optimization using the above adiabatic sequence
is approximately

Cadiabatic = 2M5ρ/2−1Cphase. (134)

Again, assuming that our target error in the adiabatic sweep
is ε and �2 ∈ O(ε) then it suffices to take T ∈ O(1/�2ε)

and further after optimizing the cost by setting M equal
to 2ρ/2−1 we find that M ∈ (T1+o(1)/εo(1)). Therefore, the
total cost obeys

Cadiabatic ∈ Cphase

(ε�2)1+o(1) . (135)

Similarly, if we are interested in the limit where �2 ∈
ω(ε), then boundary cancellation methods [56,57] can be
used to improve the number of gates needed to reach the
global optimum to

Cadiabatic ∈ Cphase log1+o(1)(1/ε)
�(ε�)o(1)

. (136)

These results show that, provided the eigenvalue gap is
polynomial, we can use a simulation routine for e−iH1(t)

and e−iH0(t) to find the local optimum in polynomial time.
However, in practice we are likely to want to use such an
algorithm in a heuristic fashion wherein the timesteps do
not precisely conform to the adiabatic schedule.

To give the cost for a single step a little more precisely,
we can also include the cost of implementing a trans-
verse driving field. Since that involves applying a phase
to bpha bits to each of N qubits, using repeat-until-success
circuits, this has cost 1.15Nbpha + O(N ) in terms of T
gates, with a single ancilla qubit. It is also possible to
sum the bits with Toffoli cost N , then phase by the sum

with cost bpha
2/2 + O(bpha log bpha) (accounting for mul-

tiplying the phase by a constant factor), though that has
large ancilla cost. Using the sum of tree sums approach
gives complexity 4N + bpha

2/2 + O(bpha log bpha), with
3 log L + O(1) temporary ancillas. There is bgrad = bpha +
O(log bpha) persistent ancillas needed for a phase-gradient
state as well, but in many cases that state is the same as
in other steps of the procedure, so does not increase the
ancilla cost. Using this approach, and omitting the factor
of 2 × 5ρ/2−1 for order ρ Suzuki, gives Toffoli cost

Cphase + 4N + bpha
2/2 + O(bpha log bpha) (137)

for a single step.

2. Heuristic adiabatic optimization using quantum walks

While the procedure we describe for heuristically using
the adiabatic algorithm with Trotter-based methods is well
known, it is less clear how one might heuristically use
LCU methods with the adiabatic algorithm. One reason
we might try doing this is because the qubitized quantum
walks that we discuss in Sec. II are sometimes cheaper
to implement than Trotter steps for some problems. One
approach to using LCU methods for adiabatic state prepa-
ration might be to directly attempt to simulate the time-
dependent Hamiltonian evolution using a Dyson series
approach, as was recently suggested for the purpose of adi-
abatic state preparation in Ref. [59]. However, this requires
fairly complicated circuits due to the many time registers
that one must keep to index the time-ordered exponential
operator. In principle, we could always use quantum-signal
processing (or more generally quantum singular value
transformations) to convert the walk operator at time t into
the form e−iH(t)δ for some timestep δ.

Instead, here we suggest a strategy, which is something
of a combination between using qubitized quantum walks
and using a product formula approximation. Our method
is unlikely to be asymptotically optimal for this purpose
but it is simple to implement and we suspect it is cheaper
than either a Dyson series approach or a Trotter approach
for some applications on a small error-corrected quantum
computer. The idea is to stroboscopically simulate time
evolution as a short-time evolved “qubitized” walk. The
result is that we actually simulate the adiabatic path gener-
ated by the arccosine of the normalized Hamiltonian H(s)
rather than the adiabatic path generated directly by H(s),
but we expect that the relevant part of the eigenspectrum
is in the linear part of the arccosine, which means there
is not much effect on the dynamics. The main challenge
in this approach is to artificially shrink the effective dura-
tion of these quantum walk steps so that the method can be
refined.

In the following we assume that SELECT2 = 1, which
is to say that every Hamiltonian in the decomposition
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is self-adjoint (consistent with the problem Hamiltonians
we consider). For every eigenvector |ψk(t)〉 of H(t) with
H |ψk(t)〉 = Ek(t), if we define |L〉 = PREPARE |0〉 then we
can write

W = (I − 2I ⊗ |L〉〈L|)SELECT. (138)

The walk operator can be seen as a direct sum of two
different walk operators, W = WH ⊕ W⊥, where WH is
the portion of the walk operator that acts nontrivially on
|ψk(t), L〉 = |ψk(t)〉 ⊗ |L〉 and W⊥ is the operator that acts
on the remaining states. Next, if for each k and t we define

|ψ⊥
k (t)〉 such that

|ψ⊥
k (t)〉 =

[
W − Ek(t)

λ(t)

]
|ψk(t), L〉√

1 − E2
k (t)
λ2(t)

=
[
WH − Ek(t)

λ(t)

]
|ψk(t), L〉√

1 − E2
k (t)
λ2(t)

, (139)

then we can express

WH (t) = exp
{
−i

[∑
k

i |ψ⊥
k (t)〉〈ψk(t), L| − i |ψk(t), L〉〈ψ⊥

k (t)|
]

arccos
[

Ek(t)
λ(t)

]}
. (140)

It may be unclear how to implement a time step for W(t)
since the operation is only capable of applying unit-time
evolutions. Fortunately, we can address this by taking for
any r ≥ 1

H(t)=
∑

k

λk(t)Uk �→
∑

k

λk(t)Uk + (r − 1)λ(t)
2

(I − I) .

(141)

In this case we can block encode the Hamiltonian using a
unary encoding of the extra two operators via

|L(t, r)〉 =
∑

k

√
λk(t)
λ(t)r

|k〉 |00〉 +
√

r − 1
2r

|0〉 (|10〉 + |11〉) .

(142)

The select oracles for this Hamiltonian require one addi-
tional control for each of the original terms in the Hamil-
tonian and the additional terms only need a single Pauli-Z
gate to implement. We define this operator to be SELECT′.

With these two oracles defined, we can then describe the
walk operator Wr(t) for any fixed value of t to be

Wr(t) = [I − 2I ⊗ |L(t, r)〉〈L(t, r)|]SELECT′. (143)

This new Hamiltonian has exactly the same eigenvectors,
however its value of λ is greater by a factor of r. In par-
ticular, we can express the walk operator [restricted to the
eigenspace supported by the instantaneous eigenvectors of
H(t)] is

WH ,r(t) = exp

({
−i

[∑
k

i |ψ⊥
k (t)〉〈ψk(t), L(t, r)| − i |ψk(t), L(t, r)〉〈ψ⊥

k (t)|
]

r arccos
[

Ek(t)
rλ(t)

]}
1
r

)
. (144)

Using the fact that arccos(x) = π/2 − arcsin(x) we have that, up to an irrelevant global phase this operator can be written
as

VH ,r(t) = exp

({
i

[∑
k

i |ψ⊥
k (t)〉〈ψk(t), L(t, r)| − i |ψk(t), L(t, r)〉〈ψ⊥

k (t)|
]

r arcsin
[

Ek(t)
rλ(t)

]})
. (145)

Thus the operator VH ,r(t) can be seen to generate a short time step of duration 1/r for an effective Hamiltonian

Hr(t) :=
[∑

k

i |ψ⊥
k (t)〉〈ψk(t), L(t, r)| − i |ψk(t), L(t, r)〉〈ψ⊥

k (t)|
]

r arcsin
[

Ek(t)
rλ(t)

]
. (146)
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Note that as r → ∞ the eigenvalues of this Hamiltonian
approach ±Ek(t)/λ(t) and more generally

∣∣r sin−1{Ek(t)/[rλ(t)]} − Ek(t)/λ(t)
∣∣ ∈ O(1/r2).

For any fixed value of r we can choose an adiabatic
path between an initial Hamiltonian and a final Hamilto-
nian. The accuracy of the adiabatic approximation depends

strongly on how quickly we traverse this path so it is cus-
tomary to introduce a dimensionless time s = t/T, which
allows us to easily change the speed without altering the
shape of the adiabatic path. In Appendix B we are able
to show that the adiabatic theorem then implies that the
number of steps of the quantum walk required to achieve
error ε in an adiabatic state preparation for a maximum
rank Hamiltonian with gap � is in

Õ

⎡
⎣ 1
ε3/2

√
maxs

(‖Ḧ‖ + |λ̈|)maxs
(|λ̇| + ‖Ḣ‖)

min(�, mink |Ek|)2 + λmaxs
(|λ̇| + ‖Ḣ‖)3

min(�, mink |Ek|)4

⎤
⎦ . (147)

The reason why this result depends on the minimum
value of Ek is an artifact of the fact that several of the
eigenvalues of the walk operator can be mapped to 1 under
repeated application of Wr. This potentially can alter the
eigenvalue gaps for eigenvalues near zero, which impacts
the result.

The key point behind this scaling is that it shows that as
the number of time slices increases this heuristic converges
to the true adiabatic path. Just as the intuition behind Trot-
terized adiabatic state preparation hinged on this fact, here
this result shows that we can similarly use a programmable
sequence of parameterizable walk operators to implement
the dynamics. The main advantage relative to Trotter meth-
ods is that the price that we have to pay using this technique
does not depend strongly on the number of terms in the
Hamiltonian, which can lead to advantages in cases where
the problem or driver Hamiltonians are complex.

This scaling can be improved by using higher-order
splitting formulas for the time evolution [60] and by using
boundary cancellation methods to improve the scaling of
the error in adiabatic state preparation. In general, if we
assume that � ∈ O(1) for the problem at hand then it is
straightforward to see that we can improve the scaling from
O(1/ε3/2) to 1/εo(1) [56–58]. It is also worth noting that
the bounds given above for the scaling with respect to the
derivatives of the Hamiltonian and the coefficients of the
Hamiltonian is expected to be quite loose owing to the
many simplifying bounds used to make the expression easy
to use. On the other hand, the scaling with the gap and error
tolerance is likely tighter.

3. Zeno projection of adiabatic path via phase
randomization

The principle of the Zeno approach is to increment
the parameter for the Hamiltonian s or β by some small
amount such that the overlap of the ground state of the
new Hamiltonian with that of the previous Hamiltonian is

small. One can then perform phase estimation to ensure
that the system is still in the ground state. This approach
was used in Refs. [23,61], and combined with a rewind
procedure to give a significant reduction in gate complex-
ity compared to other approaches. An alternative approach
was proposed in Ref. [21,62], where the measurement was
replaced with phase randomization. Here we summarize
this method and show how to further optimize it.

When using phase estimation, if it verifies that the
system is still in the ground state, one continues with incre-
menting the parameter. If the ground state is not obtained
from the phase estimation, one could abort, in which case
no output is given and one needs to restart. Because the
probability of failure is low, one could just continue regard-
less, and check at the end. That means that the result of the
phase estimation is discarded.

The phase estimation is performed with control qubits
controlling the time of the evolution, then an inverse quan-
tum Fourier transform on the control qubits to give the
phase. But, if the result of the measurement is ignored, then
one can simply ignore the inverse quantum Fourier trans-
form, and regard the control qubits as being measured in
the computational basis and the result discarded. That is
equivalent to randomly selecting values for these control
qubits in the computational basis at the beginning. But, if
these qubits take random values in the computational basis,
one can instead just classically randomly generate a time,
and perform the evolution for that time.

In performing a phase measurement using control
qubits, one uses a superposition state on those control
qubits, and the error in the phase measurement corresponds
to the Fourier transform of those amplitudes. That is, with
b control qubits, we have a state of the form

|χφ〉 =
2b−1∑
z=0

eizφχz |z〉 , (148)
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where φ is a phase that corresponds to −Eδt, the energy
eigenvalue of the Hamiltonian times the shortest evolu-
tion time. Then the phase measurement using the quan-
tum inverse Fourier transform corresponds to the positive
operator-valued measurement (POVM) |φ̂〉 〈φ̂|, with

|φ̂〉 = 1√
2π

2b−1∑
z=0

eizφ̂ |z〉 . (149)

The probability distribution for the error δφ = φ̂ − φ is
then given by

Pr(δφ) =
∣∣∣〈φ̂|χφ〉

∣∣∣2 = 1
2π

∣∣∣∣∣∣
2b−1∑
z=0

eizδφχz

∣∣∣∣∣∣ . (150)

These measurements are equivalent to the theory of win-
dow functions in spectral analysis. A particularly useful
window to choose is the Kaiser window, because it has
exponential suppression of errors [63].

In the case where the evolution time is chosen classi-
cally, it can be given by a real number, and we do not need
any bound on the evolution time. Then the the expected
cost is the expectation value of |t|

〈|t|〉 =
∫

dt|t|ptime(t). (151)

Because there is no upper bound on t, we can obtain a prob-
ability distribution for the error that drops strictly to zero
outside the given interval, rather than being exponentially
suppressed. Still considering a coherent superposition for
the moment, the state is given by

|ψE〉 =
∫

dte−iEtχt |t〉 , (152)

where E is the energy, t is the evolution time, and ptime(t) =
|χt|2. Then the POVM is |Ê〉 〈Ê| with

|Ê〉 = 1√
2π

∫
dte−iÊt |t〉 . (153)

The probability distribution for the error in the measure-
ment of E is

Pr(δE) = 1
2π

∣∣∣∣
∫

dteitδEχt

∣∣∣∣
2

. (154)

An alternative description is to describe the system as
being in state

|ψ〉 =
∑

j

〈ψj |ψ〉 |ψj 〉 , (155)

where |ψj 〉 is an eigenstate of the Hamiltonian with energy
Ej . Then evolving for time t with probability ptime(t) gives

the state

∑
j ,k

〈ψj |ψ〉〈ψ |ψk〉p̃time(Ej − Ek) |ψj 〉〈ψk| , (156)

where

p̃time(Ej − Ek) =
∫

dtptime(t)e−i(Ej −Ek)t. (157)

If the width of the Fourier transform of the probability dis-
tribution ptime is less than the spectral gap�, then the state
is

∑
j

|〈ψj |ψ〉2 |ψj 〉〈ψj | . (158)

In comparison, if Pr(δE) is equal to zero for |δE| ≤ Emax,
then the same result is obtained for 2Emax = �. This is
what is expected, because if ptime(t) = χ2

t , then the Fourier
transform of ptime is the autocorrelation of the Fourier
transform of χt, and therefore has twice the width.

Next we consider appropriate probability distributions.
A probability distribution for t that was suggested in Ref.
[21] was

ptime(t) = 8πsinc4(t�/4)
3�

. (159)

That gives 〈|t|〉 = 12 ln 2/(π�), so 〈|t|〉� ≈ 2.648. There
Pr(δE) is equivalent to the square of a triangle window, but
greater performance can be obtained by using the triangle
window

Pr(δE) = 2
�
(1 − |2δE/�|). (160)

Then the corresponding ψt is obtained from the Fourier
transform of

√
Pr(δE) as

χt = sin(�t/2)C(
√
�t/π)− cos(�t/2)S(

√
�t/π)

(�t/2)3/2
,

(161)

where C and S are Fresnel integral functions. That gives
〈|t|〉 = 7/(3�), so 〈|t|〉� ≈ 2.333.

To find the optimal window, we can take

1√
2π

∫
dteitxχt = (1 − x2)

∑
�

a�x2�, (162)

for x the difference in energy divided by Emax. We use only
even orders, so it is symmetric, and the factor of (1 − x2)
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ensures that it goes to zero at ±1. Then

χt = 1√
2π

∑
�

a�
∫ 1

−1
dx cos(xt)(1 − x2)x2�. (163)

Then the expectation of the absolute value of the time is
∫

dt|t||χt|2 = 1
2π

∑
k,�

aka�Ak�, (164)

where

Ak� =
∫

dt|t|
[∫ 1

−1
dx cos(xt)(1 − x2)x2k

]

×
[∫ 1

−1
dz cos(zt)(1 − z2)z2�

]
. (165)

We also need, for normalization,

1 =
∑
k,�

aka�
∫ 1

−1
dx(1 − x2)2x2(k+�) =

∑
k,�

aka�Bk�,

(166)

where

Bk� = 16
[2(k + �)+ 1][2(k + �)+ 3][2(k + �)+ 5]

.

(167)

Then defining �b = B1/2�a, the normalization corresponds
to ‖�b‖ = 1. Then the minimum 〈|t|〉 corresponds to
minimizing �aTA�a/π , which is equivalent to minimizing
�aTB−1/2AB−1/2�a/π , so we need to find the minimum
eigenvalue of B−1/2AB−1/2. That gives 〈|t|〉Emax ≈ 1.1580
with terms up to a22 (a 46th-order polynomial).

This explanation is for the case where there is Hamilto-
nian evolution for a time t, which can take any real value.
In the case of steps of a quantum walk with eigenvalues
e±i arccos(H/λ), the number of steps take an integer value.
For the Hamiltonian evolution it could be implemented by
steps of a quantum walk as well but it is more efficient to
simply use the steps of that quantum walk directly without
signal processing. To obtain the corresponding probabil-
ity distribution for a discrete number of steps, we simply
take the probability distribution for t at points separated
by 1/λ. That yields a probability distribution for the error
that is the same as for the continuous distribution, except
with a periodicity of λ. That periodicity has no effect on
the error, because it is beyond the range of possible values
for the energy. The reason for this correspondence is that
taking the probability distribution at a series of discrete
points is like multiplying by a comb function, equivalent
to convolving the error distribution with a comb function.

D. Szegedy walk-based quantum simulated annealing

In the remainder of Sec. III we consider quantum sim-
ulated annealing, where the goal is to prepare a coherent
equivalent of a Gibbs state and cool to a low temperature.
More specifically, the coherent Gibbs state is

|ψβ〉 :=
∑
x∈�

√
πβ(x) |x〉 , πβ(x) ∝ exp(−βEx), (168)

where β is the inverse temperature. For annealing, we
have transition probabilities of obtaining y from x denoted
Pr(y|x), which must satisfy the detailed balance condition

Pr(y|x)πβ(x) = Pr(x|y)πβ(y). (169)

The detailed balance condition ensures that πβ is the equi-
librium distribution with these transition probabilities. For
the costings in this work we take for y differing from x by
a single bit flip,

Pr(y|x) := min
{
1, exp

[
β
(
Ex − Ey

)]}
/N , (170)

and Pr(x|x) = 1 − ∑
y �=x Pr(y|x). This choice is similar

to that in Ref. [23]. Another choice, used in Ref. [14],
is Pr(y|x) = χ exp

[
β
(
Ex − Ey

)]
for χ chosen to pre-

vent sums of probabilities greater than 1. If one were to
construct a Hamiltonian as

〈x| Hβ |y〉 = δx,y −
√

Pr(x|y)Pr(y|x), (171)

then the detailed balance condition ensures that the ground
state is |ψβ〉 with eigenvalue zero. One can then apply
an adiabatic evolution under this Hamiltonian to gradually
reduce the temperature (increase β).

In the approach of Ref. [13], the method used is to
instead construct a quantum walk where the quantum
Gibbs state is an eigenstate. One could change the value of
β between each step of the quantum walk similarly to the
adiabatic algorithm for the Hamiltonian. Alternatively, for
each value of β one can apply a measurement of the walk
operator to project the state to |ψβ〉 via the quantum Zeno
effect. Reference [13] also proposes using a random num-
ber of steps of the walk operator to achieve the same effect
as the measurement. The advantage of using the quantum
walk is that the complexity scales as O(1/

√
δ), where δ is

the spectral gap of Hβ , rather than O(1/δ), which is the
best rigorous bound for the scaling of (classical) simulated
annealing.

The quantum walk used in Ref. [13] is based on a
Szegedy walk, which involves a controlled state prepa-
ration, a SWAP between the system and the ancilla, and
inversion of the controlled state preparation. Then a reflec-
tion on the ancilla is required. The sequence of operations
is as shown in Fig. 8. The dimension of the ancilla needed
is the same as the dimension as the system. The reflection
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FIG. 8. The qubitized quantum walk operator W using the
Szegedy approach.

and SWAP have low cost, so the Toffoli cost is dominated
by the cost of the controlled state preparation.

The Szegedy approach builds a quantum walk in a sim-
ilar way as the LCU approach in Fig. 2, where there is
a block encoded operation followed by a reflection [31].
That is, preparation of the ancilla in the state |0〉, followed
by unitary operations U and projection onto |0〉 on the
ancilla yields the block encoded operator A = 〈0| U |0〉.
Instead of performing a measurement on the ancilla, the
reflection about |0〉 results in a joint operation that has
eigenvalues related to the eigenvalues of A as e±i arccos a,
where a is an eigenvalue of A.

Here the controlled state preparation is of the form

CPREP |x〉 |0〉 =
∑

y

√
Pr(y|x) |x〉 |y〉 ≡ |αx〉 , (172)

where the sum is taken over all y that differ from x by at
most one bit. As a result, the block-encoded operation is

〈0| CPREP†SWAP CPREP |0〉 =
∑
x,y

√
Pr(x|y)Pr(y|x) |y〉〈x| .

(173)

Thus the block-encoded operation has a matrix represen-
tation of the form

√
Pr(x|y)Pr(y|x), which is equivalent

to 1 − Hβ . Therefore, the quantum Gibbs state |ψβ〉 is an
eigenstate of this operation with eigenvalue 1. Combining
this operation with the reflection gives a step of a quantum
walk with eigenvalues corresponding to the arccosine of
the block-encoded operator [64,65]. It is this arccosine that
causes a square-root improvement in the scaling with the
spectral gap. This is because if the block-encoded opera-
tion has gap δE from the eigenvalue of 1 for the target state,
taking the arccosine yields a gap of approximately

√
2δE

for the quantum walk. This gap governs the complexity of
the algorithm based on the quantum walk.

In implementing the step of the walk, the state prepa-
ration requires calculation of each of the Pr(y|x) for a
given x. In turn these require computing the energy dif-
ference under a bit flip, and the exponential. The prob-
ability Pr(x|x) is computed from the formula Pr(x|x) ≡
1 − ∑

y �=x Pr(y|x) required for normalization of the proba-
bilities. To prepare the state one can first prepare a state of
the form

|ψx〉 =
∑

k

√
Pr(xk|x) |x〉 |k〉 , (174)

where xk indicates that bit k of x has been flipped with
k = 0 indicating no bit flip, and |k〉 is encoded in one-
hot unary. The state |αx〉 can then be prepared by applying
CNOTs between the respective bits of the two registers.

In order to prepare the state |ψx〉 in unary, an obvious
method is to perform a sequence of controlled rotations
depending on the transition probabilities. However, that
tends to be expensive because our method of performing
rotations involves multiplications, and high precision is
required because the error in each rotation accumulates.
A better method can be obtained by noting that the ampli-
tudes for k > 0 are limited. We can then perform the state
preparation by the following method.

1. Compute N Pr(xk|x) for all N bit flips, and subtract
those values from N to obtain N Pr(x|x). Note that
N Pr(xk|x) ≤ 1, and we compute this value to bsm
bits. The value of N Pr(x|x) needs log N� + bsm
bits, but only the leading bsm bits can be regarded
as reliable. The complexity of the subtractions is
N (log N� + bsm).

2. We have N qubits in the target system we need to
prepare the state and five ancillas,

|0〉A |0〉K |0〉Z |0〉ZZ |0〉B |0〉C , (175)

where K is the target system, A, B, and C are
single-qubit ancillas, and Z and ZZ are s-qubit ancil-
las. Apply Hadamards to the ancillas to give equal
superpositions on all except ZZ and B.

|+〉A |0〉K
1

2s/2

2s−1∑
z=0

|z〉Z |0〉ZZ |0〉B |+〉C . (176)

3. Controlled on ancilla A, prepare an equal super-
position state on log N� qubits of K. If N is a
power of 2, then it can be performed with log N
controlled Hadamards, each of which can be per-
formed with two T gates. It is also possible to
prepare an equal superposition for N not a power of
2 with complexity O(log N ). For more details see
Sec. III 2.

4. We can map the binary to unary in place, with cost
no more than N − log N (see Appendix C), to give

1

2s/2
√

2

(
|0〉A |0〉K + 1√

N
|1〉A

N∑
k=1

|k〉K
)

×
2s−1∑
z=0

|z〉Z |0〉ZZ |0〉B |+〉C , (177)

where |k〉K is a value in one-hot unary.
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5. Compute the approximate square of z, denoted z̃2,
placing the result in register ZZ, to give

1

2s/2
√

2

(
|0〉A |0〉K + 1√

N
|1〉A

N∑
k=1

|k〉K
)

×
2s−1∑
z=0

|z〉Z |z̃2〉ZZ |0〉B |+〉C . (178)

The complexity is no greater than s2/2, as discussed
in Appendix 6. To obtain bsm bits of precision in
the square, we need to take s = bsm + O(log bsm),
giving complexity bsm

2/2 + O(bsm log bsm).

6. For each k = 1, . . . , N , perform an inequality test
between N Pr(xk|x) and z2 in the ZZ register, con-
trolled by qubit k in K, placing the result in B. This
has cost Nbsm Toffolis.

7. Controlled on ancilla A being zero, perform an
inequality test between N Pr(x|x) and Nz2, with
the output in B. The inequality test has complex-
ity bsm. In the case where N is not a power of
2, multiplying by N has complexity approximately
bsm

2 + O(bsm log bsm) to obtain bsm bits, and we
incur this cost twice, once for computation and
once for uncomputation. If N is a power of 2 the
multiplication by N has no cost. We obtain the state

1

2s/2
√

2

⎡
⎢⎣|0〉A |0〉K

2s
√

P̃r(x|x)−1∑
z=0

|z〉Z |z̃2〉ZZ |0〉B + |0〉A |0〉K
2s−1∑

z=2s
√

P̃r(x|x)

|z〉Z |z2〉ZZ |1〉B

+ 1√
N

|1〉A
N∑

k=1

|k〉K
2s
√

N P̃r(xk |x)−1∑
z=0

|z〉Z |z̃2〉ZZ |0〉B + 1√
N

|1〉A
N∑

k=1

|k〉K
2s−1∑

z=2s
√

N P̃r(xk |x)

|z〉Z |z̃2〉ZZ |1〉B

⎤
⎥⎦ |+〉C , (179)

where P̃r indicates an approximation of the probabil-
ity, with the imprecision primarily due to imprecise
squaring of z.

8. Uncompute z2 in register ZZ with complexity no
more than s2/2.

9. Use a sequence of CNOTs with the N qubits of K as
controls and ancilla A as target. This resets A to zero.

10. Perform Hadamards on the qubits of K, giving a state
of the form

1
2

|0〉A
[√

P̃r(x|x) |0〉K + 1√
N

N∑
k=1

√
P̃r(xk|x) |k〉K

]

× |0〉Z |0〉ZZ |0〉B |0〉C + |ψ⊥〉 , (180)

where |ψ⊥〉 is the component of the state perpendic-
ular to zero states on Z, B, and C.

11. Now conditioned on |0〉Z |0〉B |0〉C, we have the cor-
rect state with amplitude approximately 1/2. We
simply need to perform one round of amplitude
amplification. We reflect about |0〉Z |0〉B |0〉C, invert
steps 10 to 2, reflect about zero, then perform steps
2 to 10 again. In the limit of large s we then have the
correct state. As well as incurring three times the
cost of steps 2 to 10, we have a cost of N + O(bsm)

for the reflection.

The overall Toffoli complexity of this procedure, excluding
the computation of Pr(xk|x), is

N (log N� + bsm)+ N + 3

× [
N + bsm

2 + 2bsm
2 + (N + 1)bsm

]
+ O(log N + bsm log bsm). (181)

Here the first term is for the subtractions in step 1, the
second term N is for the reflection, then the terms inside
the square brackets are from steps 2 to 10. In the square
brackets N is for the binary to unary conversion, bsm

2

is for computation and inverse computation of z2, 2bsm
2

is for multiplication by N (computation and uncomputa-
tion), which is only needed for N not a power of 2, and
(N + 1)bsm is for the N + 1 inequality tests. The cost log N
in the order term is for the controlled preparation of an
equal superposition state, and bsm log bsm is the order term
for the squaring and multiplication.

Note that the preparation is performed perfectly, because
the initial amplitude is not exactly 1/2. We use a flag qubit
to indicate success, which controls the SWAP. To see the
effect of this procedure, suppose the system is in basis state
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x. Then the state that is prepared is

CPREP |0〉 |x〉 |0〉 = μx |1〉 |x〉
∑

y

√
Pr(y|x) |y〉

+ νx |0〉 |x〉 |φx〉 , (182)

where the first qubit flags success, μy is an amplitude for
success, νx is an amplitude for failure, and φx is some state
that is prepared in the case of failure and can depend on
x. Here we ignore the imperfect approximation of Pr(y|x),
and are focusing just on the imperfect success probability.
Then the SWAP is only performed in the case of success,
which gives

SWAP CPREP |0〉 |x〉 |0〉 = μx |1〉
∑

y

√
Pr(y|x) |y〉 |x〉

+ νx |0〉 |x〉 |φx〉 . (183)

Then we can write

〈0| 〈y| 〈0| CPREP†

= μy |1〉
∑

x

√
Pr(x|y) 〈y| 〈x| + νy 〈0| 〈y| 〈φy | , (184)

so

〈0| 〈y| 〈0| CPREP†SWAP CPREP |0〉 |x〉 |0〉
= μxμy

√
Pr(y|x)Pr(x|y)+ δx,yν

2
x

=
√

Pr′(y|x)Pr′(x|y), (185)

where we define

Pr′(x|y) =
{
μ2

y Pr(x|y), x �= y
1 − μ2

y
∑

z �=y Pr(z|y), x = y.
(186)

That is, the effect of the imperfect preparation is that the
qubitized step corresponds to a slightly lower probability
of transitions, which should have only a minor effect on
the optimization.

The cost of the quantum walk in this approach is primar-
ily in computing all transition probabilities N Pr(xk|x). If
we were only concerned with the inequality tests for k > 0,
then we could incur that cost only once with a simple mod-
ification of the above scheme. The problem is that we also
need N Pr(x|x), which requires computing all N Pr(xk|x).
The steps of computing each N Pr(xk|x) are as follows.

1. Query the energy-difference oracle to find the
energy difference δE of a proposed transition to bdif
bits.

2. Calculate exp(−βδE) to bsm bits using the QROM
and interpolation method from Sec. II E.

The costs for the energy-difference oracles are discussed
in Sec. II A, and are as in Table V. In this table, the
costs for the energy-difference oracles for the L-term spin
model and LABS problem are obtained by evaluating the
energy twice. Computing N values of the energy difference
suggests we multiply this cost by N , but we can save com-
putation cost by just calculating the energy for x once, and
computing the energy for each of the xk. That means the
cost for these problem Hamiltonians can be given as the
cost for a single energy evaluation multiplied by N + 1.
For QUBO and the SK model it is considerably more effi-
cient to compute the energy difference than the energy,
so in these cases we simply compute the energy differ-
ence N times. The number of output registers is increased
by a factor of N in all cases. For the cases where we
compute the starting energy and the N energies under bit
flips, we can compute the starting energy first, copy it into
the N outputs, and subtract the energy under the bit flip
from each of the output registers. In summary, the com-
plexity can be given as the minimum of N + 1 times the
cost of the energy oracle, and N times the cost of the
energy-difference oracle.

To perform the state preparation, we need to compute
the energy differences, use those to compute the transition
probabilities, prepare the state, then uncompute the transi-
tion probabilities and energy differences. In each step of the
Szegedy walk as shown in Fig. 8, we need to do the con-
trolled preparation and inverse preparation, which means
that the energy differences need to be computed four times
for each step. That gives a cost of

min[4(N + 1)Cdirect, 4NCdiff] + 4NCfun. (187)

However, we can save a factor of 2 by taking the con-
trolled preparation and moving it to the end of the step, as
shown in Fig. 9. The reason why we can save a factor of
2 is that then, in between the controlled inverse prepara-
tion and preparation, there is a reflection on the target, but
the control is not changed. That means we can keep the
values of the energy differences and transition probabili-
ties computed in the controlled inverse preparation without
uncomputing them, then only uncompute them after the
controlled preparation.

This approach does not change the effect of a sequence
of steps if β is kept constant. However, if β is changed
between steps, then the procedure as shown in Fig. 8 is dif-
ferent to that taking the controlled preparation and moving
it to the end of the state. That is, the value of β is changed

FIG. 9. The quantum walk operator using the Szegedy
approach, where we have moved the controlled preparation to
the end.
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at the swap operation, rather than the reflection. Because
there is only a factor of 2 rather than 4, the resulting cost is

min
[
2(N + 1)Cdirect, 2NCdiff] + 2NCfun. (188)

Now adding twice the complexity of the state preparation
from Eq. (181) gives complexity

min
[
2(N + 1)Cdirect, 2NCdiff] + 2NCfun + 2N log N

+ 8Nbsm + 18bsm
2 + O(N ). (189)

Here we omit bsm log bsm in the order term because it is
smaller than N for the parameter ranges we are interested
in. The term 9bsm

2 includes 3bsm
2 from squaring and 6bsm

2

from multiplication. In the case where N is a power of 2 the
cost of 6bsm

2 can be omitted.
To evaluate the numbers of ancillas needed, we need to

distinguish between the persistent ancillas and temporary
ancillas in Table V. This is because the persistent ancillas
need to be multiplied by N , whereas the temporary ancillas
are reused, so we only need to take the maximum. Consid-
ering the persistent ancillas first, the ancilla costs are as
follows.

1. The N qubits for the Szegedy walk for the copy of
the system.

2. N times the ancilla cost for the energy evaluation.
3. N times the ancilla cost for the function evaluation.
4. The ancillas Z, A, B, C in the state preparation use

bsm + O(log bsm) qubits.

For the temporary ancillas, we have contributions from the
energy-difference evaluation, the function evaluation, and
the state preparation. Since these operations are not done
concurrently, we can take the maximum of the costs. The
most significant is that for the state preparation. In the state
preparation we have the following costs.

1. Ancilla ZZ has bsm + O(log bsm) qubits, and it is
temporary because it is uncomputed.

2. If N is not a power of 2 then we need another bsm +
O(log bsm) qubit for an ancilla with Nz2.

3. We use bsm + O(log bsm) qubits for squaring, or
2bsm + O(log bsm) qubits if we are performing the
multiplication by N .

As a result, the temporary ancilla cost is 2bsm + O(log bsm)

qubits if N is a power of 2, or 4bsm + O(log bsm) other-
wise. Considering the worst case that N is not a power

of 2, this temporary ancilla cost is larger than that for the
difference function evaluation, giving a total ancilla cost

NAdiff + NAfun + 5bsm + O(log bsm). (190)

E. LHPST-qubitized walk-based quantum simulated
annealing

The same quantum walk approach to quantum simu-
lated annealing can be achieved using an improved form
of quantum walk given by Lemieux, Heim, Poulin, Svore,
and Troyer [23] that requires only computation of a sin-
gle transition probability for each step. Here we provide an
improved implementation of that quantum walk that can be
efficiently achieved for more general types of cost Hamil-
tonians than considered in Ref. [23]. The operations used
to achieve the step of the walk are

ŨW = RV†B†FBV, (191)

where

V : |0〉M → 1√
N

∑
j

|j 〉M , (192)

B : |x〉S |j 〉M |0〉C → |x〉S |j 〉M

×
(√

1 − px,xj |0〉C + √
px,xj |1〉C

)
, (193)

F : |x〉S |j 〉M |0〉C → |x〉S |j 〉M |0〉C ,
|x〉S |j 〉M |1〉C → |xj 〉S |j 〉M |1〉C , (194)

R : |0〉M |0〉C → −|0〉M |0〉C ,
|j 〉M |c〉C → |j 〉M |c〉C for (j , c) �= (0, 0). (195)

Here px,y = N Pr(y|x) in the notation used above, and we
specialize to an equal superposition over j and only single
bit flips.

This walk is equivalent to the Szegedy approach of
Ref. [13] because it yields the same block-encoded oper-
ation. That is, 〈0| V†B†FBV |0〉 has matrix representation√

Pr(x|y)Pr(y|x). To show this fact, the sequence of oper-
ations gives

V |0〉M |0〉C = 1√
N

N∑
j =1

|j 〉M |0〉C , (196)

BV |0〉M |0〉C = 1√
N

∑
x

N∑
j =1

|x〉〈x| ⊗ |j 〉
(√

1 − px,xj |0〉C + √
px,xj |1〉C

)
, (197)

FBV |0〉M |0〉C = 1√
N

∑
x

N∑
j =1

|x〉〈x| ⊗ |j 〉
√

1 − px,xj |0〉C

020312-40



COMPILATION OF HEURISTICS FOR QUANTUM OPTIMIZATION PRX QUANTUM 1, 020312 (2020)

+ 1√
N

∑
x

N∑
j =1

|xj 〉〈x| ⊗ |j 〉√px,xj |1〉C

= 1√
N

∑
x

N∑
j =1

|x〉〈x| ⊗ |j 〉
√

1 − px,xj |0〉C

+ 1√
N

∑
x

N∑
j =1

|x〉〈xj | ⊗ |j 〉√pxj ,x |1〉C , (198)

M 〈0|C 〈0| V†B†FBV |0〉M |0〉C = 1
N

∑
x

N∑
j =1

|x〉〈x| (1 − px,xj )+ 1
N

∑
x

N∑
j =1

|x〉〈xj |√px,xj pxj ,x

=
∑

x

|x〉〈x|
⎛
⎝1 − 1

N

N∑
j =1

px,xj

⎞
⎠ + 1

N

∑
x

N∑
j =1

|xj 〉〈x|√px,xj pxj ,x

=
∑
x,y

|y〉〈x|
√

Pr(y|x)Pr(x|y). (199)

Just as with the Szegedy approach, most operations are
trivial to perform, and the key difficulty is in the operation
B, which depends on the transition probability. However,
B only depends on one transition probability, whereas the
Szegedy approach requires computing all the transition
probabilities for a state preparation. Lemieux et al. [23]
propose a method for the B operation that is not useful
for the cost Hamiltonians considered here, but is useful for
Hamiltonians with low connectivity. Instead of computing
the energy difference then the exponential, they consider
an approach where the required angle of rotation is found
from a database.

That is, one considers the qubits that the transition prob-
ability for the move (here a bit flip) depends on, and
classically precomputes the rotation angle for each basis
state on those qubits. For each value of j , one sequentially
performs a multiply controlled Toffoli for each computa-
tional basis state for these qubits, and performs the required
rotation on the ancilla qubit C. The complexity that is given
by Ref. [23] is O(2|Nj ||Nj | log(1/ε)), where |Nj | is the
number of qubits that the transition probability for move
j depends on. That complexity is a slight overestimate,
because each multiply controlled Toffoli has a cost of |Nj |,
then the cost of the rotation synthesis is O(log(1/ε)). It
should also be noted that this is the cost for each value
of j , and there are N values of j , giving an overall cost
O(N2|Nj |[|Nj | + log(1/ε)]).

To improve the complexity, one can divide this proce-
dure into two parts, where first a QROM is used to output
the desired rotation in an ancilla, and then those qubits are
used to control a rotation. Using the QROM procedure of

Ref. [26] to output the required rotation, the cost in terms
of Toffoli gates is O(N2|Nj |). Then one can apply rotations
using the phase-gradient state, which was discussed above
in Sec. III C. Addition of the register containing the rota-
tion to an ancilla with state |φ〉 from Eq. (34) results in a
phase rotation. To rotate the qubit, simply make the addi-
tion controlled by this qubit, and use Clifford gates before
and after so that the rotation is in the y direction. The cost
of this rotation is O(log(1/ε)) Toffolis; for more details
see Appendix A. With that improvement the complexity is
reduced to O(N2|Nj | + log(1/ε)).

Even with that improvement, any procedure of that type
is exponential in the number of qubits that the energy
difference depends on, |Nj |. That is acceptable for the
types of Hamiltonians considered in Ref. [23], but here
we consider Hamiltonians typical of real-world problems
where the energy difference depends on most of the system
qubits, because the Hamiltonians have high connectiv-
ity. We thus propose alternative procedures to achieve the
rotation B.

1. Rotation B

We propose a completely different method to perform
the rotation B than that of LHPST [23]. We can first
compute the energy difference Ex − Exj , then the rota-
tion arcsin √px,xj with the result put in an ancilla register.
The rotation of the qubit ancilla C is controlled on the
value of this ancilla as explained above, then the value
of arcsin √px,xj is uncomputed. There are many possi-
ble approaches to the computation of arcsin √px,xj , for
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example that of Ref. [66]. For the purposes of quantum
optimization, we expect that we do not need to compute
this function to high precision as long as the function we
compute is still monotonic in the actual energy, so there
is the opportunity to use methods that are very efficient
for low precision but is not suitable for high precision.
We propose a method based on using a piecewise linear
approximation, with the coefficients output by a QROM,
as described in Sec. II E.

One could then apply the controlled rotation with cost
bsm Toffolis using the phase-gradient state in Eq. (34), as
described in detail in Appendix A. Then after uncomput-
ing the rotation angle we implement B. That approach then
means that a single step of the walk has four times the cost
of computing arcsin √px,xj , because it needs to be com-
puted and uncomputed for B, and the operation B is applied
twice in each step.

It is possible to halve that cost by only computing and
uncomputing once in a step, and retaining the value of
arcsin √px,xj during the F operation. Because F is a con-
trolled flip of bit j of x, it reverses the role of x and xj ,
and the sign of Ex − Exj is flipped. In more detail, the
procedure is as follows.

1. Compute the energy difference between x and xj ,
Ex − Exj .

2. Compute arcsin √px,xj based on |Ex − Exj |.
3. If Exj < Ex then perform an X operation on the

qubit C. That can be achieved with a CNOT (Clifford)
controlled by the sign bit of Ex − Exj .

4. The remaining rotations for the case of Exj > Ex
need to be controlled on −1 for the sign bit.

5. When we apply F , as well as applying the Toffolis
to change x to xj , we need to flip the sign bit on Ex −
Exj controlled on qubit C. This is another CNOT, with
no non-Clifford cost.

6. Then at the end we uncompute arcsin √px,xj and
Ex − Exj .

This procedure assumes that Ex − Exj is represented as a
signed integer. The computation of Ex − Exj uses two’s
complement, so there is an additional cost of bdif to
switch to a signed integer. Because there is only a fac-
tor of 2 instead of 4, the overall cost is then 2Cdiff +
2Cfun + 2bdif + O(1). Next we consider the other (simpler)
operations used in the step of the quantum walk.

2. Equal superposition V

The operation V generates the equal superposition start-
ing from a zero state

V : |0〉M → 1√
N

∑
j

|j 〉M . (200)

In the case where N is a power of 2, then we can create the
equal superposition over binary by using Hadamards (and
no Toffolis). More generally, if we wish to create an equal
superposition where the number of items is not a power of
2, we can rotate an ancilla qubit such that the net ampli-
tude is 1/2 for |1〉 |1〉 on the result of the inequality test
and the ancilla qubit. We can then perform a single step of
amplitude amplification to obtain the superposition state.
Our procedure is explained below and gives a complexity
of 4 log N + O(1) Toffolis.

Our method for V is also very different to that of
LHPST [23]. There they proposed encoding the M regis-
ter in unary, whereas here we use binary, which greatly
reduces the ancilla cost (which is sublinear in N ). More-
over, LHPST did not consider using equal superpositions
in cases where N is not a power of 2, and instead just
allowed for a constant factor overhead in the complexity.

Our procedure to create an equal superposition over
N < 2k items is as follows. With Hadamards we prepare

1√
2k

2k−1∑
j =0

|j 〉 . (201)

Then we have an inequality test between j and N to give

1√
2k

2k−1∑
j =0

|j 〉 |1〉 + 1√
2k

2k−1∑
j =N

|j 〉 |0〉 . (202)

This is an inequality test on k bits, and since it is an
inequality test with a constant we save a Toffoli gate. The
cost is therefore k − 2 Toffolis as per the explanation in
Ref. [42]. We have an amplitude of

√
N/2k for success,

and aim to multiply it by another amplitude of approxi-
mately 1

2

√
2k/N so the amplitude is 1/2 and we can use a

single step of amplitude amplification. For an amplitude of
1
2

√
2k/N , we can rotate another register according to the

procedure in Appendix A to give

cos θ |0〉 + sin θ |1〉 . (203)

We can then perform a single step of amplitude ampli-
fication for |1〉 on both this qubit and the result of the
inequality test.

The steps needed in the amplitude amplification and
their costs are as follows. If we use the procedure for the
rotation with s bits, it takes s − 3 Toffolis because the angle
of rotation is given classically.

1. A first inequality test (k − 2 Toffolis) and a rotation
on a qubit (cost s − 3).

2. A first reflection on the rotated qubit and the result
of the inequality test. This just needs a controlled
phase (a Clifford gate).
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3. Inverting the rotation and inequality test has cost
k + s − 5.

4. Hadamards then reflection of the k qubits and the
single qubit ancilla about zero (k − 1 Toffolis).

5. Applying the inequality test (k − 2 Toffolis).

The total cost is 4k + 2s − 13 Toffolis.
Conditioned on success of the inequality test, the state is

1√
2k

N−1∑
j =0

|j 〉
[(

1 − 4N sin2 θ

2k

)
|0〉 + 2 sin θ(sin θ |0〉 + cos θ |1〉)

]
|1〉 . (204)

The probability for success is then given by the normalization

N
2k

⎡
⎣
(

1 − 4N sin2 θ

2k + 2 sin2 θ

)2

+ 4 sin2 θ cos2 θ

⎤
⎦ . (205)

It is found that highly accurate results are obtained for
s = 7, as shown in Fig. 10. This procedure enables con-
struction of equal superposition states flagged by an ancilla
qubit for N not a power of 2. If we take s = 7, then the cost
is 4k + 1.

3. Controlled bit flip F

We also need to modify the operation F compared to that
in LHPST to account for the M register being encoded in
binary. This operation flips bit j on x for the control qubit
C being in the state |1〉,

F : |x〉S |j 〉M |0〉C → |x〉S |j 〉M |0〉C ,
|x〉S |j 〉M |1〉C → |xj 〉S |j 〉M |1〉C . (206)

This operation can be achieved using the iteration proce-
dure of Ref. [26] with Toffoli complexity N , which allows
us to perform the operation with register M encoded in
binary.

10 20 30 40 50 60
n

0.9990

0.9992

0.9994

0.9996

0.9998

1.0000
Probability

FIG. 10. The probability for success using a rotation of the
form 2π/2s with s = 7.

A complication is that, in the case where N is not a
power of 2, there is a nonzero cost of the state prepara-
tion in V failing. We should only perform the operation F
in the case where we have success of the state prepara-
tion. We include another two Toffolis to create and erase a
register that gives a control qubit that flags whether the C
register is in the state |1〉 and there is success of the state
preparation. Because the other operations are inverted, in
the case that the state preparation does not work the net
operation performed is the identity.

To be more specific, V prepares a state of the form

V |0〉 = |1〉 |ψ1〉 + |0〉 |ψ0〉 , (207)

with the first register flagging success. Since we only
perform F for the flag qubit in the state |1〉, we obtain

B†FBV |0〉 = B†FB |1〉 |ψ1〉 + 1 |0〉 |ψ0〉 . (208)

To determine the block-encoded operation

〈0| V†B†FBV |0〉 , (209)

we note that

〈0| V† = 〈1| 〈ψ1| + 〈0| 〈ψ0| , (210)

so

〈0| V†B†FBV |0〉 = 〈ψ1| B†FB |ψ1〉 + 1〈ψ0|ψ0〉, (211)

where 1 indicates the identity on the target system. The
first term is the desired operation we obtain if the equal
superposition state is obtained exactly (with a multiplying
factor corresponding to the probability of success), and the
second term is proportional to the identity. This small offset
by the identity just gives a trivial shift to the eigenvalues.
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4. Reflection RR

This operation applies a phase flip for zero on the
ancillas as

R : |0〉M |0〉C → −|0〉M |0〉C ,

|j 〉M |c〉C → |j 〉M |c〉C for (j , c) �= (0, 0). (212)

As well as the ancillas M and C, this reflection also needs
to be on any ancilla qubits used to encode the ancilla for
the preparation of the equal superposition state, and the
flag qubit. There are log N� qubits used to encode j , one
qubit for C, and one ancilla used for the rotation, for a total
of log N� + 2 qubits. Therefore, the number of Toffolis
needed for reflection about zero is log N�.

5. Total costs

The total Toffoli costs of implementing ŨW = RV†B†FBV
are as follows.

1. The cost of V and V† is 8 log N + O(1).
2. The cost of F is N Toffolis.
3. The cost of R is log N�.
4. The cost of two applications of B is 2Cdiff + 2Cfun +

2bdif + O(1).

The total cost of a step is then

2Cdiff + 2Cfun + N + 2bdif + 9 log N + O(1). (213)

Note that 8 log N of this cost is for preparing equal super-
position states, and can be omitted if N is a power of 2.
The ancilla qubits needed are as follows.

1. The ancilla registers M and C need log N� + 1
qubits.

2. The resource state used to implement the controlled
rotations needs bsm qubits.

3. The ancilla requirements of the energy-difference
and function-evaluation oracles.

For the temporary ancilla cost, we need to take the
maximum of that for the energy difference and function
evaluation, giving the total ancilla cost of

Adiff + Afun + max(Bdiff,Bfun)+ log N + bsm + O(1).
(214)

F. Spectral-gap-amplification-based quantum
simulated annealing

An alternative, and potentially simpler, approach to
preparing a low-temperature thermal state is given by Ref.
[14]. The idea behind this approach is to construct a Hamil-
tonian whose ground state is a purification of the Gibbs
state. Similarly to the case with the quantum walk, one

can start with an equal superposition state corresponding
to infinite temperature, and simulate the Hamiltonian evo-
lution starting from β = 0 and gradually increase β. This
approach can correspond to using an adibatic approach
on this Hamiltonian, or one can also apply a quantum
Zeno approach by phase measurements on the Hamiltonian
evolution, or apply Hamiltonian evolutions for randomly
chosen times.

A simple choice of Hamiltonian is similar to the block-
encoded operation for the quantum walks, so has a small
spectral gap. In order to obtain a speedup, one needs to
construct a new Hamiltonian with the square root of the
spectral gap of the original Hamiltonian, thus yielding the
same speedup as the quantum walks. That procedure, from
Ref. [14], is called spectral-gap amplification. Simulat-
ing the time-dependent Hamiltonian, for example using a
Dyson series, has significant complexity.

To avoid that complexity, here we suggest that one
instead construct a step of a quantum walk using a lin-
ear combination of unitaries. Such a quantum walk could
be used to simulate the Hamiltonian evolution, but as dis-
cussed in Refs. [64,65] one can instead just perform steps
of the quantum walk, which has eigenvalues that are the
exponential of the arccosine of those for the Hamiltonian.
By applying the steps of the quantum walk we can obtain
the advantage of the spectral-gap amplification, without
the difficulty of needing to simulate a time-dependent
Hamiltonian. Unlike the quantum walks in the previous
subsections, the arccosine does not yield a further square-
root amplification of the spectral gap, because the relevant
eigenvalue for the amplified Hamiltonian is not at 1. How-
ever, it potentially gives other scaling advantages (for
instance, in avoiding the need for quantum-signal pro-
cessing when using certain oracles) compared to other
proposals in the literature for realizing quantum simulated
annealing via spectral-gap amplification.

1. Spectral-gap-amplification Hamiltonian

Here we summarize the method of spectral-gap amplifi-
cation from Ref. [14], but specialise to the case where only
single bit flips are allowed to make the method clearer.
As discussed above, one can use a Hamiltonian simula-
tion approach with Hamiltonian Hβ given in Eq. (171) with
ground state corresponding to the quantum Gibbs state
|ψβ〉. Because the complexity depends on the spectral gap,
it is advantageous to increase the spectral gap as much as
possible, which was done via a quantum walk in the previ-
ous subsections. The proposal in Ref. [14] is to construct a
different Hamiltonian whose spectral gap has been ampli-
fied relative to Hβ . To define this new Hamiltonian, they
introduce states equivalent to

|λx,y〉 :=
√

px,y

px,y + py,x
|y〉 −

√
py,x

px,y + py,x
|x〉 , (215)
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where as before px,y = N Pr(y|x). This is the normalized
form of the unnormalized kets |μσi,σj

β 〉 presented in Eq. (21)
of Ref. [14]. One can then write

Hβ = 1
2N

∑
x,y

(
px,y + py,x

) |λx,y〉〈λx,y | . (216)

In this work we consider only transitions with single bit
flips, so the coefficient

(
px,y + py,x

)
is nonzero only if x

and y differ by exactly one bit. We include a factor of 1/2
to account for the symmetry between x and y. We can use
this condition to express Hβ as a sum of 2-sparse matrices.
To do so, recall that each x is an N -bit string. Then for each
k = 1, . . . , n we define

Hβ,k := 1
2N

∑
x

(
px,xk + pxk ,x

) |λx,xk 〉〈λx,xk | , (217)

where xk = NOTk(x), the result of flipping the kth bit of x.
Then Hβ = ∑

k Hβ,k. The operators Hβ,k here are equiva-
lent to Oβ,k in Ref. [14], except we specialize to the case
where only transitions with single bit flips are allowed.

One can then define a new Hamiltonian [Eq. (25) in Ref.
[14]]

Aβ :=
N∑

k=1

√
Hβ,k ⊗ (|k〉〈0| + |0〉〈k|). (218)

The projector structure of the Hamiltonian allows the
square root to be easily implemented via

√
Hβ,k = 1

2
√

N

∑
x

√
px,xk + pxk ,x |λx,xk 〉〈λx,xk | . (219)

Here the 1/2 is still included to account for the symmetry
between i and i(k). Following Eq. (32) in Ref. [14], a coher-
ent Gibbs distribution can be seen to be the ground state of
the following Hamiltonian:

H̃β := Aβ + √
�β(1 − |0〉〈0|), (220)

where �β is a lower bound for the spectral gap of Hβ .
This means that by preparing the minimum energy con-
figuration of this Hamiltonian one, in effect, is capable
of drawing a sample from the distribution that is seen
by running a simulated annealing procedure for sufficient
time.

2. Implementing the Hamiltonian

In order to implement the Hamiltonian, we use a linear
combination of unitaries. We can rewrite the square root of
the Hamiltonian as

√
Hβ,k = 1

2
√

N

∑
x

(
px,xk + pxk ,x

)−1/2

[
px,xk |xk〉〈xk| + pxk ,x |x〉〈x| − √

px,xk pxk ,x (|x〉〈xk| + |xk〉〈x|)
]

. (221)

This is a 2-sparse Hamiltonian, then summing over k to obtain Aβ gives a 2N -sparse Hamiltonian. To express Aβ as a
linear combination of unitaries, we can express

√
Hβ,k as

√
Hβ,k = 1√

N

∑
x

qxk |x〉〈x| − 1

2
√

2N

∑
x

rxk (|x〉〈xk| + |xk〉〈x|)

= 1√
N

∑
x

∫ 1

0
dz(−1)2z>1+qxk |x〉〈x| − 1

2
√

2N

∑
x

∫ 1

0
dz(−1)2z>1+rxk (|x〉〈xk| + |xk〉〈x|) , (222)

where

qxk = pxk ,x√
px,xk + pxk ,x

, (223)

rxk =
√

2pxk ,xpx,xk

px,xk + pxk ,x
, (224)
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and we are taking the inequality test to yield a numerical value of 0 for false and 1 for true. Note that with these
definitions, qxk and rxk can take values in the range [0, 1]. We use the procedure from Ref. [67] (Lemma 4.3) to obtain a
linear combination of unitaries. The operator is then approximated as a sum

√
Hβ,k ≈ 1

2s
√

N

2s−1∑
z=0

∑
x

(−1)z/2
s−1>1+qxk |x〉〈x|

− 1

2s+1
√

2N

2s−1∑
z=0

∑
x

(−1)z/2
s−1>1+rxk (|x〉〈xk| + |xk〉〈x|) . (225)

The operator Aβ is then approximated by

Aβ ≈ 1√
N

N∑
k=1

{[
1
2s

2s−1∑
z=0

∑
x

(−1)z/2
s−1>1+qxk |x〉〈x|

− 1

2s+1
√

2

2s−1∑
z=0

∑
x

(−1)z/2
s−1>1+rxk (|x〉〈xk| + |xk〉〈x|)

]
⊗ (|k〉〈0| + |0〉〈k|)

}
. (226)

For the part
√
�β(1 − |0〉〈0|), we can write it as

√
�β(1 − |0〉〈0|) =

√
2N�β

(N − 1)(
√

2 − 1)

1√
N

(
1 − 1√

2

)
(N − 1)(1 − |0〉〈0|)

= δβ√
N

N∑
k=1

(
1 − 1√

2

) ∑
�>0,��=k

|�〉〈�|

= 1√
N

1
2s

2s−1∑
z=0

(−1)z/2
s−1>1+δβ

N∑
k=1

(
1 − 1√

2

) ∑
�>0,��=k

|�〉〈�| (227)

where

δβ :=
√

2N�β

(N − 1)(
√

2 − 1)
. (228)

Therefore, the complete approximation of the Hamiltonian with spectral-gap amplification is

H̃β ≈ 1

2s
√

N

N∑
k=1

2s−1∑
z=0

⎧⎨
⎩
⎡
⎣∑

x

(−1)z/2
s−1>1+qxk |x〉〈x| ⊗ (|k〉〈0| + |0〉〈k|)+ (−1)z/2

s−1>1+δβ1 ⊗
∑

�>0,��=k

|�〉〈�|
⎤
⎦

− 1√
2

⎡
⎣1

2

∑
x

(−1)z/2
s−1>1+rxk (|x〉〈xk| + |xk〉〈x|)⊗ (|k〉〈0| + |0〉〈k|)+ (−1)z/2

s−1>1+δβ1 ⊗
∑

�>0,��=k

|�〉〈�|
⎤
⎦
⎫⎬
⎭ .

(229)

Here we group the terms such that the operations in
square brackets are unitaries. Summing the coefficients in

the sums gives a λ value of

λ =
(

1 + 1√
2

)√
N . (230)
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To implement the operator by a linear combination of uni-
taries, we need two single qubit ancillas, a register with z
and a register with k. The PREPARE operation is trivial, and
just needs to prepare the state

1√
λ2s

N∑
k=1

|k〉
2s−1∑
z=0

|z〉
(

|0〉F + 1
21/4 |1〉F

)
. (231)

The roles of these registers are as follows.

1. The register with k selects terms in the sum over k
in Eq. (229).

2. The register with z selects terms in the sum over z in
Eq. (229).

3. The F register selects between the terms in square
brackets in the first and second lines of Eq. (229).

There are registers containing k for both this prepared con-
trol state and the target state. We call these the control
and target K registers. In the PREPARE operation, creat-
ing the superposition over z can be trivially achieved with
Hadamards. The superposition over N can be achieved
similarly if N is a power of 2, but otherwise the proce-
dure outlined in Sec. III 2 can be used with cost 4 log N +
O(1). The rotation on qubit F can be achieved with pre-
cision ε using 1.15brot + O(1) T operations, where brot =
log(1/ε).

The SELECT procedure for the linear combinations of
unitaries may be performed as follows.

1. Perform a test of whether the target system K regis-
ter is in the space {|0〉 , |k〉}, placing the result in an
ancilla qubit, call this qubit E.

2. Controlled on E being |1〉 and F , compute qxk or rxk.
3. Controlled on E being |0〉, place the value δβ into

the output register also used for qxk or rxk.
4. Perform the inequality test between z/2s−1 and 1 +

qxk, 1 + rxk, or 1 + δβ .
5. Apply a Z gate to the output of the inequality test.
6. Controlled on the E register being |1〉 and the reg-

ister F being |1〉, apply X to qubit k of the target
system.

7. Apply a NOT between |0〉 and |k〉 for the target
system. That gives |k〉〈0| + |0〉〈k|.

8. Invert the inequality test from step 4.
9. Invert step 3.

10. Invert step 2 uncomputing qxk or rxk.
11. Invert step 1.
12. Apply a Z gate to F to introduce the −1 sign.

Here we call the register that carries |k〉 for the target
system the K register. The cost of these steps may be
quantified as follows, ignoring O(1) costs.

Steps 1 and 11. We need an equality test between the
K register for the ancilla and the K register for the system,

with cost log N + O(1). We also test if the system has 0 in
its K register, with cost log N + O(1), and perform an OR
on the results of the two comparisons with cost 1. Since the
comparisons needs to be computed and uncomputed, there
is cost 4 log N + O(1) for the two steps.

Steps 2 and 10. Computing qxk and rxk may be per-
formed by first computing the energy difference, then using
a QROM to output coefficients for linear interpolation. The
cost estimation is as given in Sec. II E, and we pay the
QROM lookup cost twice for qxk and rxk, but we pay the
multiplication cost only once. Since that is the dominant
cost, the cost may be regarded as that of a single func-
tion oracle. The computation and uncomputation in the two
steps means we pay twice the cost of the energy difference
and function oracles. Note that qxk and rxk are unchanged
under the bit flip in step 6 (since there is no bit flip for qxk
and rxk is symmetric under the bit flip). There is O(1) cost
to making the computation controlled on the ancilla in E.

Steps 3 and 9. Outputting δβ controlled on a single
ancilla may be performed with CNOTs (no Toffoli cost)
because δβ is classically computed.

Steps 4 and 8. The inequality test is simply performed
in the form z < 2s−1(1 + qxk) and similarly for r. There are
no multiplications involved, because qxk and rxk are output
as integer approximations. The inequality test has cost s
Toffolis, so computation and uncomputation for the two
steps has cost 2s.

Step 5. This is just a Z gate with no Toffoli cost.
Step 6. The cost is two Toffolis to prepare a control

qubit that flags whether the conditions required are satis-
fied. Then this qubit is used as a control register for the
QROM on the value of k to apply a X operation to the
target system. That QROM has complexity N .

Step 7. Controlled on the system K register being equal
to k, we subtract k from it, and controlled on the system K
register being 0 we add k to it. We then swap the registers
with the results of these two equality tests. Since we still
have the qubits with the results of the equality tests from
step 1, we have no additional cost for that here. The cost of
the two additions is 2 log N + O(1).

The Toffoli cost of the steps is therefore 2s + N +
6 log N + O(1), plus two times the cost of the function
evaluation and energy-difference oracles. Note that we
pay four times the cost of the QROM lookup within the
function-evaluation oracle, but we are regarding the cost as
two function oracles because the QROM lookup cost is a
smaller cost given in an order term. The cost of the prepa-
ration and inverse preparation is 8 log N + O(1) Toffolis
and 2.3brot + O(1) T gates, or just 2.3brot + O(1) T gates
if N is a power of 2. Taking s = bsm + O(1), that gives
total cost

2Cdiff + 2Cfun + 2bsm + N + 14 log N + O(brot), (232)
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where we have put the T cost in the order term. The ancilla
cost is as follows.

1. Two qubits for the E and F ancillae.
2. Two qubits from the results of the two equality tests

for the system K register.
3. The register with k for the control ancilla and that

with k for the system each need log N� qubits.
4. The register with z for the control ancilla needs s

qubits.
5. The ancillas for the energy-difference oracle.
6. The ancillas for the function-evaluation oracle.

The number of qubits s used for z can be taken to be within
O(1) of the number of qubits c used for qxk or rxk. We
need temporary qubits for working, but the same working
qubits as for the oracles can be used, so we do not count
these ancilla costs again. The function-evaluation oracle
may use more or less temporary ancilla than the energy
difference, so we need to take the maximum of these two
costs. That gives an ancilla cost of 2 log N + bsm + O(1)
plus the ancilla costs of the two oracles, or

Adiff + Afun + max(Bdiff,Bfun)+ 2 log N + bsm + O(1).
(233)

IV. ERROR-CORRECTION ANALYSIS AND
DISCUSSION

Previous sections of this paper discuss and optimize
the compilation of various heuristic approaches to quan-
tum optimization into cost models appropriate for quantum
error correction. Specifically, we focus on reducing the
Toffoli (and in some cases T) complexity of these algo-
rithms while also keeping the number of ancilla qubits
reasonable. This cost model is motivated by our desire to
assess the viability of these heuristics within the surface
code (the most practical error-correcting code suitable for
a 2D array of physical qubits) [19,68–70]. T gates and
Toffoli gates cannot be implemented transversely within
practical implementations of the surface code. Instead,
one must implement these gates by first distilling resource
states. In particular, to implement a T gate one requires a
T state (|T〉 = T |+〉) and to implement a Toffoli gate one
requires a controlled-controlled-Z (CCZ) state (|CCZ〉 =
CCZ |+ + +〉); in both cases these states are consumed
during the implementation of the associated gates. Distill-
ing T or CCZ states requires a substantial amount of both
time and hardware.

Here, we analyze the cost to implement our various
heuristic optimization primitives using the constructions of
Ref. [38], which are based on applying the lattice surgery
constructions of Ref. [71] to the fault-tolerant Toffoli pro-
tocols of Ref. [72,73]. We further assume a correlated-
error minimum weight perfect-matching decoder capable
of keeping pace with 1-μs rounds of surface code error

detection [74], and capable of performing feedforward in
about 15 μs. We assume that our physical hardware gates
have error rates of either 10−3 or 10−4, the former consis-
tent with the best error rates demonstrated in state-of-the-
art intermediate-scale superconducting qubit platforms [1]
and the latter consistent with improvements in the tech-
nology that we hope is feasible in the next decade. Under
these assumptions the spacetime volume required to imple-
ment one Toffoli gate or two T gates with two levels of
state distillation and code distance d = 31 (which is safely
sufficient for the computations we analyze here) is equal
to roughly 26 qubitseconds [38]. For instance, to distill
one CCZ state using the approach in Ref. [38] requires
5.5d + O(1) cycles using a factory with a data-qubit foot-
print of about 12d × 6d (the total qubit count includes
measurement qubits, and so is roughly double this figure).
Specifically, in our estimates we assume that executing a
Toffoli gate requires about 170 microseconds and 150 000
physical qubits (see the resource-estimation spreadsheet
included within the Supplemental Material of Ref. [38]
for more detailed assumptions). Due to this large overhead
we focus on estimates assuming that we distill CCZ states
in series, which is likely how we would operate the first
generation of fault-tolerant surface code computers.

In Tables IX and X we estimate the resources that are
required to implement various heuristic optimization prim-
itives within the surface code (given the assumptions of the
prior paragraphs) for the Sherrington-Kirkpatrick and low
autocorrelation binary sequences problems, respectively.
We perform this analysis for the primitives of amplitude
amplification, a first-order Trotter step (which can be used
for QAOA, population transfer, the adiabatic algorithm,
etc.), a qubitized Hamiltonian walk realized from the lin-
ear combinations of unitaries query model (which can be
used for measuring energies in QAOA, performing popu-
lation transfer, the adiabatic algorithm, etc.), the qubitized
quantum walk approach to quantum simulated annealing
(“LHPST walk”) and the spectral-gap-amplified approach
to quantum simulated annealing. The only primitive dis-
cussed in this paper omitted from these tables is the
Szegedy walk approach to quantum simulated annealing.
This is because we can see from Table VIII that the
Szegedy walk approach is strictly less efficient than the
qubitized variant, and requires so many ancilla that ana-
lyzing it under the assumption of serial state distillation
seems unreasonable. Because we do not know how many
times one needs to repeat these primitives to solve the var-
ious optimization problems, in Tables IX and X we report
how many times one is able to implement these primitives
for various system sizes, assuming maximum run times of
one hour or one day (24 hours). We also report how many
physical qubits are required to realize these computations
assuming physical gate-error rates of 10−3 or (10−4).

We focus on the SK and LABS cost functions primarily
for concreteness. As seen in Tables V and VIII, the choice
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TABLE IX. Estimates of resources required to implement steps of various heuristic algorithms for the SK model within the surface
code. All error-correction overheads are reported assuming a single Toffoli factory using state distillation constructions from Ref. [38].
Surface code overheads in parenthesis assume a physical error rate of 10−4 whereas the overheads not in parenthesis assume a physical
error rate of 10−3. The target success probability is 0.9. These estimates are based on Table VIII where we somewhat arbitrarily choose
to set all values of the parameter quantifying the number of bits of precision (b) that appear in the table to 20 except for bfun and bsm,
which can be smaller so we take bfun = bsm = 7.

One-hour runtime One-day runtime

Algorithm applied to Problem Logical Toffolis Maximum Physical Maximum Physical
Sherrington-Kirkpatrick model size, N qubits per step steps qubits steps qubits

64 100 6.3 × 103 3.3 × 103 3.1 × 105 (1.8 × 105) 7.9 × 104 3.7 × 105 (2.0 × 105)

128 170 2.6 × 104 7.9 × 102 4.2 × 105 (2.1 × 105) 1.9 × 104 5.2 × 105 (2.3 × 105)

Amplitude amplification 256 304 1.0 × 105 2.0 × 102 7.2 × 105 (3.0 × 105) 4.8 × 103 8.1 × 105 (3.0 × 105)

512 566 4.6 × 105 4.5 × 101 1.2 × 106 (4.3 × 105) 1.1 × 103 1.4 × 106 (4.3 × 105)

1024 1084 1.8 × 106 1.1 × 101 2.2 × 106 (7.0 × 105) 2.7 × 102 2.9 × 106 (8.8 × 105)

64 120 6.8 × 103 3.1 × 103 3.4 × 105 (1.9 × 105) 7.3 × 104 4.1 × 105 (2.1 × 105)

QAOA and first-order Trotter 128 190 2.7 × 104 7.7 × 102 5.0 × 105 (2.4 × 105) 1.9 × 104 5.6 × 105 (2.4 × 105)

e.g., for population transfer 256 324 1.1 × 105 2.0 × 102 7.6 × 105 (3.1 × 105) 4.7 × 103 8.6 × 105 (3.1 × 105)

or adiabatic algorithm 512 586 4.6 × 105 4.5 × 101 1.2 × 106 (4.5 × 105) 1.1 × 103 1.4 × 106 (4.5 × 105)

1024 1104 1.8 × 106 1.1 × 101 2.2 × 106 (7.1 × 105) 2.7 × 102 2.9 × 106 (8.9 × 105)

64 94 3.8 × 102 5.4 × 104 3.0 × 105 (1.8 × 105) 1.3 × 106 3.5 × 105 (2.0 × 105)

Hamiltonian walk 128 163 7.7 × 102 2.7 × 104 4.1 × 105 (2.1 × 105) 6.5 × 105 5.0 × 105 (2.3 × 105)

e.g., for population transfer 256 296 1.5 × 103 1.4 × 104 7.0 × 105 (3.0 × 105) 3.3 × 105 8.0 × 105 (3.0 × 105)

or adiabatic algorithm 512 557 3.1 × 103 6.8 × 103 1.2 × 106 (4.3 × 105) 1.6 × 105 1.4 × 106 (4.3 × 105)

1024 1074 6.1 × 103 3.4 × 103 2.2 × 106 (6.9 × 105) 8.1 × 104 2.9 × 106 (8.7 × 105)

64 117 6.7 × 102 3.1 × 104 3.3 × 105 (1.9 × 105) 7.5 × 105 4.0 × 105 (2.1 × 105)

LHPST-walk 128 185 9.0 × 102 2.3 × 104 4.4 × 105 (2.2 × 105) 5.6 × 105 5.5 × 105 (2.4 × 105)

quantum simulated annealing 256 317 1.5 × 103 1.4 × 104 7.4 × 105 (3.1 × 105) 3.3 × 105 8.4 × 105 (3.1 × 105)

512 577 2.6 × 103 8.1 × 103 1.2 × 106 (4.4 × 105) 2.0 × 105 1.4 × 106 (4.4 × 105)

1024 1093 4.8 × 103 4.4 × 103 2.2 × 106 (7.0 × 105) 1.0 × 105 2.9 × 106 (8.9 × 105)

64 116 4.0 × 102 5.2 × 104 3.3 × 105 (1.9 × 105) 1.2 × 106 4.0 × 105 (2.1 × 105)

Spectral-gap-amplified 128 185 6.4 × 102 3.3 × 104 4.4 × 105 (2.2 × 105) 7.8 × 105 5.5 × 105 (2.4 × 105)

walk-based quantum- 256 318 1.3 × 103 1.6 × 104 7.4 × 105 (3.1 × 105) 3.9 × 105 8.4 × 105 (3.1 × 105)

simulated annealing 512 579 2.3 × 103 9.0 × 103 1.2 × 106 (4.4 × 105) 2.2 × 105 1.4 × 106 (4.4 × 105)

1024 1096 4.5 × 103 4.6 × 103 2.2 × 106 (7.0 × 105) 1.1 × 105 2.9 × 106 (8.9 × 105)

to focus on these specific problems rather than QUBO
or the HL model means that we do not need to choose
a precision parameter in some cases. For example, with
amplitude amplification we know how many bits of preci-
sion we should compute the energy to since SK and LABS
both have integer-valued energies in a well-defined range.
However, in order to produce specific numerical estimates
for other primitives it is necessary to assume values for
the precision parameters b appearing Table V (defined in
Table IV); e.g., for the Trotter steps one must realize time
evolutions of noninteger duration so that the phase is accu-
rate to within some precision bpha, which we must choose
independently of the particular problem. Thus, in order to
produce actual numerical estimates, in Tables IX and X we
choose to set many variants of the free precision parameter
b to 20; thus, b = 20 bits of precision. However, as dis-
cussed in previous sections, the parameters bfun and bsm
can generally be chosen to be smaller than the other val-
ues of b without compromising precision; here we take
bfun = bsm = 7.

It is tempting to directly compare the costs of the various
primitives shown in Tables IX and X. While comparisons
of the same primitives between the two problem types are
straightforward (e.g., SK is more efficient than LABS in
most, but not all, cases), comparisons between the differ-
ent primitive types are challenging. Quantum simulated
annealing, amplitude amplification, QAOA, population
transfer, and the adiabatic algorithm are simply different
algorithms so it is difficult to compare the relative values
of a step of these algorithms.

It seems more reasonable to compare the Trotter steps
to the qubitized Hamiltonian walk steps since these prim-
itives can be used for the same ends (e.g., population
transfer or the adiabatic algorithm). But first, the choice
of b = 20 means something different for these two algo-
rithms. And second, while the Hamiltonian walks are
capable of more precise evolutions (scaling as O(log 1/ε)
in terms of precision compared to the O(poly(1/ε)) scal-
ing of fixed-order Trotter-based methods), for heuristic
optimization the evolution does not necessarily need to be
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TABLE X. Estimates of resources required to implement steps of various heuristic algorithms for the LABS problem within the
surface code. All overheads are reported assuming a single Toffoli factory using state distillation constructions from Ref. [38]. Surface-
code overheads in parenthesis assume a physical error rate of 10−4 whereas the overheads not in parenthesis assume a physical error
rate of 10−3. Target success probability is 0.9. These estimates are based on Table VIII where we somewhat arbitrarily choose to set
all values of the parameter quantifying the number of bits of precision (b) that appear in the table to 20 except for bfun and bsm, which
can be smaller, so we take bfun = bsm = 7.

One-hour runtime One-day runtime

Algorithm applied to Problem Logical Toffolis Maximum Physical Maximum Physical
LABS problem size, N qubits per step steps qubits steps qubits

64 98 9.8 × 103 2.1 × 103 3.0 × 105 (1.8 × 105) 5.1 × 104 3.6 × 105 (2.0 × 105)

128 167 3.7 × 104 5.6 × 102 4.1 × 105 (2.1 × 105) 1.3 × 104 5.1 × 105 (2.3 × 105)

Amplitude amplification 256 300 1.5 × 105 1.4 × 102 7.1 × 105 (3.0 × 105) 3.3 × 103 8.0 × 105 (3.0 × 105)

512 561 6.1 × 105 3.4 × 101 1.2 × 106 (4.3 × 105) 8.2 × 102 1.4 × 106 (4.3 × 105)

1024 1078 2.3 × 106 9.0 × 100 2.2 × 106 (6.9 × 105) 2.2 × 102 2.9 × 106 (8.8 × 105)

64 114 1.0 × 104 2.1 × 103 3.3 × 105 (1.9 × 105) 5.0 × 104 4.0 × 105 (2.1 × 105)

QAOA and first-order Trotter 128 183 3.8 × 104 5.5 × 102 4.4 × 105 (2.1 × 105) 1.3 × 104 5.5 × 105 (2.4 × 105)

e.g., for population transfer 256 316 1.5 × 105 1.4 × 102 7.4 × 105 (3.1 × 105) 3.4 × 103 8.4 × 105 (3.1 × 105)

or adiabatic algorithm 512 577 5.0 × 105 4.2 × 101 1.2 × 106 (4.4 × 105) 1.0 × 103 1.4 × 106 (4.4 × 105)

1024 1094 1.7 × 106 1.2 × 101 2.2 × 106 (7.0 × 105) 2.9 × 102 2.9 × 106 (8.9 × 105)

64 94 2.6 × 102 8.1 × 104 3.0 × 105 (1.8 × 105) 2.0 × 106 3.5 × 105 (2.0 × 105)

Hamiltonian walk 128 163 5.1 × 102 4.1 × 104 4.1 × 105 (2.1 × 105) 9.8 × 105 5.0 × 105 (2.3 × 105)

e.g., for population transfer 256 296 1.0 × 103 2.0 × 104 7.0 × 105 (3.0 × 105) 4.9 × 105 8.0 × 105 (3.0 × 105)

or adiabatic algorithm 512 557 2.0 × 103 1.0 × 104 1.2 × 106 (4.3 × 105) 2.4 × 105 1.4 × 106 (4.3 × 105)

1024 1074 4.1 × 103 5.1 × 103 2.2 × 106 (6.9 × 105) 1.2 × 105 2.9 × 106 (8.7 × 105)

64 132 2.0 × 104 1.0 × 103 3.6 × 105 (2.0 × 105) 2.5 × 104 4.4 × 105 (2.1 × 105)

LHPST-walk 128 202 7.5 × 104 2.8 × 102 5.3 × 105 (2.5 × 105) 6.7 × 103 5.9 × 105 (2.5 × 105)

quantum simulated annealing 256 336 3.0 × 105 6.9 × 101 7.8 × 105 (3.2 × 105) 1.7 × 103 8.8 × 105 (3.2 × 105)

512 598 1.2 × 106 1.7 × 101 1.3 × 106 (4.5 × 105) 4.1 × 102 1.5 × 106 (4.5 × 105)

1024 1116 4.6 × 106 5.0 × 100 2.2 × 106 (7.1 × 105) 1.1 × 102 3.0 × 106 (9.0 × 105)

64 131 2.0 × 104 1.1 × 103 3.6 × 105 (2.0 × 105) 2.5 × 104 4.3 × 105 (2.1 × 105)

Spectral-gap-amplified 128 202 7.5 × 104 2.8 × 102 5.3 × 105 (2.5 × 105) 6.7 × 103 5.9 × 105 (2.5 × 105)

walk-based quantum- 256 337 3.0 × 105 6.9 × 101 7.8 × 105 (3.2 × 105) 1.7 × 103 8.8 × 105 (3.2 × 105)

simulated annealing 512 600 1.2 × 106 1.7 × 101 1.3 × 106 (4.5 × 105) 4.1 × 102 1.5 × 106 (4.5 × 105)

1024 1119 4.6 × 106 5.0 × 100 2.2 × 106 (7.2 × 105) 1.1 × 102 3.0 × 106 (9.0 × 105)

precise, so the Trotter approach may be more efficient by
using large steps. The Trotter steps can be made arbitrar-
ily large without increasing gate count (although at a cost
of less precision), whereas the Hamiltonian walk effec-
tively simulates time of at most 1/λ where λSK ≈ N 2/2
and λLABS ≈ N 3/3 (but it does so quite precisely). Thus,
although the Hamiltonian walk steps require the fewest
Toffolis in Table X, they may still be less efficient than
other approaches.

For the various forms of quantum simulated annealing,
the number of steps needed is governed by the spec-
tral gap. The qubitized annealing (LHPST) and Szegedy
approaches are directly comparable because they have the
same gap, which means the same number of steps should
be sufficient. This means that the smaller step cost of
LHPST means that it is more efficient. The spectral-gap-
amplified approach has a similar gap as the LHPST and
Szegedy approaches, because it provides a similar square-
root improvement. The problem is that the Hamiltonian

has a λ value proportional to
√

N , as shown in Eq. (230).
This increases the cost of implementing the Hamiltonian
by a factor of

√
N , so the cost given for a single step

should be multiplied by
√

N for a fair comparison with the
other simulated annealing approaches. When that is taken
into account, the spectral-gap-amplified approach is less
efficient.

With these caveats and context, we believe that
Tables IX and X give a rough sense for the feasibility of
implementing these various heuristic optimization primi-
tives on a small fault-tolerant surface code quantum pro-
cessor. In most cases one can attempt these algorithms up
to roughly a thousand bits with around a million physical
qubits or less (especially given 10−4 error rates). However,
we can see that the significant overheads of state distil-
lation make the execution of these algorithms painfully
slow. The quantum simulated annealing steps are often
more efficient to implement than most other steps. The one
exception is the Hamiltonian walk steps, which are highly
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efficient. But again, there it is likely that the large value
of λ means that many more Hamiltonian walk steps are
required.

We see that for SK-model problem sizes between N =
64 and N = 1024 one can perform between about 4 × 103

and 3 × 104 quantum simulated annealing updates per
hour. As a comparison, the work of Ref. [75] discusses the
implementation of a very performant classical simulated
annealing code for optimizing sparse spin glasses. This
same code deployed to an N = 512 spin instance of SK
is capable of performing a simulated annealing update step
in an average of 7 CPU ns [76] (this average accounts for
the fact that most updates for the Sherrington-Kirkpatrick
model are rejected). This works out to about 6 × 1011

attempted updates per core hour, or about one-hundred
million times more steps than the quantum computer can
implement in that same amount of time for an N = 512
spin SK model. The state produced after the 2 × 105 quan-
tum simulated annealing steps that our quantum computer
can make in one day for the N = 512 spin SK model
could be produced by a single classical core in about 4
CPU min, assuming that the classical algorithm requires
exactly quadratically more (4 × 1010) steps. The compar-
ison is even less favorable for quantum computing if we
consider larger problem sizes. Furthermore, given the high
costs of quantum computing, it is unclear why we should
restrict the classical competition to one core rather than to
millions of cores.

The quantum computer must give a speedup for a suffi-
ciently difficult problem if we assume a quadratic speedup
in the number of annealing steps required. For the N = 512
spin SK model, by comparing the number of steps that
the classical algorithm from Ref. [75] can make in one
hour (5 × 1011) to the number of steps that the quantum
algorithm can make in one hour (8 × 103), we can estimate
a crossover point. In particular, solving M/(8 × 103) =
M 2/(5 × 1011) yields M ≈ 7 × 107 as the minimum num-
ber of steps that are required for the quantum algorithm
to give an advantage. Unfortunately, this means the quan-
tum computer needs to run for a number of hours that is
7 × 107/(8 × 103), which works out to about one year.
Moreover, this analysis is very favorable to the quantum
computer in that (1) it does not adjust the surface code dis-
tance (and thus, resource overheads) for runtimes longer
than an hour, (2) it compares to a single classical core, and
(3) it assumes that N = 512 is a large enough instance to
warrant this many steps in some cases. Of course, most
N = 512 instances of the SK model can be solved with
much less than a CPU year of simulated annealing run
time, thus precluding the possibility of a quantum speedup
for most instances at that size under the assumptions of our
analysis.

Comparisons for amplitude amplification are similarly
discouraging. For these two problems one can perform
between about ten and three thousand steps of amplitude

amplification using between about one-hundred thousand
and one-million qubithours of state distillation. In the same
amount of time one could conservatively check hundreds
of billions of solutions on even a single core of a classi-
cal computer. Assuming the quantum computer requires
quadratically fewer steps of amplitude amplification (still
at least a hundred thousand steps) compared to random
classical energy queries, we still need roughly billions of
qubithours of state distillation in order to compete with
what a single core of a classical computer can do in one
hour. Once again, if we instead make our comparisons to
a classical supercomputing cluster rather than to a single
classical core, the overheads appear even more daunting.

The LABS problem is an example where the scaling of
the best known classical algorithm is worse than O(2N/2)

and thus, an approach based on amplitude amplification
has better scaling. In particular, the best scaling method
in the literature goes as �(1.73N ) [34]. That scaling is
obtained for a branch-and-bound type method that queries
the effect of local spin flips (and thus, not the entire objec-
tive function). Each of these queries is slightly faster than
requiring 7 CPU μs with an optimized classical imple-
mentation for N = 64 (about 5 × 108 steps per hour). If
we were to compete with this approach using amplitude
amplification on a quantum computer (where we can per-
form about 2 × 103 steps per hour at N = 64) then we
can approximate the crossover point as 2M/2/(2 × 103) =
1.73M/(5 × 108) so long as we remember that these num-
bers are only valid in the vicinity of M ≈ N = 64. Coin-
cidentally, that is the case as we find that M = 62, which
corresponds to about 2 × 109 queries, which would take
about 116 years. Once again, here we are being gener-
ous to the quantum computer by making comparisons to
a single core and not adjusting the code distance for long
runtimes. Still, we again see that a small error-corrected
quantum computer cannot compete with classical methods
under such a modest scaling advantage.

The heuristics based on Trotter steps or qubitized-walk
LCU queries are more difficult to compare to classical
competition since algorithms such as QAOA, the adiabatic
algorithm, or population transfer lack a clear classical ana-
log. In that sense, it is not straightforward to predict what
being able to perform a few hundred Trotter steps or a
few thousand qubitized walk steps in an hour might buy
us, but it is clear that these are able to perform only very
short quantum walks or time evolutions, or very inaccurate
time evolutions. Eventually, it is at least possible to find
out by using our constructions to realize these algorithms
on a small fault-tolerant quantum computer and experi-
mentally discovering what happens. We note that for these
algorithms the number of steps should be interpreted as
the product of the number of repetitions of the primitive
and the total number of times the algorithm is repeated.
For instance, we see that for either the SK model or LABS
at N = 256, slightly more than 100 Trotter steps can be
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implemented in an hour. In the context of QAOA, this
could mean that we run QAOA at p = 100 and draw one
sample, or we run QAOA at p = 10 and draw ten samples
or we run QAOA at p = 1 and draw one-hundred sam-
ples, etc. However, as we have explained in Sec. III A and
Sec. III B one is probably better off using coherent rep-
etitions in the context of an amplitude-amplification-like
scheme rather than making classical repetitions.

Although we try to optimize the realization of these
heuristic primitives for the cost functions considered in this
paper, clever improvements to our approaches might fur-
ther reduce the resources required. However, we expect the
complexity of these primitives to be no better than N . In
particular, LCU-based methods require a minimum of N −
1 Toffolis just to access N qubits in a controlled way. For
Trotter step methods, evolution under the problem Hamil-
tonian could be below N for a particularly simple problem
Hamiltonian, but then the evolution under the transverse-
field driver Hamiltonian is the dominant cost and requires
O(N ) non-Clifford gates. For amplitude amplification, one
could again have a small cost for a particularly simple
problem Hamiltonian, but amplitude amplification requires
a reflection on at least N qubits, with cost at least N − 2
Toffolis.

We are already at about 5N for the LHPST walk with
SK, so we do not expect more than about a factor of 5
improvement even for the easiest problem. If we were to
use the sum of bits directly as in Ref. [25], then the com-
plexity is about 2N , but another N ancilla qubits is needed.
One could also propose to use a larger fault-tolerant quan-
tum computer and distill more Toffoli states in parallel. But
even if this strategy is pursued to the fullest extent possible
(requiring tens or hundreds of millions of physical qubits)
and parallelized near optimally, the surface code is then
bottlenecked by Clifford gates (or the overhead of routing),
which are, at best, only about a hundred to a thousand times
faster to implement.

In conclusion, we optimize and compile the basic prim-
itives required for many popular heuristic algorithms for
quantum optimization to a cost model appropriate for prac-
tical quantum error-correction schemes. This allows us
to assess and compare the cost of several quantum algo-
rithms that have not previously been compiled in such
detail. We focus on doing this for only a subset of the
possible cost function structures that one might hope to
algorithmically exploit for more efficient implementations,
but our constructions led to the development of various
methodologies, which we expect is useful in a more gen-
eral context. For instance, we expect that work outside
the context of quantum optimization might benefit from
our strategy of interpolating arithmetic functions using an
adaptive QROM. However, despite our attempts at opti-
mization, the concrete resource estimates from Tables IX
and X are predictably discouraging. The essential rea-
son for this is the substantial constant factor slowdown

between error-corrected quantum computation and clas-
sical computation. Based on these numbers we strongly
suspect that in order for early fault-tolerant quantum com-
puters to have a meaningful impact on combinatorial opti-
mization, we either need quantum optimization algorithms
that afford speedups, which are much better than quadratic,
or we need significant improvements in the way that we
realize error correction.
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APPENDIX A: ADDITION FOR CONTROLLED
ROTATIONS

Here we give more details on how to perform phase
rotations using the method from Ref. [35,36]. Prior to the
simulation the following state is prepared

|φ〉 = 1√
2bgrad

2bgrad−1∑
k=0

e−2π ik/2bgrad |k〉 . (A1)

This state is a tensor product of the form

|φ〉 = 1√
2bgrad

bgrad⊗
j =1

(
|0〉 + e−2π i/2j |1〉

)
. (A2)

It can be prepared using standard techniques for perform-
ing rotations on qubits. To obtain overall error ε, each
rotation should be performed with error ε/bgrad, which has
complexity O(log(bgrad/ε)) [37], giving overall complex-
ity O(bgrad log(bgrad/ε)) to prepare this state. Because this
state only need be prepared once, this complexity is neg-
ligible compared to the complexities in other parts of the
algorithm.

Adding a value � into this register gives

1√
2bgrad

2bgrad−1∑
k=0

e−2π ik/2bgrad |k + �〉

= 1√
2bgrad

2bgrad−1∑
k=0

e−2π i(k−�)/2bgrad |k〉 = e2π i�/2bgrad |φ〉 .

(A3)

This is why the addition yields a phase factor. Moreover,
the value of � can be stored in a quantum register, in order
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to make this a controlled phase. In order to make a con-
trolled rotation on a qubit, we can perform the addition
controlled by this qubit. Then one obtains

(μ |0〉 + ν |1〉) |�〉 |φ〉 �→ (μ |0〉 + e2π i�/2bgrad
ν |1〉) |�〉 |φ〉 .

(A4)

This approach is somewhat inefficient, because controlled
addition has twice the complexity of addition.

Instead we can use the trick described in Sec. II 1, which
enables a qubit to control whether addition or subtraction is
performed with only Clifford gates. The qubit simply needs
to control CNOTs on the target system before and after the
addition. Then we obtain

(e−2π i�/2bgrad
μ |0〉 + e2π i�/2bgrad

ν |1〉) |�〉 |φ〉 . (A5)

This procedure therefore enables us to perform the rotation
e−2π i�Z/2bgrad with bgrad − 2 Toffolis. This approach is far
more efficient than techniques based on rotation synthesis
with T gates when the rotation angle is given in a quantum
register, because those techniques need a separate rotation
controlled on each bit. When the rotation angle is given
classically, this technique is slightly less efficient than rota-
tion synthesis with T gates as in Ref. [37], because Toffolis
have a cost equivalent to two T gates in magic state dis-
tillation [38]. On the other hand, rotation angles that are
integer multiples of 2π/2bgrad can be performed exactly, up
to the accuracy of synthesizing the resource state |φ〉.

To obtain a rotation that performs the mapping

|0〉 �→ cos(2π�/2bgrad) |0〉 + sin(2π�/2bgrad) |1〉 , (A6)

one can simply perform the operations SHe−2π i�Z/2bgrad H .
Here the Hadamard H and S gates are Clifford gates, so
this gives the state preparation with the only Toffoli cost in
synthesizing the Z rotation.

FIG. 11. A circuit to perform addition on 5 qubits modulo 25

when the most significant target qubit is in a |+〉 state.

FIG. 12. A simplification of Fig. 11 to eliminate the CNOTs on
the last carry qubit. The |+〉 state is omitted here because it is not
acted upon.

The complexity of performing the addition is only
bgrad − 2 rather than bgrad − 1, as is normally the case for
addition of bgrad-bit numbers (modulo 2bgrad ). The reason
is that the most significant qubit of |φ〉 is in a |+〉 state,
so NOT gates on this qubit can be replaced with phase
gates, and this qubit can be discarded. Doing that yields
the circuit shown in Fig. 11. The Toffoli is not immedi-
ately saved, but the CNOTs and Z gate on the final carry
qubit can be replaced with two Z gates as shown in Fig. 12.
Then the Toffoli used on the final carry qubit can simply be
replaced with a controlled phase, as shown in Fig. 13. The
resulting complexity is bgrad − 2 Toffolis. If the angle to be
rotated by is given as a classical variable, then the cost is
further reduced to bgrad − 3 Toffolis, because addition of a
classical number takes one fewer Toffoli. This means that
bgrad = 4, which gives a T gate, takes one Toffoli.

Next we consider the case that we need to multiply an
integer k with b bits by a constant γ̃ to give the phase.
Given that γ̃ is represented on n bits, we can write γ̃ as a
sum of no more than (n + 1)/2� powers of 2, with posi-
tive and negative signs. This formula is checked in Fig. 14.
To prove the formula, assume that it is true for numbers

FIG. 13. A simplification of Fig. 12 where the last carry qubit
is eliminated entirely and the Toffoli is replaced with a controlled
phase.
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FIG. 14. In orange is the number of powers of 2 needed to give
integer m, when we allow additions and subtractions. The for-
mula (n + 1)/2� is shown in orange, where the number of bits
required to represent m is n = log(m + 1)�.

with ≤ n0 bits, and consider a number m with n = n0 + 2
bits (so the most significant bit must be a 1). There are then
three cases to consider.

1. For m < (3/4)2n, we find that m − 2n−1 < 2n−2, so
m − 2n−1 has no more than n − 2 = n0 bits, and so
can be written as a sum of at most (n0 + 1)/2�
powers of 2. That means m can be written as a sum
of at most (n0 + 1)/2� + 1 = (n + 1)/2� powers
of 2.

2. For m > (3/4)2n, we have 2n − m < 2n−2, so 2n −
m has no more than n − 2 = n0 bits, and can be
written as a sum of ≤ (n0 + 1)/2� powers of two.
Since m can be written as 2n minus 2n − m, it can be
written as at most (n0 + 1)/2� + 1 = (n + 1)/2�
powers of 2.

3. The last case is that where m = (3/4)2n, so m =
2n−1 + 2n−2. Since n = n0 + 2 ≥ 2, (n + 1)/2� ≥
2, so again m is written as a sum of at most (n +
1)/2� powers of two.

Since we check that the formula is true for small num-
bers of bits in Fig. 14, the formula is true for all n by
induction. To perform the multiplication, we take each
term in the sum for γ̃ , and add or subtract a bit-shifted
copy of k to the phase-gradient state. We have no more than
(n + 2)/2 additions/subtractions, each of which is into the
phase-gradient state with bgrad bits, which gives a cost of
no more than (bgrad − 2)(n + 2)/2.

The error due to omitted bits in the multiplication (those
omitted in bit-shifting k) can be bounded as follows. First,
note that the error for the additions is entirely in under-
estimating the product, since we are omitting digits. For
the subtractions the error is in overestimating the prod-
uct. Therefore, to obtain the maximum error we need to

consider the case with entirely additions, since the subtrac-
tions cancel the error. For each addition the error is upper
bounded by 2π/2bgrad , because we omit adding bits that
correspond to phase shifts of 2π/2bgrad+1, 2π/2bgrad+2, and
so forth. That means the upper bound on the error from
(n + 2)/2 additions is (n + 2)π/2bgrad . To make the error
in the multiplication no larger than ε we should take

bgrad = log[(n + 2)π/ε]� = log(n/ε)+ O(1). (A7)

APPENDIX B: DISCRETIZING ADIABATIC
STATE PREPARATION WITH QUBITIZATION

Here we place bounds on the error for the method of
adiabatic evolution from Sec. III 2. For any fixed value
of r we can choose an adiabatic path between an ini-
tial Hamiltonian and a final Hamiltonian. The accuracy
of the adiabatic approximation depends strongly on how
quickly we traverse this path, so it is customary to intro-
duce a dimensionless time s = t/T, which allows us to
easily change the speed without altering the shape of the
path.

Using Trotter-Suzuki formulas for time-ordered opera-
tor exponentials we have that
∥∥∥T e−iT

∫ s+1/r
s Heff(s)ds − e−iHeff(s+1/2r)T/r

∥∥∥ ∈

O
(

maxs ‖∂2
s Heff(s)‖T + maxs ‖∂sHeff(s)‖‖Heff(s)‖T2

r3

)
.

(B1)

However, the Hamiltonian Heff for the time-evolution oper-
ator in this case is not known except in terms of its action
on the space containing the instantaneous eigenvectors
of H . In order to use this result, we need to bound the
derivatives acting on the entire space. In order to find an
asymptotic bound on these derivatives we define,

Heff(s) = ir
4

ln
[
W4

r (s)
] = ir

4
ln

{
[(I − 2I ⊗ |L(r, s)〉〈L(r, s)|) SELECT]4

}
. (B2)

It is then clear from the unitarity of Wr(s) that for any |s| ∈
O(1), if we choose the principal logarithm for Heff then
‖Heff(s)‖ ∈ O(1). The derivatives of the Hamiltonian are
more involved to estimate.

1. Derivatives of matrix logarithms of unitary matrices

In order to compute the derivatives of the effective
Hamiltonian, we need to compute the derivatives of the
logarithm function. Such an analysis is usually based on
differentiating the Mercator series for the matrix logarithm;
however, the Mercator series of log(A) does not converge
for ‖A‖ ≥ 1. For greater generality we use an integral
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representation for the matrix logarithm log(A) from Ref.
[77],

log(A) =
∫ 1

0
dt(A − 1)[t(A − 1)+ 1]−1. (B3)

This representation converges unless there is a real non-
positive eigenvalue. For the case where A is unitary, this
requirement prohibits matrices that have any eigenvalues
equal to precisely −1. Next, defining V := [t(A − 1)+
1]−1, and in turn (A − 1) = t−1(V−1 − 1) this expression
simplifies to

log(A) =
∫ 1

0
dt(A − 1)V

=
∫ 1

0
dt

1
t
(1 − V) . (B4)

Next, note that for any invertible matrix-valued function
A(s) we have from the product rule that

∂s[A(s)A−1(s)] = 0 ⇒ ∂s[A−1(s)] = −A−1(s)Ȧ(s)A−1(s).
(B5)

Using ∂sV = −tVȦV we get

∂s log[A(s)] =
∫ 1

0
dtVȦV. (B6)

Taking the derivative of Eq. (B6) gives

∂2
s log(A(s)) =

∫ 1

0
dt
(
V̇ȦV + VÄV + VȦV̇

)

=
∫ 1

0
dt
(−tVȦVȦV + VÄV − tVȦVȦV

)

=
∫ 1

0
dtV

(
Ä − 2tȦVȦ

)
V. (B7)

We can use the fact that A is unitary to see that

‖V‖2 = ∥∥[t(A − 1)+ 1][t(A† − 1)+ 1]
∥∥−1

= ∥∥[t2 + (t − 1)2]1 + (A + A†)
(
t − t2

)∥∥−1
. (B8)

In the case where A is close to the identity, if the absolute
values of the phases of the eigenvalues are no greater than
�, then

‖∂s log[A(s)]‖ ≤ �

sin�
‖Ȧ‖, (B9)

‖∂2
s log[A(s)]‖ ≤ �

sin�
‖Ä‖ + 1

cos2(�/2)
‖Ȧ‖2. (B10)

Next we consider W2
r (t) in the case where the Hamil-

tonian is a linear combination of self-inverse unitaries
so SELECT′2 = 1, which is the case for all Hamiltonians
considered here. Expanding it out we have

W2
r (s) = [1 − 21 ⊗ |L(s, r)〉〈L(s, r)|]SELECT′[1 − 21 ⊗ |L(s, r)〉〈L(s, r)|]SELECT′

= [1 − 21 ⊗ |L(s, r)〉〈L(t, r)|][1 − 2SELECT′ |L(s, r)〉〈L(s, r)| SELECT′]

= 1 − 21 ⊗ |L(t, r)〉〈L(t, r)| − 2SELECT′ |L(s, r)〉〈L(s, r)| SELECT′

+ 4 |L(s, r)〉〈L(s, r)| SELECT′ |L(s, r)〉〈L(s, r)| SELECT′. (B11)

Using

|L(s, r)〉 =
∑

k

√
λk(s)
λ(s)r

|k〉 |00〉 +
√

r − 1
2r

|0〉 (|10〉 + |11〉) , (B12)

we have

〈L(s, r)| SELECT′ |L(s, r)〉 = H(s)
λ(s)r

. (B13)

Then squaring again gives

W4
r (s) = 1 + 41 ⊗ |L(s, r)〉〈L(s, r)| + 4SELECT′ |L(s, r)〉〈L(s, r)| SELECT′

+ 16 |L(s, r)〉
[

H(s)
λ(s)r

]3

〈L(s, r)| SELECT′
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− 41 ⊗ |L(s, r)〉〈L(s, r)| − 4SELECT′ |L(s, r)〉〈L(s, r)| SELECT′

+ 8 |L(s, r)〉
[

H(s)
λ(s)r

]
〈L(s, r)| SELECT′

+ 4 |L(s, r)〉
[

H(s)
λ(s)r

]
〈L(s, r)| SELECT′ + 4SELECT′ |L(s, r)〉

[
H(s)
λ(s)r

]
〈L(s, r)|

− 8 |L(s, r)〉
[

H(s)
λ(s)r

]
〈L(s, r)| SELECT′ − 8 |L(s, r)〉

[
H(s)
λ(s)r

]2

〈L(s, r)|

− 8SELECT′ |L(s, r)〉
[

H(s)
λ(s)r

]2

〈L(s, r)| SELECT′ − 8 |L(s, r)〉
[

H(s)
λ(s)r

]
〈L(s, r)| SELECT′

= 1 + 16 |L(s, r)〉
[

H(s)
λ(s)r

]3

〈L(s, r)| SELECT′ − 8 |L(s, r)〉
[

H(s)
λ(s)r

]2

〈L(s, r)|

− 8SELECT′ |L(s, r)〉
[

H(s)
λ(s)r

]2

〈L(s, r)| SELECT′

− 4 |L(s, r)〉
[

H(s)
λ(s)r

]
〈L(s, r)| SELECT′ + 4SELECT′ |L(s, r)〉

[
H(s)
λ(s)r

]
〈L(s, r)|

= 1 + 4
{

SELECT′, |L(s, r)〉
[

H(s)
λ(s)r

]
〈L(s, r)|

}
+ O

(
1
r2

)
. (B14)

This means that ‖W4
r (s)− 1‖ ≤ 8/r + 16/r2 + 16/r3, so for r � 5.7, W4

r does not have negative real eigenvalues, and our
expression for the matrix logarithm holds. This also implies that

‖ log[W4
r (s)]‖ ≤

∫ 1

0
dt‖(A − 1)V‖ ≤ 8/r + O(1/r2). (B15)

Next, under these assumptions we can use Eqs. (B9) and (B14) to show that [neglecting terms of O(r−2), which are
negligible for large r and using ‖H‖/λ ≤ 1]

‖∂s log[W4
r (s)]‖ ∈ O

(‖∂sW4
r (s)‖

)

⊆ O
(∥∥|L̇(s, r)〉∥∥

∥∥∥∥H(s)
λ(s)r

∥∥∥∥ +
∥∥∥∥ ∂∂s

H(s)
λ(s)r

∥∥∥∥
)

⊆ O
(∥∥|L̇(s, r)〉∥∥

r
+ |λ̇| + ‖Ḣ‖

λr

)
. (B16)

We observe from Eq. (142) and the definition of the Euclidean norm it follows that if the Hamiltonian is chosen to be
independent of r then

‖ |L̇〉 ‖ ∈ O

⎛
⎜⎝
√√√√∑

k

∣∣∣∣∣
∂

∂s

√
λk

λr

∣∣∣∣∣
2
⎞
⎟⎠ ⊆ O(1/

√
r). (B17)

Thus neglecting terms of order O(r−3/2) we find from substituting this expression into Eq. (B16) that

‖∂s log[W4
r (s)]‖ ∈ O

( |λ̇| + ‖Ḣ‖
λr

)
. (B18)

It further follows from Eqs. (B10) and (B14) that the second derivative of the matrix logarithm obeys [neglecting terms
order O(r−3/2) and higher]
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‖∂2
s log[W4

r (s)]‖ ∈ O
(‖∂2

s W4
r (s)‖ + ‖∂sW4

r (s)‖2)
= O(‖∂2

s W4
r (s)‖)

⊆ O
(‖ |L̈(s, r)〉 ‖

r
+
∥∥∥∥ ∂

2

∂s2

H
λr

∥∥∥∥ + ‖ |L̇〉 ‖
∥∥∥∥ ∂∂s

H
λr

∥∥∥∥
)

⊆ O
(‖ |L̈(s, r)〉 ‖

r
+
∥∥∥∥ ∂

2

∂s2

H
λr

∥∥∥∥ + 1
r3/2

)

⊆ O

⎛
⎝‖ |L̈(s, r)〉 ‖

r
+
⎛
⎝‖Ḧ‖ + (‖Ḣ‖ + |λ̇|)

(
|λ̇|
λ

)
+ |λ̈|

λr

⎞
⎠
⎞
⎠ . (B19)

Note that in the above derivation terms of the form ‖ |L̇(s, r)〉 ‖‖∂sH/(λr)‖ are dropped because they are O(r−3/2). Again,
if the Hamiltonian is chosen to be independent of r, then

‖ |L̈(s, r)〉 ‖ ∈ O

⎛
⎜⎝
√√√√∑

k

∣∣∣∣∣
∂2

∂s2

√
λk

λr

∣∣∣∣∣
2
⎞
⎟⎠ ⊆ O

(
1√
r

)
, (B20)

which implies that, neglecting terms of O(r−3/2) and higher

‖∂2
s log[W4

r (s)]‖ ∈ O

⎛
⎝‖Ḧ‖ + (‖Ḣ‖ + |λ̇|)

(
|λ̇|
λ

)
+ |λ̈|

λr

⎞
⎠ . (B21)

Next we bound the error that arises from approximating the time-ordered operator exponential by the exponential of
the effective Hamiltonian evaluated at the midpoint. From the analysis of the midpoint rule for integration, we intuitively
expect that the error should scale as O(1/r3); however, such an analysis cannot be directly applied here because of the
fact that the derivatives of the Hamiltonian need not commute with the Hamiltonian. It can be seen by performing a Taylor
series expansion of the effective Hamiltonian to second order and substituting the result into the Dyson series that

∥∥∥T e−iT
∫ s+4/r

s Heff(s′)ds′ − e−i 4T
r Heff(s+2/r)

∥∥∥ ∈ O
(

max
s

‖∂2
s Heff(s)‖T

r3 + max
s

‖∂sHeff(s)‖‖Heff(s)‖T2

r3

)
. (B22)

We then can bound the scaling of the error in the midpoint approximation by substituting (B18) and (B21) into (B22) and
noting from (B15) that ‖Heff(s)‖ = (r/4)‖ log[W4

r (s)]‖ ∈ O(1) to find

∥∥∥T e−iT
∫ s+4/r

s Heff(s′)ds′ − e−i 4T
r Heff(s+2/r)

∥∥∥ = O
(‖∂2

s W4
r (s)‖T + ‖∂sW4

r (s)‖T2

r2

)

= O

⎛
⎝maxs

(
‖Ḧ‖ + (‖Ḣ‖ + |λ̇|)

(
|λ̇|
λ

)
+ |λ̈|

)
T + maxs

(|λ̇| + ‖Ḣ‖) T2

λr3

⎞
⎠ . (B23)

Since errors are subadditive the error in performing a simulation from s = 0 to s = 1 is at most O(r) times the error given
above. This results in the following bound on the scaling of the value of r that suffices to guarantee simulation error at
most ε

r ∈ O

⎛
⎜⎜⎝
√√√√maxs

[
‖Ḧ‖ + (‖Ḣ‖ + |λ̇|)

(
|λ̇|
λ

)
+ |λ̈|

]
T + maxs

(|λ̇| + ‖Ḣ‖) T2

λε

⎞
⎟⎟⎠ . (B24)
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The adiabatic theorem then implies that, under reasonable assumptions about the derivatives of the Hamiltonian [55]
(specifically that the Hamiltonian is Gevrey class Gα for α ≥ 1), the value of T needed to achieve error ε, given that the
minimum eigenvalue gap for the effective Hamiltonian is �eff, scales at most as

T ∈ Õ
[

maxs ‖Ḣeff(s)‖
�2

effε

]
⊆ Õ

[
maxs

(‖Ḣ(s)‖ + |λ̇|)
λ�2

effε

]
. (B25)

This implies that if λ ∈ �(1) and �eff ∈ o(1)

r ∈ Õ

⎧⎪⎨
⎪⎩

1
ε3/2

√√√√maxs

[
‖Ḧ‖ + (‖Ḣ‖ + |λ̇|)

(
|λ̇|
λ

)
+ |λ̈|

]
maxs

(|λ̇| + ‖Ḣ‖)
�2

effλ
2

+ maxs
(|λ̇| + ‖Ḣ‖)3

�4
effλ

3

⎫⎪⎬
⎪⎭

⊆ Õ

⎧⎪⎨
⎪⎩

1
ε3/2

√√√√maxs
(‖Ḧ‖ + |λ̈|)maxs

(|λ̇| + ‖Ḣ‖)
�2

effλ
2

+ maxs
(|λ̇| + ‖Ḣ‖)3

�4
effλ

3

⎫⎪⎬
⎪⎭ . (B26)

If the Hamiltonian H is maximum rank then the spectral gap of the effective Hamiltonian is on the order of �eff ∈
�[min(�, mink |Ek|)/λ] where � is the minimum spectral gap of the Hamiltonian H . The minimum over energy comes
from the fact that the eigenvalues of Wr in the set {±1, ±i} are mapped to 1, which can lead to degeneracies in the effective
Hamiltonian that were absent in the original Hamiltonian. Thus the final scaling that we obtain is

r ∈ Õ

⎡
⎣ 1
ε3/2

√
maxs

(‖Ḧ‖ + |λ̈|)maxs
(|λ̇| + ‖Ḣ‖)

min(�, mink |Ek|)2 + λmaxs
(|λ̇| + ‖Ḣ‖)3

min(�, mink |Ek|)4

⎤
⎦ . (B27)

This confirms that by taking the number of steps suffi-
ciently large that we can force the diabatic error to become
arbitrarily small. Thus we can use the walk operator in
place of a Trotterized sequence for adiabatic state prepara-
tion and in turn as a heuristic that converges to the global
optima given a large enough r. It should be noted, how-
ever, that the bounds used in this analysis are extremely
loose and if a quantitatively correct estimate of the scaling
is desired then many of the simplifications used above can
be eschewed at the price of increasing the complexity of
the expression.

Note that in practice, the adiabatic paths can be chosen
such that the second derivative of the Hamiltonian is zero
and similarly we can choose paths such that λ is constant
by absorbing it into the definition of the evolution time
for each infinitesimal step. However, we give the above
expression for generality. Higher-order versions of this
can also be derived using time-dependent Trotter-Suzuki
formulas [60].

APPENDIX C: IN-PLACE BINARY TO UNARY
CONVERSION

Here we present a quantum circuit (B2UN ) for converting
a binary-encoded integer k (0 ≤ k < N ) into one-hot unary
on N bits. Recall that the one-hot unary encoding should

have k encoded as |0〉⊗(k−1) |1〉 |0〉⊗(N−k). An overview of
the circuit is depicted in Fig. 15 in the special case that N
is a power of 2. First we sketch a proof that the circuit is
correct. Then we explain how to generalize the circuit to
the case where N is not a power of 2. Finally, we count the
non-Clifford gates needed to perform our binary-to-unary
conversion circuit.

We give a sketch of a proof that the circuit is correct
for N a power of 2. Our proof works by induction and we
begin by explaining the trivial case N = 1. In this case, the
output can only be the 1-bit, one-hot unary encoding of 0
and hence the output should be a single qubit, |1〉. The only
input to the circuit is an ancilla initialized to |0〉 and so we
can perform B2U1 with a single NOT gate.

Now that we have explained the trivial case, we next
explain our recursion and why it works [see Fig. 15(b)].
The idea is as follows. First, we apply B2UN/2 to k′ :=
k − 2n−1kn−1, where kn−1 is the most significant bit of k.
This input is simply the last n − 1 bits of k and the out-
put of B2UN/2 is N/2 qubits. Then, controlled on kn−1, we
swap bits 1 through N/2 − 1 (counting from zero) of the
output of B2UN/2 with N/2 − 1 ancilla qubits initialized to
0. Note that this step does not execute a controlled SWAP on
position 0 of the one-hot unary encoding of k′. Having per-
formed these controlled SWAPs, we next wish to erase qubit
N/2 if k > N/2. We do this by performing N/2 − 1 CNOT
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(a) (b)

FIG. 15. A depiction of the binary-to-unary circuit mapping an n-bit binary number to an N -bit (N = 2n) unary encoding of the
input. In (a) we have the specific example where N = 8 (i.e., B2U8). In (b) we have the circuit (B2UN ) defined recursively (in terms of
B2UN/2), In (b) the controlled-SWAP symbols are used to represent many controlled-SWAPs, one for each qubit in the relevant registers.
The symbol “> 0” signifies that the multi-CNOT is activated on any state other than the state of all zeros, which can be implemented
with a cascade of CNOTs because the input is promised to have at most one nonzero qubit. The labeled rails in both circuit diagrams
refer to the bits of the binary-encoded input k, and the unlabeled inputs are fresh ancillae.

gates targeted on the qubit at position N/2 and controlled
by each of the qubits at positions above N/2. Finally, we
have to resolve the special cases where k is N/2 or 0. We
do this with one more CNOT, with qubit N/2 as the control
and qubit 0 as the target.

Having given an explanation of our recursive construc-
tion, we next explain how to prove that the recursion
works. We consider three distinct cases.

1. If k < N/2, we have kn−1 = 0 and hence none of the
controlled SWAPs or CNOTs do anything. This is cor-
rect behavior because the one-hot unary encoding
of k is the one-hot unary encoding of k′ with N/2
ancilla qubits appended to it.

2. If k = N/2, the controlled SWAPs again do nothing
but this is now because they are swapping pairs of
identical qubits in the |0〉 state. The CNOTs targeted
on the qubit at position N/2 also do nothing because
the control qubits are 0. The final CNOT then erases
the 1 encoded in position 0 of the output of B2UN/2,
which is there because the input was k′ = 0.

3. If k > N/2, the controlled SWAPs swaps the one-
hot unary encoding of k′ into the final N/2 qubits
of the output register. The CNOTs targeted on qubit
N/2 then erase that qubit, leaving the correct unary
encoding of k. The final CNOT does nothing, as the
control qubit was erased.

The proof sketch demonstrates that our recursive binary-
to-unary circuit works when N is a power of two. Next
we explain how to modify the circuit when N is not a
power of 2. If N is not a power of 2, define n := log N�
and N ′ = 2n. Apply B2UN ′/2 to the least significant n − 1
bits of k. Then perform the controlled SWAPs and CNOTs
involving the remaining N − N ′/2 ancilla qubits, remov-
ing any operations that involve deleted qubits. For N = 7,
for example, we delete the bottom rail from Fig. 15(a) as

well as the controlled SWAP and the CNOT involving that
final rail. To see that this works, observe that the circuit
also works if we performed B2UN ′

and then remove the
final N ′ − N qubits, which are guaranteed to be zero. Our
construction simply eliminates unnecessary gates from
B2UN ′

.
Our final task is to count the number of non-Clifford

gates needed by our B2UN circuit. The only non-Clifford
gates are the controlled-SWAP operations, which can be
executed with a single Toffoli gate and two CNOTs. We
prove that the number of controlled-SWAP gates is

CN := N − log N� − 1. (C1)

First, it is clear that C1 = 0 as required. Next, it is clear
from Fig. 15(b) that CN ′ = N ′/2 − 1 + CN ′/2. Based on
our analysis above, CN = CN ′ − (N ′ − N ) and hence

CN = N − N ′/2 − 1 + CN ′/2. (C2)

Next assume Eq. (C1) is true for some particular value
N ′/2. Then by substitution in Eq. (C2),

CN = N − N ′/2 − 1 + N ′/2 − log N ′/2� − 1

= N − n − 1 = N − log N� − 1 (C3)

thus satisfying Eq. (C1) for N as required. Therefore, by
induction Eq. (C1) is correct for all N .

APPENDIX D: COST OF MULTIPLICATION

As the multiplication operation is a major contributor
to the overall complexity of our algorithms, we need to
be quite careful in our analysis of the operation. We also
frequently require only low-precision arithmetic, meaning
that we can make our multiplications less accurate and
therefore computationally cheaper. This appendix presents
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our algorithms for performing four variations of the multi-
plication task, with modifications to be used when one of
the inputs is given classically rather than quantumly.

Our strategy is to use schoolbook multiplication. In
schoolbook multiplication, the product γ := κ × λ is cal-
culated by writing κ = ∑

� 2�κ� with κ� ∈ {0, 1} and then
calculating the sum γ = ∑

� 2�κ�λ. This reduces the task
of multiplication to two very simple multiplications and
the task of adding a list of numbers. The two multiplica-
tions are simple because multiplication by a power of 2 can
be accomplished by an appropriate bit-shift operation, and
multiplying by a single bit can be accomplished by using
that bit as a control for the addition operation. That is, we
perform that part of the addition if and only if the control
bit is one.

We begin in Appendix 1 by reviewing the parts of the
main text where we need to multiply two numbers together.
In Appendix D 2 we explain how to add a constant value to
a quantum register, which is used separately in Algorithm
1 but is also used through the rest of this appendix in order
to multiply a quantum variable to a classical constant.
We then explain the simplest variant of multiplication in
Appendix 3, where we must multiply two integers together.
We then explain the remaining variants by modifying the
integer-integer multiplication algorithm as appropriate. In
Appendix 4, we explain the case where we multiply an
integer to a real number. In Appendix 5, we explain the
case where we multiply a real number to another real num-
ber. Finally, in Appendix 6, we explain the case where we
calculate the square of a given real number. In all cases we
indicate how the algorithm is to be modified when one of
the inputs is classically specified.

1. Uses of multiplication in this paper

In Sec. III C we need to multiply a quantum register by
a classical constant γ̃ or γ to obtain the phase to apply.
The multiplication is performed directly into the phase-
gradient state, so we cannot use the savings where the
multiplication result is placed in an initially zero regis-
ter. The fastest method seems to be to write the classical
constant as a sum of powers of 2 with plus and minus
signs.

In Sec. II E we consider QROM for interpolation of
functions, and we need to multiply the input register by
the slope. In that case, both registers are quantum. The
input register is given to bdif bits, and the goal is to
give the approximation to the function to bsm bits. This
may require giving the slope to bsm + O(log bsm) bits, or
bsm + bfun + O(log bsm) bits in the case of the arcsine. For
Szegedy walks, we need to take the square of a quan-
tum register, and need to multiply a quantum register by
a constant.

FIG. 16. A circuit to perform addition on 5 qubits modulo 25

from Ref. [35].

2. Methods for addition

When adding a classically given constant to a quantum
register, it is possible to save the qubits that are used to
store this classical constant. Consider the quantum circuit
for addition following Ref. [35], as shown in Fig. 16 where
i is the classically given integer and t is the quantum reg-
ister. For this diagram we use the convention of Ref. [35]
where a Toffoli with a target known to be initially zeroed is
shown with a � for the target. That is the first operation on
the left in Fig. 16. The Toffolis with targets that are known
to be zero afterwards are shown with � for the target. These
may be performed with measurements and Cliffords so do
not add to the non-Clifford cost.

The circuit for the adder contains a subsection where a
CNOT gate is performed on a qubit of i, say i1, as shown
in Fig. 17(a). The state after the CNOT can alternatively be
obtained on the control by switching the control and tar-
get for the CNOT. Then for the following Toffoli where i1
is the control, we switch the control to the carry register at
the top. After that the carry register needs to be used as a
control where it should take its original value, so we need
another CNOT to undo the first. The resulting section of the
circuit is as shown in Fig. 17(b). Replacing all these sec-
tions of the circuit in this way, we obtain an addition circuit
as shown in Fig. 18. This adder only uses the ij registers
as controls. Since these registers have classically known
values, all controls by these qubits may be replaced with
classical controls, and these qubits need not be used. This
also reduces the Toffoli cost by 1, because the first Toffoli
is replaced with a CNOT. The Toffoli cost is therefore the
number of bits minus 2. The number of ancillas needed is
the number of bits minus 1.

3. Multiplying two integers

In this variant of the multiplication task, we are to mul-
tiply the dA-bit integer κ to the dB-bit integer λ. These
integers are encoded into quantum registers A and B,
respectively. Thus our task is to prepare a (dA + dB)-qubit
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(a) (b)

FIG. 17. (a) The component of the adder circuit where the
qubit containing classical data is the target of a CNOT. (b) The
circuit may be rewritten so the value on the second qubit is never
changed.

register out as follows:

|κ〉A |λ〉B |0〉out �→ |κ〉A |λ〉B |γ := κ × λ〉out . (D1)

We explain how to perform this multiplication using
schoolbook multiplication and the Gidney adder [35], and
we explain how to reduce the computational cost if one
of the inputs is presented to us classically rather than
quantumly.

We now explain the schoolbook multiplication algorithm
in some detail. Let the bits of κ and λ be denoted as
follows:

κ :=
dA∑
�=1

2dA−�κ�; λ :=
dB∑
�=1

2dB−�λ�; κ�, λ� ∈ {0, 1}.

(D2)

Thus λdB refers to the least-significant bit of λ. Our
procedure is then as follows.

1. Controlled on the final qubit of B, copy all the qubits
of A into the final dA bits of out.
Result: |0〉out �→ |λdBκ〉out.
Cost: dA Toffolis.

2. For each � = dB − 1, . . . , 1, add 2� times the value
of A to out in place, controlled on the (dB − �)th
qubit of B. This can be done by using the control to
copy the dA bits to an ancilla, and adding this ancilla.

FIG. 18. A circuit to perform addition on 5 qubits modulo 25

such that the ij registers are only used as controls. Because they
are only used as controls, if the number i is given classically
the addition can be performed entirely using classical control,
without using any ancillas to store i.

The ancilla can be erased with no Toffoli cost. We
add A to out with the final � qubits of out ignored.
Note that the number of nonzero bits is always no
greater than dA.
Result: |ξ〉out �→ |ξ + 2�λdB−�κ〉out, where ξ is the
integer encoded in out before this step.
Cost: 2dA Toffolis.

The total number of Toffolis is 2dAdB − dA, and the total
number of temporary ancilla qubits needed is 2dA − 1
since we are copying dA qubits out to an ancilla as well
as using dA − 1 temporary qubits in the addition.

We now consider how the cost of the algorithm can be
reduced when one of the inputs is presented classically,
rather than quantumly. The effect on the algorithm is dif-
ferent depending on whether κ or λ is known classically.
In the case that κ is known classically, we can replace all
the Toffolis in the copy operation in step 1 with CNOTs or
identity gates, depending on whether the relevant bit of κ
is 1 or 0. More interestingly, each addition step involves
adding a known constant rather than an unknown variable
to be read from a quantum register during computation.
The effect on computational complexity depends on the
classical constant κ; in particular, on the largest power of 2
that divides κ . In the worst case (κ mod 2 = 1), we save
one Toffoli per addition step. In the best case (κ = 0), we
have zero computational cost because we are multiplying
by zero and we know we are multiplying by zero.

In the case that λ is presented to us classically rather
than quantumly, we can make the addition controlled by
performing the (noncontrolled) addition circuit in the case
of 1, or doing nothing when the classical control is 0. The
number of quantum-to-quantum additions thus depends on
the number of nonzero classical bits—the greater the Ham-
ming weight of the classical input, the greater the number
of additions to be performed. Note that this is distinct from
the cost of performing classical-to-quantum multiplication
when κ is the classical variable, in which case the com-
plexity is determined by the number of zeros on the far
right of the number.

The case where λ is given classically is more relevant
for this paper. We are unlikely to be dealing with classi-
cally specified integers that are a multiple of a large power
of 2. On the other hand, we frequently have some informa-
tion about the Hamming weight

∑
� λ� of the classically

known number λ. Each addition costs at most dA Toffo-
lis, we perform

∑
� λ� ≤ dB such additions, and no other

operations require Toffoli gates. We therefore have a total
Toffoli cost of at most dAdB, which can be replaced with
dA

∑
� λ� if we can assume knowledge of the Hamming

weight of λ. Thus we save a factor of 2 if one of the inputs
is classical.

In the following subsections, we explain how to modify
the above procedure for variants of the multiplication task.
These variants have at least one of the inputs being a real
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number between 0 and 1, rather than an integer. Thus the
task is not to calculate the multiplication exactly, as this
involves infinitely many bits for real numbers. Instead, we
truncate the binary expansions of real numbers to ensure
that an error threshold is achieved.

4. Multiplying an integer to a real number

Now we consider a variant of the multiplication task
where one of the inputs is a real number between zero and
one. For reasons that become clear below, we specify κ
to be the real number and λ to be the integer. We assume
that the real number is defined to infinitely many digits and
that our task is to approximate γ := κ × λ to within an
error tolerance ε. Thus our task is to calculate some γ̃ such
that |γ − γ̃ | < ε. That is to say, we are to prepare a new
quantum register out as follows:

|κ〉A |λ〉B |0〉out �→ |κ〉A |λ〉B |γ̃ 〉out . (D3)

Here we are free to choose the number of bits for the reg-
ister A and hence the number of bits for the register out.
This choice naturally depends on the error tolerance ε.

We begin by specifying symbols for the bits of the inputs
κ and λ. Note that the indexing differs somewhat from the
previous section. We define

κ :=
∞∑
�=1

κ�/2�; λ :=
dB∑
�=1

2dB−�λ�; κ�, λ� ∈ {0, 1}.

(D4)

We then select an integer dA ≥ dB (presuming ε < 1) that
counts the number of bits of the input κ we plan to use.
We use dA − 1 bits of κ . We explain our plan by first
representing the ideal product as

γ =

⎛
⎜⎜⎜⎜⎜⎜⎝

λ1 × κ1 κ2 κ3 · · · κdB−2 κdB−1 . κdB · · · κdA−1 κdA · · ·
+ λ2 × κ1 κ2 · · · κdB−3 κdB−2 . κdB−1 · · · κdA−2 κdA−1 · · ·
+ λ3 × κ1 · · · κdB−4 κdB−3 . κdB−2 · · · κdA−3 κdA−2 · · ·

...
+ λdB−1 × κ1 . κ2 · · · κdA−dB+1 κdA−dB+2 · · ·
+ λdB × 0 . κ1 · · · κdA−dB κdA−dB+1 · · ·

⎞
⎟⎟⎟⎟⎟⎟⎠

, (D5)

where the vertical line denotes where we truncate the
binary expansion of κ . We thus calculate

γ̃dA :=
dB∑
�=1

λ��κ2dA−��2dB−dA ; γ − γ̃dA ≤ dB2dB−dA .

(D6)

To ensure that the error tolerance ε is achieved, we should
choose dA > dB + log(dB/ε). We therefore choose

dA = dB + log(dB/ε)�. (D7)

We follow a similar strategy to that described in Appendix
3, meaning that we are to perform a sequence of controlled
additions. We work bottom to top in Eq. (D5).

We start with the bottom line by copying dA − dB bits
into the output register, with Toffoli cost dA − dB. After
that the number of Toffolis is twice the number of bits. The

total number of Toffolis is then

(dA − dB)+ 2(dA − dB + 1)+ · · · + 2(dA − 1)

= dA − dB +
dA−1∑

�=dA−dB+1

�

= dA(2dB − 1)− dB
2

= [dB + log(dB/ε)�](2dB − 1)− dB
2

= dB
2 + (2dB − 1)log(dB/ε)� − dB. (D8)

Hence the Toffoli cost of multiplying a real number to an
integer on a quantum computer is no more than

dB
2 + (2dB − 1)log(dB/ε)� − dB, (D9)

where dB is the number of bits used to specify the integer
and ε is the allowable error in the overall multiplication.
The algorithm requires that the real number is specified to
dA = dB log(dB/ε)� bits and uses dA − 1 ancilla qubits.

5. Multiplying two different real numbers

In this subsection we consider the task where we
are to multiply two real numbers κ (0 ≤ κ < 1) and λ
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(0 ≤ κ < 1). Our task is to calculate an approximation γ̃
to γ := κ × λ such that |γ − γ̃ | < ε, where ε > 0 is some
given error tolerance. That is to say, we are to prepare a
new quantum register out as follows:

|κ〉A |λ〉B |0〉out �→ |κ〉A |λ〉B |γ̃ 〉out . (D10)

We are free to choose the number of qubits in each of the
registers A, B, and out to ensure that the output encodes
a value for γ̃ that approximates γ to within the error tol-
erance ε. We begin by discussing these choices of register
size, starting with the size of A and B.

To explain our choice for the numbers of qubits for reg-
isters A and B, we begin by introducing notation for the
inputs κ and λ. As before, we define the bits of the inputs
according to the equations

κ :=
∞∑
�=1

κ�/2�; λ :=
∞∑
�=1

λ�/2�; κ�, λ� ∈ {0, 1}.

(D11)

This suggests our strategy for calculating γ . As before, we
have

γ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

λ1 × .0 κ1 κ2 κ3 · · · κdB−2 κdB−1 κdB · · · κdA−1 κdA · · ·
+ λ2 × .0 0 κ1 κ2 · · · κdB−3 κdB−2 κdB−1 · · · κdA−2 κdA−1 · · ·
+ λ3 × .0 0 0 κ1 · · · κdB−4 κdB−3 κdB−2 · · · κdA−3 κdA−2 · · ·

...
+ λdB−1 × .0 0 0 0 · · · 0 κ1 κ2 · · · κdA−dB+1 κdA−dB · · ·
+ λdB × .0 0 0 0 · · · 0 0 κ1 · · · κdA−dB κdA−dB−1 · · ·

...

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (D12)

where solid lines indicate where we truncate the calculation in order to produce the approximation γ̃ instead of γ . Here
we assume that dA ≥ dB; if dA < dB, our repeated addition procedure involves several additions by zero. The repeated
addition strategy has a Toffoli cost of

(dA − dB + 1)+ 2(dA − dB + 2)+ · · · + 2(dA − 1) = (dA − dB + 1)+ 2
dA−1∑

�=dA−dB+2

�

= dA(2dB − 3)− (dB − 1)2. (D13)

It seems reasonable to set dA = dB, and numerical
evidence indicates that this choice makes the optimal
trade-off between computational complexity and error tol-
erance. Setting d := dA = dB, the Toffoli cost is simply
d2 − d − 1.

We now consider the error of the sum in Eq. (D12).
There

γ̃ =
∞∑

n,m=1
n+m≤d

κnλm2−(n+m), (D14)

so

γ − γ̃ =
∞∑

n,m=1
n+m>d

κnλm2−(n+m) ≤
∞∑

n,m=1
n+m>d

2−(n+m) = d + 1
2d .

(D15)

We can ensure that the error of the approximation γ̃ is
within tolerance ε by setting

d + 1
2d

≤ ε. (D16)

Though the above could be solved exactly using a
Lambert-W function, it is satisfied with

d = 1 + log(1/ε)+ log[1 + log(1/ε)]. (D17)

Figure 19 justifies this choice by depicting the value of
(d + 1)/2dε as a function of ε with d chosen as per Eq.
(D17). To choose d, we take the ceiling of this expression,
because d must be chosen to be an integer.
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FIG. 19. Numerical justification for our choice of d in Eq.
(D17). We plot the ratio of (d + 1)/2d to the error bound
ε. A value less than 1 ensures that our choice of d yields a
multiplication result whose error is less than ε.

Hence our strategy for multiplying two real numbers
uses

d2 − d − 1 = log2(1/ε)+ 2 log(1/ε) log log(1/ε)

+ O(log(1/ε)) (D18)

Toffoli gates to achieve an output with error less than ε.
The ancilla cost is d − 1 bits for a copy of the bits of κ
for the controlled addition, and another d − 1 bits for the
addition itself. Thus the ancilla cost is

2 log(1/ε)+ O(log log(1/ε)). (D19)

6. Squaring a real number

We are given a quantum register A with a real number κ
that satisfies 0 ≤ κ < 1. Our task is to calculate an approx-
imation γ̃ of γ := κ2 such that |γ − γ̃ | < ε, where ε is
given (0 < ε < 1). That is to say, we are to prepare a new
quantum register out as follows:

|κ〉A |0〉out �→ |κ〉A |γ̃ 〉out . (D20)

We include d bits in the sum, so the sum can be expressed
as

γ̃ =
∞∑

n,m=1
n+m≤d

κnκm2−(n+m). (D21)

We take advantage of symmetry to rewrite the sum as

γ̃ = 2
∞∑

n,m=1
n+m≤d,n>m

κnκm2−(n+m) +
�d/2�∑
n=1

κn2−2n

= 2
d−1∑
n=1

κn

min(n−1,d−n)∑
m=1

κm2−(n+m) +
�d/2�∑
n=1

κn2−2n. (D22)

The first term in this sum contains the parts where n > m,
and is multiplied by 2 because those parts with n < m are
equal by symmetry. The second term is that for n = m.
This sum is more efficient, because only about half as
many terms appear. Now the term in the second sum for
n = �d/2� is half the size of any of the other terms, so it is
convenient to omit it.

The form of the sum can be shown, for the odd example
d = 15,

γ̃ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

κ1 × .0 κ1 0 0 0 0 0 0 0 0 0 0 0 0
+ κ2 × .0 κ1 0 κ2 0 0 0 0 0 0 0 0 0 0
+ κ3 × .0 0 κ1 κ2 0 κ3 0 0 0 0 0 0 0 0
+ κ4 × .0 0 0 κ1 κ2 κ3 0 κ4 0 0 0 0 0 0
+ κ5 × .0 0 0 0 κ1 κ2 κ3 κ4 0 κ5 0 0 0 0
+ κ6 × .0 0 0 0 0 κ1 κ2 κ3 κ4 κ5 0 κ6 0 0
+ κ7 × .0 0 0 0 0 0 κ1 κ2 κ3 κ4 κ5 κ6 0 κ7
+ κ8 × .0 0 0 0 0 0 0 κ1 κ2 κ3 κ4 κ5 κ6 κ7
+ κ9 × .0 0 0 0 0 0 0 0 κ1 κ2 κ3 κ4 κ5 κ6
+ κ10 × .0 0 0 0 0 0 0 0 0 κ1 κ2 κ3 κ4 κ5
+ κ11 × .0 0 0 0 0 0 0 0 0 0 κ1 κ2 κ3 κ4
+ κ12 × .0 0 0 0 0 0 0 0 0 0 0 κ1 κ2 κ3
+ κ13 × .0 0 0 0 0 0 0 0 0 0 0 0 κ1 κ2
+ κ14 × .0 0 0 0 0 0 0 0 0 0 0 0 0 κ1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (D23)
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Here we show terms from the second sum from Eq.
(D22) in blue. In the case where d is odd, �d/2� = (d −
1)/2, and we can write the sum as

γ̃ =
(d−1)/2∑

n=1

κn

[
2−2n + 2

n−1∑
m=1

κnκm2−(n+m)

]

+ 2
d−1∑

n=(d+1)/2

κn

d−n∑
m=1

κm2−(n+m). (D24)

The first sum in Eq. (D24) corresponds to the part above
the horizontal line in Eq. (D23), and the second sum in Eq.
(D24) corresponds to the part below the line. To compute
Eq. (D24), we start at the least significant digit, and move
to the most significant digit [corresponding to moving from
the bottom row to the top row in Eq. (D29)], as

γ̃ =
(d+1)/2∑
n=d−1

κn

d−n∑
m=1

κm2−(n+m−1) +
1∑

n=(d−1)/2

κn

[
2−2n +

n−1∑
m=1

κnκm2−(n+m−1)

]
. (D25)

To compute the sum we start with n = d − 1, and copy
the value κd−1κ1 into the output at position d − 1 [to initial-
ize the output as κd−1κ12−(d−1)] with Toffoli cost 1. Next,
we use κd−2 to control addition of κ12−(d−2) + κ22−(d−1)

into the output. This controlled addition has cost 2 × 2
because it is for 2 bits. At step j = d − n ≤ (d − 1)/2, the
cost of controlled addition of j bits is 2j . The cost of that
part is therefore

1 +
(d−1)/2∑

j =2

2j = (d2 − 5)/4. (D26)

For the remaining steps with n = (d − 1)/2 to 2, we have
a cost of n − 1 to produce the n − 1 values of κnκm, and
there are n + 1 bits that need to be added into the output.
That includes the bit for κn2−2n, which is spaced by one
bit from the remaining bits for κnκm. That gives cost (n −
1)+ (n + 1) = 2n. For n = 1, we just have a cost of one

Toffoli to add in the single bit (without a control, because
it is just κn). That gives the same cost as the first half, for a
total cost of

d2/2 − 5/2. (D27)

In the case where d is even, �d/2� = d/2, and we can
write the sum as

γ̃ =
d/2−1∑
n=1

κn

[
2−2n + 2

n−1∑
m=1

κnκm2−(n+m)

]

+ 2κd/2

d/2−1∑
m=1

κm2−(d/2+m) + 2
d∑

n=d/2+1

κn

d+1−n∑
m=1

κm2−(n+m).

(D28)

The form of the sum for an even example d = 16 is

γ̃ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

κ1 × .0 κ1 0 0 0 0 0 0 0 0 0 0 0 0 0
+ κ2 × .0 κ1 0 κ2 0 0 0 0 0 0 0 0 0 0 0
+ κ3 × .0 0 κ1 κ2 0 κ3 0 0 0 0 0 0 0 0 0
+ κ4 × .0 0 0 κ1 κ2 κ3 0 κ4 0 0 0 0 0 0 0
+ κ5 × .0 0 0 0 κ1 κ2 κ3 κ4 0 κ5 0 0 0 0 0
+ κ6 × .0 0 0 0 0 κ1 κ2 κ3 κ4 κ5 0 κ6 0 0 0
+ κ7 × .0 0 0 0 0 0 κ1 κ2 κ3 κ4 κ5 κ6 0 κ7 0
+ κ8 × .0 0 0 0 0 0 0 κ1 κ2 κ3 κ4 κ5 κ6 κ7 0
+ κ9 × .0 0 0 0 0 0 0 0 κ1 κ2 κ3 κ4 κ5 κ6 κ7
+ κ10 × .0 0 0 0 0 0 0 0 0 κ1 κ2 κ3 κ4 κ5 κ6
+ κ11 × .0 0 0 0 0 0 0 0 0 0 κ1 κ2 κ3 κ4 κ5
+ κ12 × .0 0 0 0 0 0 0 0 0 0 0 κ1 κ2 κ3 κ4
+ κ13 × .0 0 0 0 0 0 0 0 0 0 0 0 κ1 κ2 κ3
+ κ14 × .0 0 0 0 0 0 0 0 0 0 0 0 0 κ1 κ2
+ κ15 × .0 0 0 0 0 0 0 0 0 0 0 0 0 0 κ1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (D29)
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Again we have shown terms from the second sum from
Eq. (D22) in blue. The first sum in Eq. (D28) corresponds
to the part above the first horizontal line in Eq. (D29), the
second sum in Eq. (D28) corresponds to the part between
the two lines in Eq. (D29), and the third sum in Eq. (D28)
corresponds to the part below the second horizontal line
in Eq. (D29). To compute Eq. (D28), we again start at
the least significant digit, and move to the most significant
digit, as

γ̃ =
d/2+1∑
n=d

κn

d+1−n∑
m=1

κm2−(n+m−1) + κd/2

d/2−1∑
m=1

κm2−(d/2+m−1)

+
1∑

n=d/2−1

κn

[
2−2n +

n−1∑
m=1

κnκm2−(n+m−1)

]
. (D30)

For the costing of the additions, we have the same costing
for the first sum in Eq. (D30) as in the odd case, giving cost

1 +
d/2−1∑

j =2

2j = (d2 − 2d − 4)/4. (D31)

The middle sum in Eq. (D30) has cost d − 2, then the final
sum has cost 2n for n = 2 to d/2 − 1, and cost 1 for n = 1,
giving the same cost as the first sum. That gives a total
complexity

d2/2 − 4. (D32)

Thus in both the odd and even cases the complexity is less
than d2/2.

To estimate the error, we have

γ − γ̃ = 2
∞∑

n,m=1
n+m>d,n>m

κnκm2−(n+m) +
∞∑

n=�d/2�
κn2−2n

≤ 2
∞∑

n,m=1
n+m>d,n>m

2−(n+m) +
∞∑

n=�d/2�
2−2n

=
∞∑

�=d+1

�(�− 1)/2�2−� + 4
3

2−2�d/2�. (D33)

In the case of even d we get

1
2

d2−d + 1
3

2−d + 4
3

2−d = 1
2

d2−d + 5
3

2−d, (D34)

and in the case of odd d we get

1
2

d2−d + 1
6

2−d + 8
3

2−d = 1
2

d2−d + 17
6

2−d. (D35)

We find that we can limit the error to ε using

d = log(1/ε)+ log[11/3 + log(1/ε)]�. (D36)

The Toffoli cost of squaring is then (regardless of whether
d is odd or even)

d2/2 = 1
2

log2(1/ε)+ log(1/ε) log log(1/ε)

+ O(log(1/ε)). (D37)

The ancilla cost in the case where d is even has a
maximum of d − 2. When n = d/2 [corresponding to the
part between the two horizontal lines in Eq. (D29)], there
are d/2 − 1 bits to add in a controlled way, so there are
d/2 − 1 bits for the copy and another d/2 − 1 bits for the
addition itself. When n = d/2 − 1, there are d/2 − 2 bits
to add in a controlled way, and a range of d/2 bits to add
in which give an ancilla cost of d/2. In both these cases,
the ancilla cost is d − 2. When d is odd, the ancilla cost is
d − 1. When n = d/2� [the part just below the horizon-
tal line in Eq. (D23)], there are d/2� − 1 bits to add in a
controlled way, which takes 2(d/2� − 1) = d − 1 ancil-
las for d odd. When n = d/2� − 1, there are d/2� − 2
bits to add in a controlled way, and a range of d/2� bits to
add, for a total ancilla cost of d − 1. Hence the ancilla cost
of squaring is only half that for multiplication, and is

log(1/ε)+ O(log log(1/ε)). (D38)

APPENDIX E: OTHER APPROACHES TO
HAMILTONIAN EVOLUTION-BASED

OPTIMIZATION

Here we outline two other approaches in the literature to
optimization based on Hamiltonian evolution. We consider
“shortest-path” optimization in Appendix 1 and we con-
sider quantum-enhanced population transfer in Appendix
2. In both cases, we review the techniques and explain how
the algorithmic primitives we develop in this paper could
be applied in each approach.

1. Heuristic variant of the shortest-path algorithm

Hastings’ “shortest-path algorithm” [9] (SPA) is an
interesting approach to quantum optimization that is also
based on time evolution under a cost function with
some noncommuting driver Hamiltonian. Perhaps the most
intriguing property of the SPA is that Hastings was able to
rigorously show that the SPA gives a super-Grover (i.e.,
better than quadratic) speedup for certain classical opti-
mization problems—e.g., for an arbitrary instance of the
problem MAX-2-LIN2 (which is a problem very closely
related to QUBO) [78]. The results of Refs. [9] and [78]
also rigorously (and in some cases, empirically) show sim-
ilar speedups under a variety of assumptions about related
problems.
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The SPA essentially involves applying amplitude ampli-
fication to a variant of the adiabatic algorithm, which uses
the time-dependent Hamiltonian

H(s) = C + sB

(∑
p Xp

N

)K

, (E1)

where C is the diagonal cost function of interest. Here,
K is a positive integer and B is a scalar, and in order to
rigorously show super-Grover speedups, both are chosen
carefully based on properties of C. In Algorithm 1 of Ref.
[9], the system is initialized in |+〉⊗N with s = 1 and then
the transverse field is adiabatically turned off. Then, one
computes the energy C in a quantum register, and the idea
is to apply amplitude amplification using this state prepara-
tion in order to amplify outcomes for which the computed
energy is below some target threshold. In order to sim-
plify analysis of the algorithm Hastings proposes to use a
measurement-based scheme similar to the Zeno approach
described in Sec. III 3. For the cases considered in Ref.
[9] this combination reduces to the following very simple
algorithm (Algorithm 3 of Ref. [9]) on which amplitude
amplification is applied:

1. Initialize the system in the state |ψ〉 = |+〉⊗N .
2. Perform phase estimation on |ψ〉 under the Hamil-

tonian H(1) defined in Eq. (E1). If the energy
is greater than a threshold Ethreshold, terminate the
algorithm and return failure to the amplitude ampli-
fication flag.

3. If the previous step has succeeded, use a direct-
energy oracle to measure the energy of the state
into a quantum register. If the energy is equal to E0,
return success to the amplitude amplification flag
(else return failure).

The algorithm is to use amplitude amplification to boost
the flag bit to near unit success. The work of Ref. [9]
points out that the algorithm could work either by using a
quantum walk such as qubitization, or with time evolution.

We note that it is possible to simplify the implementa-
tion of this algorithm with a technique that also marginally
improves performance (by increasing the success probabil-
ity by an exponentially small factor). Our modification is to
suggest that one proceed to step 3 regardless of whether or
not step 2 succeeds. In doing this, we see that because the
result of the phase-estimation measurement is never used,
we do not actually need the ancilla or controls involved in
phase estimation. Instead, we can follow similar logic to
Ref. [21] to see that the procedure becomes equivalent to
performing time evolution (or applying a quantum walk)
for randomly chosen duration. We can choose the prob-
ability distribution to suppress phase-measurement errors
as large as the energy gap, as described in Sec. III 3.

To explain the effect of this approach in a different way,
consider writing the initial state as

|ψ〉 =
∑

j

〈ψj ,1|ψ〉 |ψj ,1〉 , (E2)

where |ψj ,1〉 are the eigenstates of H(1). Then the evolu-
tion for time t gives

|ψ〉 =
∑

j

〈ψj ,1|ψ〉e−iEj ,1t |ψj ,1〉 . (E3)

The squared overlap with the desired solution state |ψ0,0〉
is

psucc(t) =
∑
j ,k

〈ψj ,1|ψ〉〈ψ |ψk,1〉e−i(Ej ,1−Ek,1)t

× 〈ψ0,0|ψj ,1〉〈ψk,1|ψ0,0〉. (E4)

This expression corresponds to the probability of measur-
ing the solution state after the evolution. If we average over
t with probability ptime(t), then we have

psucc =
∑
j ,k

〈ψj ,1|ψ〉〈ψ |ψk,1〉p̃time(Ej ,1 − Ek,1)

× 〈ψ0,0|ψj ,1〉〈ψk,1|ψ0,0〉, (E5)

where

p̃time(Ej ,1 − Ek,1) =
∫

dtptime(t)e−i(Ej ,1−Ek,1)t. (E6)

Thus p̃time corresponds to a Fourier transform of ptime. If
ptime is chosen such that its Fourier transform goes to zero
before the minimum energy gap, then p̃time(Ej ,1 − Ek,1) is
nonzero only for j = k. That is equivalent to having a mea-
surement of phase with zero probability of error as large as
the energy gap. Then the average probability is

psucc =
∑

j

|〈ψj ,1|ψ〉|2|〈ψ0,0|ψj ,1〉|2

≥ |〈ψ0,1|ψ〉|2|〈ψ0,0|ψ0,1〉|2. (E7)

Thus the average probability of success is at least as
large as |〈ψ0,1|ψ〉|2|〈ψ0,0|ψ0,1〉|2 as given by Hastings’
approach. A minor drawback as compared to Hastings’
approach is that only a single time is used, so if it hap-
pens that this time gives psucc(t) significantly smaller than
average the amplitude amplification does not give the
solution.

The original motivation for the SPA seems to be pri-
marily to produce an algorithm where a rigorous analysis
can be performed, and so it is debatable whether one actu-
ally wants to try to use the algorithm heuristically rather
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than via some other approach. If one did want to use this
approach heuristically there are many ways that could be
accomplished; for instance, by choosing Etarget, B, and K
heuristically and then resolving to use a fixed number of
rounds of amplitude amplification. Note that in the variant
we describe it as no longer necessary to have an Ethreshold,
although one still needs to choose the precision to which
one performs phase estimation. One can see that such a
heuristic variant of this algorithm could be implemented by
using either our Hamiltonian walk or Trotter step oracles
for the evolution, followed by our direct-energy oracles for
computing the amplitude amplification target.

2. Quantum-enhanced population transfer

Another heuristic algorithm for optimization, which
has been proposed is the quantum-enhanced population
transfer (QEPT) method of Ref. [10,11]. Unlike quan-
tum heuristics, which begin in a uniform superposition
state, QEPT proposes to use quantum dynamics to evolve
from one low-energy solution of an optimization prob-
lem to other low energy solutions of similar energy. The
idea is motivated by the search of configuration space
in the classically nonergodic phase associated with hard
optimization problems. Such energy landscapes contain an
extensive number of local minima separated by large Ham-
ming distances. Algorithms relying on classical dynamics
satisfying the detailed balance condition, such as simulated
annealing, tend to get trapped at local minima of these
landscapes. Thus, one could alternatively apply classical
simulated annealing until the algorithm becomes trapped,
then apply QEPT starting from that state, then again apply
simulated annealing starting from the QEPT solutions, and
so on.

Specifically, the context studied in Ref. [10,11] is as fol-
lows. Consider a cost function C on N qubits and bit string
x with energy Ex (so that C |x〉 = Ex |x〉). The problem
solved by QEPT is to produce another bit string y within a
small energy window Ey ∈ [Ex − δ/2, Ey + δ/2] such that
the Hamming distance dx,y between x and y is O(N ). In
the presence of a spin-glass-type energy landscape finding
such states y using a classical algorithm takes exponential
resources. The QEPT procedure suggests solving the above
computational task as follows.

1. Prepare the system in the initial state |x〉.
2. Turn on a transverse field Hamiltonian

∑N
k=1 Xi

up to some optimal field strength B⊥ = O(‖C‖/N )
with ramp up time polynomial in N .

3. Evolve for time T under the fixed Hamiltonian

H = C + B⊥
N∑

k=1

Xk. (E8)

4. Measure in the computational basis and check the
classical energy of the observed state.

In general, we expect that T scales exponentially in order
for the procedure to succeed with fixed probability. How-
ever, for the worst-case scenario when there are M states
with energy −1 and 2N − M states of energy 0, the work
of Ref. [11] was able to show that this procedure suc-
ceeds with high probability for T = O(

√
2N/M ), which is

the same as the Grover scaling. However, unlike Grover,
this protocol does not require any fine tuning of the trans-
verse field or computation time. The procedure has also
been shown empirically to produce similar results for the
random energy model (where each bit string has a totally
random energy).

The suggestion to use this algorithm heuristically is
simply to choose T, as well as the accuracy with which
we implement the time evolution, heuristically. Like with
the adiabatic algorithm, this essentially corresponds to the
number of steps that we take in either a product formula,
or quantum walk approach to simulating the evolution. We
propose that when using the quantum walk form of the
algorithm, one does not use signal processing and instead
perform population transfer directly on the quantum walk.
We note that since the norm of the problem and driver
Hamiltonians are similar in magnitude, there is no advan-
tage to performing simulation in the interaction picture and
so an approach based on qubitization is likely the best LCU
style algorithm for QEPT.
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