Resolving Code Review Comments with Machine Learning

Alexander Frommgen, Jacob Austin, Peter Choy, Nimesh Ghelani, Lera Kharatyan, Gabriela Surita,
Elena Khrapko, Pascal Lamblin, Pierre-Antoine Manzagol, Marcus Revaj, Maxim Tabachnyk,

Daniel Tarlow, Kevin Villela, Daniel Zheng, Satish Chandra, Petros Maniatis
Google

ABSTRACT

Code reviews are a critical part of the software development pro-
cess, taking a significant amount of the code authors’ and the code
reviewers’ time. As part of this process, the reviewer inspects the
proposed code and asks the author for code changes through com-
ments written in natural language. At Google, we see millions of
reviewer comments per year, and authors require an average of
~60 minutes active shepherding time between sending changes for
review and finally submitting the change. In our measurements,
the required active work time that the code author must devote to
address reviewer comments grows almost linearly with the number
of comments. However, with machine learning (ML), we have an
opportunity to automate and streamline the code-review process,
e.g., by proposing code changes based on a comment’s text.

We describe our application of recent advances in large sequence
models in a real-world setting to automatically resolve code-review
comments in the day-to-day development workflow at Google. We
present the evolution of this feature from an asynchronous gener-
ation of suggested edits after the reviewer sends feedback, to an
interactive experience that suggests code edits to the reviewer at
review time. In deployment, code-change authors at Google address
7.5% of all reviewer comments by applying an ML-suggested edit.
The impact of this will be to reduce the time spent on code reviews
by hundreds of thousands of engineer hours annually at Google
scale. Unsolicited, very positive feedback highlights that the impact
of ML-suggested code edits increases Googlers’ productivity and
allows them to focus on more creative and complex tasks.

ACM Reference Format:

Alexander Frommgen, Jacob Austin, Peter Choy, Nimesh Ghelani, Lera
Kharatyan, Gabriela Surita, Elena Khrapko, Pascal Lamblin, Pierre-Antoine
Manzagol, Marcus Revaj, Maxim Tabachnyk, Daniel Tarlow, Kevin Villela,
Daniel Zheng, Satish Chandra, Petros Maniatis. 2024. Resolving Code Review
Comments with Machine Learning. In 46th International Conference on
Software Engineering: Software Engineering in Practice (ICSE-SEIP "24), April
14-20, 2024, Lisbon, Portugal. ACM, New York, NY, USA, 12 pages. https:
//doi.org/lO.l145/3639477.3639746

1 INTRODUCTION

Google developers spend a substantial amount of time “shepherd-
ing” code changes through the code-review process: addressing
simple review comments such as typo fixes and documentation

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

ICSE-SEIP °24, April 14-20, 2024, Lisbon, Portugal

© 2024 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-0501-4/24/04.

https://doi.org/10.1145/3639477.3639746

expansion, asking for small refactoring to make the code more
readable or efficient, or engaging in a dialog with the reviewer to
resolve more involved and ambiguous feedback. Code review is
primarily intended as a tool for high code quality, but it is also
commonly used as an educational tool, as well as a knowledge-
spreading tool [16, 19]. As such, it is highly regarded in the Google
software-engineering culture as a valuable process to support, with
both time and effort.

However, even in cases where only a single reviewing iteration
is needed, there is a cost involved: the code author must understand
the reviewer’s recommendation, look up needed information such
as APIs and local code conventions, and type out the edit; any inter-
ruption or “context switching” to another task dilutes the relevant
context, and might require the code author to “page it all back in
again” to complete the resolution of code comments in the future.
It is therefore important to improve the ability of reviewers to give
more actionable, precise suggestions, and to improve the ability of
code authors to address such suggestions effectively. Addressing
this need translates directly into increased productivity. Machine
learning poses an emergent opportunity in this endeavor.

Much research effort has been expended recently on building
machine learning models that “solve” software-engineering tasks,
including code review (e.g., CodeReviewer [10]). Typically such
results are predicated on the fast and impressive improvement
of ML models of code [2, 4, 9, 18, 24], but are usually anchored
on “lab” results: measurements of success metrics over evaluation
benchmarks, with limited exposure to production use.

This paper describes our efforts bringing such research results
to bear on an actual, rigorous, real-world code-review setting. We
built an ML-based assistant that resolves code-review comments left
by human reviewers. The specific assistance involves suggesting a
code edit that addresses the reviewer’s comment. We built, tuned,
and deployed that assistant, and it has been in production use at
Google for several months.

In this work, we side-step the question of the “best” ML archi-
tecture or foundation model, and turn instead to the problem of
building an actual tool, used by thousands of Google engineers ev-
ery day, and realizing its promise of strong impact on productivity.

Our contributions include:

e The careful curation of a training dataset drawn from tens
of millions of code reviews that, joined with other software-
engineering data collected at Google, led to an internal machine-
learning model specializing in resolving code-review com-
ments (§3).

o Lessons learned about tuning this model, associated datasets,
and the resulting assistant design to improve prediction qual-

ity (§4).

Alexander Frommgen, Jacob Austin, Peter Choy, Nimesh Ghelani, Lera Kharatyan, Gabriela Surita, Elena Khrapko, Pascal Lamblin, Pierre-Antoine Manzagol, Marcus Revaj,

ICSE-SEIP *24, April 14-20, 2024, Lisbon, Portugal

e Lessons learned about the user-interface experience of the
assistant that best supports our developers’ productivity (§5).

e Qualitative and quantitative results about the positive impact
of our deployed assistant (§6) in a real production environ-
ment, strongly demonstrating the feasibility and utility of
the effort.

After several months of deployment, our code-review comment-
resolution assistant is addressing roughly 7.5% of comments pro-
duced by code reviewers in their day-to-day work. Although we
can share only some of the methodological details of our system,
we hope that our experiences described here can inform other
practitioners seeking to deploy ML assistance to real software-
engineering practice.

The rest of the paper is organized as follows. §2 overviews the
software-engineering landscape at Google where our assistant oper-
ates. §3 describes the design and implementation for the comment-
resolution assistant. §4 presents our efforts toward higher model
quality, and is followed by our efforts towards better usability in §5.
§6 shares results from our initial deployment, and §7 outlines some
recent related work at the intersection of code-review assistance
with machine learning.

2 BACKGROUND: THE GOOGLE
CODE-REVIEW WORKFLOW

We begin with a brief review of Google’s software development
process, especially with respect to code editing and code review,
which are particularly relevant to this work.

Google stores its code in Piper [14], a monolithic source-code
repository (also known as a monorepo). Code is updated via change-
lists (CLs) using Critique, Google’s code-review system [25, Chap-
ter 19]. A changelist is a transactional update of one or more
files (including potential additions of new files or deletions of pre-
existing files), corresponding to a particular purpose (described in
the changelist description). A changelist is committed only after a
review conducted by at least one peer, producing a new revision for
each file included.

Code reviews involve design and functional vetting (i.e., does
this changelist move the codebase towards the goals stated in some
design document?), engineering checks (e.g., are the tests covering
enough desirable and undesirable behaviors?), as well as a stylistic
code-quality sign-off from a process called readability review [25,
Chapter 3], whose purpose is to propagate best practices, share
tips, and adhere to a consistent style guide [25, Chapter 8]. A conse-
quence of this broad use of code review is that review comments can
be as simple as “typo!” or as involved as a detailed question about
the introduced change that requires complex program analysis to
answer (e.g., “does this field ever become null?”).

The developer addresses review comments by responding to
them (e.g., to request clarification, or to argue that the comment
is inapplicable), by editing the code to implement an explicit, un-
contested suggestion (e.g., fixing the typo, and responding to the
comment with “Done””) or even to implement an implied suggestion
(e.g., responding to “does this field ever become null?” by checking
if indeed this is possible, and if so, updating the code to check for
that condition, which was the implied suggestion). After address-
ing comments in one review round, the code author creates a new

Maxim Tabachnyk, Daniel Tarlow, Kevin Villela, Daniel Zheng, Satish Chandra, Petros Maniatis

O-/vﬁ/v11_0/src/objects/contexts.cc [} .

Snapshot #8 - 11:52 AM \@\ QO Mark reviewed

GO @GO GOL

Snap

Show entire file Snapshot #10 -

Add file comment Add file comment

+205 common lines +10 +Block

206 206 bool has_seen_debug_evaluate_context = false;
207 207 *index = kNotFound;

208 208 *attributes = ABSENT;

209 209 *init_flag = kCreatedInitialized;

210 210 *variable_mode = VariableMode::kVar;

211 *is_sloppy_function_name = false;
revwewer; check if is_sloppy_function_name is nullptr before N
11:52 AM assigning it
Done. A
11:55 AM
Resolved Reply Reply with quote . ()
211 if (is_sloppy_function_name != nullptr) {
212 *is_sloppy_function_name = false;
213}
212 214

213 215 if (v8_flags.trace_contexts) {
214 216 PrintF("Context: :Lookup(");
215 217 name->ShortPrint();

Figure 1: An example of a review comment in Critique. The
reviewer asked for a defensive coding practice. The author
addressed the comment by updating their changelist with a
new review snapshot. The update is shown via colors: green
for added text and red for removed. The author responded
to the comment with “Done.” and marked it “Resolved”.

review snapshot and requests another look from the reviewer. See
Figure 1 for an example.

If the reviewer is satisfied, marking all their prior comments as
resolved, they declare the code review complete by responding with
“LGTM” (i.e., “looks good to me”); if some old comments remain
unresolved, or new comments pop up, the process continues, poten-
tially in multiple rounds. Some changelists may be abandoned after
zero or more review rounds, because the review process revealed
the change was not advisable, or because they are replaced by other,
perhaps smaller, changelists.

Editing is performed in copy-on-write workspaces in a system
called Clients-in-the-Cloud (or CitC for short) [14]. During work in
progress, changes to files from Piper are represented as successive
file snapshots, which may be bundled as a changelist, reviewed,
and possibly approved for inclusion to the Piper repository. CitC
records all updates to files, even those that do not result in a change-
list’s review snapshots: every file save, including automatic editor
saves—typically done every 30 seconds—produces a new CitC snap-
shot. Therefore, CitC snapshots provide a finer granularity of file
evolution than review snapshots or Piper revisions.

This workflow is similar to other source-control systems. For
example, a changelist is akin to a GitHub pull request (PR), and
review snapshots are reminiscent of git commits on a pull request.

3 LEARNING TO RESOLVE CODE-REVIEW
COMMENTS

We now turn to our efforts using ML to produce a code-review
assistant. §3.1 describes the vision guiding our path, §3.2 explains

Resolving Code Review Comments with Machine Learning

the ML architecture and training process for this assistant, and §3.3
describes how the assistant is deployed.

3.1 The Vision of ML-Assisted Comment
Resolution

Given the existing code-review workflow (§2), we set out to build an
ML-based software-engineering assistant that improves changelist
velocity. Among the many opportunities for ML assistance, we focus
on automated resolution of code-review comments. Specifically, we
target an assistant that suggests an edit to resolve a given comment.

211 *is_sloppy_function name = false;

reviewer check if is_sloppy_function_name is nullptr before assigning it ~
416 PM
= 4. Show ML-edit [EEETIVANEITY Ack . [}

Figure 2: Critique notifies the author that there is an ML-
suggested edit available.

Figure 2 shows an example, drawn from the same scenario as
with Figure 1. The assistant suggests an edit to address the re-
viewer’s comment and notifies the author. If the author decides to
preview the suggested edit, they can click on “Show ML-edit”, see
the edit as a diff, and possibly apply that edit (Figure 3).

ML-Suggested Edit @ ‘“check if is_sloppy_function_name is nullptr before assigning it

+205 common lines +10 +Block

206 206 bool has_seen_debug_evaluate_context = false;
207 207 *index = kNotFound;

208 208 *attributes = ABSENT;

209 209 *init_flag = kCreatedInitialized;

210 210 *variable_mode = VariableMode::kVar;

211 #is_sloppy_function name = false;
211 if (is_sloppy function name != mullptr) {
212 *is_sloppy function name = false;

213}
212 214
213 215 if (vB_flags.trace_contexts) {
214 216 PrintF ("Context: :Lookup(");
215 217 name->ShortPrint();
216 | 218 PrintF(")\n");

+426 common lines +10 +Block

Was this helpful? 5 5

Close .Prewew

Figure 3: Critique shows the author an ML-suggested edit,
which can then optionally be approved and instantly ap-
plied directly to the changelist.

In addition to choosing to apply an ML edit or to ignore it, the
author also has the option to give specific feedback on the predic-
tion with the thumbs-up/thumbs-down buttons. Applying an edit
and clicking thumbs up for it are not equivalent; in some cases, a
suggested edit may inspire a fix, but not be directly applied (but
the author may click the thumbs-up button for it). Similarly, the
thumbs-down button might indicate a more intentional negative
feedback on the suggested edit, compared to clicking nothing at all
(which might be a result of losing focus, switching to another task,
and otherwise forgetting to click “Apply”).

3.2 Modeling

We cast the problem of code-review comment resolution as a text-
to-text machine-learning task. We target a text-to-text formulation,

ICSE-SEIP *24, April 14-20, 2024, Lisbon, Portugal

Input Representation:

// [*] Task: Please fix the code-review comments.

bool has_seen_debug_evaluate_context = false;

*index = kNotFound;

*attributes = ABSENT;

*init_flag = kCreatedInitialized;

*variable_mode = VariableMode: :kVar;

// [*] check if is_sloppy_function_name is nullptr before assigning it
*is_sloppy_function_name = false;

*

if (v8_flags.trace_contexts) {
PrintF ("Context: :Lookup(");
name->ShortPrint();

Example Edit Representation:

bool has_seen_debug_evaluate_context = false;

*index = kNotFound;

*attributes = ABSENT;

*init_flag = kCreatedInitialized;

*variable_mode = VariableMode: :kVar;

*is_sloppy_function_name = false;

if (is_sloppy_function_name != nullptr) {
*is_sloppy_function_name = false;

}

+ o+

if (v8_flags.trace_contexts) {
PrintF("Context: :Lookup(");
name->ShortPrint();

Figure 4: Example representation of the review comment
from Figure 1. At the top, the input representation of the
review snapshot and the comment inlined. At the bottom,
the target edit for this particular comment resolution.

using a traditional Transformer [23] architecture based on T5 [15]
(using the T5X [17] framework).

More specifically, the input to this ML model is the review snap-
shot at which the reviewer attached one or more comments. We
“inline” each comment, by disguising it as a line comment in code,
following the conventions of the programming language in which
the example is written (e.g., using // for C++ or # for Python).
We insert this artificial line comment at the first line where the
reviewer attached their review comment. We do not consider com-
ments attached to an entire file (without specifying a location), or
an entire changelist (without specifying a file). The predictive target
of this model is the edit that addresses the comment; we use an
edit representation akin to diff patches. Figure 4 shows a training
example drawn from Figure 1.

This representation can be applied to tasks other than review
comment resolution, for example, addressing a compiler error,
where instead of annotating the input with a comment text dis-
guised as a line comment, we can annotate it with a compiler error
(also disguised as a line comment). Similarly, the “inlining” of anno-
tations as line comments can be used to predict such annotations
in different tasks, e.g., predicting a likely static-analysis error by
predicting the diff that would have inserted the annotation as a
line comment. To differentiate among such tasks, we use a special
code comment describing the task in natural language at the top of
the example. In the figure, the task prompt is “Please fix the code-
review comments.” Finally, to fit a represented example within the
model context window, we prune lines of the input, preferring to
prune lines that are the farthest away from any inlined annotation.

In this fashion, we build a multi-task model for review comment
resolution and other associated software-engineering tasks, using
the DIDACT framework [12]. The tasks used to train this model,

Alexander Frommgen, Jacob Austin, Peter Choy, Nimesh Ghelani, Lera Kharatyan, Gabriela Surita, Elena Khrapko, Pascal Lamblin, Pierre-Antoine Manzagol, Marcus Revaj,

ICSE-SEIP *24, April 14-20, 2024, Lisbon, Portugal

in addition to code-review comment resolution, include edit pre-
diction (file snapshot to subsequent file snapshot in CitC), variable
renaming, code-review comment prediction (predict the comment
location and content from the review snapshot), build-error repair,
etc., as well as the standard pre-training task for T5, span denoising
(i.e., mask out a sequence of tokens and have the model predict
them from context). The training corpus consists of over 3 billion
examples, of which code review contributes about 60 million exam-
ples. We used a more “liberal” set of code-review examples during
pre-training, including automated comments, and whole-file or
whole-changelist comments. The samples used for fine-tuning and
offline evaluation were solely human-generated line comments.

The model was trained using the standard cross-entropy loss,
typical for such models, and tuned to maximize the exact sequence-
match metric, that is, predicting the exact target for each example.

When used for inference, the model is tuned to attain a given
desirable precision (i.e., number of correct predictions divided by all
predictions). Specifically, every prediction of edits by the model is
accompanied by a probability of that prediction; higher probability
indicates higher confidence by the model in its prediction. To tune
the model, we evaluate its predictions over a held-out validation
dataset (say a few months of held-out code reviews not used during
training). We choose a probability threshold such that the predic-
tions with probability above that threshold achieve some desirable
precision, e.g., 70%. The more aggressive this threshold is (i.e., the
higher the target predictive precision), the fewer predictions are
above threshold and, subsequently, the fewer predictions are shown
to users. For some target precision X, we measure the recall@X of
the model, by counting the number of correct predictions divided
by all examples.

3.3 From ML Model to a Comment-Resolution
Assistant

We focused on the overall user experience and developer efficiency
in prototyping and deploying an assistant based on the model [5].
We explored different user-experience alternatives through a series
of user studies and refined the feature assistant on insights from
an internal beta (see §4 and §5). At a high level, we:

(1) Listen for incoming code-review comments produced by
reviewers.

(2) Ignore comments produced by automated tools, comments
not referring to a specific line, comments on unsupported
file types, informational comments that the reviewer already
marked as “Resolved”, and comments that already have a
suggested edit produced manually by the reviewer.

(3) Generate the model input in the same format as used for
training (§3.2).

(4) Query the model and generate the suggested code edit.

(5) If the model is confident in the prediction (initially, targeting
higher than 70% precision) and a few additional heuristics
are satisfied, post the suggested edit to downstream systems.

To generate the code edit, each input is pre-processed into a
textual model input using the source code, review comments, and
other changelist metadata. The model then predicts the necessary
changes to be applied to the input and rebased to the initial source
code, perhaps resolving conflicts. The downstream systems, namely

Maxim Tabachnyk, Daniel Tarlow, Kevin Villela, Daniel Zheng, Satish Chandra, Petros Maniatis

Incoming Comments

Eligible for ML Fixing

Confident ML Predictions

Generated ML Predictions —@ Satisfied heuristics

Discovered Developer previewed fix in Ul

Applied Success!

Figure 5: The journey of a comment to an ML-suggested edit
applied to a code file.

the code-review frontend and the integrated development environ-
ment (IDE), expose the suggested edits to the user and log user
interactions such as preview and apply events. Figure 5 illustrates
the journey of a comment through the system. A dedicated pipeline
collects these logs and generates aggregate insights.

4 THE QUEST FOR HIGHER MODEL QUALITY

The assistant produced in §3 went through a number of improve-
ment iterations, with the goal to improve quality. Quality is mea-
sured in two ways. First, we use offline evaluation, by computing the
recall@X metric described above over a held-out test dataset. Sec-
ond, we use user feedback, by measuring the number of code-review
comments produced during day-to-day business, the number of
predictions the model made, the number of those predictions that
were previewed, and of those how many were applied, or received
thumbs up/thumbs down. All types of such evaluation are meant
to detect an increase in developer productivity, but act as easier-to-
measure proxies of that measure.

Offline evaluation is desirable because it does not inconvenience
users, and can be done rapidly, with high frequency as the assistant
is updated. On the other hand, offline evaluation is representative
of a test dataset, which is drawn from code reviews that did not
benefit from ML assistance, and were performed in an earlier time
period (e.g., when reviewing guidelines may have been different);
offline evaluation seeks to reproduce exactly what was observed.
In contrast, online evaluation represents the current deployment
environment, and involves the human user, collecting an assessment
of the prediction, even if it is different from what a human developer
might have produced. Out of all the user-feedback metrics, the most
important is acceptance rate, the fraction of code-review comments
that were addressed by an applied ML-suggested edit; other user-
feedback metrics are typically used as measurable proxies for other
qualities of the model’s performance.

Refinements of the assistant were conducted first to improve
offline evaluation performance. Then a beta tool was deployed to a
small group of (friendly) users, and the assistant (both the model

Resolving Code Review Comments with Machine Learning

and the tool) was improved to increase both offline evaluation per-
formance and user feedback metrics. Finally, the first milestone
version, V1, was deployed to 50% of the Google population, and
a careful A/B test was conducted to assess the user feedback on
the resulting tool. After careful analysis, an improved milestone
version, V2, followed the first deployment, went through an exten-
sive beta phase, and is now deployed to the full 100% of the Google
population.

We describe some dimensions of model-quality refinements be-
low, and defer user-interface refinements for §5. Figure 6 illustrates
improvements to recall@X metrics.

80 Model Tuning Data Tuning 80.1
70 64.9 66.4
63
60
52
49 =
50 Recall@70 Q
/—% 5
o
. o | &2
40 @ 7] g 5]
c @
= @ <) += b= %
S g =} L < =
5 © - B 8 |2
30 ‘S £) < =} o
25.5 () © b= =3
= “ £ = c
e '8 ©® & |8
20 = (] = =
S o [}
20 () =4 Q
16.6 j=2) £ E :|>:‘
v e £ x o
o[BErs & ~ '
v g @ 3
= N = S
u.a n & Recall@50 &

Figure 6: Illustration of model-quality improvements that
affect recall@X.

Note that this is not meant to be a full ablation study of the
different design decisions made at every evolutionary step, but
merely a narrative of the various considerations in developing
the assistant. A careful A/B study of each design update is, by ne-
cessity, time consuming—e.g., every effect must be isolated from
other confounders, enough data volume is required to draw statis-
tically significant conclusions, etc.—and was incompatible with our
product-driven focus to deliver a useful assistant to our internal
users in all due haste.

4.1 Model Tuning

Fine-tuning. The foundation DIDACT model we trained origi-
nally was targeting several software-engineering tasks. Fine-tuning
that model on comment resolution exclusively (that is, further train-
ing on only comment-resolution examples) improved performance.

Size tuning. We experimented with various model sizes, trading
off computational resources with model performance and latency.
By increasing our model size (number of learnable parameters) by
2%, we improved recall by 25%. Further model-size increases did
not improve offline performance.

ICSE-SEIP *24, April 14-20, 2024, Lisbon, Portugal

Reduce precision. Initial feedback from the V1 beta users of the
assistant indicated that a minimum precision of 70% was too con-
servative. Reducing the minimum precision to 50% increased the
absolute recall value (which is unsurprising), without reducing user
satisfaction (e.g., the rate of suggestions that were accepted, as well
as thumbs-up ratings).

Hyperparameters. We carefully explored the hyperparameters of
the fine-tuned model, further improving recall@50.

Language Tuning. We noticed that minimum-precision thresh-
olds for different languages vary, leading to reduced performance
when using a single threshold for all predictions. We introduced per-
language minimum-precision threshold tuning, and that increased
the aggregate recall@50 metric.

Reviewer Preview. When reviewers were given the ability to ap-
prove or reject suggested edits (§5), we were able to reduce the
target precision further to 40%, which increased recall@40 even
further, while still improving downstream acceptance.

4.2 Data Improvements

Single-comment. Reviewers often provide more than one com-
ment during a review. Consequently training examples may include
multiple comments, all of which are addressed in a single entangled
edit. Initial prototype explorations with users showed that devel-
opers prefer an edit attributable to a single comment, rather than
an undifferentiated set of edits addressing multiple comments at
the same time. We therefore predict a single suggested edit for a
comment, ignoring all other comments in the file. We found that
reducing the training data to examples with a single review com-
ment does not improve model quality. However, we found that
limiting our offline evaluation dataset to single-comment edits rep-
resented our production scenario better, and led to more confident,
higher-precision predictions.

Train on “Done.” Some review comments are accepted and ad-
dressed immediately (and receive a formulaic “Done.” response,
produced with a single button click). Other comments may lead to a
discussion, and in some cases rejection of the reviewer’s suggestion.
We found that by filtering the training examples to comments that
are immediately accepted and have a single “Done.” response, we
improved model recall by more than 20%.

Synthetic tasks. The fine-tuned model sees comment-to-edit ex-
amples drawn from Google’s history of code reviews. We further
augment the dataset with some synthetic tasks that disguise other
code-editing activities as code review, to provide the model with
additional edit opportunities: 1) A code-infilling task, in which a
function, a function body, a part of a function body, or a unit test are
removed, and a code-review comment is introduced in their place
prompting the model to implement the missing code, sometimes
by reusing the pre-existing documentation string as part of that
prompt. 2) A build-repair task, in which a file snapshot on which
the compiler failed to compile, is cast as a code-review comment of
the sort “Please fix the broken build below.” There already is such a
build-repair task in the DIDACT pre-training mixture, and this syn-
thetic task casts the same examples in this alternative prompting
format, and the target edit is the one that fixes the compiler error.

Alexander Frommgen, Jacob Austin, Peter Choy, Nimesh Ghelani, Lera Kharatyan, Gabriela Surita, Elena Khrapko, Pascal Lamblin, Pierre-Antoine Manzagol, Marcus Revaj,

ICSE-SEIP *24, April 14-20, 2024, Lisbon, Portugal

3) A set of comment resolutions in which the developer rewrote the
predicted suggestion, collected from the production system. This is
a form of incidental instruction tuning.

4.3 Prediction Post-Processing

We manually sampled suggested edits and used thumbs-down clicks
from beta users to identify recurring failure patterns. We imple-
mented serving-time heuristic filters to reduce the number of shown
incorrect predictions. With these changes, we traded reduced quan-
tity of shown suggested edits for higher quality of user experience
and an increase in the observed acceptance rate in production.
Specifically:

Filter out: Spread-out Edits. Filtering suggested edits that are
more than 5 lines away from the comment reduces the rate of
thumbs down clicks for previewed edits from 8.5% to 6.7%.

Filter out: Promises to do it Later. The model sometimes resolves
a comment by adding a promise to do it later in a “to do” code
comment! When the assistant suggested such edits, users marked
them with a thumbs down, so we do not surface such predictions
to users.

Filter out: Delete Code In Scope. The model addresses a few com-
ments incorrectly by deleting large blocks of code where the re-
viewer’s comment was attached. Although sometimes such massive
deletions are indeed the intended resolution, we decided to drop all
such delete-only predictions, to protect user trust.

4.4 A Curated Qualitative Evaluation Dataset

A valuable tool in improving assistant quality was a manually-
curated, qualitative evaluation dataset, in addition to the existing,
held-out quantitative validation and test data splits from the train-
ing dataset. Such curation is motivated by the need to track per-
formance in example categories that are not frequent in our other
training and evaluation datasets. We also targeted a small dataset
size (on the order of 100 examples), so that a single person can
inspect the full set of predictions and ground truth side-by-side,
without fatigue, and in enough detail to rate predictions as correct,
incorrect, or “close”.
We curated examples with the following criteria:

o A few simple examples that allow us to detect regressions.

o A few difficult examples, already within the capabilities of
the current model, also used to detect regressions.

o A few examples that require changes spread across multiple
clusters within the file.

o A few examples that are sensitive to the file position where
the review comment is attached.

e A balanced mix of examples that focus on code refactoring
and code generation.

o A few examples that we considered feasible, but that the
model failed to resolve.

o A few examples that we considered feasible, but that led the
model to generate only deletions.

e A few “moonshot” examples that we considered infeasible
for the model, to assess performance headroom and failure
commonalities (e.g., to ensure that the model has low confi-
dence for out-of-distribution comments).

Maxim Tabachnyk, Daniel Tarlow, Kevin Villela, Daniel Zheng, Satish Chandra, Petros Maniatis

We sourced these examples manually 1) from the held out splits
(validation and test) of the training data, 2) from accepted suggested
edits in production, 3) from provided manual rewrites by users, and
4) by explicitly generating examples that fulfill a desired property.
We explored additional sources such as suggested edits that have
been previewed by the user but not applied. We found these very
noisy and not suitable for our goal.

Anecdotally, as the model quality improved, during evaluations
on the curated datasets, we sometimes identified model sugges-
tions that improved upon our previous ground truth! We often kept
multiple correct alternatives, to simplify the job of the human rater.

All in all, the curated dataset served as a qualitative, diverse
regression test for desirable properties of the assistant, as a way
to formalize launch blockers (e.g., delete-only edits) and updated
priorities in the complexity of intended resolutions, and as a way
to capture behaviors that did not have sufficient frequency in our
training/evaluation data splits to appear naturally in our held-out
test split, especially for cases where the distribution changed over
time, altering what “ground truth” was.

By necessity, such a curated dataset has a limited useful lifetime
and must be updated. For example, what is considered a “moonshot”
becomes feasible when model quality improves dramatically.

5 THE QUEST FOR HIGHER USABILITY

Even a high-quality ML model for code-review comment resolu-
tion can be wasted if not presented to users in an effective, usable
manner. We next describe the evolution of our assistant, and the
pitfalls we uncovered that, when mitigated, improved its usability.
As before, acceptance rate (i.e., the fraction of comments resolved
by an accepted ML suggestion) is an important metric of usability,
but a core auxiliary metric is also discoverability: the fraction of
surfaced suggestions that were previewed by system users.

Note that sometimes usability gaps (e.g., low discoverability)
might require modelling improvements (e.g., a different data repre-
sentation), although this was not necessary in the versions of our
assistant described in this article.

127 std::vector<AnnotatedCodeRange> ranges_;

Auto-generated suggested edit o
15:25 (0,220) Suggested edit addressing comment:

‘Up to you, but I think we might benefit from ..."

Actionable | Show fix Was this helpful? 2 Gl

reviewer Up to you, but I think we might benefit from a brief description A
15:25 of this field.
Unresolved Reply Reply with quote Done Ack @

Figure 7: The initial Critique integration for the code author
that shows Auto-generated suggested edits in a distinct anno-
tation attached to the same text range where the reviewer
comment was attached.

Pitfall: decoupled comment and suggested edit. Our first integra-
tion of the ML model in the Critique UI was by running a separate,
asynchronous analyzer that queried the model and produced the
suggested edit as an independent code finding, in a separate anno-
tation (see Figure 7). This resulted in duplication of information,

Resolving Code Review Comments with Machine Learning

wasted precious Ul real-estate, and confused the prevailing visual
language of review comments. Our V1 beta evaluation showed that
only 20% of suggested edits were previewed by developers through
a click on the "Show fix" button. A UI update that combined the
two sources of information, by placing a “Show ML edit” in the
same box where the reviewer comment appears (Figure 2) improved
discoverability considerably (up to about 30% at V1 launch).

O-8/v11_0/src/ubjects/contextsAcc O . O0-GO-O-O0O0G
Snaps

213 212 *is_sloppy_function_name = false;

Check if this is null bef| K

[CJ No action required Attach ML-suggested edit (1) @
+209 common lines +10 +Block

Markdown

210 210 *variable_mode = VariableMode::kVar;

211 211

212 *is_sloppy_function_name = false;
212 if (is_sloppy_function_name) {

213 *is_sloppy_function_name = false;
214}
213 215
214 216 if (v8_flags.trace_contexts) {
+429 common lines +10 +Block
Save draft RG] ||

Figure 8: As the reviewer started typing the comment, the
suggestion was shown. Note that unlike the more descrip-
tive text of Figure 2, the reviewer had not yet had a chance to
specify the details (e.g., “before assigning”) or even designat-
ing the particular variable in question. The location of the
comment and the mention of “check” and “null” were suffi-
cient to trigger the assistant to suggest the intended edit. It
should be noted though that earlier, as the comment is being
typed, the assistant will suggest a rename or other unrelated
assignments. The reviewer has the option to continue typing
until they complete their comment (and possibly discard the
suggested edit if it is inapplicable), stop when they see what
they intended, or complete and elucidate the comment even
after the right suggestion is predicted by the assistant.

211 *is_sloppy_function name = false;

reviewer check if is_sloppy_function_name is nullptr before assigning it A

10:32 AM

ML-suggested edit

+208 common lines +10 +Block

209 209 *init_flag = kCreatedInitialized;

210 210 *variable_mode = VariableMode::kvar;

211 *is_sloppy function name = false;
211 if (is_sloppy_function name != nullptr) {
212 *is_sloppy_function name = false;

213}
212 214
213 215 if (v8_flags.trace contexts) {

+429 common lines +10 +Block

[nresolved] w Reply Done Ack H -

Figure 9: The author is shown an ML-suggested edit that the
reviewer previewed and approved.

ICSE-SEIP *24, April 14-20, 2024, Lisbon, Portugal

Pitfall: decoupled reviewer from ML assistant. The most frequent
negative feedback during the beta of the V1 assistant was from
reviewers who were uncomfortable having an ML model “interpret”
their comment into a suggested edit, and would prefer to preview
the suggestion before providing it to the code author; the pedagog-
ical function of code review was of primary concern here, since
code review is often how new engineers are trained on local con-
ventions and programming discipline. This led to a Ul revision in
V2, in which the reviewer is shown the ML-suggested edit (Figure 8)
as they type their comment. The reviewer can decide to reject the
suggested edit (in which case the author will only see the reviewer’s
comment). If the reviewer takes no action, the author sees the com-
ment along with the suggestion, as well as an additional annotation
of the suggested edit denoting that is has been “Reviewed” (Fig-
ure 9). We noticed initially that reviewers only approved about half
of the ML-suggested edits to their own comments, which suggests
that the quality of suggested edits reaching code authors increased
as a result of this pre-approval. Furthermore, since the reviewer
can reject obviously incorrect suggested edits, we could be even
more aggressive with ML confidence thresholds, dropping the V2
minimum precision to 40% from 50% and, therefore increasing the
number of comments that received ML suggestions.

Pitfall: slow-to-predict edits. Reviewer-previewed suggested edits
are valuable to code authors (see above); however, reviewers are
typically pressed for time, and may move on quickly from comment
to comment. In an attempt to reduce back-end prediction load, and
to avoid showing reviewers suggested edits before they have typed
enough of their comment, we set the triggering delay between
when the reviewer starts typing a comment and when a prediction
is requested to 1500ms. Between this triggering delay, and the
additive prediction latency of the model, many predictions “missed”
the reviewer, who had already moved on. When we further reduced
the triggering delay to 500ms, and improved the prediction latency
through considerable engineering effort, the number of suggested
edits previewed by reviewers increased by 12%, and the acceptance
rate of ML-suggested edits by authors improved by 18%. We found
the 2x increase in back-end load that resulted from this triggering
change well-justified by the improvement in acceptance rates.

Pitfall: click to view. Since code shepherding (i.e., editing the
changelist in light of the reviewer comments) takes a significant
fraction of developers’ time—one study at Google measured the
median to be around 60 minutes [7]—efficiency in addressing com-
ments is important. We found that ML-suggested edit discoverabil-
ity for the changelist author improved when we started showing
the suggested edit immediately next to the reviewer comment (Fig-
ure 9), rather than requiring a click of the “Show ML edit” button
(Figure 2).

Pitfall: code review is serialized. Our original design of the UI as-
sumed that the changelist author and reviewers operate in lock step:
one stops when the other starts working on the changelist. This
is not, however, how code review operates in practice. Sometimes
the changelist is edited by the author as the reviewer is review-
ing, or perhaps the reviewer thinks of a new comment after they
have passed the bulk of their review to the author, and sometimes
the reviewer attaches a comment to an older review snapshot of

Alexander Frommgen, Jacob Austin, Peter Choy, Nimesh Ghelani, Lera Kharatyan, Gabriela Surita, Elena Khrapko, Pascal Lamblin, Pierre-Antoine Manzagol, Marcus Revaj,

ICSE-SEIP *24, April 14-20, 2024, Lisbon, Portugal

File Workspace Edit Selection View Go Build/Test --* S

Maxim Tabachnyk, Daniel Tarlow, Kevin Villela, Daniel Zheng, Satish Chandra, Petros Maniatis

O Search for Anything

OB Mo

G+ flag_benchmark.cc [d

XLV Add ML-suggested Edits Add Workspace Edits
ML-suggested Edit (1)
e /1 oAl wwe 1w

43
44

65

bool AbslParseFlag(absl::string_view src, 0
std::stringx error) {
int val;
if (src.empty())
flag->reset();
else if (!absl::ParseFlag(src, &val, erre
return false;
xflag = val;
return true;
¥
std::string AbslUnparseFlag(const Optionall
if (!flag) return ""; =
return absl::UnparseFlag(xflag);
}

using AbslOptionalString = absl::optional<s

struct OptionalString : AbslOptionalString
usil\g Abs10ptionalString::Abs1OptionalStr

Y

// Next two functions represent Abseil Flag

bool AbslParseFlag(absl::string_view src, 0

std::stringx error) {

std::string val;

Merge Results (0)
8 we a1 e

43
44
45
46
47
a8
49
50
51

€+ flag_benchmark.cc (ML-suggested edit) ®

N

bool AbslParseFlag(absl::string_view src, C
std::stringx error) {

int val;
if (src.empty())
flag->reset(); =1
else if (!absl::ParseFlag(src, &val, erre
return false;
xflag = val;
return true;
}
std::string AbslUnparseFlag(const Optionall
return !flag ? "" : absl::UnparseFlag(xfl&

}

using Absl0OptionalString = absl::optional<s

struct OptionalString : AbslOptionalString
using AbslOptionalString::Absl0ptionalStr

Y

// Next two functions represent Abseil Flag

bool AbslParseFlag(absl::string_view src, C

std::stringx error) {

std::string val;

Was this suggestion helpful? ¢ &2
Workspace (1)
we s4 e

43

U -

Cun ey
bool AbslParseFlag(abs tring_view src, 0
std::stringx error) {
int val;
if (src.empty())
flag->reset();
else if (l!absl::ParseFlag(src, &val, erro
return false;
*flag = val;
return true;
}
std::string AbslUnparseFlag(const Optionall
return !flag ? “__" : absl::UnparseFlag(

}

using AbslOptionalString = absl::optional<s

struct OptionalString : AbslOptionalString
using Abs1OptionalString::Absl0ptionalStr

Y

// Next two functions represent Abseil Flag

bool AbslParseFlag(absl::string_view src, 0

std::stringx error) {

std::string val;

Figure 10: Three-way merge window pops up in the IDE when the author attempts to accept an ML-suggested edit in an

incompatible code state.

the changelist. All in all, this means that sometimes even an ML-
suggested edit that the author wishes to accept is incompatible with
the current state of the code. We found that by detecting those cases,
and opening a three-way merge window (Figure 10) for the author
to resolve any merge conflicts, the number of accepted suggested
edits increased.

Pitfall: meticulous user feedback is plentiful. Our original hope
was to study thumbs up/thumbs down user feedback as an addi-
tional model signal producing improved predictions. Unfortunately,
developers do not often provide positive feedback explicitly: we
noticed that most accepted suggested edits were not accompanied
by a thumbs-up click, and there were few thumbs-up clicks for
not-applied edits. Thankfully, in this case, applied edits constitute
strong, indirect positive feedback. For negative feedback, we found
a mix of “comment is not useful” and “suggested edit is not useful”
clicks, which made the data very noisy, since the design of our
feedback mechanism left room for ambiguous responses. In the end,
we found the actual numbers of thumbs up/thumbs down relatively
uniformative. However, a developer dissatisfied with the assistant’s
prediction has the option to open a bug report for the assistant,
which collects automatically the changelist context, the reviewer
comment, and the incorrect ML-suggested edit, as well as an op-
tional explanation why this suggested edit is wrong. We received
numerous such bug reports, which did help us and contributed to
our curated evaluation dataset.

6 SYSTEM IMPACT

We now turn to evaluations, both qualitative and quantitative, of
our code-review comment-resolution assistant in practice.

6.1 Quantitative Results

In the previous sections, we described how we iterated on model
quality and usability, and reported relevant metric improvements
for these iterations.

However, ultimately a primary goal for any assistance tool is
to increase productivity. One metric we use to gauge the positive
impact of our assistant on productivity is acceptance rate, the frac-
tion of all code-review comments that are resolved by the assistant;
this measures, out of all (non-automated) comments left by human
reviewers, what fraction received an ML-suggested edit that the
author accepted and applied directly to their changelist.

Table 1 shows results from the assistant’s deployment, starting
with the first milestone version (V1), which lacked reviewer preview
and required a click to view suggested edits. The bottom V1 row
shows that out of all code-review comments, 4.9% were resolved by
an ML-suggested edit (with a 75-25 split between Critique and the
IDE). Weekly aggregate acceptance rates over the 3-month deploy-
ment to 50% of Google engineers range between 3.9% and 5.5%. As
has been previously published, tens of millions of code-review com-
ments are left by Google developers every year [19], which means
that an almost 5% ML-assisted comment resolution is a considerable
contribution to Google’s total engineering productivity.

The table also breaks down the fraction of comments that go
through all the way to ML-assisted resolution. Around 34% receive
predictions given the tuned model—note that this is a model tuned
for 50% minimum precision. Of those predictions, A little fewer than
a third are previewed by the author; for the rest, the author chose
to push back (e.g., question the reviewer’s comment), or perhaps
thought the comment would be easy enough to address without
even previewing the suggestion. Most of the previews were done
in Critique and far fewer in the IDE (roughly a 5-to-1 ratio), which
can be explained by Critique being the first-pass UI for receiving
reviewer comments, only switching to the IDE when the review is

Resolving Code Review Comments with Machine Learning

%) of

Version Stage (%) of pl('e‘)rious
total
step

Incoming comments 100.0 100.0
Confident predictions 34.3 34.3
V1 Previewed by author 10.7 31.3
Applied by author 4.9 45.6
Confident predictions 49.0 49.0
V2 Accepted by reviewer 33.1 63.6
Previewed by author® 10.7 34.5
Applied by author 7.5 69.5

“The concept of author preview is less significant in V2. The author automatically
sees a small preview and can “click-to-view” full suggested edits. This full view either
shows the “Apply“ button or informs about an edit that requires a three-way merge.
Almost all not-applied previews in V2 denote an edit that required a three-way merge

to be applied.

Table 1: Comment attrition on the way to ML-assisted reso-
lution. “V1” is the first milestone version (click-to-view sug-
gested edits, no reviewer preview). “V2” is the second mile-
stone version (reviewer preview, always show suggested ed-
its to authors).

received while other coding is in progress, or the edit requires a
3-way merge to be applied. Finally, out of all previewed suggested
edits, over 45% are accepted by the author and applied to code.

The more recent V2 milestone version (reviewer preview, no
click to view edit) showed promising results during its beta de-
ployment to a smaller fraction of Google engineers over 8 weeks,
and was recently deployed to the full population replacing the V1
version globally. Table 1, under the V2 rows, shows that out of all
code-review comments in this population, 7.5% were resolved by
an ML-suggested edit (with a 76-24 split between Critique and
the IDE). Weekly aggregate acceptance rates since full deployment
started ranged between 5.4% and 7.5% with a standard deviation of
about 0.9 percentage points. This acceptance rate is considerably
higher than that of the V1 assistant; acceptance rate reached as
much as 9.4% during the V2 beta, but stabilized around 7.5% after
deployment covered the full developer population. Different pro-
gramming languages see different acceptance rates. Among the
popular languages, acceptance rate is 9.5% for Java, 7.5% for C++,
and 7.1% for Python, and these numbers vary similarly to the above
aggregate from week to week. We have no conclusive explanation
why Python acceptance rate is lower than, say, Java, except that
different popular languages are used for different purposes (e.g.,
building back-end services versus ML training scripts) and receive
comments of different types.

Also looking at the breakdown (for the V2 table rows), around
half of all eligible comments receive predictions—note that this
model is tuned for 40% minimum precision, since a reviewer will
have a chance to reject the suggestion. Of those predictions, over
63% are accepted by the reviewer and attached to the comment to
be sent to the author. 34% of those suggested edits are previewed
by the author, and of those previewed, 70% are accepted and ap-
plied to code. The higher “yield” of suggested edits as we proceed
through the stages of the V2 assistant demonstrates the benefits of

ICSE-SEIP *24, April 14-20, 2024, Lisbon, Portugal

more reviewer control; we observe that reviewers do some “prompt
engineering” on their comment text, to get the desired suggested
edit. The higher yield also demonstrates the benefits of higher dis-
coverability, and the assurance that a human reviewer has rejected
inapplicable ML-suggested edits before the author receives them.

6.2 Qualitative Results

In this section, we look at some selected examples of detailed
rewrites produced by the assistant. We observe ML-suggested edits
addressing a wide range of reviewer comments in production, in-
cluding simple localized refactoring, changes that are spread across
dozens of lines of code, use of standard libraries accompanied by
imports, unit-test generation, etc.

Figure 11 illustrates a refactoring edit that hoists some string
literals strewn throughout the code into separate constants. The
rewrite also moves some formatting code into the constant defi-
nitions, which addresses the reviewer’s suggestion, but solves the
problem in a more comprehensive way than what was proposed. It
is interesting that the assistant is collaborating with the reviewer
here: the reviewer suggests one way to address the issue and the
assistant expands it into an even better rewrite.

The second example in Figure 12 addresses a fairly open-ended
comment by the reviewer with a comprehensive code rewrite, in-
troducing the idiomatic Python enum primitive, and importing the
relevant standard library in the process. Although the reviewer
was ambivalent about the right way to address their concern, the
suggested edit demonstrates the detailed alternative for the author,
leaving it up to them to make a choice (in this case, although the
suggestion addressed the reviewer’s suggestion, the author chose
not to apply the edit).

In the final example in Figure 13, the model generates a new unit
test to address the reviewer’s suggestion. It mimics the pre-existing
test pattern (from the location of the comment), while changing the
expected semantics as described in the reviewer’s comment. Addi-
tionally, the model suggests an apt test name, reflecting intended
test semantics. Although different assistants might be required to
handle more ambiguous and comprehensive test improvements, we
have found that simple unit tests can be usefully suggested by the
comment-resolution assistant.

Early feedback about the assistant in internal message boards is
enthusiastic, including characterizations such as “sorcery!”, “magic!”,
“impressive”. Although the new version V2, in which suggested ed-
its are presented as the reviewer is typing a comment, has only
been deployed to 100% of the population for a relatively limited
time, we have received delighted reports demonstrating that just
the location and the initial sentiment of the reviewer’s comment can
lead to helpful suggested edits, for both parties involved. In one ex-
ample, the reviewer had barely typed “I believe the recommended
way [cursor]” with respect to four lines of code, and the model
already suggested the refactoring that the reviewer intended, with
no further prompting. In a similar cluster of examples, reviewers
who remember there is a library for what they are about to suggest
but do not recall the exact library or API will start writing the com-
ment, e.g., “there is a library for [cursor]” and the suggested edit
actually reminds them of the relevant library and the associated
rewrite. In both cases the reviewer preview helps reviewers save

Alexander Frommgen, Jacob Austin, Peter Choy, Nimesh Ghelani, Lera Kharatyan, Gabriela Surita, Elena Khrapko, Pascal Lamblin, Pierre-Antoine Manzagol, Marcus Revaj,

ICSE-SEIP *24, April 14-20, 2024, Lisbon, Portugal

Unresolved

o & - [Recuest v I
oI C W TG

Add file comment Add file comment / Edi

84

85 def _temporal_split_from_datetime(

86 example_datetime: datetime.datetime) -> Optional[str]:
87 “""Finds the split name using the example datetime."""

88 end_train_datetime = datetime.datetime.strptime('2022-01-01", '%Y-%m-%d')

How about declaring these dates as constants at the A
4:23PM top of the file?

TRAIN_END_DATETIME = '2022-01-01'

L AV IBELTE Reply Done . <)

Ack

89 end_valid_datetime = datetime.datetime.strptime('2022-05-01", ‘%Y-%m-%d")
90 end_test_datetime = datetime.datetime.strptime(’2022-06-01', '%Y-%m-%d')

91
92 if example_datetime < end_train_datetime:
93 return 'train’
94 elif example datetime < end_valid_datetime:
95 return ‘validation’
96 elif example datetime < end_test datetime:
97 return 'test’
98 else:
99 return None
ML-Suggested Edit @ "How about declaring these dates as constants at the top of the.."
14 TRAIN_END_DATETIME = datetime.datetime.strptime('2022-01-01', ‘%Y-%m-%d')
15 VALID_END_DATETIME = datetime.datetime.strptime('2022-85-01', '%Y-%m-%d')
16 TEST_END_DATETIME = datetime.datetime.strptime('2022-06-01', '%Y-%m-%d')
17
14 18
15 19 def _get_unique_identifier(
16 20 buildrepair_data: buildrepair_pb2.BuildRepairData) -> str:
17 21 build_repair = buildrepair_data.context.build repair
18 22
+10 +Block
+64 common lines
+10 +Block
83 87
84 88
85 89 def _temporal_split_from_datetime(
86 90 ample_datetime: datetime.datetime) -> Optional[st
87 91 inds the split name using the example datetime.""
88 end_train_datetime = datetime.datetime.strptime('2022-01-01', '%Y-%m-%d')
89 end_valid_datetime = datetime.datetime.strptime('2022-05-01', '%Y-%m-%d')
90 end_test_datetime = datetime.datetime.strptime('2022-06-01", '%Y-%m-%d')
91
92 if example_datetime < end_train_datetime:
92 if example_datetime < TRAIN_END_DATETIME:
93 93 return 'train’
94 elif example_datetime < end_valid_datetime:
94 elif example_datetime < VALID_END_DATETIME:
95 95 return 'validation'
% elif example_datetime < end_test_datetime:
96 elif example_datetime < TEST_END_DATETIME:
97 97 return 'test'
98 98 else:
99 99 return None
100 100
101 101
+26 common lines +10 +Block
Was this helpful? 7 G Close . Preview

Figure 11: Example: replace values with constants.

time reviewing, since it makes their comment concrete and avoids
lookups, and it also saves the author’s time, since the suggestion is
actionable and pre-vetted by the reviewer.

The extensive use of the tool in the past year within the company
has demonstrated non-trivial, detailed, comprehensive suggested
edits that have surprised and delighted developers.

Maxim Tabachnyk, Daniel Tarlow, Kevin Villela, Daniel Zheng, Satish Chandra, Petros Maniatis

Unresolved

Snapshot #5

Piper revision #1 (text) @ Mark unreviewed Hide unchanged lines

Add file comment Add file comment

1 1 """Representation of binary labels with atteched scores."""
2 2
3 3 import attr
4 4
5 5
6 6 @attr.s(auto_attribs=True, frozen=True, eq=True)
7 class ScoredBinarylabel(object):
7 class ScoredBinarylabel:
8 8 """Represents a binary label associated with a score.
9
1o 10 Attributes:
11 11 label: Identifies a positive class when set to "True'.
12 12 score: Either a probability estimate of a positive class, or a system's
13 13 confidence level in making a decision in favor of a positive class.
14 14
15 15 label: bool = False
Nit: Maybe use an enum instead? IMO reasoning about A
410 PM bool labels is very painful. OTOH the extra layer of
conversion required is also painful. Thoughts?
Unresolved Reply Done . (<]
Ack
16 16 score: float = 0.0
ML-Suggested Edit ® “Nit: Maybe use an enum instead? IMO reasoning about bool labels is very..”
1 1 """Representation of binary labels with atteched scores."""
2 2
3 import enum
a4
3 5 import attr
4 6
5 7
8 (@enum.unique
9 class BinaryLabel(enum.Enum):
10 POSITIVE =1
11 NEGATIVE = 2
12
13
6 14 @attr.s(auto_attribs=True, frozen=True, eq=True)
7 15 class ScoredBinarylabel:
8 16 """Represents a binary label associated with a score.
9 17
10 18 Attributes:
11 19 label: Identifies a positive class when set to "True'.
12 20 score: Either a probability estimate of a positive class, or a system's
13 21 confidence level in making a decision in favor of a positive class.
14 22 o
15 label: bool = False
23 label: Binarylabel = Binarylabel.NEGATIVE
16 24 score: float = 0.0
Was this helpful? 7 G Close .Preview

Figure 12: Example: replace a Boolean label with an enumer-
ation, also including relevant imports. Note the conversa-
tional language used by the reviewer.

7 RELATED WORK

There is quite a bit of recent work on predicting code review com-
ments from code / code changes, but relatively less work on gener-
ating code edits to address comments, or experiences about such
deployed systems.

CodeReviewer [10] is perhaps the closest recent result to our
assistant. It seeks to automate the identification of lines that merit
a comment, the generation of that comment, and a suggested refac-
toring to address the issue. It is trained on 8M GitHub pull requests
to further pre-train and fine-tune a code Large Language Model.
The reported results focus on the model itself and ablative stud-
ies, showing promising benchmark evaluations. Our approach is
similar in principle, with some differences. First, our focus in this
paper is on deploying an assistant based on a comment-resolution

Resolving Code Review Comments with Machine Learning

#r o - o/ ® Unresolved r
@] reeform_c2c modelce (0 I OF&-G

Add file comment Add file comment / Edi

222 }
223
224 TEST_F(ClientTest, NoMPMDependencies) {

Also test the default true A
7:43 AM

ML-suggested edit I(Q} Reviewed).

+232 common lines +10 +Block

233 233 EXPECT_FALSE(monitoring state config.include_dot_graph());
231 234 }
235
236 TEST_F(ClientTest, MPMDependencies) {
237 absl::SetFlag(&FLAGS flume_exec_mode, "BORG");
238 absl::SetFlag(&FLAGS_flume_enable_extra_mpm dependencies, tru
e);
239
246 InitializeService(&config);
241
12 const auto& monitoring_state config =
243 config_.GetExtension(monitoring state config ext);
244 T EXPECT_TRUE(monitoring_state config.include svg _graph());
245 EXPECT_TRUE(monitoring_state config.include dot_graph());
246 }
235 247
236 248 // Tests that the Borg Labs from --flume_borg_labs populate the

+1745 common lines +10 +Block

GOSN Reply Done Ack . <)

225 absl::SetFlag(&FLAGS flume_exec_mode, “BORG");
226 absl::SetFlag(&FLAGS flume_enable extra mpm_dependencies, false);

228 InitializeService(&config);

238\ const auto& monitoring_state_config =
231 config_.GetExtension(monitoring_state_config_ext);
232 EXPECT_FALSE(monitoring_state_config.include_svg_graph());
233 EXPECT_FALSE(monitoring_state_config.include_dot_graph());
234 }

Figure 13: Example: generate a new unit test that flips a
command-line flag from false to true, and adapts the test
expectations.

ML model, and realizing its productivity impact. Second, we train
on a more homogeneous distribution of code-review examples:
code review is a fundamental aspect of the Google engineering
culture, yielding a high volume of high-quality training data about
a more uniform codebase. Third, DIDACT [12], our underlying ML
framework, trains on a broader set of data sources and tasks (code,
fine-grained code edits, code review, build repair, refactoring oper-
ations). PLUR [3] was our earlier research effort towards training
multi-task models of diverse code activities. Finally, since this work
is evaluated on end-user acceptance, rather than strictly on off-line
accuracy results, accuracy metrics are not directly comparable; in-
formationally, our recall@50 is over 66%, which is a competitive
metric to the CodeReviewer metrics on its evaluation datasets.
Much ML research has focused on predicting code edits from
some natural-language or semi-structured prompt, with applica-
tions to code review. Some notable examples include CoditT5 [27]
and Graph2Edit [26]. In contrast, generative-ML research has sought
to summarize problems in code, producing comments that could
be used for code review. For example, Tufano et al. [22] and the
more recent AUGER [8] both produce natural-language text about
a code context and some review range and tags drawn from that
code context. Such prior work shows that automatic review com-
ments tend to be less helpful than user review comments—which,

ICSE-SEIP *24, April 14-20, 2024, Lisbon, Portugal

in part, motivates our focus on comment resolution rather than
comment generation—but that direction of assistive code review
shows some promise (e.g., AUGER found that 29% of automatic
review comments are still considered useful, in their human study).
LLaMa-Reviewer [11] is a very recent addition in this space, using
the LLaMa large language model [21] to formulate a number of
code-review related tasks, with a focus on parameter-efficient tun-
ing, and showing impressive performance on the CodeReviewer and
AUGER datasets, especially with respect to comment generation.

Resolving fool-generated comments or annotations using ML is
an active sub-topic of program-repair research (e.g., DeepFix [6]), in-
cluding our own prior work on build repair [13, 20] and Getafix [1].
Most of this work considers only stylized error messages generated
by linters, static analyzers, or compilers. The kinds of code trans-
formations expected in such cases are considerably narrower. By
contrast, this paper aims to produce code transformations where
the intent is expressed in natural language.

8 CONCLUSION AND NEXT STEPS

In this article, we introduced an ML-assistance feature to reduce
the time spent on resolving code-review comments at Google. At
the moment, the assistant is deployed to all Google engineers and
7.5% of all code-review comments are addressed with applied ML-
suggested edits.

We are working on improvements throughout the whole stack,
but also creating APIs to integrate this in-situ modification of code
to address review comments in other tools and modalities.

Beyond code review, we are continuing along the same line
of work to bring ML assistance to various stages of the software
engineer’s journey, from design and implementation all the way to
deployment, maintenance, bug finding, and repair.

ACKNOWLEDGMENTS

This is the work of many people in Google Core Systems & Expe-
riences team, Google Research, and DeepMind. We would like to
thank all of our team members for their key contributions and useful
advice, including Alberto Elizondo, Ambar Murillo, Amit Patel, Bal-
lie Sandhu, Boris Bokowski, Brett Wiltshire, Chenjie Gu, Chris Gor-
golewski, David Choi, David Tattersall, Dima Sutygin, Emily John-
ston, Fredde Ribeiro, Henryk Michalewski, Hermann Loose, Jessica
Ko, Jiquan Ngiam, Jonas Mattes, Juanjo Carin, Kathy Nix, Katja Gru-
enwedel, Kensen Shi, Kristof Molnar, Kyle Lippincott, Laurent Le
Brun, Luis C. Cobo, Luka Kalinovcic, Madhura Dudhgaonkar, Marc
Brockschmidt, Marc Rasi, Marcus Revaj, Mariana Stariolo, Matt Fra-
zier, Franjo Ivanci¢, Malgorzata Salawa, Manushree Vijayvergiya,
Marko Ivankovié¢, Markus Kusano, Mehdi Ghissassi, Michael Sloan,
Mingpan Guo, Niranjan Tulpule, Ole Rehmsen, Paige Bailey, Peter
Josling, Raphael von der Gruen, Rodrigo Damazio Bovendorp, Sara
Qu, Sara Toth, Sara Wiltberger, Sascha Varkevisser, Savinee Dancs,
Stephanie Tang, Stoyan Nikolov, Tobias Welp, Vahid Meimand,
Vaibhav Tulsyan, Yujia Li, and Zoubin Ghahramani.

REFERENCES

[1] Johannes Bader, Andrew Scott, Michael Pradel, and Satish Chandra. Getafix:
Learning to fix bugs automatically. Proc. ACM Program. Lang., 3(OOPSLA), oct
2019.

ICSE-SEIP *24, April 14-20, 2024, Lisbon, Portugal

(2]

&

[7

[

8

=

=
X0

[10]

(1

[12]

[13]

Alexander Frommgen, Jacob Austin, Peter Choy, Nimesh Ghelani, Lera Kharatyan, Gabriela Surita, Elena Khrapko, Pascal Lamblin, Pierre-Antoine Manzagol, Marcus Revaj,

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde
de Oliveira Pinto, Jared Kaplan, Harrison Edwards, Yuri Burda, Nicholas Joseph,
Greg Brockman, Alex Ray, Raul Puri, Gretchen Krueger, Michael Petrov, Heidy
Khlaaf, Girish Sastry, Pamela Mishkin, Brooke Chan, Scott Gray, Nick Ryder,
Mikhail Pavlov, Alethea Power, Lukasz Kaiser, Mohammad Bavarian, Clemens
Winter, Philippe Tillet, Felipe Petroski Such, Dave Cummings, Matthias Plappert,
Fotios Chantzis, Elizabeth Barnes, Ariel Herbert-Voss, William Hebgen Guss,
Alex Nichol, Alex Paino, Nikolas Tezak, Jie Tang, Igor Babuschkin, Suchir Balaji,
Shantanu Jain, William Saunders, Christopher Hesse, Andrew N. Carr, Jan Leike,
Joshua Achiam, Vedant Misra, Evan Morikawa, Alec Radford, Matthew Knight,
Miles Brundage, Mira Murati, Katie Mayer, Peter Welinder, Bob McGrew, Dario
Amodei, Sam McCandlish, Ilya Sutskever, and Wojciech Zaremba. Evaluating
large language models trained on code. CoRR, abs/2107.03374, 2021.

Zimin Chen, Vincent J Hellendoorn, Petros Maniatis, Pascal Lamblin, Pierre-
Antoine Manzagol, Danny Tarlow, and Subhodeep Moitra. PLUR: A Unifying,
Graph-Based View of Program Learning, Understanding, and Repair. In Thirty-
fifth Conference on Neural Information Processing Systems (NeurIPS 2021), 2021.
Aakanksha Chowdhery, Sharan Narang, Jacob Devlin, Maarten Bosma, Gaurav
Mishra, Adam Roberts, Paul Barham, Hyung Won Chung, Charles Sutton, Sebas-
tian Gehrmann, Parker Schuh, Kensen Shi, Sasha Tsvyashchenko, Joshua Maynez,
Abhishek Rao, Parker Barnes, Yi Tay, Noam Shazeer, Vinodkumar Prabhakaran,
Emily Reif, Nan Du, Ben Hutchinson, Reiner Pope, James Bradbury, Jacob Austin,
Michael Isard, Guy Gur-Ari, Pengcheng Yin, Toju Duke, Anselm Levskaya, Sanjay
Ghemawat, Sunipa Dev, Henryk Michalewski, Xavier Garcia, Vedant Misra, Kevin
Robinson, Liam Fedus, Denny Zhou, Daphne Ippolito, David Luan, Hyeontaek
Lim, Barret Zoph, Alexander Spiridonov, Ryan Sepassi, David Dohan, Shivani
Agrawal, Mark Omernick, Andrew M. Dai, Thanumalayan Sankaranarayana
Pillai, Marie Pellat, Aitor Lewkowycz, Erica Moreira, Rewon Child, Oleksandr
Polozov, Katherine Lee, Zongwei Zhou, Xuezhi Wang, Brennan Saeta, Mark Diaz,
Orhan Firat, Michele Catasta, Jason Wei, Kathy Meier-Hellstern, Douglas Eck,
Jeff Dean, Slav Petrov, and Noah Fiedel. PaLM: Scaling language modeling with
Pathways. Journal of Machine Learning Research, 24(240):1-113, 2023.
Alexander Frommgen and Lera Kharatyan. Resolving code review comments
with ML. Google Research AI Blog, May 2023. https://blog.research.google/2023/
05/resolving-code-review-comments-with-mlhtml.

Rahul Gupta, Soham Pal, Aditya Kanade, and Shirish Shevade. DeepFix: Fixing
common C language errors by deep learning. In Thirty-First AAAI Conference on
Artificial Intelligence, 2017.

Ciera Jaspan, Matthew Jorde, Carolyn Denomme Egelman, Collin Green, Ben
Holtz, Edward K. Smith, Maggie Morrow Hodges, Andrea Marie Knight Dolan,
Elizabeth Kammer, Jillian Dicker, Caitlin Harrison Sadowski, James Lin, Lan
Cheng, Mark Canning, and Emerson Murphy-Hill. Enabling the study of software
development behavior with cross-tool logs. IEEE Software, Special Issue on
Behavioral Science of Software Engineering, 2020.

Lingwei Li, Li Yang, Huaxi Jiang, Jun Yan, Tiejian Luo, Zihan Hua, Geng Liang, and
Chun Zuo. AUGER: automatically generating review comments with pre-training
models. In Proceedings of the 30th ACM Joint European Software Engineering
Conference and Symposium on the Foundations of Software Engineering, pages
1009-1021, 2022.

Raymond Li, Loubna Ben allal, Yangtian Zi, Niklas Muennighoff, Denis Kocetkov,
Chenghao Mou, Marc Marone, Christopher Akiki, Jia LI, Jenny Chim, Qian
Liu, Evgenii Zheltonozhskii, Terry Yue Zhuo, Thomas Wang, Olivier Dehaene,
Joel Lamy-Poirier, Joao Monteiro, Nicolas Gontier, Ming-Ho Yee, Logesh Kumar
Umapathi, Jian Zhu, Ben Lipkin, Muhtasham Oblokulov, Zhiruo Wang, Rudra
Murthy, Jason T Stillerman, Siva Sankalp Patel, Dmitry Abulkhanov, Marco Zocca,
Manan Dey, Zhihan Zhang, Urvashi Bhattacharyya, Wenhao Yu, Sasha Luccioni,
Paulo Villegas, Fedor Zhdanov, Tony Lee, Nadav Timor, Jennifer Ding, Claire S
Schlesinger, Hailey Schoelkopf, Jan Ebert, Tri Dao, Mayank Mishra, Alex Gu,
Carolyn Jane Anderson, Brendan Dolan-Gavitt, Danish Contractor, Siva Reddy,
Daniel Fried, Dzmitry Bahdanau, Yacine Jernite, Carlos Mufioz Ferrandis, Sean
Hughes, Thomas Wolf, Arjun Guha, Leandro Von Werra, and Harm de Vries.
StarCoder: may the source be with you! Transactions on Machine Learning
Research, 2023. Reproducibility Certification.

Zhiyu Li, Shuai Lu, Daya Guo, Nan Duan, Shailesh Jannu, Grant Jenks, Deep
Majumder, Jared Green, Alexey Svyatkovskiy, Shengyu Fu, and Neel Sundaresan.
Automating code review activities by large-scale pre-training. In Proceedings of
the 30th ACM Joint European Software Engineering Conference and Symposium on
the Foundations of Software Engineering, ESEC/FSE 2022, page 1035-1047, New
York, NY, USA, 2022. Association for Computing Machinery.

Junyi Lu, Lei Yu, Xiaojia Li, Li Yang, and Chun Zuo. LLaMA-Reviewer: Advancing
code review automation with large language models through parameter-efficient
fine-tuning. In 34th IEEE International Symposium on Software Reliability Engi-
neering (ISSRE 2023), 2023.

Petros Maniatis and Daniel Tarlow. Large sequence models for software develop-
ment activities. Google Research Al Blog, May 2023. https://blog.research.google/
2023/05/large- sequence-models-for-software.html.

Ali Mesbah, Andrew Rice, Emily Johnston, Nick Glorioso, and Edward Aftandilian.
DeepDelta: Learning to repair compilation errors. In Proceedings of the 2019 27th

[14

[16

(17

[18

[19

[20

[21

[22

[23

[24

[25

[26

]

]

]

Maxim Tabachnyk, Daniel Tarlow, Kevin Villela, Daniel Zheng, Satish Chandra, Petros Maniatis

ACM Joint Meeting on European Software Engineering Conference and Symposium
on the Foundations of Software Engineering, ESEC/FSE 2019, page 925-936, New
York, NY, USA, 2019. Association for Computing Machinery.

Rachel Potvin and Josh Levenberg. Why Google stores billions of lines of code
in a single repository. Commun. ACM, 59(7):78-87, June 2016.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang,
Michael Matena, Yanqi Zhou, Wei Li, and Peter J. Liu. Exploring the limits
of transfer learning with a unified text-to-text transformer. journal of Machine
Learning Research, 21(140):1-67, 2020.

Peter C. Rigby and Christian Bird. Convergent contemporary software peer
review practices. In Proceedings of the 2013 9th Joint Meeting on Foundations of
Software Engineering, ESEC/FSE 2013, page 202-212, New York, NY, USA, 2013.
Association for Computing Machinery.

Adam Roberts, Hyung Won Chung, Gaurav Mishra, Anselm Levskaya, James
Bradbury, Daniel Andor, Sharan Narang, Brian Lester, Colin Gaffney, Afroz Mo-
hiuddin, Curtis Hawthorne, Aitor Lewkowycz, Alex Salcianu, Marc van Zee,
Jacob Austin, Sebastian Goodman, Livio Baldini Soares, Haitang Hu, Sasha
Tsvyashchenko, Aakanksha Chowdhery, Jasmijn Bastings, Jannis Bulian, Xavier
Garcia, Jianmo Ni, Andrew Chen, Kathleen Kenealy, Kehang Han, Michelle Cas-
bon, Jonathan H. Clark, Stephan Lee, Dan Garrette, James Lee-Thorp, Colin Raffel,
Noam Shazeer, Marvin Ritter, Maarten Bosma, Alexandre Passos, Jeremy Maitin-
Shepard, Noah Fiedel, Mark Omernick, Brennan Saeta, Ryan Sepassi, Alexander
Spiridonov, Joshua Newlan, and Andrea Gesmundo. Scaling up models and data
with t5x and seqio. Journal of Machine Learning Research, 24(377):1-8, 2023.
Baptiste Roziére, Jonas Gehring, Fabian Gloeckle, Sten Sootla, Itai Gat, Xi-
aoqing Ellen Tan, Yossi Adi, Jingyu Liu, Tal Remez, Jérémy Rapin, Artyom
Kozhevnikov, Ivan Evtimov, Joanna Bitton, Manish Bhatt, Cristian Canton Ferrer,
Aaron Grattafiori, Wenhan Xiong, Alexandre Défossez, Jade Copet, Faisal Azhar,
Hugo Touvron, Louis Martin, Nicolas Usunier, Thomas Scialom, and Gabriel
Synnaeve. Code Llama: Open foundation models for code, 2023.

Caitlin Sadowski, Emma Séderberg, Luke Church, Michal Sipko, and Alberto Bac-
chelli. Modern code review: A case study at Google. In International Conference
on Software Engineering, Software Engineering in Practice track (ICSE SEIP), 2018.
Daniel Tarlow, Subhodeep Moitra, Andrew Rice, Zimin Chen, Pierre-Antoine
Manzagol, Charles Sutton, and Edward Aftandilian. Learning to fix build errors
with Graph2Diff neural networks. In Proceedings of the IEEE/ACM 42nd Inter-
national Conference on Software Engineering Workshops, ICSEW’20, page 19-20,
New York, NY, USA, 2020. Association for Computing Machinery.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne
Lachaux, Timothée Lacroix, Baptiste Roziére, Naman Goyal, Eric Hambro, Faisal
Azhar, et al. LLaMa: Open and efficient foundation language models. arXiv
preprint arXiv:2302.13971, 2023.

Rosalia Tufano, Luca Pascarella, Michele Tufano, Denys Poshyvanykz, and
Gabriele Bavota. Towards automating code review activities. In 2021 [EEE/ACM
43rd International Conference on Software Engineering (ICSE), pages 163-174. IEEE,
2021.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N. Gomez, Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. In
Proceedings of the 31st International Conference on Neural Information Processing
Systems, NIPS’17, page 60006010, Red Hook, NY, USA, 2017. Curran Associates
Inc.

Yue Wang, Weishi Wang, Shafiq Joty, and Steven C.H. Hoi. CodeT5: Identifier-
aware unified pre-trained encoder-decoder models for code understanding and
generation. In Proceedings of the 2021 Conference on Empirical Methods in Natu-
ral Language Processing, pages 8696—8708, Online and Punta Cana, Dominican
Republic, November 2021. Association for Computational Linguistics.

Titus Winters, Tom Manshreck, and Hyrum Wright. Software Engineering at
Google. O'Reilly Media, Inc., 2020. Available at https://abseil.io/resources/swe-
book.

Ziyu Yao, Frank F. Xu, Pengcheng Yin, Huan Sun, and Graham Neubig. Learning
structural edits via incremental tree transformations. In International Conference
on Learning Representations, 2021.

Jiyang Zhang, Sheena Panthaplackel, Pengyu Nie, Junyi Jessy Li, and Milos
Gligoric. CoditT5: Pretraining for source code and natural language editing. In
Proceedings of the 37th IEEE/ACM International Conference on Automated Software
Engineering, ASE ’22, New York, NY, USA, 2023. Association for Computing
Machinery.

