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Figure 1: M3 Gesture Menu prototyped on Android with two levels of 2×3 tiles. (a) M3 is initially hidden with a designated area (e.g. the white circle)
presented as its activation button. (b) Pressing and holding the button for 0.5 seconds pops up the first-level menu. (c) Sliding the finger to an item (e.g.
Settings) reveals its submenu which replaces the the higher level content in the same space. (d) Further sliding to a terminal node (e.g. Wi f i) activates its
command. (e) Alternatively, experienced users may directly draw a gesture from the activation button approximately to Settings, then to Wi f i to trigger
the same command. (f) Different gestures trigger different commands, e.g. the figure illustrates all the gestures in the Settings submenu.

ABSTRACT
Despite their learning advantages in theory, marking menus
have faced adoption challenges in practice, even on today’s
touchscreen-based mobile devices. We address these chal-
lenges by designing, implementing, and evaluating multiple
versions of M3 Gesture Menu (M3), a reimagination of mark-
ing menus targeted at mobile interfaces. M3 is defined on a
grid rather than in a radial space, relies on gestural shapes
rather than directional marks, and has constant and stationary
space use. Our first controlled experiment on expert perfor-
mance showed M3 was faster and less error-prone by a factor
of two than traditional marking menus. A second experiment
on learning demonstrated for the first time that users could
successfully transition to recall-based execution of a dozen
commands after three ten-minute practice sessions with both
M3 and Multi-Stroke Marking Menu. Together, M3, with
its demonstrated resolution, learning, and space use benefits,
contributes to the design and understanding of menu selection
in the mobile-first era of end-user computing.
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INTRODUCTION
Marking Menu [28, 32, 33] is among the most insightful con-
tributions of interaction design research. Prior to that, de-
signing interface features was either aimed at ease of use or
at efficiency, but not both. Ease of use is typically achieved by
the visual and textual affordances of graphical input – users
can look, scroll, and click through graphical widgets to ac-
tivate commands without memorizing the exact movement.
Efficiency, on the other hand, is achieved through executing
learned motor procedures like hotkeys on desktop comput-
ers. The challenge, however, is that their movement patterns
are drastically different from making menu selections – users
have to make a conscious and effortful switch from GUI to
hotkeys [31]. Research showed such transition is very dif-
ficult to facilitate in interface design [14, 21, 37]. Even if
hotkeys are effective, they are not applicable to touchscreen
devices – the mainstay of today’s mobile computing.

Marking Menu combines hotkeys’ efficiency with GUI’s ease
of use. Unlike hotkeys, users apply the same movement pat-
tern from the first time onwards. Before having memorized
the movement pattern for a particular command, users visu-
ally trace the radial menu slices from one level of a pie menu
(e.g. a pie menu with its up slice as Edit) to another (e.g.
a pie menu with its right slice as Copy). This is called the
“novice mode”. Later, users may recall and draw the same
directional patterns (e.g. up-then-right) directly without rely-
ing on the menu display (the “expert mode”). The movement
consistency between the two modes is expected to enable a
seamless transition from the former to the latter.

Marking Menu is defined on radial (or pie) menus for good
reasons. Pie menus were shown to be faster than linear menus
for up to 8 slices/items [10]. Further, it is believed that hu-
man memory of directions, particularly anchored ones such
as those along the horizontal and vertical axes, and the di-
rections between them (i.e. NW, NE, SW, and SE by map
conventions), are easy to differentiate and remember [33].
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Another important factor of the original Marking Menu de-
sign is the intentional 1/3 second delay of the radial menu dis-
play. We are not aware of strong and direct empirical studies
of this feature, but abundant cognitive psychology research
shows that mental elaboration and active retrieval of past be-
havior with depth of processing [16] is critical to memory
performance. The cost of waiting for the pop-up incentivizes
active memory retrieval. Research shows that an appropriate
amount of cost indeed facilitates user interface learning, but
too much cost could be discouraging and detrimental [17, 15].

Marking Menu has attracted a large amount of research over
the last twenty years [4, 5, 18, 25, 39, 54, 55], but they still
have not entered the mainstream practice of user interface de-
sign. This is particularly surprising given the fact that in the
last ten years, user computing had another revolution since
the PC. Touchscreen mobile devices have shaken and shaped
the entire computing industry. Given their cognitive and mo-
tor control advantages, we would expect marking menus to
be on major mobile operating systems or applications used
by billions of users every day. With exceptions (e.g. [30]),
users hardly ever see a marking menu in their everyday ex-
perience. While it is hard to ascertain all the reasons that
stand in the way of user interface innovation and user behav-
ior change, we summarize the following factors that may im-
pede the adoption of marking menus, particularly on touch-
screen mobile devices:

Inefficient space use. The original Marking Menu is not
mobile-friendly [28] – each level of a pie menu is centered on
an edge node of the previous level, so the interaction space
may move beyond the small screen of a mobile device. On
the other hand, Multi-Stroke Marking Menu [55] and its vari-
ants [4, 5, 18, 25, 54] do not move in space – they detect a
series of simple straight marks for sub-selections in a limited
space rather than a whole unistroke gesture. The problem is
that in practice, they require a dedicated, occlusive space to
disambiguate the interaction with the menu from other vis-
ible graphical elements occupying the same space. In con-
trast, unistroke gestures used by the original Marking Menu
and M3 avoid this ambiguity because the end of a gesture au-
tomatically concludes the user’s engagement with the menu.

Limited menu resolution. The original Marking Menu suf-
fers from poor accuracy when the menu item is deep in the
menu hierarchy, so the number of practically usable com-
mands, or menu resolution, is limited. Kurtenbach et al. [33]
showed that, for example, to keep the error rate under 10%,
a menu with eight targets on a level can not go beyond the
level of two. Even though Multi-Stroke Marking Menu was
proposed to relieve this issue, again, applying it in practice is
hampered by the requirement of a dedicated, occlusive space
we have discussed above.

Unknown learning curves. The learning effort associated
with marking menus’ novice to expert transition curves is
under-investigated, making it difficult for product designers
to make informed decisions. Most research focused on the
resolution, or expert performance of marking menus. User
learning by nature is hard to study and quantify, so the field

has not offered enough empirical research to support the con-
ceptual and theoretical advantage of marking menu learning.

Under-researched subjective experience. Subjective expe-
rience is as important a criterion as performance metrics. Al-
though some research (e.g. [5, 18]) touched on the preference
and feedback of marking menus, our understanding towards
this critical issue is clearly not enough.

In this paper, we begin addressing the four problems by
proposing, implementing, and studying a new marking menu
variant we call M3 Gesture Menu (M3). A controlled ex-
periment on expert performance showed M3 was faster and
less error-prone compared to those reported in the literature.
A second experiment on learning demonstrated for the first
time at a menu capacity beyond a few commands, users suc-
cessfully transitioned to recall-based execution for a dozen
gestures after 30 minutes of practice over three days in M3
and Multi-Stroke Marking Menu.

DESIGNING M3 GESTURE MENU
The essential design of M3 Gesture Menu is quite simple.
The clearest way of describing it is through the example il-
lustrated in Figure 1, although the specifics in practice can
vary. In M3, a rectangle menu, a grid of tiles each filled with
a menu item label, pops up upon the user pressing and holding
on a predesignated location we refer to as activation button.
Upon selecting an item, its submenu will replace the same
space the current menu is occupied. M3 provides three types
of interaction for users with different levels of proficiency:1

A beginning user can tap one of the menu items which, if not
a terminal node, expands to and replaces the top-level menu
with the lower-level menus spawn from the menu node be-
ing tapped. This process can be nested till a terminal node at
the Nth level is selected. Optionally, upon tapping a terminal
node an animation is played showing the trajectory starting
from the M3 activation button to the intermediate tile centers
ending at the terminal tile center, therefore revealing the next
two types of interaction. An intermediate user can visually
trace the finger from the activation button to the category on
the top level of M3, to lower levels, and all the way to the ter-
minal tile. This trajectory once again can be animated to re-
inforce the gesture shape associated with this command. An
experienced user can directly gesture the memorized shapes
without relying on the menu to display.

We should note that the inclusion of tapping for beginning
users is optional. This option may ease the initial adoption
of M3, for it is just an ordinary menu. It may not necessarily
facilitate the learning of gestures per se, but may help users
become familiar with the menu layout. It is possible some
users find the tapping mode good enough and never make the
transition to gesturing (“satisficing” [44, 42]). At this point,
we view tapping also as a design choice. If “forcing” users to
gesture is a paramount objective, the option can be disabled.

M3 recognizes gestures using the proportional shape match-
ing algorithm adapted from SHARK2 [26]. The algorithm

1See the accompanying video for a demonstration.
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searches for the minimal proportional shape matching dis-
tance from the user input gesture to a set of canonical gestures
that correspond to the menu commands.

As we have discussed earlier, marking menus in general are
expected to support seamless novice to expert behavior tran-
sition, facilitate memorization with directional marks, and
incentivize active memory retrieval with a cost added to re-
vealing the novice mode menu interface. In addition to these
theoretical advantages, we also envision M3 to provide the
following benefits to fit better to mobile form factors:

Expressive gesture shapes. Shapes as defined by tile loca-
tions from one level to another define, encode, and decode the
final commands. Shapes are made of both angular and rela-
tive distance features, not angles alone. This enables more
expressive gestural marks for human memory to take advan-
tage of. Using unistroke gestures also reduces the need for
a dedicated, occlusive interaction space as in Multi-Stroke
Marking Menus. Matching shapes as a whole instead of ag-
gregating stroke direction recognition results may also bring
better recognition accuracy.

Efficient space use. Applying a rectangle layout allows for
more efficient real estate use. All used space is fully packed
and time multiplexed between different layers of menus.

Stable interaction space. Since the lower-level menus oc-
cupy the same space as the upper level, the menu does not
move in space, offering better spatial stability.

IMPLEMENTATION
The prototype in Figure 1 was built on a version of the An-
droid System UI codebase. Our initial and informal daily
“dogfood” use showed that a system implementation of M3
was feasible and its experience was positive, although such
tests were inherently anecdotal and subjective.

For more controlled and systematic studies to be presented
next, we implemented a 3× 3 tile M3 Gesture Menu as an
Android application, shown in Figure 4a, on a Google Nexus
5X smartphone running Android 6.0. Each tile of M3 was a
square with a side length of 19 mm. The device has a screen
size of 147× 72.6 mm and a resolution of 1,920× 1,080
pixels. The menu was aligned slightly to the right for right-
handed participants and vice versa.

EXPERIMENT 1: M3 GESTURE MENU RESOLUTION
The focus of this experiment was to test M3 Gesture Menu’s
resolution, or performance limit. Previous research showed
the original Marking Menu tends to suffer from low resolu-
tion particularly at depth level three and beyond [28]. We
define resolution as the time (T ) and error (E) of differenti-
ating one command from all other commands when the user
reaches expert performance in a menu system. A hierarchi-
cal menu’s resolution depends on its depth (D, number of
levels) and capacity (C, total number of permissible com-
mands) – comparison of resolution is only meaningful when
the depth and capacity of two menus are the same. Together,
we denote resolution as {T,E}@{D,C}. For example, a
menu with two levels and 64 commands having resolution
of 2.1 seconds in time and 15% in error can be expressed

as {T : 2.1s,E : 15%}@{D: 2,C: 64}. Of course, resolution
also depends on the form factor and input device used for
testing. This experiment tested M3’s resolution on a small
screen smartphone (rather than a tablet) with a finger (rather
than a stylus), which were more likely to be biased against
M3’s resolution results [28, 55, 45].

Participants and Apparatus
We recruited 12 right-handed participants (3 female, age
ranging from 18 to 40 with the majority between 24 to 30).
All reported extensive experience with touchscreen smart-
phones, self-reporting average weekly usage ranged from 7
to 100 hours (M=26.9, SD=26.4). Participants were seated with
one or two hands holding the phone depending on their pref-
erence.

Task and Stimuli
We measured M3’s resolution at an expert performance level
by suggesting the exact actions participants need to take, as is
typically done in marking menu research [28, 55]. The menu
tiles were labeled with digits from 1 to 9 like a dial pad on the
top level (Figure 2c). The submenu tiles were labeled with its
parent item as prefix with the digits again from 1 to 9 (e.g.
Figure 2d for the submenu of tile 3).

The experiment enforced seven consecutive repetitions of
each gesture to quickly obtain expert performance metrics –
seven since it was shown to be sufficient to learn and reach
the peak performance of a gesture [51, 8]. The first three rep-
etitions were guided execution (Figure 2), where participants
visually traced the suggested gesture on the menu display ex-
panded immediately after touching the activation button. The
next four repetitions were recalled execution, where the menu
display was disabled and participants were required to exe-
cute the same gesture through forced recall. All repetitions
started with a button press (Figure 2a), after which an instruc-
tion to the current gesture would appear on top of the screen
(Figure 2b). Our focus was to measure the eventual resolu-
tion of M3. The experimental manipulation, therefore, was
to reach the expert performance as quickly as possible. The
menu behavior of guided and recalled execution does not map
directly to the novice and expert modes of M3.

When a wrong gesture was executed, participants were asked
to immediately repeat the trial. For each trial, we measured
reaction time, execution time, and total time. Reaction time
was measured from pressing the start button to pressing the
activation button of M3. Execution time was measured from
pressing the activation button to eventually triggering a com-
mand. Total time was the sum of reaction and execution time.

Design
Our experiment design was mixed-factorial and repeated
measures, with the between-subject factor being FINGER.
Half of the participants were asked to consistently use their
right-hand thumb and the other half, the index finger, to per-
form the gestures [3, 20]. Prior to the formal experiment, six
warm-up gestures were demonstrated and participants prac-
ticed the same gestures. We tested M3 to up to three levels of
eight items, since this setting is a high-capacity yet usable de-
sign [24, 32]. We refer to the gestures activating commands
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Measurement Depth 1 Depth 2 Depth 3 Depth 1, 2, 3

Reaction Time (ms) 303.92± 84.00 265.38±108.50 266.88±110.58 268.81±107.88
Execution Time (ms) 256.27± 96.19 479.90±174.25 723.67±256.91 537.71±241.78

Total Time (ms) 564.08±161.74 746.96±248.45 998.54±333.38 810.31±303.55
Error Rate 0.35%±1.20% 2.91%±2.33% 8.85%±4.47% 4.54%±2.69%

Table 1: Mean and SD of reaction time, execution time, total time, and error rate of executing gestures in depth 1, 2, 3 of M3.

Technique Literature Stroke Type Input Device Total Time (s) Error Rate
Depth 2 Depth 3 Depth 2 Depth 3

M3 This Paper Compound-Stroke Finger 0.7 1.0 3% 9%
Original Marking Menu Kurtenbach and Buxton [28] Compound-Stroke Stylus 1.4 2.3 7% 17%
Original Marking Menu Zhao and Balakrishnan [55] Compound-Stroke Stylus 2.3 3.6 10% 17%

Multi-Stroke Marking Menu Zhao and Balakrishnan [55] Multi-Stroke Stylus 2.3 3.4 4% 7%

Table 2: M3’s resolution compared to other marking menu variants with a breadth of eight reported in the literature. If other factors such as device
size were tested, we report the one with the best performance.
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Figure 2: Guided execution: (a) a start button appears at the bottom
of the screen; (b) after pressing the button, a gesture instruction, 5→
3→ 35, is displayed, and the activation button of the menu 5 is shown;
(c) pressing the activation button 5 expands the menu, then sliding the
finger to 3 displays its submenu; (d) further sliding to 35, then lifting the
finger activates the item; (e) feedback is provided after the trial.

on the Nth level as depth-N gestures. The experiment breaks
into three parts: Part 1 tested the complete set of eight depth-1
gestures; Part 2 tested the complete set of 64 depth-2 gestures;
and Part 3 tested 32 depth-3 gestures randomly sampled from
the total 512 gestures. The same gesture set was used across
all the participants with the order randomized. Participants
were asked to take a break between two parts.

In summary: 12 PARTICIPANTS × 1 of 2 FINGERS × 104
GESTURES × 7 REPETITIONS = 8,736 data points in total.

Results
Mixed-factorial analysis of variance and pairwise Tukey t-
tests with Bonferroni correction were used for all measures.
Trials were aggregated by participant and the factors being
analyzed. Time data were aggregated using median.

Repetition and Practice Effect
Strong repetition and practice effects on total time were found
for guided execution (F1.17,12.9 = 60.78, p < .0001, η2 = .682) and
recalled execution (F1.81,13.00 = 52.47, p < .0001, η2 = .235), but no
effect on error was found. Figure 3 shows that the time of
completion at all three levels of depth could quicken to a sta-
ble level after a few repetitions. The last three trials of recall
production appear to have reached a performance limit, so we
use them to estimate menu resolution.

Time and Error
No effect of FINGER on time or error was found, so we
combined the data for analysis. As shown in Table 1,

the resolution for depth-1 and depth-2 gestures were {T :
0.6s,E : 0.35%}@{D: 1,C: 8} and {T : 0.7s,E : 2.91%}@{D: 2,C: 64},
respectively, suggesting users could accurately articulate as
many as 64 commands very quickly. This is a fairly good
menu capacity for smartphones, sufficient for accommodat-
ing common features such as launching frequent applica-
tions, toggling setting options, or providing context menus.
With depth-3 gestures, the menu resolution was {T : 1.0s,E :
8.85%}@{D: 3,C: 512}, providing a much larger number of per-
missible commands, but with only slightly longer time and
lower accuracy.

To better interpret M3’s resolution, we compared against the
original Marking Menu and Multi-Stroke Marking Menu,
both tested with a tablet and a stylus. We should be cau-
tious of the fact that the previous studies were conducted in
different form factors and with different input devices, so
these comparisons should be interpreted accordingly. The
mobile display size and finger rather than stylus operation in
this study were more likely to be biased against the M3’s re-
sults [28, 55, 45].

As shown in Table 2, at the same menu depth (2 or 3) and
capacity (64 or 512 commands), M3 produced less or much
less than half the error in less or much less than half of the
total completion time of the original Marking Menu accord-
ing to the data reported by two separate studies. In com-
parison to the revised Multi-Stroke Marking Menu, M3 took
less than one third of time at somewhat lower (at Depth 2)
or somewhat higher (at Depth 3) error rate. Taking Depth
3 as an example, the original Marking Menu had resolu-
tion of {T : 2.3s,E : 17%}@{D: 3,C: 512} by Kurtenbach and Bux-
ton [28] and {T : 3.6s,E : 17%}@{D: 3,C: 512} by Zhao and Bal-
akrishnan [55]. Multi-Stroke Marking Menu had resolution
of {T : 3.4s,E : 7%}@{D: 3,C: 512} according to Zhao and Bal-
akrishnan. At the same depth, the resolution of M3 was
{T : 1.0s,E : 8.85%}@{D: 3,C: 512},

The difference in accuracy is likely due to the stroke type and
the way a stroke is recognized. The original Marking Menu
uses compound strokes (unistrokes) and recognizes each level
of the menu only by the stroke orientation. When the user
makes an error on one level, that error will inevitably propa-
gate to the subsequent levels. The deeper the commands are,
the more accumulative the error may become. The Multi-
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Figure 3: Total time and error rates for gestures in different depths: blue shade indicates guided execution; yellow shade indicates recalled execution.

Stroke Marking Menu, on the other hand, separates a mark-
ing gesture into several simple ones, resulting in a higher
accuracy [11]. Although also using compound strokes, M3
attained much higher resolution than the original Marking
Menu and comparable accuracy (but at faster speed) as the
Multi-Stroke Marking Menus, probably because M3 relies on
the entire shape of the gesture in recognition and uses a sta-
tionary layout.

In sum, M3 departs from other marking menus in significant
ways, most notably its stationary layout and the use of to-
tal shapes. The findings of experiments suggest the eventual
speed and accuracy of M3 at all three depth levels of resolu-
tion are comparable to or better than those of the conventional
marking menus reported in the literature.

EXPERIMENT 2: NOVICE TO EXPERT TRANSITION
This experiment switches focus to another important aspect of
M3 Gesture Menu, and marking menus in general – learning
and specifically the transition from novice to expert behavior
through practice. Although the expectation of novice to ex-
pert progression is a critical marking menu design rationale,
its empirical support is very limited in the literature. The re-
search cited earlier were all focused on expert performance,
as we did in Experiment 1. Other research tended to focus
on user interface features that provide better navigation and
exploration to encourage learning [4, 5, 18].

The only research we are aware of that investigated the tran-
sition effect of marking menus was by Kurtenbach et al. [29].
In a longitudinal case study tested with an audio editing pro-
gram, they showed that although users switched back and
forth from Marking Menus to linear menus, they eventually
graduated to using Marking Menu that enabled better perfor-
mance. However, their evaluation was only limited to one
level of six commands.

There are worth noting important differences between M3
and traditional marking menus, which may affect their re-
spective learning. Traditional marking menus use consecu-
tive movement directions as the main memory cue, whereas

M3 uses shapes determined by both distances and directions
of the consecutive gesture segments. Although shape writ-
ing / SHARK experiments [51, 26] did show users’ ability
to memorize shapes (or “sokgraphs”), they were defined on a
static single layer layout rather than a multi-layered dynamic
layout as in M3, so it is not a sufficient indication of M3’s
recall performance.

To further strengthen the theoretical and empirical founda-
tion of marking menu design in general, and M3 in partic-
ular, we investigated how fast this transition may take place
on a two-level M3 along with Multi-Stroke Marking Menu
that also fits the mobile form factor. We compared their per-
formance metrics against a linear menu baseline. The transi-
tion from visually-guided novice to recall-based expert per-
formance has not been previously studied beyond one level
of a few commands to our knowledge. In the end, we also es-
timated the cost and benefit of learning M3 to help designers
make informed decisions.

Participants and Apparatus
We recruited 15 right-handed participants (5 female, age
ranging from 18 to 60 with the majority between 24 to 30).
All reported extensive experience with touchscreen smart-
phones, self-reporting average weekly use ranged from 5 to
98 hours (M=21.9, SD=23.0). Participants were all familiar with
linear menus, but none had prior experience with any marking
menu, nor were they aware of which technique was proposed
by us. Apparatus were the same as Experiment 1.

Task and Stimuli
After pressing a start button, participants were prompted
with a command stimulus to be activated in a two-level
menu. The command was presented as its full menu path
like “ f urniture→ chair”. To minimize the impact of per-
sonal experience, we followed similar experiments [2, 21],
using everyday objects organized into eight categories, each
containing eight objects,
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As shown in Figure 4, participants were tested on three menu
conditions: M3 Gesture Menu (M3), Multi-Stroke Marking
Menu (MM), and Linear Menu (LM):

M3 / MM initially only displayed an activation button. The
novice mode interface could be revealed by holding the but-
ton for 0.5 seconds. Participants could then either tap on an
item or slide to an item at their choice. The marking menu in-
terface could also be dismissed by tapping outside the menu
area. If participants activated a command correctly but us-
ing the novice mode, an animation of its canonical gesture
would be played to prompt them to gesture directly. The ex-
pert mode could be triggered by directly gesturing out of the
activation button. The color of the activation button would
change slightly to indicate the menu was in a different mode.

LM always displayed the items on a level, without the need
to reveal the interface or scrolling. LM also provided a back
button to navigate to the previous level.

(a) (b) (c)

Figure 4: Menu techniques: (a) M3 Gesture Menu, (b) Multi-Stroke
Marking Menu, and (c) Linear Menu. Screenshots were taken when se-
lecting terminal targets on the second-level menus with visual feedback.

Practice Trial and Successful Memory Recall
In the experiment, stimuli were presented in the unit of prac-
tice trials. A practice trial consists of one or more attempts
at activating the prompted command correctly, which we call
sub-trials. For M3 or MM, passing a practice trial required
participants to activate that command using the correct ges-
ture without revealing the menu display. In other words, par-
ticipants could execute any number of times in the novice
mode until they felt confident to try the expert mode, but
the practice trial would only end when the gesture was ex-
ecuted correctly in the expert mode. Otherwise, the experi-
ment would immediately repeat the same sub-trial. If a prac-
tice trial takes exactly one sub-trial to get to executing the
command in the expert mode correctly, we call it a successful
memory recall.

Design
Our experiment consisted of three sessions. Each session was
conducted at least one day after the previous one. A session
had three blocks. In each block, we tested one menu tech-
nique for 10 minutes. The order of menus was counterbal-
anced. Menu content was randomized for each participant.

Expanding Rehearsal Interval
For greater practice efficiency, we used expanding rehearsal
interval (ERI) to schedule the presence of stimuli [36, 51].
Each participant was assigned with one ERI scheduler for
each menu technique. Subsequent sessions resumed previ-
ous sessions’ scheduler states. The scheduler maintained two
lists: a candidate list containing the stimuli to be learned and
a rehearsal list containing the stimuli being actively rehearsed
at various rehearsal intervals. The rehearsal interval associ-
ated with a stimulus defines the time to its next scheduled
practice trial after the current practice trial was completed.
The scheduling algorithm worked as follows:

1. Initially, the candidate list contained all the stimuli and the
rehearsal list was empty. The rehearsal interval for all the
stimuli was set to zero, meaning that once a stimulus was
put into the rehearsal list, it would need to be rehearsed
immediately.

2. If a stimulus in the rehearsal list had reached the scheduled
rehearsal time, poll that stimulus for a practice trial. Oth-
erwise, randomly poll a new stimulus from the candidate
list. If the candidate list was empty, terminate the session.

3. If the practice trial for this stimulus was a successful mem-
ory recall for M3 or MM (or consisted of a single success-
ful sub-trial for LM), increase the rehearsal interval. If it
was originally zero, set to 30 seconds. Otherwise, double
the rehearsal interval.

4. If the practice trial for this stimulus was not a successful
memory recall for M3 or MM (or had an error for LM), the
rehearsal interval stayed unchanged.

5. After the practice trial was completed, put the stimulus
back to the rehearsal list.

The dynamic nature of ERI and the limit in time also means
there would be varied numbers of stimuli presented per partic-
ipant and menu. To summarise the design: 15 PARTICIPANTS
× 3 MENUS × varied number of STIMULI.

Results
Repeated measures analysis of variance and pairwise Tukey
t-tests with Bonferroni correction were used for all measures.
Trials were aggregated by the participant and factors being
analyzed. Time data were aggregated using median. Sub-
jective scores were first transformed using the Aligned Rank
Transform [50]. Due to the time limit in the experiment, dif-
ferent stimuli had different numbers of practice trials. To
align the data and preserve enough number of stimuli for each
menu technique, we chose the set of stimuli that had at least
seven practice trials. This gave us 878 stimuli in total, with
more than 250 stimuli for each menu technique. These prac-
tice trials came from different sessions for different stimuli.

Time
As shown in Figure 5, we separated all the sub-trials into
novice and expert modes and analyzed their total time (mea-
sured the same as Experiment 1) for M3 and MM, respec-
tively. We then compared them to the total time of LM, all as
a function of the number of practice trials.
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In the novice mode, we found a main effect of MENU
on total time (F2.15,30.09 = 533.53, p < .0001, η2 = .876). LM
(M=2834.63ms, SD=383.16ms) was faster than MM (M=5509.03ms,
SD=656.44ms), which was faster than M3 (M=6044.00ms,
SD=564.35ms, all p < .005). In the expert mode, we also
found a main effect of MENU on total time (F2.15,30.09 = 533.53,
p < .0001, η2 = .876). M3 (M=1107.33ms, SD=274.82ms) and MM
(M=1270.20ms, SD=495.81ms) were both significantly faster than
LM (M=2834.63ms, SD=383.16ms, both p < .0001).

Menu: M3 MM LM

To
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Practice Trial Number(a) (b)
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e 

(s
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Figure 5: Time of each practice trial by menu. The novice mode of
marking menus was slower than LM, but the expert mode was signifi-
cantly faster.

This suggests that for beginners, marking menus (M3, MM)
take longer time than linear menus to trigger a command in
their novice mode (guided by the menu display). Once the
users have transitioned to the expert mode, executing them di-
rectly through memory recall will lead to a large performance
gain in speed.

Recall Rate
To measure how fast the participants made the transition from
relying on the menu display to drawing gestures directly
through memory recall, we analyzed successful recall rates
for M3 and MM as the gestures received more practice (Fig-
ure 6a). The increase of rehearsal interval could also reflect
the number of gestures being memorized, although less direct
(Figure 6b). The recall rate was measured by the percentage
of stimuli that were successfully executed in the expert mode
without popping up the menu display in M3 or MM.

Re
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Menu: M3 MM
Gesture Recall Rate Rehearsal Interval

(a) (b)

Figure 6: Increasing gesture recall rate and rehearsal interval indicate
more gestures were being memorized with more practice.

As shown in Figure 6a, the recall rates for both menus
quickly increased. The main effect of PRACTICE on recall
rate (F3.81,53.31 = 35.83, p < .0001, η2 = .288) was significant.

Note that although the relative recall rate did not further in-
crease after fourth practice trial, the absolute number of ges-
tures remembered increased as more commands were moved

from the candidate list to the rehearsal list since the interval of
some of the successfully recalled commands increased (Fig-
ure 6b). We will return to the absolute number of gestures
remembered in the follow-up experiment.

We should also note that the learning performance scheduled
with ERI was optimized for memorizing a maximum number
of gestures within a limited time. For example, participants
practiced on average 20 different gestures for M3 in the first
session within 10 minutes. This could be different from the
user behavior in practice. In practice, users might not likely
attempt to memorize this many gestures in such a short time.

Perceived Workload
To measure the perceived task load across all three tech-
niques, we used NASA-TLX and found main effects of all
subscales (Figure 7): mental demand (F1.99,27.79 = 53.63, p <

.0001, η2 = .580), physical demand (F1.95,27.24 = 7.38, p < .005,
η2 = .170), temporal demand (F1.85,25.85 = 8.75, p < .005, η2 =

.093), effort (F2.12,29.67 = 29.59, p < .0001, η2 = .421), performance
(F2.11,29.58 = 36.44, p < .0001, η2 = .455), and frustration (F1.71,23.96 =

17.68, p< .0001, η2 = .348). As expected, LM had the lowest task
load for all subscales (all p < .005), but M3 had significantly
lower task load than MM on physical demand and frustration.
This signifies a better learning experience for M3 than MM.

M3Menu: MM LM
Ta

sk
 L

oa
d

  Mental
Demand

 Physical
Demand

Temporal
 Demand Performance Effort Frustration

Figure 7: NASA-TLX for three menu techniques.

Subjective Responses
In terms of overall preference, nine participants preferred M3,
five participants preferred LM, and one equally liked M3 and
MM. A semi-structured interview at the end of the experiment
helped us identify what had driven the participants to prefer
one menu technique over the other at a more nuanced level.

Movement. Comments from the participants suggested draw-
ing a stroke as a complete shape resulted in smoother fin-
ger movement (10 participants), less physical effort (9 par-
ticipants), and better memorability (11 participants). Partic-
ipants described the interaction with M3 to be “continuous”,
“fluid”, and “smooth”, which facilitates the development of
muscle memory (7 participants). Interestingly, two partici-
pants compared the open-loop gesture production in M3 to
word-gesture keyboards [53], as one of them said: “this is
like the gesture keyboard, once you trust it, it just works”. In
contrast, separating one continuous gesture into two strokes
as in MM could break this “flow”. Four participants attributed
this to the difficulty of retrieving the relative order of the
strokes. Eight participants considered drawing two strokes
requires more physical movement and effort. Nevertheless,
two participants suggested drawing strokes on MM was eas-
ier because they could take a break in between.
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Memorization. Eleven participants found gestures on M3 to
be easier to remember, one found MM to be easier, and the
other three indicated memorizing M3 and MM gestures re-
quires a similar effort. Few comment explained how par-
ticipants memorized M3 gestures, but many talked about the
strategies of memorizing MM gestures. Two participants re-
lated the MM strokes to the hour and minute hands of a clock.
Three participants memorized the strokes as static angles or
shapes, but acknowledged that this made it difficult to retrieve
the stroke order. Ten participants found stroke orientations
harder to memorize than shapes. Two participants suggested
MM be only used for one level because memorizing items on
the second level was too difficult.

Layout. A few participants suggested defining the menu on a
grid helps provide better user experience by making efficient
space use (1 participant), enabling compact item placement
(1 participant), and offering better perceived control ability
than the radial arrangement (1 participant).

Follow-up Experiment on Memory Recall
We conducted a follow-up experiment to explicitly measure
the number of gestures memorized after each day’s practice.
The experiment used the same format as the main experiment,
but with four sessions and an explicit recall test at the begin-
ning of the last three sessions, similar to the sokgraph exper-
iment in shape writing [51]. Ten participants were recruited
(two left-handed, three female, age ranging from 18 to 30
with the majority between 24 to 30). The recall tests evalu-
ated all the stimuli in the current rehearsal list with their order
randomized. For each stimulus, participants could make up to
two attempts to execute the correct gesture. Only the expert
mode was enabled during the test.

Attempt 1 Attempt 2

Re
ca

ll 
N

um
be

r

Session

M3Menu: MM

Figure 8: Number of recalled gestures after the first and second attempts
in the recall tests.

Memory Recall
The results are shown in Figure 8. For both menus, the num-
bers of recalled gestures were increasing after each session.
There were main effects of SESSION on recall number after
the first attempt (F1.42,12.74 = 12.89, p < 0.0005, η2 = 0.21) and the
second attempt (F1.45,13.02 = 21.78, p < 0.0001, η2 = 0.244). Post
hoc tests showed the last test had significantly more recalled
gestures than the first one for both attempts (p < .005).

After three sessions of practice (30 minutes in total, 10 min-
utes in each session), the two menus attained a similar level of
recall numbers (p > .05). With M3 and MM, participants re-
called 12.30±7.56 and 13.78±6.16 gestures after the second

attempt, respectively. In addition, the newly recalled gestures
in each test (that also retained in the next test) on average re-
ceived 6.5 and 6.3 times of practice in the training for M3 and
MM, respectively. This provides us with an estimation of the
times of practice needed before transitioning to recall-based
expert behavior.

Discussion
The two multi-session lab studies in this section showed that
through practice users could indeed transition to the recall-
based expert mode for an increasing number of commands
with both M3 and MM. The follow-up experiment revealed
that after 30 minutes of practice over three days, participants
on average could use the expert mode for over a dozen com-
mands in M3 and MM (Figure 8).

The results also showed that once transitioned to the expert
mode through practice, the total time of M3 and MM were
less than half of the total time of a comparable linear menu
(Figure 5b), clearly demonstrating the invaluable long-term
benefits of M3 and MM. In comparison to the speed limits
shown in Experiment 1, the expert speed measured here was
still just at the beginning of the expert mode, hence lower
than the limit speed measured in Experiment 1. The results
also showed the costs of learning M3 or MM. Before transi-
tioning to the recall-driven expert mode, the time of visually
tracing M3 or MM was about twice of the time of using the
familiar linear menu (Figure 5a). The workload of learning
M3 or MM was clearly higher than using a linear menu by all
NASA-TLX measures (Figure 7).

Between the more traditional multi directional-stroke Mark-
ing Menu (MM) and the novel shape-based M3, more partic-
ipants preferred M3 to LM (and MM), despite (and after) the
burden of practices during the learning sessions totaling 30
minutes for each menu system. It is important to note one-
third of the participants still preferred the linear menu after
the practice sessions.

As lab experiments, the measurements made in the study
could differ from the everyday experience in the practical use
of M3 or MM in many ways. For example, due to the ERI
schedule, the learning efficiency in these experiments could
be greater than in the wild on the basis of each command (Fig-
ure 5), but less efficient as a measure of the total number of
gestures memorized (Figure 8) since many more commands
in the rehearsal list were only practiced a small number of
times. However, we believe the experiments still captured the
essence and relative trends and patterns between techniques.

The biases or incentives of the novice to expert transition
were probably stronger if it were in practical use when
users are intrinsically motivated to improve their performance
driven by need. In our experiment where the task was artifi-
cial, the same setups provided by M3 to incentivize the transi-
tion, including the delay for showing the visual guidance and
the animation reminding users of the expert mode gestures,
were probably not enough. The experiment manipulation that
blocked users until they performed the expert technique was
to further increase the cost of relying on visual display and
making an error.
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Based on the data from the experiments we may draw a first-
order “back-of-the-envelop” estimate of the learning cost ver-
sus time-saving benefit once learned. Such estimates may
help guide future designers and researchers to judge when and
where methods like M3 Gesture Menu should replace tradi-
tional methods such as linear menus.

Let X and Y be the average of completion time in the novice
mode or learning stage of M3 and a linear menu baseline,
respectively. Let U and V be the average of completion time
in the expert mode or proficient stage of M3 and a linear menu
baseline, respectively. Let N be the average number of trials
to reach the expert mode, and M be the average number of
trials in the expert mode beyond which the time savings in the
expert mode begin to outweigh the time invested in learning
M3. In other words, the cost-benefit equilibrium point is at

(X−Y ) ·N ≤ (V −U) ·M (1)

From Experiment 2, we estimate, the “waste” of using M3 in
novice mode instead of a linear menu is

(X−Y ) = 6044−2834 = 3210 ms (2)

Also from Experiment 2, we estimate the saving of using M3
in expert mode instead of a linear menu, quite conservatively
since the expert time in Experiment 2 was just the beginning
and well above what was measured in Experiment 1, at

(V −U) = 2834−1107 = 1727 ms (3)

From Equation (1)

3210 ·N ≤ 1727 ·M (4)

M ≥ 1.85 ·N (5)

From Experiment 2, the average number of trials to reach re-
call was 6.5. Putting it at N = 10 to be conservative, we have

M ≥ 18.5 (6)

In other words, quite conservatively, a command used

N +M ≈ 29 (7)

times will begin to pay off in time savings. After that, each
new use of M3 in the expert mode would be another 1727 ms
saving.

OTHER RELATED WORK
Our work can be placed in a broader research area that uses
gestures to invoke commands on touchscreen mobile devices
(see Zhai et al. [53] for a review of gesture interfaces and
[2, 9, 38, 45] for some well-known work) – discussing this
broader area is beyond our scope. In this section, we focus
on the most relevant research, including marking menu vari-
ants proposed to offer better menu resolution, techniques that
facilitate gesture learning, techniques in a wider context that
also aim to support smooth transition to the expert method,
FastTap that is an expert menu technique also designed for
mobile form factors, and word-gesture keyboards [52] that
inspired many of M3’s design considerations.

Marking Menu Variants for Better Resolution
Early marking menu variants mostly sought to improve menu
resolution. The original Marking Menu [28, 32, 33] was
shown to have a very limited resolution, especially after
reaching the depth of three (eight targets on each level).
Multi-Stroke Marking Menu [55] separates the single ges-
ture into several simple straight marks, which effectively in-
creased the depth limit to exceed three.

Also using multiple strokes, a number of research projects
further increased the breadth limit, i.e., the number of tar-
gets on the same level. Zone Menu and Polygon Menu [54]
both increased the breadth to be over eight by considering not
only the stroke orientation but also the starting position of that
stroke about a user-defined origin. Flower Menu [5] supports
seven different curved gestures towards each orientation, ex-
panding the breadth to be even more than twenty items.

These menu designs are effective in accommodating many
items on the same level than Multi-Stroke Marking Menu, but
they also require larger interaction space to resolve the larger
number of commands. When designing for mobile devices,
however, improving menu resolution by increasing space use
becomes impractical. Our work showed that M3 not only
provides the space efficiency and menu resolution needed for
mobile, but also avoids the interaction ambiguity caused from
using multiple strokes.

Gesture Learning
Very little research in the literature directly examined the
novice to expert transition behavior of marking menus, even
though this expected transition is critical to marking menus’
main premise. Past work has mostly focused on designing
user interface features to improve the learning experience.
For example, Bailly et al. [4] provided previsualization for
novices to better explore the menu; Bailly et al. [5] proposed
to use curved gestures instead of straight marks to improve
memorability.

Related to gesture learning in general is a line of research
that provides animated gesture trails as guidance. Kurten-
bach et al. [31] presented a crib sheet where users can play
animated demonstrations of gestures. Bau and Mackay [6]
proposed OctoPocus which displays the most likely gestures
as the user is completing gesture input. It has been shown
that an appropriate amount of guidance promotes learning,
whereas excessive guidance hinders it [41, 1]. In our work,
we animated the gesture to reveal and reinforce the gesturing
option. We believe this should provide sufficient guidance in
a lab setting without becoming a hindrance, but certainly the
best form and amount of guidance need to be further studied.

Another way to aid gesture learning is to tap into spatial mem-
ory [23, 35, 47, 48, 49, 19, 39, 7]. Spatial constancy allows
users to rapidly locate target items when well practiced [13,
12, 43]. To take its advantage, we kept M3’s menu item
locations static, not fast adapting (e.g., to recency). More
generally on spatial information processing, M3, unlike other
marking menus, recognizes not only angular feature, but also
relative distances in gestures. We believe the richer total
shape spatial features could be a benefit to human memory.
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Novice to Expert Behavior Transition
In a wider context than marking menus, supporting novice to
expert behavior transition has been more extensively explored
and studied (see [14, 34, 56] for reviews). Many interaction
techniques have been proposed. For example, word-gesture
keyboards [51, 26, 52] enables better typing efficiency by
connecting individual key taps into a single stroke gesture;
ExposeHK [40] prompts hotkey information when the mod-
ifier key is being held; FastTap [23, 35, 22, 34] displays a
grid of buttons upon a finger pausing on a corner activation
button; and similarly, HandMark Menus [49, 46] reveal the
menu interface when placing a hand onto the touchscreen af-
ter a delay.

This class of interaction techniques, sometimes referred to
as “rehearsal-based interfaces” [22, 56, 34], is similar to
marking menus in four aspects regardless of their interaction
modalities. First, they all follow the Kurtenbach et al.’s re-
hearsal hypothesis [31], i.e., the novice method is the physical
rehearsal of the expert technique. Second, a cost or delay is
imposed on the novice method to nudge users towards learn-
ing or memorizing the expert commands. Third, the novice
method serves the purpose of guiding the expert, often recall-
based, method with complete visual information. Fourth, they
all provide spatial constancy to leverage the power of spatial
memory. Our work incorporated all the four common charac-
teristics of rehearsal-based interfaces.

FastTap
Among these rehearsal-based interfaces, M3 Gesture Menu
is most closely related to FastTap in terms of end-to-end ob-
jectives. FastTap and M3 were both proposed to improve the
command selection efficiency on mobile form factors. They
also split space into static hierarchical grids to provide space
efficiency and constancy. The key difference lies in their input
modalities. FastTap chunks two taps into a two-finger chord,
whereas M3 chunks a sequence of items into a single gesture.

When more than two layers are involved, FastTap needs to
temporally and sequentially compose multiple taps, whereas
M3 remains a single unistroke. The use of multiple taps
for hierarchical menus in the expert mode may introduce the
same ambiguity with Multi-Stroke Marking Menu, but less
confusing since one finger is consistently holding the acti-
vation button. FastTap may suit better when using tablets,
when the number of commands does not require multiple lay-
ers of menus, or when one hand is steadily holding the phone,
whereas M3 works well with only one hand and potentially
scales up to multi-layer menus.

One important takeaway from FastTap research is that fol-
lowing the rehearsal hypothesis alone does not guarantee the
transition to the expert technique [22, 34]. The transition may
involve a global decision change by users driven by their in-
trinsic or extrinsic motivation such as the need for improving
performance, perceived cost of error, and guidance.

Word-Gesture Keyboards
Word-gesture keyboards [52], also variably known as shape
writing or gesture typing, is closely related to this work. Al-
though conceived a decade later than marking menus, one of

the key design objectives of word-gesture keyboards, namely
seamlessly shifting the closed-loop visual tracing behavior to
the open-loop memory recall gesture behavior, is the same as
the vision of marking menus [51].

There are also major differences between shape writing and
marking menus. Shape writing uses word shapes defined by
the letter key positions on a keyboard layout to represent, en-
code, and decode information (words). In this regard, M3
is closer to shape writing than to marking menus which use
radial directions to represent information. Unlike marking
menus which “chunk” hierarchical selections into a gestural
mark, shape writing chunks a sequence of movements from
letter to letter into a word gesture.

Another difference is that word-gesture keyboards are station-
ary, so it is the user’s choice to look, less intensively as they
gain proficiency, at the graphical display of the keyboard. In
contrast, hierarchical menus including M3 are dynamic. Each
submenu is only displayed when an item on the top menu is
selected. This raises the question if the empirical research
on shape writing such as [51] that showed users could indeed
memorize the word shapes also applies to M3.

Another relevant off-shoot of shape writing is the concept of
“command strokes” [27] – issuing commands by gesture typ-
ing their names from a command key on the graphical key-
board. The obvious drawback of this approach in comparison
to M3 is the space needed to display the graphical keyboard.

CONCLUSION
In this paper, we proposed M3 Gesture Menu, a variant of
the marking menu that is defined on grids rather than radial
space, relies on gestural shapes rather than directional marks,
and has constant and stationary space use so as to fit the mo-
bile form factor. In addition, gestures in M3 are more robustly
recognized using a shape matching algorithm than aggregat-
ing stroke direction results as in conventional marking menus.

Two experiments were conducted to understand M3’s menu
resolution and novice to expert transition behavior. Com-
pared to the literature, M3 exhibited much higher resolution
than traditional Marking Menu and the revised Multi-Stroke
Marking Menu. We estimated that M3 was at least twice as
fast and twice more accurate than traditional Marking Menu
and at least twice as fast as Multi-Stroke Marking Menu at
a comparable accuracy. Furthermore, M3 was designed for
mobile phone’s relatively small screen and tested with the fin-
ger rather than the more precise stylus. Because gestures are
unistrokes, M3 does not need a dedicated, occlusive space
to disambiguate the menu interaction from other overlapping
graphical elements as Multi-Stroke Marking Menu does.

We also for the first time, to our knowledge, systematically
examined and demonstrated empirically successful user be-
havior transition from novice to expert mode. Users of M3
and Multi-Stroke Marking Menu were able to switch from
visually-guided use to recall-based gesture articulation for a
dozen commands after a total of 30-minute practice over three
days. Subjectively, most but not all users preferred M3 over
other alternatives. They found M3 to provide more fluid in-
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teraction flow, facilitate memorization of commands with ex-
pressive shape gestures, and enable more compact space use.

We also found on average it took only seven trials of use be-
fore users could switch from novice to expert behavior with
M3 and Multi-Stroke Marking Menu. There is a cost to learn-
ing these marking menus because in the novice mode, they
took a longer time to execute than a linear menu did. We
estimated the time cost and saving equilibrium point for M3
versus linear menus at about 30 trials of use, after which each
trial of use translates to estimated time savings of 1.7 seconds.
Future designer and researchers may use these first-order ap-
proximations in their design context to estimate the cost and
benefit of adopting menu innovations like M3.

In sum, by incorporating innovative features such as shape
recognition, M3 Gesture Menu offers a more practical work-
ing solution for applying marking menu concepts on to touch-
screen mobile devices. Our work also makes foundational
contributions to future menu system design and research with
empirical findings of M3 and marking menus’ resolution and
learning characteristics.
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