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Abstract
Many analytical models that mimic, in varying degree of detail, the basic auditory processes involved in human hearing have been
developed over the past decades. While the auditory periphery mechanisms responsible for transducing the sound pressure wave into
the auditory nerve discharge are relatively well understood, the models that describe them are usually very complex because they try to
faithfully simulate the behavior of several functionally distinct biological units involved in hearing. Because of this, there is a relative
scarcity of toolkits that support combining publicly-available auditory models from multiple sources. We address this shortcoming by
presenting an open-source auditory toolkit that integrates multiple models of various stages of human auditory processing into a simple
and easily configurable pipeline, which supports easy switching between ten available models. The auditory representations that the
pipeline produces can serve as machine learning features and provide analytical benchmark for comparing against auditory filters learned
from the data. Given a low- and high-resource language pair, we evaluate several auditory representations on a simple multilingual
phonemic contrast task to determine whether contrasts that are meaningful within a language are also empirically robust across languages.
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1. Introduction
The science of hearing is an interdisciplinary field that stud-
ies the perception of sound (Schnupp et al., 2011), includ-
ing speech (Moore, 2007; Young, 2007). It places a par-
ticular emphasis on studying the function of the auditory
periphery, defined between the point where the sound pres-
sure wave meets the ear and the auditory nerve (AN). This
region is thought to be of critical importance because it con-
verts continuous analog signal into discrete all-or-nothing
nerve action potentials. A simplified description of this
mechanism consists of several complex processing stages:
the pressure wave causes vibration of the eardrum, which is
passed to the cochlea. Inside the cochlea the basilar mem-
brane (BM) responds with tuned vibrations that are further
modified by the cochlear amplification feedback mecha-
nism provided by the outer hair cells (OHCs) (LeMasurier
and Gillespie, 2005). The BM motion is detected by in-
ner hair cells (IHCs) that transduce it into electric receptor
potentials that control the generation of action potentials in
the AN fibers converging on the IHCs through the release
of a neurotransmitter into the AN synaptic cleft (Meddis et
al., 2010; Manley et al., 2017).
Many models that approximate the functioning of the hu-
man auditory periphery to varying degrees of detail have
been developed over the decades. Comprehensive reviews
of the most popular ones are provided in (Lopez-Poveda,
2005; Rudnicki et al., 2015; Saremi et al., 2016; Ver-
hulst et al., 2018). The models range from phenomeno-
logical models that reproduce the overall auditory input-
output relation by employing filterbanks (Meddis et al.,
2010; Lyon, 2017), often implemented in hardware (Freed-
man et al., 2013), or transmission lines (Verhulst et al.,
2012), to detailed biophysical models (Bell, 2012; Corey
et al., 2017). Among many applications, such as cochlear
implants (Tabibi et al., 2017), the phenomenological mod-
els of human auditory periphery were shown to benefit the

automatic speech recognition (ASR) systems in noisy con-
ditions (Hemmert et al., 2004; Harczos et al., 2007; Tjan-
dra et al., 2015; Li and Prı́ncipe, 2018; Pan et al., 2018),
improve neural network-based speech enhancement (Baby
and Verhulst, 2018) and provide high-quality text-to-speech
vocoding (Irino et al., 2006).
The success of the end-to-end approaches to ASR (Tjandra
et al., 2017; Zeyer et al., 2018; Zeghidour et al., 2018) was
facilitated by the observation that traditional fixed front-
ends can be replaced by the feature extractors learned from
data by joint optimization with the rest of the deep net-
work architecture (Sainath et al., 2015; Ghahremani et al.,
2016). The learned representations outperform the tradi-
tional fixed features on many tasks (Zeghidour, 2019). This
led some to question the relevance of traditional approaches
that handcraft valuable prior knowledge (Trigeorgis et al.,
2016). However, the properties of the band pass-like fil-
ters learned by deep networks roughly correspond to human
audio-biological distribution (Tüske et al., 2014) and the re-
cent study by Ondel et al. (2019) demonstrates that human
auditory processing and data-driven methods are not neces-
sarily as divergent as they would often appear. In a machine
learning context, this observation leads us to believe that the
powerful analytical models developed by hearing science,
including the ones provided by the toolkit described in this
paper, are still very useful for informing model design and
explaining the structure of the representations learned by
black box-like data-driven approaches. Moreover, analyti-
cal models of human hearing may provide useful insights
in low and zero-resource speech and language learning sce-
narios (Dupoux, 2018), where the data scarcity can poten-
tially be alleviated by employing models incorporating rich
prior knowledge.
This paper describes EIDOS, an open-source toolkit1 con-

1https://github.com/google/eidos-audition
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Name Period Language

Auditory Toolbox 1982–1993 MATLAB
HUTear 1991–1998 MATLAB, C/MEX
DSAM 1986–2007 C

AMToolbox 1979–2017 MATLAB, C/MEX
Brian Hears 1987–2003 Python

Cochlea 2007–2014 Python, Cython
UR EAR 2004–2018 MATLAB, C/MEX

Table 1: Auditory model collections.

taining the collection of various auditory perception models
developed over the years by hearing scientists. The origi-
nal models were developed by diverse research groups us-
ing different programming languages and software design
approaches. In this work the models have been reimple-
mented entirely in modern C++ and integrated into a single
easily configurable and simple to use pipeline that repre-
sents all critical stages of the auditory periphery from the
BM to the AN. The pipeline produces auditory represen-
tations that are easy to integrate with the popular Python
machine learning toolkits (Abadi et al., 2016; Paszke et al.,
2019).
We evaluate the quality of several auditory representa-
tions offered by our toolkit on a cross-lingual phonemic
contrast detection task recently introduced by Johny et
al. (2019). The method involves training separate bi-
nary neural classifiers for several phonological contrasts,
defined in terms of phonological features, in audio spans
centered on particular segments within continuous speech.
To assess cross-linguistic consistency, these classifiers are
evaluated on held-out languages and classification quality
is reported. More often than not, phoneme inventories
and their corresponding phonemic featurizations are pro-
vided by cross-linguistic typological ontologies, such as
PHOIBLE (Moran et al., 2014). This approach can be used
to test how accurately such phoneme inventories for low- or
zero-resource languages describe the speech data at hand.
This paper is organized as follows: various auditory toolkits
developed over the years are presented in Section 2. Sec-
tion 3 provides an overview of the auditory models cur-
rently supported by our software. The core library design
features and basic usage examples are presented in Sec-
tion 4. In Section 5 we evaluate and discuss several audio
representations on the phonemic contrast task. Section 6
concludes the paper.

2. Related Work
Several collections of auditory models have been developed
over the years. The list of such collections that we review
below is in no way complete, but covers some of the most
popular and widely used pipelines for auditory processing
that support combining models from various sources. This
review does not cover the initiatives undertaken in special-
ized areas of auditory perception, such as binaural process-
ing, for which excellent reviews exist (Dietz et al., 2018).
The list of the auditory model collections of interest is
shown in Table 1 where, along with the name of each tool-
box, the years when the models were published are shown
along with the programming language(s) used to implement
them. The toolboxes vary among several dimensions. One
dimension is the year when the models were first published,

with the Auditory Toolbox being the oldest among toolkits
covered. An additional dimension is the number of sup-
ported models, with the AMToolbox and DSAM being the
most comprehensive in the list. A further dimension re-
flects the design philosophy, with some of the toolboxes fo-
cusing of reproducibility (AMToolbox and Cochlea), others
designed for efficiency (Brian Hears and DSAM), or both.

Auditory Toolbox One of the earliest and arguably the
most widely used collections of auditory models is the Au-
ditory Toolbox by Slaney (1998). The toolbox is a MAT-
LAB (Pärt-Enander et al., 1996; Moore, 2017) reimplemen-
tation of the earlier package (Slaney, 1988) written in Math-
ematica (Wolfram, 1999) and includes public-domain im-
plementations of several classical machine perception algo-
rithms from the early days of the field: the cochlear model
by Lyon (1982) that combines a series of filters that model
traveling pressure waves with Half Wave Rectifiers (HWR)
to detect the energy in the signal and several stages of Au-
tomatic Gain Control (AGC), the cochlear model by Seneff
(1988) that combines a critical band filterbank with mod-
els of detection and AGC, and the original hair cell model
by Meddis (1986) using the physiological AN parameters
from Meddis et al. (1990). Finally, the toolbox includes
the implementation of gammatone filterbank (Johannesma,
1972) – a model of psychoacoustic filtering (Moore and
Glasberg, 1983; Glasberg and Moore, 1990) based on crit-
ical bands originally proposed by Roy Patterson (Patter-
son, 1986; Slaney, 1993). Most of these implementations
have been widely used in many auditory processing scenar-
ios, reimplemented in various programming languages and
have made their way into other software.

HUTear This toolbox was developed in the Laboratory
of Acoustics and Audio Signal Processing at Helsinki Uni-
versity of Technology (Härmä and Palomäki, 2000). It is
implemented in MATLAB with the performance critical al-
gorithms written in C/MEX. In addition to some popular
algorithms from the Auditory Toolbox, such as the Meddis
IHC model, the toolbox provides the original implemen-
tations, such as the quantitative signal preprocessing and
detector model by Dau et al. (1996) and an auditory model
by Karajalainen (1996). This software is distributed under
an attribution license.

DSAM The Development System for Auditory Mod-
elling (DSAM) is a computational library designed specif-
ically for producing time-sampled auditory system simu-
lations. It was originally developed by Lowel P. O’Mard
from the Centre for the Neural Basis of Hearing (CNBH)
as a joint collaboration between University of Essex and
University of Cambridge (O’Mard, 2010). Implemented
entirely in C programming language, this library brings to-
gether many established auditory models under a flexible
programming platform. The latest DSAM version includes
eight BM response models, such as gammatone filterbank
and the dual-resonance nonlinear (DRNL) filter by Lopez-
Poveda and Meddis (2001), seven hair cell models, such
as the IHC synaptic model by Carney (1993), AN spike
generation and neuron firing models, such as the cochlear
nucleus neuron model by Arle and Kim (1991), many util-
ity and analysis facilities, multi-threading, as well as the
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support for most sound file formats. DSAM provides im-
plementations for most of the algorithms from the Auditory
Toolbox by Slaney (1998) described above and is licensed
under the version 3 of GNU General Public License (GPL).

AMToolbox The Auditory Modeling Toolbox (AMTool-
box) is likely the largest model collection for representing
various stages of auditory perception (Søndergaard and Ma-
jdak, 2013). Implemented in MATLAB/Octave this toolbox
is intended to serve as a common ground for reproducible
research in auditory modeling. Similar to DSAM, AM-
Toolbox is not just the collection of models, all the models
are implemented using strict requirements on model inter-
faces. Unlike DSAM, AMToolbox also provides a compre-
hensive testsuite and verification guidelines to ensure that
the implementations produce the results that match the re-
sults reported in the literature. Furthermore, the toolbox
provides published human data and model demonstrations.
The AMToolbox is maintained by Acoustic Research Insti-
tute (ARI) of Austrian Academy of Sciences, with project
being supported by multiple universities across Europe and
the United States. The toolbox incorporates 29 algorithms
which, unlike the other software described so far, also puts
an emphasis on models of binaural and spatial perception,
although other types of models, such as the cochlear model
of the auditory periphery by Verhulst et al. (2012), are pro-
vided as well. The toolbox is distributed under the version
3 of GNU General Public License (GPL).
Brian Hears This package is an auditory tool-
box (Fontaine et al., 2011) developed in the Python
programming language for the spiking neural network
simulator framework called “Brian” (Goodman and Brette,
2009). Integration with Brian makes it possible to model
the auditory neurons higher up in the auditory perception
chain. The salient feature of the design is vectorization,
an algorithmic strategy that consists in grouping identical
operations operating on different data. In the context
of auditory modeling, vectorization happens over the
frequency channels, which makes it possible to take ad-
vantage of heavily parallel architecture of auditory models
that exclusively rely on filterbanks. This greatly improves
the efficiency of the implementation which otherwise relies
on an interpretable language. The toolbox supports several
filterbank-based models, such as gammatone, DRNL,
gammachirp filter by Irino and Patterson (1997) and
middle ear model by Tan and Carney (2003). In addition,
modular filter design allows multiple filters to be combined
efficiently to form new models. The package is distributed
under CeCILL (from “CEA CNRS INRIA Logiciel Libre”)
Free Software License.
Cochlea This Python package contains a small collec-
tion of models of auditory periphery created by Rudnicki
and Hemmert (2014). The package allows researchers to
run and analyze a selection of three inner ear models, such
as the algorithm by Holmberg et al. (2007), which gener-
ate AN spike trains from arbitrary sound signals. The de-
sign rationale for this package is similar to AMToolbox in
that it makes it easy to run different models and to analyze
and compare them with the same methods (Rudnicki et al.,
2015). The package is distributed under the version 3 of
GNU General Public License (GPL).

Auditory StageModel BM HC Synapse Spikes

GAMMATONE-SLANEY X
GAMMATONE-COOKE X

MEDDIS1986 X
BAUMGARTE X X

SUMNER2002 X
CARFAC X X X

ZILANY2014 X
BRUCE2018 X X
ZHANG2001 X

JACKSON X

Table 2: Supported auditory models and their estimates.

UR EAR “University of Rochester: Envisioning Audi-
tory Responses” (UR EAR) is a MATLAB package with a
graphical user interface designed to run various AN models
and the higher-level auditory pathway models, such as infe-
rior colliculus (IC), developed over the years by researchers
in the University of Rochester, McMaster University and
their collaborators (Farhadi and Carney, 2019). Computa-
tion intensive models, such as the IHC and the AN models
by Bruce et al. (2018), are implemented in MEX, which
is an environment for interoperability between the C func-
tions and MATLAB. Models provided by this package are
replaced whenever a new research finding results in a re-
vised version of the existing model.

3. Overview of Supported Models
The list of auditory models currently supported by the
toolkit is shown in Table 2. The models come from mis-
cellaneous sources and differ along several dimensions, the
primary of which is the stage of auditory perception that
each model estimates: the BM, the hair cells (HC) and the
synapse between the IHC and the AN. In addition, several
models provide the estimates of AN discharge (also known
as spike generation). Some models, such as CARFAC, pro-
duce estimates for several auditory stages, while others are
highly detailed and focused on a single stage only.

Gammatone Filterbanks Historically, the gammatone
filterbanks have perhaps been the most widely used abstrac-
tions for modeling the human auditory system. They are of-
ten used as a front-end component of the cochlear models,
decomposing the stimulus into multi-channel components
mimicking the function of human cochlea. The output of
each filter in a filterbank estimates the BM frequency re-
sponse at a particular place corresponding to the center fre-
quency of the filter.
The gammatone function is defined in time domain by its
impulse response that is a product of a gamma distribution
and periodic tone (Johannesma, 1972). The gammatone im-
plementation GAMMATONE-SLANEY provided by this tool-
box follows the original version developed in (Slaney,
1998), which uses the findings of Patterson et al. (1992)
who showed that the fourth-order gammatone function pro-
duces an impulse response that provides a good fit to the
human auditory filter shapes proposed by Patterson (1986).
Gammatone filterbank is a collection of gammatone fil-
ter functions where the filters are designed in such a way
that their center frequencies are distributed across fre-
quency range in proportion to their bandwidth accord-
ing to the Equivalent Rectangular Bandwidth (ERB) scale
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described in (Moore and Glasberg, 1983; Glasberg and
Moore, 1990). Our implementation uses the ERB ap-
proximation from Glasberg and Moore (1990). The sec-
ond gammatone filterbank GAMMATONE-COOKE provided
by this toolbox derives from the implementation by Ma et
al. (2007) of the original idea of Cooke (1993), also men-
tioned in (Slaney, 1993), who used base-band impulse in-
variant transformations to dramatically improve the speed
efficiency of the original gammatone filterbank algorithm.

MEDDIS1986 The model proposed by Meddis (1986) rep-
resents one of the most popular models of mechanical-to-
neural transduction that is performed between the HCs and
the AN synapse. The model MEDDIS1986 is specified in
terms of the production, movement, and dissipation of a
transmitter substance in the region between the HC and the
AN fiber synapse (Meddis, 1988). Briefly, the HC con-
tains a quantity of the “free transmitter” q(t), which leaks
through a permeable membrane into the synaptic cleft. The
permeability k(t) fluctuates as a function of the instanta-
neous amplitude of the mechanical stimulation s(t), pro-
vided by the BM model, such as GAMMATONE-SLANEY.
The synaptic cleft contains a fluctuating amount of trans-
mitter substance c(t), part of it being continuously being
returned to the cell and part of it continuously being lost.
The cleft transmitter level c(t) relates to the free transmit-
ter quantity q(t) and permeability k(t) via a system of dif-
ferential equations. The constant model parameters (such
as replenishment rate) corresponding to physiological ob-
servations are provided in (Meddis et al., 1990). In this
model, there is a linear relationship between the instan-
taneous value of the transmitter quanta c(t) and the post-
synaptic excitation potential: the greater the quantity of the
transmitter, the higher the probability of a spike.

BAUMGARTE While historically the gammatone filter-
banks have provided a reasonable tradeoff between com-
putation efficiency and physiological accuracy, alternative,
more detailed models of peripheral sound processing were
developed as well. The BAUMGARTE is a peripheral ear
model proposed by Baumgarte (2000) which originates
from the hardware analog model of Zwicker (1986) and
its extensions provided by Peisl (Peisl, 1990; Zwicker and
Peisl, 1990). This model includes components that model
the outer, middle and inner ear structures. Both outer and
middle ears are treated as reasonably simple linear filters.
The inner ear model involves nonlinear mechanical filter-
ing, which simulates the passive cochlear hydromechan-
ics enhanced by the feedback from active OHCs provid-
ing cochlear amplification. The implementation is a one-
dimensional macromechanical model, in which the length
of a BM is divided into sections of equal length on a Bark
scale (Zwicker, 1961) and described by a system of coupled
differential equations, one equation per section. Each equa-
tion also integrates an amplifier with nonlinear feedback
that models the effect of OHCs. The parallel resonance
of each section is tuned to the BM resonance at the loca-
tion represented by that section (Baumgarte, 1997). The
system of coupled differential equations is internally repre-
sented as a collection of equivalent electrical circuits which
are simulated in the time domain by a system of wave digi-

tal filters (WDF) (Fettweis, 1986). The model is capable of
outputting the estimates (represented in terms of voltage) of
local transverse velocity of the BM as well as the excitation
of the IHCs located along its length.

SUMNER2002 This computational model of the IHC and
the AN complex (Sumner et al., 2002) is a modernized ver-
sion of the earlier IHC models, such as MEDDIS1986 model
described above. According to the authors, the purpose of
this model was to generate an accurate representation of the
input–output characteristics of the HC for arbitrary stimuli.
The main differences of this model with MEDDIS1986 are as
follows: First, the model proposed by Sumner et al. (2002)
takes into account populations of medium (MSR) and low
(LSR) spontaneous rate fibers in addition to high (HSR)
spontaneous rate ones traditionally considered by the ear-
lier models.2 Second, the model incorporates a modified
version of the transduction of BM motion into receptor po-
tentials originally developed by Shamma et al. (1986). In
addition, the transmitter release rate, or permeability, k(t)
of the original MEDDIS1986 model is made more sophis-
ticated by taking into account the model of calcium con-
centration. Finally, in SUMNER2002 model the release of
transmitter into the cleft is described by a random pro-
cess N(n, ρ) describing probabilistic transport of transmit-
ter quanta. Each of n possible events has an equal probabil-
ity, ρdt, of occurring in a single simulation epoch (Sumner
et al., 2003).

CARFAC The cascade of asymmetric resonators with
fast-acting compression (CARFAC) model is based on a
pole–zero filter cascade (PZFC) model of auditory filter-
ing combined with a multi-time-scale coupled automatic
gain control (AGC) network (Lyon, 2011). The model dif-
fers from other cochlear models in its application of cas-
caded, rather than parallel, filterbank which is well suited
for modeling the traveling waves in the cochlea. In a PZFC
filterbank, each filter stage models a segment of a non-
uniform distributed system corresponding to a single sec-
tion along the cochlear partition. The stage transfer func-
tion is a pole–zero approximation to the transfer function
corresponding to the local complex wavenumber (Lyon,
2011; Lyon, 2017). The PZFC stages provide a variable
peak gain via a variable pole damping. The pole damping
is adjusted by slowly varying feedback control signals from
the automatic gain control (AGC) smoothing network that
mimics the feedback from the OHCs. The overall architec-
ture is very efficient, with several existing hardware imple-
mentations (Thakur et al., 2014; Singh et al., 2018; Xu et
al., 2018). Our implementation provides a facade over an
existing open-source CARFAC library (Lyon, 2011). The
model is capable of producing estimates of BM displace-
ments, OHC control signals and neural activity patterns
(NAPs). According to Lyon (2017), the NAPs can be used
as an estimate of average instantaneous AN firing rates.

ZILANY2014 This particular model is derived from a
model of the auditory periphery developed by Zilany et
al. (2014), which is a more physiologically accurate ver-
sion of the earlier phenomenological models of the synapse
between the IHC and AN developed by the researchers at

2Our implementation only supports HSR fibers at the moment.
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McMaster and Rochester Universities (Zilany et al., 2009;
Ibrahim and Bruce, 2010; Zilany et al., 2013). In this tool-
box, ZILANY2014 provides the component that forms the
front-end of the original model corresponding to the mod-
els of the middle ear (ME) and the IHC originally described
by Zilany et al. (2009). The input to the ME is an instanta-
neous pressure waveform of the stimulus (in pascals) sam-
pled at 100 kHz. The ME filter is followed by three parallel
filter paths: with C1 and C2 filters in the signal path and
a broad-band filter in the control-path. The combined re-
sponse of the two transduction functions following the C1
and C2 filters provides the input to a IHC low-pass filter
the output of which can drive the IHC-AN models. The pa-
rameters of the filters used in ZILANY2014 are adjusted ac-
cording to the BM tuning values described by Ibrahim and
Bruce (2010) and parameters for fitting the model to the
human data based on (Glasberg and Moore, 1990; Green-
wood, 1990; Pascal et al., 1998; Shera et al., 2002) are pro-
vided as well.

BRUCE2018 A phenomenological model of the synapse
between the IHC and the AN by Bruce et al. (2018) re-
tains the ZILANY2014 model described above as the periph-
eral front-end that drives the synapse. The synapse and the
spike generation model provided by the BRUCE2018 model
improves upon the original approach described in (Zilany
et al., 2009; Zilany et al., 2014). The first component in
the model is a gently saturating nonlinearity followed by a
model of power-law dynamics using two parallel paths, fast
and slow. Power-law adaptation describes an adaptation
process of the AN fibers to the varying stimuli that contin-
ues to adapt no matter the length of the stimulus rather than
having fixed time constants (Drew and Abbott, 2006). This
presynaptic adaptation portion of the model also includes
the fractional Gaussian noise (fGn) model by Jackson and
Carney (2005) that takes into account the observation that
the spiking probability fluctuates over time and depends on
the long-term history of spike times. The synaptic portion
of the model includes a detailed adaptive model of neuro-
transmitter release and replenishment at the four synaptic
vesicle docking sites, described in detail by Bruce et al.
(2018), who report this model to be a more accurate fit for
the available physiological data and describe the improve-
ments in several measures of AN fiber spiking statistics.

Spike Generation In addition to the BRUCE2018 synap-
tic model described above that includes a spike generation
component, this toolbox supports two further spike gen-
eration algorithms. The first spike generation algorithm
ZHANG2001 is part of a phenomenological model for the
responses of AN fibers developed by Zhang et al. (2001).
In this model the discharge times are produced by a re-
newal process that simulates a nonhomogeneous Poisson
process driven by the output from the synapse. The time-
dependent arrival rate of the Poisson process R(t) is de-
fined via the synapse output s(t) and the synapse discharge
history H(t), modeled by two exponentials, per Wester-
man and Smith (1988). The parameters for refractoriness
and other constants were adjusted by the authors to fit the
physiological data. The other spike generator JACKSON

provided by this toolbox is derived from the original im-
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Figure 1: Schematic depiction of an auditory pipeline.

plementation by Jackson (2007). In terms of its function
this generator is very similar to the ZHANG2001 discharge
model but is significantly more computational efficient due
to two main performance improvements: the use of the
time-transformation method for simulating a nonhomoge-
neous Poisson process, as described by Jackson and Car-
ney (2005), and avoiding the computation of the relative
refractory ratio from scratch at each time bin by using run-
ning approximations to the differential equations of which
the exponentials in the relative refractory equation are so-
lutions (Jackson, 2007).

4. Design Features and Usage
Our toolkit consists of an engine and the corresponding
tools for running the auditory pipeline over the supplied
stimulus, storing the response (we refer to this process as
feature extraction) and visualizing it. The engine and fea-
ture extraction are written in C++, while the visualization
component is implemented in Python.
The engine defines the necessary interfaces for implement-
ing the auditory pipeline which can be thought of as a se-
quence of auditory stages, or models, shown in Table 2.
Each model is capable of outputting responses of one or
more types and the implementation logic ensures that each
model can receive the inputs of the valid type from the pre-
vious stage in the pipeline. For example, the BM displace-
ments can be used to estimate the transmembrane potentials
across the IHC, but not the other way around. A simpli-
fied depiction of the auditory pipeline, with the outputs of
each stage visualized, is shown in Figure 1. The models
used in this pipeline include BAUMGARTE model for esti-
mating the BM displacements and IHC response, the SUM-
NER2002 model for the AN synapse rate probabilities and
the spike discharge estimates from 2000 HSR fibers from
the ZHANG2001 model.
The toolbox is structured along simple lines depicted in
Figure 2. There are three main directories. The direc-
tory build contains the necessary scaffolding for build-
ing and testing the dependencies. The directory audition

contains the pipeline and configuration parser implementa-
tions, as well as main tools and model tests. In addition, this
directory contains the CARFAC model (denoted by a blue
oval shape in Figure 2). Finally, the third party direc-
tory houses most of the auditory model implementations.
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Figure 2: Toolbox directory layout.

1 # Download the toolbox.
2 git clone https://github.com/google/eidos-audition.git
3 cd eidos-audition
4 # Build the libraries, tools and tests.
5 bazel build -c opt ...
6 # Run the tests.
7 bazel test -c opt ...

Table 3: Setting up the toolbox.

It contains five subdirectories, whose names correspond to
either the original name of an author, the university lab or
name of the toolkit where the original implementation is
found. For example, the MEDDIS1986 model is located un-
der the amt directory which stands for Auditory Model-
ing Toolbox, while the subdirectory bruce carney houses
several models developed by Ian Bruce, Laurel Carney and
their colleagues in their respective university labs. In ad-
dition to the code, each subdirectory contains the LICENSE
file that contains the license for the original implementation
from which our code derives. Further information about
the models can be found in README files accompanying the
code.
The toolbox is hosted on GitHub open-source repository
that uses Git version control system (Blischak et al., 2016).
The toolbox uses the flexible Bazel framework (Google,
2019) for building its dependencies, libraries, and tools in
both C++ and Python. Bazel is also used to build and invoke
the unit and integration tests which are implemented using
Google Testing and Mocking Framework (Google, 2010).
The sequence of steps for fetching the toolbox, building it
and running the provided unit and integration tests is shown
in Table 3.
As was mentioned above, the toolbox consists of three
functional components: the pipeline, the feature extrac-
tor and the visualizer. The auditory pipeline is imple-
mented using Google Protocol Buffers, which is a platform
and language-neutral framework for serializing structured
data (Google, 2008). The added benefit of using the proto-
col buffers is a simple and flexible configuration language
and the built-in parser for instantiating the pipeline from
its textual specification. Given the auditory stimulus (in
PCM RIFF format) and a pipeline configuration provided

1 # Compute BM response.
2 DIR=eidos/audition
3 cd eidos-audition
4 bazel-bin/${DIR}/auditory feature extractor --helpshort
5 bazel-bin/${DIR}/auditory feature extractor \
6 --waveform file test.wav \
7 --config proto file ${DIR}/configs/bm carfac.textproto \
8 --output file bm.npy --num channels 251
9 # Visualize the response.

10 bazel-bin/${DIR}/visualize auditory signals \
11 --input signal file bm.npy --color map gray r

Table 4: Example: Computing the BM response.

as a simple string list of model names or in a protocol
buffer format, the auditory feature extractor util-
ity can be used to instantiate the pipeline and process the
provided stimulus, storing the outputs in NumPy numeric
format (Van der Walt et al., 2011) suitable for processing
by various machine learning toolkits in Python (Pedregosa
et al., 2011; Abadi et al., 2016; Paszke et al., 2019). An
output of the last stage only can be saved by providing the
npy extension for the output file name. The outputs from
all auditory stages in the pipeline can be saved by provid-
ing the npz extension. Finally, the outputs can be visu-
alized using the visualize auditory signals utility.
This process is demonstrated in Table 4, where a stimu-
lus provided in test.wav is processed using the pipeline
in bm carfac.textproto consisting of a single CARFAC
model configured to provide the BM response only.
Since this toolkit provides different front-end models for
processing the audio stimuli for converting them into the
estimates of BM displacement, these implementations im-
pose different requirements on the input signal. The CAR-
FAC and GAMMATONE models can process signals at 16
kHz sampling rate and above, while the BAUMGARTE model
requires a signal with a sampling rate of 100 kHz. The
ZHANG2001 model can produce accurate middle-ear esti-
mates for sampling rates between 100 kHz and 500 kHz.
Providing an input at the sampling rate that a model cannot
process will result in an error message, as the current ver-
sion of the toolkit does not support automatic resampling.

Licensing Because the toolkit contains work derived
from the original implementations available under different
licenses, we chose to distribute the software under open-
source version 3 of GNU General Public License (GPL),
which is the most restrictive (in terms of commercial use)
license among the original algorithms.

5. Experiments
Previously, we introduced the methodology for evaluat-
ing the cross-lingual consistency of phonological features
in a multilingual setting (Johny et al., 2019). Whether
grounded in acoustic, articulatory or phonological process
properties, phonological features are the recurrent elemen-
tary components that form the sound systems of world’s
languages and describe the individual phonemes in a suc-
cinct way (Clements, 2009). We hypothesized that in order
to consider a phonemic contrast to be consistent or robust
across languages, it needs to be easily predicted on held-
out languages. We performed classification experiments on
a wide range of phonemic contrasts in multiple languages.
Here, we focus on similar experiments on a smaller number
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of tasks on different data, but using a much wider range of
acoustic features provided by our toolkit.

Problem Formulation A particular phonemic contrast is
presented as a binary classification problem. An instance
of this problem consists of a span of a speech signal (e.g.
a vowel in surrounding context) and a positive or negative
label (e.g. front vowel vs. back vowel). We train a classi-
fier on a (possibly multi-speaker) dataset for one language
and hold out another language. We then evaluate the trained
classifier on the held-out data and report its quality in terms
of Area Under (resp. Over) the receiver operating charac-
teristic Curve (AUC, resp. AOC). If the binary contrast in
question is cross-linguistically consistent, we expect it to
be readily predictable on a held-out language (Johny et al.,
2019).
We focus our experiments on the Bengali and Spanish lan-
guage pair that demonstrates really well the subtle con-
founding factor, which is due to well-known mismatches
in how different languages group allophones under differ-
ent phonemes. The aspiration is contrastive in Bengali, but
not in Spanish. In Bengali, the phoneme /p/ (unaspirated)
contrasts with an aspirated phoneme, which has [ph] and [f]
as allophones (our Bengali corpus uses /f/ as the phoneme
label). In Spanish, the phoneme /p/ is unmarked for aspira-
tion and could be realized as [ph], which contrasts with the
phoneme /f/. That means in a given multilingual dataset we
may find [f] and [ph] sounds labeled differently depending
on language, because we are working with phonemic rather
than phonetic transcriptions.
The first experiment, denoted P-F, deals with classifying the
phonemic contrast between the labial phonemes /p/ (posi-
tive class) and /f/ (negative class) across Bengali and Span-
ish. This experiment is interesting because it validates the
robustness of phonemic labels /p/ and /f/ in the presence
of conflicting allophone [ph] mentioned above. The sec-
ond experiment, denoted VOICED, deals with classifying the
voicing contrast between the labial sets { /p/, /f/ } (positive
class) and their voiced counterparts { /b/, /bh/ } (negative
class). Each experiment has four possible configurations:
training and testing on disjoint sets of the same language
(bn–bn and es–es), and training on one language while
testing on a heldout language (bn–es and es–bn).
Corpora Details For our experiments, we used a propri-
etary high-quality corpus of Castilian Spanish from a sin-
gle female speaker that consists of around 20,000 utter-
ances and a crowd-sourced multi-speaker corpus of Ben-
gali (as spoken in India) that includes around 8,000 ut-
terances from 23 female volunteer speakers. The original
audio for both languages was recorded at 48 kHz. The
speech data was downsampled to 16 kHz and then param-
eterized into HTK-style Mel Frequency Cepstral Coeffi-
cients (MFCCs) (Ganchev et al., 2005) using a 10 ms frame
shift. The dimension of the MFCC parameters is 39 (13
static + ∆ + ∆∆ coefficients). To determine the phoneme
time boundaries, the MFCCs were force-aligned with the
corresponding transcriptions independently for each lan-
guage (Young et al., 2006).

Acoustic Representations We chose four auditory rep-
resentations provided by our toolkit for the experiments:

the two BM displacement measurements provided by CAR-
FAC and GAMMATONE-SLANEY models, and the measure-
ments of the IHC transmembrane potentials provided by
BAUMGARTE and ZILANY2014 models that were introduced
in Section 3. We compare the performance of acoustic fea-
tures derived from these models against two baselines: the
MFCC parameters, described above, and the mel-frequency
filterbank features, denoted MEL-FBANK, that are often
preferred to MFCCs, which are strongly decorrelated be-
cause their computation includes an additional discrete co-
sine transform (DCT) (Ahmed et al., 1974). The dimension
of MEL-FBANKs is 120 (40 static + ∆ + ∆∆ coefficients).
The four auditory representations provide frequency-
selective features at the full sampling rate of the stimu-
lus, which is computationally expensive. Similar to the
approach taken by Hemmert et al. (2004), we temporally
integrated the root-mean-square energy of each channel us-
ing using a Hann window (25 ms width) advanced in 10 ms
steps in order to obtain the same number of frames as for the
baselines. For CARFAC and GAMMATONE-SLANEY models,
the analysis is performed at 16 kHz. For BAUMGARTE and
ZILANY2014, the analysis was performed at 112 kHz, hence
downsampling to 16 kHz was required prior to temporal in-
tegration. No spectral integration across channels was per-
formed, instead a simple decimation was applied to reduce
the frequency resolution, when required.

Experiment Setup A single training example consists of
40 frames. It is constructed by stacking the frames corre-
sponding to the particular phoneme plus its right and left
context frames, possibly padding with zeros if the context
is too short. Phonemes longer than 40 frames are ignored.
The training and evaluation sets in our experiments always
consist of disjoint sets of languages and speakers. For each
dataset we limit the number of training examples to 50,000
and evaluation examples to 10,000. In order to keep the
overall set of training labels balanced, with equal number
of positive and negative examples, we employ a simple
under-sampling approach (Japkowicz and Stephen, 2002;
Krawczyk, 2016). If enough examples are available, we
sample equal number of them from every language in the
training set. Conversely, an imbalance in a language is pre-
ferred over the lack of training examples. It is important
to note that we do not guarantee that the number of training
examples is the same across speakers of a language. We use
mean and standard deviation computed over the training set
input features to scale the training as well as evaluation sets.

Model Architectures We employ vanilla feed-forward
Deep Neural Network (DNN) binary classifier from Tensor-
Flow (Abadi et al., 2016), further tuning the model hyper-
parameters for maximizing the AUC. A simple two-layer
architecture with 200 Softplus (Zheng et al., 2015) units
in each layer, dropout probability of 0.2 (Srivastava et al.,
2014), Adadelta optimizer (Zeiler, 2012) and the decaying
learning rate of 0.6 with a large batch size of 6000 (Smith
et al., 2017) were found to perform well across our experi-
ments.
We also used a Convolutional Neural Network
(CNN) (Abdel-Hamid et al., 2014) architecture. The
network has two CNN layers, where each layer consists of
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Features Channels Model P - F VOICED

bn–bn bn–es es–bn es–es avg bn–bn bn–es es–bn es–es avg

CNN 1.17 0.16 6.02 0.00 1.84 0.85 1.31 2.38 0.11 1.16
MFCC 39 DNN 2.11 0.07 3.70 0.00 1.47 0.71 1.90 2.55 0.04 1.30

CNN 0.05 0.52 7.70 0.00 2.07 0.48 1.11 2.92 0.03 1.14
MEL-FBANK 120 DNN 1.82 0.04 7.08 0.00 2.24 0.63 1.82 3.02 0.06 1.38

CNN 1.14 0.40 9.04 0.06 2.66 0.88 0.85 2.89 0.09 1.1864 DNN 3.22 1.71 12.64 0.11 4.42 0.54 3.58 4.85 0.05 2.26
CNN 2.34 0.31 9.65 0.00 3.08 0.44 0.51 2.23 0.11 0.82GAMMATONE-SLANEY

32 DNN 2.87 0.47 10.05 0.06 3.36 0.68 1.67 1.68 0.27 1.08
CNN 0.81 0.19 8.11 0.00 2.28 0.37 0.67 2.70 0.09 0.9683 DNN 0.59 0.26 8.41 0.00 2.32 0.52 2.80 1.80 0.02 1.29
CNN 1.98 0.40 7.98 0.00 2.59 0.59 0.74 1.33 0.06 0.68BAUMGARTE

50 DNN 2.30 0.22 8.21 0.00 2.68 0.70 2.47 1.32 0.03 1.13
CNN 2.54 0.51 7.83 0.00 2.72 0.69 0.99 2.64 0.02 1.09

CARFAC 65 DNN 4.39 0.80 9.11 0.00 3.57 0.57 1.96 2.14 0.14 1.20
CNN 2.44 0.15 13.29 0.00 3.97 0.50 0.77 3.88 0.08 1.3164 DNN 7.72 0.75 16.63 0.06 6.29 0.44 2.10 4.03 0.04 1.65
CNN 1.11 0.17 13.81 0.00 3.77 0.65 1.15 2.56 0.13 1.12

ZILANY2014 32 DNN 6.69 0.77 14.73 0.01 5.55 0.57 2.42 1.86 0.02 1.22

Table 5: Bengali–Spanish phoneme asymmetry experiments evaluated using AOC metric.

two-dimensional convolution layer (Abdel-Hamid et al.,
2013) with 32 filters with receptive field of 3×3, followed
by a max-pooling layer with a pooling region of 2×2 and a
stride of 2. The CNN layers are followed by a dense layer
with 200 ReLU (Zeiler et al., 2013) units. Batch normal-
ization was applied after each layer in the network (Ioffe
and Szegedy, 2015). Similar hyperparameters to DNN
were used, with a smaller batch size of 400 and a decaying
learning rate of 0.4.

Evaluation Results and Discussion Each classification
experiment is repeated three times and the results are av-
eraged. For each classification, we measure the area under
the ROC curve (AUC) numbers for every pair of training
and evaluation languages, including a language against it-
self. Since AUC values are generally high, we instead re-
port Area Over the Curve (AOC) values for better readabil-
ity. Classification results for cross-linguistic consistency of
the two contrasts P-F and VOICED are shown in Table 5 for
each of the six acoustic feature types. The averages over all
four language combinations for each contrast are shown in
avg columns. For some of the acoustic representations we
produced the acoustic features at two frequency resolutions
(shown as the number of channels in the second column).
The third column shows the type of the binary classifier that
we trained. Best classification results are shown in bold.
The P-F contrast only distinguishes between the phonemic
labels /p/ and /f/. Both languages have phonemes that are
labeled /f/ and /p/, but as discussed earlier [ph] is an allo-
phone of /f/ in Bengali and an allophone of /p/ in Spanish.
As can be seen from Table 5, this contrast is only truly ro-
bust between Bengali and Spanish (despite the conflicting
status of the allophone [ph]) with the DNN model trained on
MFCC acoustic features. This confirms the previous find-
ings by Johny et al. (2019), who only used this type of
features in their experiments. For all other acoustic con-
figurations, the AOC values are relatively too high when
predicting Bengali from the Spanish data (es-bn). It is
worth noting that for this experiment, none of the sophisti-
cated auditory configurations outperform the baseline fea-
tures, although the CNN models trained on the 50-channel
BAUMGARTE features and the 65-channel CARFAC features
perform slightly worse than the MEL-FBANK baseline.

The VOICED contrast distinguishes between voiced and un-
voiced labial sets ({ /b/, /bh/ } and { /p/, /f/ }). As can be
seen from Table 5, this contrast is generally robust and
is predicted consistently by all the configurations. Fur-
thermore, in this experiment there is at least one config-
uration corresponding to each of the four auditory repre-
sentations that outperforms the MFCC and MEL-FBANK
baselines, although not by a big margin. It is interest-
ing to note that there is no clear “winning” representation,
although the CNN architecture trained on the 50-channel
BAUMGARTE features performs the best according to the av-
erage of the four corresponding AOC metrics. Moreover,
the four ZILANY2014 configurations, which have the worst
performance in resolving the P-F contrast, can detect the
VOICED contrast reliably.

6. Conclusion and Future Work
We presented an auditory modeling toolkit designed for
easy combination of various models of human auditory pe-
riphery in a flexible processing pipeline. Ten models of au-
ditory periphery are currently supported. These range from
the popular GAMMATONE filterbanks, also provided by soft-
ware similar to ours, to the less frequently used peripheral
BAUMGARTE model. Some models are highly specialized to
model one particular biological mechanism, such as SUM-
NER2002, while others, such as CARFAC provide simula-
tions for most of the critical mechanisms active in the audi-
tory periphery. The toolkit supports some interesting, and
to the best of our knowledge not explored in the literature,
combinations of models in a single pipeline, such as com-
bining the BAUMGARTE estimates of IHC transmembrane
potentials with BRUCE2018 synaptic model. We demon-
strated the effectiveness of the resulting auditory represen-
tations on a simple phonemic contrast detection task, where
they often outperform the baselines.
Future work will focus on supporting more auditory mod-
els. In addition, no special effort was undertaken to fine-
tune various model combinations, which can be problem-
atic because different models sometimes require their in-
puts to be scaled appropriately. Finally, we plan to broaden
the scope of experiments to evaluate more phonemic con-
trasts on languages less-resourced than Bengali.
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