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Abstract. Humans possess an innate ability to identify and differenti-
ate instances that they are not familiar with, by leveraging and adapting
the knowledge that they have acquired so far. Importantly, they achieve
this without deteriorating the performance on their earlier learning. In-
spired by this, we identify and formulate a new, pragmatic problem set-
ting of NCDwF: Novel Class Discovery without Forgetting, which tasks
a machine learning model to incrementally discover novel categories of
instances from unlabeled data, while maintaining its performance on the
previously seen categories. We propose 1) a method to generate pseudo-
latent representations which act as a proxy for (no longer available) la-
beled data, thereby alleviating forgetting, 2) a mutual-information based
regularizer which enhances unsupervised discovery of novel classes, and
3) a simple Known Class Identifier which aids generalized inference when
the testing data contains instances form both seen and unseen categories.
We introduce experimental protocols based on CIFAR-10, CIFAR-100
and ImageNet-1000 to measure the trade-off between knowledge reten-
tion and novel class discovery. Our extensive evaluations reveal that exist-
ing models catastrophically forget previously seen categories while iden-
tifying novel categories, while our method is able to effectively balance
between the competing objectives. We hope our work will attract further
research into this newly identified pragmatic problem setting.

Keywords: Novel Class Discovery, Catastrophic Forgetting, General-
ized Inference, Regularizers, Pseudo-latent Generation and Replay.

1 Introduction

Over the last decade, deep learning algorithms have achieved remarkable per-
formances on multiple computer vision tasks [15,37,50,7,45], even outperforming
humans on many of them. These algorithms are specialised to work well in their
strictly designed problem setting, but are brittle when the assumptions are re-
laxed. We closely analyse one such setting here. Current image classification
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Fig. 1: Our existing knowledge about birds helps us to easily identify two groups in
these images even if we have not seen images of these bird species before. At the same
time, unsupervisedly discovering these novel categories does not make us forget about
previously seen categories. Motivated by this observation, we propose NCDwF setting
and a methodology to instill this capability into machines.

models assume availability of training examples of all classes of interest. Once
trained and deployed, it recognises instances of classes that it has been taught.
An instance outside this set of classes may be wrongly classified into one of the
known classes often with high confidence [48,62,46,18]. In contrast, humans can
easily identify instances that they do not know, and even differentiate among
them. To aid our discussion, let us glance through the set of images in Fig. 1.
We naturally concur the following: “These birds are not like anything that we
have seen before, but these images do seem to belong to two distinct categories”.
Importantly, we are able to do this grouping without having access to training
images from other objects that we have learnt during our lifetime. Secondly, the
ability to do this grouping does not impede us from identifying other kinds of
birds that we are already familiar with. Lastly, we achieve this without explicit
information that these instances are from novel categories. Motivated by this
intrinsic ability of humans, we propose a problem setting, which we refer to as
NCDwF: Novel Class Discovery without Forgetting.
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Fig. 2: Summary of NCDwF setting.

An NCDwF model learns in phases.
In the first phase, the model is super-
vised to learn a few set of classes. In the
subsequent phases, the model should
automatically identify instances of
novel categories from an unlabeled
pool containing instances from a dis-
joint set of classes. While doing so,
model does not have access to labeled
data from the first phase. At any point
in time, the model should classify a
test instance to one of the labeled
or unlabeled classes, without any task
identifying information. Here “task”
refers to whether the test instance be-
longs to a (known) labeled class or a (novel) unlabeled class. We illustrate the
problem setting in Fig. 2. After learning about Bird, Dog and Elephant in the
first phase, a NCDwF model identifies instances from previously known classes
(eg. Bird), along with grouping instances of novel categories.



Novel Class Discovery without Forgetting 3

The NCDwF setting has wide practical applicability: 1) Consider the recogni-
tion component of a robot operating in an open-world. It can be trained in-house
with annotated data. Once deployed, it would be of immense value if it can auto-
matically group unknown instances into different groups, along with consistently
identifying instances that it has been trained with. 2) Equally interesting would
be an online fraud detection system. It can also be trained with a set of known
fraud patterns, but it would be hard to speculate emerging frauds. An incremen-
tal class discovery model can not only identify novel frauds, but also group them
separately, alongside identifying known fraud types, adding immense practical
utility. Labeled data that was used to train both these models in-house cannot be
accessed while identifying novel instances due to storage and privacy concerns.

NCDwF is closely related to Novel Class Discovery (NCD)[19] but it extends
NCD in several key aspects. First, existing NCD methods assume access to both
labeled and unlabeled data at training time, which is unlikely to hold for many
real applications. Second, at test time, current NCD methods assume access to
the “task” information, i.e., the information whether an unlabeled instance is
from a labeled class or not. In NCDwF, we relax these assumptions to propose
a more pragmatic extension to NCD setting, mirroring real world demands.

Our methodology subtly makes use of the classifier trained on the labeled
data to reduce forgetting and improve class discovery. To make up for the lack
of labeled examples from previous classes during the unsupervised novel class
discovery phase, we identify regions in the latent space by “inverting” the clas-
sifier’s discriminative information. Additionally, we ensure that these inverted
pseudo-latent representations are close to the true class representations as ex-
plained in Sec. 3.2. These class specific pseudo-representations can be replayed
along with unlabeled data to address forgetting. We note that this method is
cheaper than the generative modelling alternatives, and does not require any
labeled image to be stored and replayed. In Sec. 3.3, we show that maximizing
the mutual information between the labeled logits and the unlabeled logits acts
as an effective regularizer to enhance class discovery. The proposed setting calls
for a generalized, task-agnostic inference where a test instance may belong to
labeled or the unlabeled classes, and such identifying information would be ab-
sent during inference. We propose to learn a Known Class Identifier to help us
with this discrimination in Sec. 3.4.

To summarize, our key contributions are as follows:

– We propose a pragmatic generalization to the NCD setting called Novel Class
Discovery without Forgetting (NCDwF).

– We introduce an effective method which unsupervisedly discovers novel classes,
while retaining performance on the labeled classes used to initialize the model.

– We introduce experimental setting and evaluation protocol for the new setting.
– When compared with prominent class-discovery methods [16,19,60] adapted

to our proposed setting, our methodology achieves improved class-discovery
performance with significantly less forgetting.
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Table 1: We summarise related problem settings here. We note that Novel Class
Discovery without Forgetting is most pragmatic when compared with the others. X, ×
and − indicates yes, no, and not-applicable respectively. More discussion in Sec. 2.1.

Characteristics (→) Data from a future step:

Settings (↓) can contain disjoint
set of classes.

need not have
side information.

can make use of
a model bootstrapped

with labeled data.

can be fully
unlabeled.

Semi-supervised Learning × − X −
Zero-shot learning X × X X
One / Few-shot learning X × X ×
Clustering − − × X
Incremental Learning − X − ×
NCDwF X X X X

2 Related Works

Here, we analyse how NCDwF differs from existing related settings, followed by
a survey of research efforts in Incremental Learning and Novel Class Discovery.

2.1 Relation with Existing Settings

We systematically analyse how our proposed setting is related to research efforts
in related problem spaces in Tab. 1. NCDwF methods incrementally discover
novel category of instances from an unlabeled pool by utilizing the knowledge
from a disjoint set of labeled instances. At inference stage, the model should be
consistent in classifying instances to any of labeled or unlabeled classes, without
any task identifying information. In semi-supervised learning approaches [10,51],
the labeled and unlabeled data comes from the same set of classes. Zero-shot
learning methods [54,42] require prior knowledge of extra semantic attribute in-
formation about the unlabeled classes. Few-shot learning methods [4,57,47] addi-
tionally require a few of the unlabeled instances to be labeled. Similar instances
are grouped together by clustering algorithms [56,14], but they cannot make use
of labeled instances from a disjoint set of classes. Incremental learning methods
[41,11,27] learn a single model across tasks, but data for each incremental task is
fully annotated. Methods that perform out-of-distribution detection [32,38] and
open-set learning [46,18] identify instances significantly different from the train-
ing data distribution as novel samples, but do not identify sub-groups within
these identified instances automatically. To the best of our knowledge, the pro-
posed setting has minimal assumptions and is most pragmatic, when compared
to these settings.

2.2 Incremental Learning

The core focus of incremental learning methods is to alleviate the catastrophic
forgetting of neural networks [17,36], when learning a single model across a se-
quence of tasks. Regularization based methods [31,41,9,53,13,34] ensure that the
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parameter adaptations for the new task will be optimal for all the tasks learned
so far. Another kind of approach either stores or generates exemplar images for
all the tasks introduced to the model so far and replays them while learning
a new task [41,34,6,27]. This ensures consistency across all tasks. Dynamically
expanding and parameter isolation methods [44,40,39,1,33] form a third class of
methods to address forgetting. All these methods require access to labeled in-
stances for all the tasks. In contrast, Novel Class Discovery without Forgetting
models identify novel categories from unlabeled data which the model encoun-
ters incrementally - without forgetting how to identify instances in the labeled
classes which were initially used to bootstrap the model.

2.3 Novel Class Discovery

Earlier methods like MCL [25] and KCL [24] for general transfer learning across
domains and tasks meta-learn a binary similarity function from the labeled data
and use it to discover classes in the unlabeled data. DTC [20] formalized the
problem of Novel Class Discovery and introduced a method based on Deep Em-
bedded Clustering [55] for NCD, by pre-training it on the labeled data followed
by learning-based clustering. RS [19] first pretrains the model on the labeled and
the unlabeled data with self-supervision and uses ranking statistics to generate
pseudo-labels for learning the novel categories. This has been further extended
by Zhao and Han [59] to further take local spatial information into account. NCL
[60] introduces contrastive learning and OpenMix [61] uses a convex combination
of labeled and unlabeled instances to enhance class discovery. UNO [16] learns a
unified classifier which identifies labeled and unlabeled instances using ground-
truth labels and pseudo-labels respectively. They also introduce a task-agnostic
evaluation protocol. Jia et al. [26] proposed to leverage contrastive learning with
WTA hashing to discover new categories in videos and images.

Existing methods for NCD require access to labeled and unlabeled instances
together to discover novel categories, which limits their practical applicability.
Most of these methods also assume the unlabeled data only contains instances
from new classes or assume the information that whether an unlabeled instance
is from new classes is known. The concurrent work by Vaze et al. [52] extends
NCD to a generalized setting where the unlabeled instances may come from
both old and new classes, while still requiring access to labeled and unlabeled
instances jointly. In contrast, with Novel Class Discovery without Forgetting, we
introduce a staged learning and account for the performance on both labeled and
the unlabeled data, without requiring access to the labeled data when learning
on unlabeled data to discover new classes. Meanwhile, at test time, we do not
assume the unlabeled images are only from new classes nor require to know
whether an unlabeled image is from a new class or an old one.

3 Novel Class Discovery without Forgetting

We formally define Novel Class Discovery without Forgetting in Sec. 3.1. NCDwF
models should balance between two competing goals: alleviating forgetting of
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Fig. 3: The figure illustrates how our proposed approach discovers novel categories,
while retaining its performance on the labeled data. The network consists of a feature
extractor ΦFE shared between the labeled head ΦLAB and unlabeled head ΦULB .
We generate pseudo-latents and replay them through the labeled head to reduce its
forgetting (Sec. 3.2), and guide the unlabeled head learning through the pseudo-labels
and the mutual-information based regularizer (Sec. 3.3).

labeled classes without impairing unsupervised novel class discovery capability.
Sec. 3.2 and Sec. 3.3 explain how we achieve these objectives. In Sec. 3.4, we
propose Known Class Identifier, which helps with task-agnostic inference.

3.1 Formulation

Given a labeled data pool Dlab = {(xi, yi) ∼ P (X ,Ylab)}, Novel Class Discovery
without Forgetting aims to learn a model Ψ that would identify novel category
of instances from an unlabeled data pool Dunlab = {(xi) ∼ P (X | Yunlab)},
along with recognizing instances from Dlab. The label space of Dlab and Dunlab

are disjoint, i.e., Ylab ∩ Yunlab = ∅. Further, while discovering novel categories,
Dlab cannot be accessed. The problem setting naturally induces a multi-stage
learning where Ψ initially learns a representation to identify instances in Dlab,
which would then be re-purposed to identify novel instances unsupervisedly. The
main challenge involved in learning such a Ψ is to accurately group instances
from Dunlab into semantically meaningful categories, without degrading its per-
formance on identifying the labeled instances from Dlab. Additionally, such a
segregation should be done in a generalized fashion, where task identifying in-
formation would be absent during inference.

We illustrate the main components of our architecture that help to discover
novel categories without forgetting labeled instances in Fig. 3. Without loss of
generality, we assume that the model Ψ consists of a feature extractor ΦFE , one
head for classifying the labeled instances ΦLAB , and another head for discovering
novel categories ΦULB . The feature extractor is shared between both heads.
Pseudo-latents (shown in red) serve as a proxy for labeled data during category
discovery. Pseudo-labels from the self-labeler and the regularization enforced
by the mutual-information loss guide the learning of unlabeled head. A frozen
model trained only on labeled classes (shown in gray) is also used to regularise
the model via feature-distillation loss LFD [22]. We apply an L2 loss between
backbone features from the model trained on labeled data Φlab

FE(x) and current
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Step 1: Sample an 
initial value for   . 

Step 2: Choose the 
class to invert. 

:

Step 3: Modify z to maximize 
the score of the selected logit. 

:

Step 4: Latent Mix-up 
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Fig. 4: In the NCDwF setting, labeled data cannot be accessed while discovering novel
categories. We propose to generate pseudo-latent representations, which can act as
effective proxy for the labeled data representations, by inverting the discriminative
information from the trained labeled head as shown in Step 1, 2 and 3. Step 4 helps to
induce extra semantic information into these synthesised pseudo-latents.

model ΦFE(x) as follows: LFD = ‖ΦFE(x)−Φlab
FE(x)‖2. Such feature distillation

loss has been used in incremental detectors [28] and is simpler than the Less-
Forget constraint from LUCIR [23]. The whole model is learned end-to-end,
where the feature extractor is free to adapt itself to improve class-discovery,
while maintaining its performance of recognizing instances from labeled classes.

3.2 Retaining Performance on Labeled Classes

It would be of immense practical value if a model that is trained in-house with
labeled data is able to identify novel category of instances, when deployed in
an open world. When the network Ψ improves its ability to group instances of
novel categories from Dunlab, it may drastically fail to retain its performance on
recognizing the labeled instances, which were learned from Dlab, like the well-
known catastrophic forgetting in lifelong learning [17,36]. This happens as the
model cannot be jointly optimised for category discovery and classification of
the known instances due to the unavailability of Dlab.

We propose a novel methodology that would generate pseudo latent repre-
sentations, which can act as a proxy for the latent representations of the labeled
training data. We make use of the classifier ΦLAB that was trained solely on the
labeled classes to generate these pseudo-latent representations zp. We explicitly
learn these such that it maximally activates a selected class of interest. Fig. 4
summarizes the steps involved to invert the latent knowledge from the classi-
fication head. First, we sample zi from a standard Normal distribution, then
we select the specific class c for which we would like to generate the pseudo-
latents. Next, we do a gradient ascent on zi such that the score for the selected
class c would be higher for the predicted logit vector pi = ΦLAB(zi). Impor-
tantly, the parameter of ΦLAB are frozen, while carrying out the latent inversion
zi+1 = zi+∇pi[c], where pi = ΦLAB(zi). Next, we do mixup [58] in latent space
between inversed latent zi and corresponding class mean of labeled training in-
stances zcµ. Algo. 1 summarises the steps to generate the latent pseudo-dataset
Dpseudo. In Lines 4 - 7, we invert the latents of the specific class c, using ΦLAB .
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In Lines 8 and 9, we first select a mixing coefficient α, and do a linear combi-
nation of the inverted latent zL and the class mean zcµ. The class means K can
be computed and stored after the first phase of learning labeled instances. This
mixing operation helps to smoothen the latent space and impart additional se-
mantic information to zp. The labeled pseudo-dataset Dpseudo is replayed while
learning to identify novel categories, to arrest forgetting in labeled head of Ψ.

Algorithm 1 Algorithm GeneratePseudoDataset

Input: Number of labeled classes: M ; Number of pseudo-data per class: E; Number
of inversion iterations: L; labeled head: ΦLAB ; Class Means: K = {z1

µ, · · · ,zMµ };
Parameters of the Beta-distribution: γ, ρ.

Output: Labeled pseudo-dataset: Dpseudo.
1: Dpseudo ← [ ]
2: for c in (1 · · · M) do
3: for e in (1 · · · E) do
4: z1 ∼ N (0, I)
5: for i in (1 · · · L) do . Latent Inversion.
6: pi = ΦLAB(zi)
7: zi+1 = zi +∇pi[c]
8: α← Beta(γ, ρ)
9: zp = αzL + (1− α)zcµ . Latent mixup [58] with class mean.

10: Dpseudo ← Dpseudo + (zp, c)

11: return Dpseudo

3.3 Enhancing Class Discovery

Motivated by the success of self-labelling algorithms in self-supervised learning
[5,8], Fini et al. [16] re-purposes it to automatically generate pseudo labels for the
unlabeled data. These labels are used to train the unlabeled head ΦULB . A key
characteristic of such a self-labelling function would be to discourage degenerate
solutions. This is explicitly enforced by pseudo-labeling a mini-batch such that
the data-points are split uniformly across all the N classes in the unlabeled
pool [8,16]. Formally, let P = {p1,p2, · · · ,pB} be the predictions from ΦULB

for a mini-batch of unlabeled data. Let each mini-batch contains B instances.
We seek to find label assignment Q∗ = {q1, q2, · · · , qB}, such that it respects
heterogeneous cluster assignment. This setting can be reduced to solving the
following optimal transport problem [5,8]:

Q∗ = max
Q∈Q

Tr(Q>P )−
∑
i,j

Qij logQij (1)

where Q is the transportation polytope defined as Q = {Q ∈ RN×B+ |Q1B =
1
N 1N ,Q

>1N = 1
B1B}. An iterative Sinkhorn-Knopp algorithm [12] can be used
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to solve Eqn. 1 to find the optimal pseudo-label Q∗. The assumption that each
mini-batch will be partitioned into all unlabeled classes is fallible. This would
lead to noisy pseudo-labels that are not semantically grounded. We are motivated
by the observation that labeled head confidently predicts unlabeled data-points
into one of the semantically related known categories. For instance, a motorcycle

gets misclassified into semantically related bicycle, and not into other classes
that are completely unrelated (more examples in Sec. 5.2). We propose a method
which complements the learning via the self-labeled pseudo label by using the
semantic information that is available for free within the labeled head.

In the first stage of NCDwF, instances from the labeled data pool Dlab would
be introduced to the model Ψ. We train the feature extractor ΦFE , and the
labeled head ΦLAB with Dlab. When we pass an instance from Dunlab through
ΦLAB◦ΦFE(x), the unlabeled instances would be predicted to one of the labeled
classes consistently. We make use of these overconfident predictions from the
labeled head to guide unknown identification in ΦULB . An information theoretic
approach to achieve this would be to maximize the mutual information between
the predictions from labeled head and unlabeled head, such that we can transfer
semantic information from the labeled to unlabeled head, as motivated by [3].
Concretely, for an image x ∈ Dunlab, let l = ΦLAB ◦ΦFE(x) denote the logits
from the labeled head and u = ΦULB ◦ ΦFE(x) denote the logits from the
unlabeled head. l and u can be of different dimensions: l ∈ RM and u ∈ RN .
We intend to guide the learning of ΦULB by maximizing the mutual information
I(l;u) between l and u, which we can expand as follows:

I(l;u) = H(l)−H(l|u)

= −El[log p(l)] + El,u[log p(l|u)] (2)

where H(l) refers to the entropy of l and H(l|u) is the conditional entropy
between the random variables l and u, sampled from a probability distribution
p(.). Numerically computing exact mutual information is intractable, and hence
we resort to a variational approximation q(l|u) to true distribution p(l|u) [2,3]
as follows:

I(l;u) = −El[log p(l)] + El,u[log p(l|u)]

≈ −El[log p(l)] + El,u[log q(l|u)] + Eu[KL(p(l|u) || q(l|u))]

≥ −El[log p(l)] + El,u[log q(l|u)] (3)

We assume the variational distribution to be a Gaussian, with a learnable
mean function µθ(u) and variance function σω. This would extend the derivation
in Eqn. 3 to the following:

I(l;u) ≥ −El[log p(l)] + El,u[log q(l|u)]

= −El[log p(l)] + El,u[

M∑
i=1

log σiω +
(li − µθ(u))2

2(σiω)2
] (4)
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The parameters θ and ω of the mean and variance functions, the unlabeled
head ΦULB and the feature extractor ΦFE would be updated to maximize the
mutual information between l and u. As the first term in the RHS of Eqn. 4
is a constant, we can rewrite our mutual information based loss as below. LMI

is minimised along with the standard cross-entropy loss between pseudo labels
and the predictions from the unlabeled head ΦULB .

LMI = −I(l;u) ≈ −El,u[

M∑
i=1

log σiω +
(li − µθ(u))2

2(σiω)2
] (5)

3.4 Towards task-agnostic Inference

So far, we introduced an effective mechanism to address forgetting and an in-
tuitive approach to enhance class discovery. Our basic architecture contains a
feature extractor ΦFE which branches off into the labeled head ΦLAB and the
unlabeled head ΦULB . During inference, if we know whether a sample indeed
belongs to one of the labeled classes or not, we could effectively route it to the
corresponding head. But, this would limit the applicability in many realistic sce-
narios. We circumvent this by learning a function, which we call KCI: Known
Class Identifier, which automates this decision.

KCI is realised as a two layer neural network ΦKCI which is trained during
the class discovery phase. Hence, labeled instances cannot be accessed to learn
this binary function. Instead, we use the methodology explained in Sec. 3.2 to
generate Np pseudo-latents zp, which would act as a proxy for the labeled data.
Using the Nu unlabeled data that we have access to, we extract their latent
representations zu = ΦFE(x), where x ∼ Dunlab. We create a dataset of latent

representations DKCI = (ZKCI ,YKCI) where ZKCI = {zip}
Np

i=1 ∪ {ziu}
Nu
i=1 and

YKCI = {0}Np

i=1 ∪ {1}
Nu
i=1. We learn KCI with the following loss function:

LKCI =
1

Np +Nu

Np+Nu∑
i=1

yi log(ΦKCI(zi)) + (1− yi) log(1− (ΦKCI(zi))) (6)

This simple formulation learns an effective classifier that differentiates labeled
instances from others. We show how the learning of ΦKCI matures with training
in Sec. 5.1. At inference time, given a latent representation of a test instance zt,
we compute ΦKCI(zt) and threshold it using τ , to decide on the prediction. We
include a sensitivity analysis on τ in Sec. 5.1.

4 Experiments and Results

We define the experimental protocol and evaluate our proposed methodology in
this section. We formulate five different data splits across three existing datasets
and benchmark against three prominent NCD approaches. We explain these in
Sec. 4.1 followed by the implementation details in Sec. 4.2 and results in Sec. 4.3.
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4.1 Experimental Setting

Dataset and Splits: We propose to evaluate NCDwF models on CIFAR-10
[29], CIFAR-100 [29] and ImageNet [43] datasets. Inspired by the data splits
used to evaluate Novel Class Discovery methods [19,61,16], we derive a labeled
set and unlabeled set from these datasets. For CIFAR-10, we group the first
five classes as labeled and the rest as unlabeled. For CIFAR-100, we propose
three different groupings: with the first 80, 50 and 20 classes as labeled and
the rest an unlabeled. Lastly, for ImageNet, the first 882 classes are labeled
and 30 classes from the remaining 118 classes (referred to as split-A in NCD
methods [19,61,16]), are learned incrementally. While learning to discover novel
categories, the labeled data cannot be accessed. This is an important difference
when compared with the existing NCD setting. We evaluate the trained model
on the test split of the corresponding datasets.
Baseline Methods: We compare our proposed approach with three recent and
top performing NCD methods: RS [19], NCL [60] and UNO [16]. To ensure fair
comparison with these methods, we retrain these models with code from their
official repositories, adapted to our proposed incremental setting.
Evaluation Metrics: The performance on the labeled data is measured using
the standard accuracy metric. Following the practice in Clustering and NCD
approaches [19,16,35,49], we use clustering accuracy to measure the performance
of class discovery on unlabeled data. Denoting yi to be a prediction that the
model gives for xi ∈ Dunlab, the clustering accuracy is computed as follows:

Clustering Accuracy = max
p ∈ perm(Yunlab)

1

Nu

Nu∑
i=1

1{yi = p(ŷi)} (7)

where perm(Yunlab) is a set of permutations of the unlabeled classes optimally
computed via the Hungarian algorithm [30] and Nu refers to the number of
instances in Dunlab. This discounts for the fact that the predicted cluster label
might not match the exact ground truth label ŷi.

4.2 Implementation Details

We use ResNet-18 [21] backbone for all our experiments. We use SGD with
momentum parameter of 0.9 to train the model on mini-batches of size 512. We
use 200 epochs for each phase. Following our baseline [16], we also use multi-
head clustering and over-clustering for the class discovery head. We strictly follow
Fini et al. [16] for the design choice of the heads and the hyper-parameters. KCI
is modeled as a two layer neural network with 128 neurons each, terminating
with a single neuron. For generating the pseudo-data, we sample the mixing
coefficient α from Beta(1, 100). In the class discovery phase each mini-batch
contains 0.25% of pseudo-data. The models are evaluated in both task-aware
and task-agnostic setting. While doing task-aware inference, we assume that
task identifying information (whether it belongs to any of the labeled class or
not) is available with each test sample. In the more pragmatic task-agnostic
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Table 2: Performance of the model in identifying instances of the labeled categories,
along with identifying novel categories (‘Lab’ and ‘Unlab’ columns respectively), after
incrementally learning to discover novel categories is recorded below. We note that
our pseudo-data based replay and mutual information based regularization can offer
improved class discovery while retaining the performance on the labeled classes, in the
task-aware and generalized setting. Please find detailed description in Sec. 4.3.

Settings (→) CIFAR-10-5-5 CIFAR-100-80-20 CIFAR-100-50-50 CIFAR-100-20-80 ImageNet-1000-882-30

Methods (↓) Lab Unlab All Lab Unlab All Lab Unlab All Lab Unlab All Lab Unlab All

Task Aware Evaluation

RS [19] 20.00 84.48 52.24 44.1 55.7 49.9 18.14 32.56 25.35 13.05 11.5 12.28 3.34 24.54 13.94
NCL [60] 20.00 59.96 39.98 13.59 57.9 35.75 10.14 12.18 11.16 12.65 4.73 8.69 1.52 11.45 6.49
UNO [16] 33.16 93.22 63.19 2.01 72.78 37.39 1.76 53.85 27.81 7.95 48.7 28.33 0.75 63.4 32.08
Ours 92.72 90.32 91.52 65.03 77.03 71.03 73.18 55.66 64.42 84.8 49.67 67.24 27.46 79.07 53.27

Generalized Evaluation

UNO [16] 0 71.36 35.68 0 58.15 29.08 0 34.22 17.11 0 41.61 20.81 0 68.34 34.17
Ours 79.68 73.66 76.67 53.23 60.6 56.92 62.76 36.42 49.59 57.85 42.18 50.02 21.32 70.99 46.16

setting, we use the proposed KCI to make this decision. For fair evaluation, we
use KCI both with our approach and the baseline method [16]. After deciding
on a specific head (either using the ground-truth or KCI), we take the argmax
over the logits to generate the prediction. RS [19] and NCL [60] learn a binary
classifier per unlabeled class, while UNO [16] and our method learn a classifier
that scores via softmax function.

4.3 Results

We summarise our main results in Tab. 2. In the first row, we refer to the differ-
ent data splits via the following concise notation: dataset−total class count−lab
eled classes−unlabeled classes. ‘Lab’ and ‘Unlab’ columns refer to the perfor-
mance of the model on the labeled and the unlabeled data respectively, after
learning to discover novel categories. ‘All’ column gives the average performance
which gives a holistic measure of capacity across all classes. The first section of
the table showcases the results in a task-aware setting. RS, NCL and UNO tend
to forget how to detect instances from the labeled classes while trying to dis-
cover novel categories from unlabeled data. The unified head approach in UNO
substantially improves the performance of class discovery. Our proposed pseudo-
latent based replay mechanism, combined with MI based regularization helps to
achieve improved class discovery capability while retaining the performance on
the labeled classes. The forgetting is even more intense in the task-agnostic eval-
uation setting due to the inherent confusion caused due to absence of task iden-
tifying information. KCI helps to address this to an extent, which complements
the improved performance of all the classes, when compared to the baseline.

On CIFAR-100 dataset, we experiment with changing the ratio of the labeled
and unlabeled classes. We see a steady decrease in the class discovery perfor-
mance and an increase in performance in recognizing instances from labeled
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classes when there are lesser number of classes in the labeled pool. This implies
that better pertaining on more variety of labeled classes will improve NCD.

5 Analysis

We provide additional analysis here and in supplementary materials.

5.1 Learning the Known Class Identifier

Fig. 5: KCI learns to discriminate between latent representations from unlabeled data
and the pseudo latents. These plots show the classification performance on test set of
labeled and unlabeled classes, showing how KCI generalizes as the learning progresses.

Table 3: Sensitivity analysis on the threshold τ .

Setting CIFAR-10-5-5 CIFAR-100-80-20 CIFAR-100-50-50 CIFAR-100-20-80

τ Lab Unlab All Lab Unlab All Lab Unlab All Lab Unlab All

0.8 64.94 80.66 72.8 47.85 70.51 59.18 47.85 51.95 49.9 42.87 48.73 45.8
0.85 66.21 79.58 72.9 48.73 69.05 58.89 48.63 51.66 50.15 44.33 48.43 46.38
0.9 69.53 77.83 73.68 49.7 69.14 59.42 50.39 50.87 50.63 45.41 47.94 46.68
0.95 72.55 74.91 73.73 52.24 66.99 59.62 53.32 49.02 51.17 49.31 46.77 48.04
0.99 79.68 73.66 76.67 53.23 60.6 56.92 62.76 36.42 49.59 57.85 42.18 50.02
0.999 85.05 51.66 68.36 61.42 45.5 53.46 69.23 27.14 48.19 65.62 34.17 49.9

In Fig. 5 we visualise how
the Known Class Identifier
matures as the learning pro-
gresses in the CIFAR-100-50-
50 setting. Before the learning
starts, both the labeled and
unlabeled latents are clas-
sified equally-likely. As the
learning progresses, the KCI
is able to disambiguate the
majority of the labeled and unlabeled samples. Still, there are some false-
positives which is the reason for the performance difference between task-aware
and generalized evaluation in Tab. 2. We run a sensitivity analysis on τ (the
threshold used to decide on the prediction from KCI) in Tab. 3. As τ increases,
the performance on the labeled data increases and the unlabeled performance
decreases. We use τ = 0.99 throughout our experiments.

5.2 On Mutual Information based Regularization

As illustrated in Fig. 6, an unlabeled instance gets misclassified into a semanti-
cally similar labeled category. This motivates us to enhance class discovery using
this semantic information in the head trained on the labeled data. We couple
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Fig. 6: The x-axis in these frequency plots represents the labeled classes in CIFAR-100-
20-80 setting. Each plot shows predictions for instances of an unlabeled class (referred
to as ‘True class’) from the labeled head. We see that most of the unlabeled instances
gets misclassified into semantically meaningful labeled categories.

Table 4: Adding Mutual Information
Regularizer (MIR) to standard NCD
method UNO [16].

Setting CIFAR-10-5 CIFAR-100-80 CIFAR-100-50

UNO 94.15 89.31 59.45
UNO + MIR 94.43 91.26 61.23

the mutual dependency between labeled
and unlabeled heads by maximizing the
mutual information between them. This
helps to transfer the semantic information
from the labeled to the unlabeled head, ef-
fectively guiding its class discovery capa-
bility. Such improvement is evident from
the results in Tab. 2. Further, we validate the efficacy of maximizing the mutual-
information between the labeled and unlabeled head in standard NCD setting
too by adding it to UNO [16]. Our extra regularization is able to positively
improve in this setting too, as seen in the results in Tab. 4.

6 Conclusion

We introduce Novel Class Discovery without Forgetting, a pragmatic extension
to NCD setting. We develop an effective approach for NCDwF, which makes use
of pseudo-latents as a surrogate to labeled instances to defy forgetting, and a
mutual-information based regularizer to enhance class discovery. We operate in
a generalized setting, where a test instance can come from any of the classes of
interest. We propose to use Known Class Identifier to segregate labeled instance
from the unlabeled ones during inference. We report results on five different
data-splits across three datasets to test the mettle of our approach. We hope our
work can shed light on this challenging problem and inspire more efforts towards
this realistic setting.
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