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Abstract—We present Polygeist, a new compilation flow that
connects the MLIR compiler infrastructure to cutting edge
polyhedral optimization tools. It consists of a C and C++ frontend
capable of converting a broad range of existing codes into
MLIR suitable for polyhedral transformation and a bi-directional
conversion between MLIR and OpenScop exchange format. The
Polygeist/MLIR intermediate representation featuring high-level
(affine) loop constructs and n-D arrays embedded into a single
static assignment (SSA) substrate enables an unprecedented
combination of SSA-based and polyhedral optimizations. We
illustrate this by proposing and implementing two extra transfor-
mations: statement splitting and reduction parallelization. Our
evaluation demonstrates that Polygeist outperforms on average
both an LLVM IR-level optimizer (Polly) and a source-to-source
state-of-the-art polyhedral compiler (Pluto) when exercised on
the Polybench/C benchmark suite in sequential (2.53x vs 1.41x,
2.34x) and parallel mode (9.47x vs 3.26x, 7.54x) thanks to the
new representation and transformations.

I. INTRODUCTION

Improving the efficiency of computation has always been
one of the prime goals of computing. Program performance
can be improved significantly by reaping the benefits of par-
allelism, temporal and spatial locality, and other performance
sources. Relevant program transformations are particularly te-
dious and challenging when targeting modern multicore CPUs
and GPUs with deep memory hierarchies and parallelism, and
are often performed automatically by optimizing compilers.

The polyhedral model enables precise analyses and a rela-
tively easy specification of transformations (loop restructuring,
automatic parallelization, etc.) that take advantage of hardware
performance sources. As a result, there is growing evidence
that the polyhedral model is one of the best frameworks for
efficient transformation of compute-intensive programs [1]],
[2l], [3], and for programming accelerator architectures [4],
[S]], [6]. Consequently, the compiler community has focused
on building tools that identify and optimize parts of the
program that can be represented within the polyhedral model
(commonly referred to as static-control parts, or SCoP’s). Such
tools tend to fall into two categories.

Compiler-based tools like Polly [7] and Graphite [8] detect
and transform SCoPs in compiler intermediate representations
(IRs). While this offers seamless integration with rest of the
compiler, the lack of high-level structure and information hin-
ders the tools’ ability to perform analyses and transformations.
This structure needs to be recovered from optimized IR, often
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Fig. 1. The Polygeist compilation flow consists of 4 stages. The frontend

traverses Clang AST to emit MLIR SCF dialect (Section [III-A), which is
raised to the Affine dialect and pre-optimized (Section The IR is
then processed by a polyhedral scheduler (Sections before post-
optimization and parallelization (Section [[ICE). Finally, it is translated to
LLVM IR for further optimization and binary generation by LLVM.

imperfectly or at a significant cost [9]. Moreover, common
compiler optimizations such as LICM may interfere with the
process [10]]. Finally, low-level IRs often lack constructs for,
e.g., parallelism or reductions, produced by the transformation,
which makes the flow more complex.

Source-to-source compilers such as Pluto [[11], POCC [12]]
and PPCG [J] operate directly on C or C++ code. While this
can effectively leverage the high-level information from source
code, the effectiveness of such tools is often reduced by the
lack of enabling optimizations such as those converting haz-
ardous memory loads into single-assignment virtual registers.
Furthermore, the transformation results must be expressed in
C, which is known to be complex [13], [14] and is also
missing constructs for, e.g., reduction loops or register values
not backed by memory storage.

This paper proposes and evaluates the benefits of a polyhe-
dral compilation flow, Polygeist (Figure [I)), that can leverage
both the high-level structure available in source code and the
fine-grained control of compiler optimization provided by low-
level IRs. It builds on the recent MLIR compiler infrastructure
that allows the interplay of multiple abstraction levels within
the same representation, during the same transformations [[15].
Intermixable MLIR abstractions, or dialects, include high-
level constructs such as loops, parallel and reduction pat-
terns; low-level representations fully covering LLVM IR [[16]];
and a polyhedral-inspired representation featuring loops and
memory accesses annotated with affine expressions. Moreover,
by combining the best of source-level and IR-level tools in
an end-to-end polyhedral flow, Polygeist preserves high-level
information and leverages them to perform new or improved



%$result = "dialect.operation" ($operand, %operand)

{attribute = #dialect<"value">} ({

Insic a nested region.

“basic_block (%$block_argument: !dialect.type):
"another.operation" () : () -> ()

}) : (!dialect.type) -> !dialect.result_type

Fig. 2. Generic MLIR syntax for an operation with two operands, one result,
one attribute and a single-block region.

optimizations, such as statement splitting and loop-carried
value detection, on a lower-level abstraction as well as to
influence downstream optimizations.

We make the following contributions:

e a C and C++ frontend for MLIR that preserves high-level
loop structure from the original source code;

« an end-to-end flow with raising to and lowering from the
polyhedral model, leveraging our abstraction to perform
more optimizations than both source- and IR-level tools,
including reduction parallelization;

o an exploration of new transformation opportunities cre-
ated by Polygeist, in particular, statement splitting;

e and an end-to-end comparison between Polygeist and
state-of-the-art source- and IR-based tools (Pluto [[11]] and
Polly [14]]) along with optimization case studies.

II. THE MLIR FRAMEWORK
A. Overview

MLIR is an optimizing compiler infrastructure inspired by
LLVM [16] with a focus on extensibility and modularity [[15]].
Its main novelty is the IR supporting a fully extensible set of
instructions (called operations) and types. Practically, MLIR
combines SSA with nested regions, allowing one to express a
range of concepts as first-class operations including machine
instructions such as floating-point addition, structured control
flow such as loops, hardware circuitry [[17], and large machine
learning graphs. Operations define the runtime semantics of a
program and process immutable values. Compile-time infor-
mation about values is expressed in fypes, and information
about operations is expressed in attributes. Operations can
have attached regions, which in turn contain (basic) blocks
of further operations. The generic syntax, accepted by all
operations, illustrates the structure of MLIR in Figure [
Additionally, MLIR supports user-defined custom syntax.

Attributes, operations, and types are organized in dialects,
which can be thought of as modular libraries. MLIR provides
a handful of dialects that define common operations such as
modules, functions, loops, memory or arithmetic instructions,
and ubiquitous types such as integers and floats. We discuss
the dialects relevant to Polygeist in the following sections.

B. Affine and MemRef Dialects

The Affine dialect [18] aims at representing SCoP’s with
explicit polyhedral-friendly loop and conditional constructs.
The core of its representation is the following classification of
value categories:

%cO0 = constant 0 : index
%0 = memref.dim %A, %c0 : memref<?xf32>
%1 = memref.dim %B, %c0 : memref<?xf32>
affine.for $i = 0 to affine_map<() [s0]
affine.for %$j = 0 to affine_map<() [s0] —>
%2 affine.load %A[%1] : memref<?xf32>
%3 affine.load %$B[%]J] : memref<?xf32>
%4 mulf %2, %3 : £32
%5 affine.load $C[%i + %]]
%6 addf %4, %5 : £32
affine.store %6, %C[%1 + %7]
}
}
Fig. 3. Polynomial multiplication in MLIR using Affine and Standard dialects.

=> (s0)>() [%0] {
(s0)>() [51] |

: memref<?xf32>

: memref<?xf32>

o Symbols—integer values that are known to be loop-
invariant but unknown at compile-time, also referred to
as program parameters in polyhedral literature, typically
array dimensions or function arguments. In MLIR, sym-
bols are values defined in the top-level region of an op-
eration with “affine scope” semantics, e.g., functions; or
array dimensions, constants, and affine map (see below)
application results regardless of their definition point.

o Dimensions—are an extension of symbols that also ac-
cepts induction variables of affine loops.

o Non-affine—any other values.

Symbols and dimensions have index type, which is a
platform-specific integer that fits a pointer (intptr_t in C).
MLIR provides two attributes relevant for the Affine dialect:

e Affine maps are multi-dimensional (quasi-)linear func-
tions that map a list of dimension and sym-
bol arguments to a list of results. For example,
(do,d1,da, so) — (do +d1, sq - d2) is a two-dimensional
quasi-affine map, which can be expressed in MLIR
as affine_map<(d0,dl,d2) [s0] —-> (d0+dl,
s0xd2) >. Dimensions (in parentheses on the left) and
symbols (in brackets on the left) are separated to allow
quasi-linear expressions: symbols are treated as constants,
which can therefore be multiplied with dimensions,
whereas a product of two dimensions is invalid.

o Integer sets are collections of integer tuples con-
strained by conjunctions of (quasi-)linear expres-
sions. For example, a “triangular” set {(do,d1)

0 < dp < s A0 < di < dp} is rep-
resented as affine_set<(d0,dl) [s0]: (d0 >=
0, s0-d0-1 >= 0, d1 >= 0, d0-dl >= 0)>.

The Affine dialect makes use of the concepts above to define
a set of operations. An affine.for is a “for” loop with
loop-invariant lower and upper bounds expressed as affine
maps with a constant step. An affine.parallel is a
“multifor” loop nest, iterations of which may be executed
concurrently. Both kinds of loops support reductions via loop-
carried values as well as max(min) expression lower(upper)
bounds. An affine.if is a conditional construct, with an
optional else region, and a condition defined as inclusion of
the given values into an integer set. Finally, affine.load
and affine.store express memory accesses where the
address computation is expressed as an affine map.



Figure [3]illustrates the Affine dialect for a polynomial multi-
plication, C[i+j] += A[i] * B[Jj]. This simple exam-
ple highlights the fact that MLIR supports, and encourages,
IRs from different dialects to be used together.

A core MLIR type—memref, which stands for memory
reference—and the corresponding memref dialect are also
featured in Figure [3] The memref type describes a structured
multi-index pointer into memory, e.g., memref<?x£32> de-
notes a 1-d array of floating-point elements; and the memref
dialect provides memory and type manipulation operations,
e.g., memref .dim retrieves the dimensionality of a memref
object. memref does not allow internal aliasing, i.e., different
subscripts always point to different addresses. This effectively
defines away the delinearization problem that hinders the
application of polyhedral techniques at the LLVM IR level [9].
Throughout this paper, we only consider memrefs with the
default layout that corresponds to contiguous row-major stor-
age compatible with C ABI (Application Binary Interface).
In practice, memrefs support arbitrary layouts expressible as
affine maps, but these are not necessary in Polygeist context.

C. Other Relevant Core Dialects

MLIR provides several dozen dialects. Out of those, only a
handful are relevant for our discussion:

o The Structured Control Flow (scf) dialect defines the
control flow operations such as loops and conditionals
that are not constrained by affine categorization rules. For
example, the scf . for loop accepts any integer value as
loop bounds, which are not necessarily affine expressions.

o The Standard (std) dialect contains common operations
such as integer and float arithmetic, which is used as a
common lowering point from higher-level dialects before
fanning out into multiple target dialects and can be seen
as a generalization of LLVM IR [16].

e The LLVM dialect directly maps from LLVM IR in-
structions and types to MLIR, primarily to simplify the
translation between them.

e The OpenMP dialect provides a dialect- and platform-
agnostic representation of OpenMP directives such as
“parallel” and “workshare loop”, which can be used to
transform OpenMP constructs or emit LLVM IR that
interacts with the OpenMP runtime.

o The Math dialect groups together mathematical opera-
tions on integer and floating type beyond simple arith-
metic, e.g., math.pow or math.sqgrt.

ITII. AN (AFFINE) MLIR COMPILATION PIPELINE
The Polygeist pipeline consists of 4 components (Figure [T):

1) a frontend that allows entering MLIR at the SCF loops
level from C or C++ code (Section [[II-A);

2) a preprocessing step within MLIR that raises to the
Affine dialect (Section [[1I-B));

3) apolyhedral scheduler of the Affine parts of the program
via a round-trip to and from OpenSCoP (Section [[II-C)
and running Pluto transformations, controlled by the new
statement splitting heuristic (Section [[II-D));

C type LLVM IR type MLIR type

int i32 (on machine X) i32 (on machine X)
intNN_t 1NN iNN

uintNN_t iNN uiNN

float float £32

double double f64

ty * ty = memref<? xty>

ty & ty * memref<l xty>

ty *% ty *x* memref<memref<? xty>>
ty [N] [M] [N x [M x ty]l~ memref<NxMxty>

Fig. 4. Type correspondence between C, LLVM IR and MLIR types.

4) a backend that runs postprocessing MLIR optimizations
(section |III-E) and final lowering to an executable.

A. Frontend

Polygeist builds off the Clang compiler to emit MLIR,
directly analyzing Clang’s AST. Polygeist thus avoids reim-
plementing parsing and language-level semantic analysis and
handles modern C and C++ features. As is typical for compiler
frontends, Polygeist creates a recursive symbol table data
structure to look up the correct variable for a given scope.
Polygeist lazily registers all global variables and functions
found in the AST to its symbol table before generating any
code. Polygeist then traverses the call graph from a given
entry function (main by default), creating and defining MLIR
functions as necessary.

a) Control Flow & High Level Information: In contrast
to traditional compiler pipelines, targeting a branch-based IR,
Polygeist leverages the high-level MLIR operations such as
scf.while (alooping construct) and scf . if (aconditional
construct) within the SCF dialect to preserve the control flow
structure of the source code. C-level continue and break
constructs are handled by introducing signal variables and
checking them before each operation that follows original
constructs. Furthermore, within a #pragma scop, Polygeist
assumes that the program is affine and uses an affine.for
to represent loops directly.

b) Types & Polygeist ABI: While emitting operations,
Polygeist must decide how to represent C or C++ types within
MLIR. For primitive types such as int or float, Polygeist
emits an MLIR variant of that type with the same width as
would be used within LLVM/Clang. This allows Polygeist
to keep the same ABI as code compiled by a normal C or
C++ compiler when calling a function with only primitive
types. On the other hand, for pointer, reference and array
types, Polygeist uses memref type (Figure [). This allows
Polygeist to preserve more of the structure available within the
original program (e.g., multi-dimensional arrays) and enables
interaction with MLIR’s high-level memory operations.

This diverges from the C ABI for any functions with pointer
arguments and wouldn’t interface correctly with C functions.
Polygeist addresses this by providing an attribute for function
arguments and allocations to use a C-compatible pointer type
rather than memref, applied by default to external functions
such as strcmp and scanf. When calling a pointer-ABI



function with a memref-ABI argument, Polygeist generates
wrapper code that recovers the C ABI-compatible pointer from
memref and ensures the correct result. Figure [5 shows an
example demonstrating how the Polygeist and C ABI may
interact for a small program.

When allocating and deallocating memory, this difference
in ABI becomes significant. This is because allocating several
bytes of an array with malloc then casting to a memref
will not result in legal code (as memref itself may not be
implemented with a raw pointer). Thus, Polygeist identifies
calls to allocation and deallocation functions and replaces them
with legal equivalents for memref.

Functions and global variables are emitted using the same
name used by the C or C++ ABI. This ensures that all external
values are loaded correctly, and multi-versioned functions
(such as those generated by C++ templates or overloading)
have distinct names and definitions.

c) Instruction Generation: For most instructions,
Polygeist directly emits an MLIR operation corresponding
to the equivalent C operation (addi for integer add, call
for function call, etc.). For some special instructions such as
a call to pow, Polygeist chooses to emit a specific MLIR
operation in the Math dialect, instead of a call to an external
function (defined in libm). This permits such instructions to
be better analyzed and optimized within MLIR.

Operations that involve memory or pointer arithmetic re-
quire additional handling. MLIR does not have a generic
pointer arithmetic instruction; instead, it requires that load
and store operations contain all of the indices being
looked up. This presents issues for operations that perform
pointer arithmetic. To remedy this, we introduce a temporary
subindex operation for memref’s keeps track of the addi-
tional address offsets. A subsequent optimization pass within
Polygeist, forwards the offsets in a subindex to any load
or store which uses them.

d) Local Variables: Local variables are handled by allo-
cating a memref on stack at the top of a function. This permits
the desired semantics of C or C++ to be implemented with
relative ease. However, as many local variables and arguments
contain memref types, this immediately results in a memref
of a memref—a hindrance for most MLIR optimizations as
it is illegal outside of Polygeist. As a remedy, we implement
a heavyweight memory-to-register (mem2reg) transformation
pass that eliminates unnecessary loads, stores, and alloca-
tions within MLIR constructs. Empirically this eliminates all
memrefs of memref in the Polybench suite.

B. Raising to Affine

The translation from C or C++ to MLIR directly preserves
high-level information about loop structure and n-D arrays,
but does not generate other Affine operations. Polygeist sub-
sequently raises memory, conditional, and looping operations
into their Affine dialect counterparts if it can prove them to
be legal affine operations. If the corresponding frontend code
was enclosed within #pragma scop, Polygeist assumes it
is always legal to raise all operations within that region

without additional checksp_-] Any operations which are not
proven or assumed to be affine remain untouched. We perform
simplifications on affine maps to remove loops with zero
or one iteration and drop branches of a conditional with a
condition known at compile time.

a) Memory operations and loop bounds: To convert
an operation, Polygeist replaces its bound and subscript
operands with identity affine maps (affine_map<()
[s0]->(s0)>[%bound]). It then folds the operations
computing the map operands, e.g., addi, muli, into the
map itself. Values that are transitively derived from loop
induction variables become map dimensions and other
values become symbols. For example, affine_map<
() [s0]1=>(s0)>[%bound] with  $bound = addi
%N, %i, where %1i is an induction variable, is folded into
affine_map<(d0) [s0] —->(sO0 + dO)>(%1) [$N].
The process terminates when no operations can be folded or
when Affine value categorization rules are satisfied.

b) Conditionals: Conditional operations are emitted by
the frontend for two input code patterns: 1f conditions and
ternary expressions. The condition is transformed by intro-
ducing an integer set and by folding the operands into it
similarly to the affine maps, with in addition and opera-
tions separating set constraints and not operations inverting
them (affine.if only accepts > 0 and = O constraints).
Polygeist processes nested conditionals with C-style short-
circuit semantics, in which the subsequent conditions are
checked within the body of the preceding conditionals, by
hoisting conditions outside the outermost conditional when
legal and replacing them with a boolean operation or a
select. This is always legal within #pragma scop.

Conditionals emitted for ternary expressions often involve
memory loads in their regions, which prevent hoisting due
to side effects. We reuse our mem?2reg pass to replace those
to equivalent earlier loads when possible to enable hoisting.
Empirically, this is sufficient to process all ternary expressions
in the Polybench/C suite [19]. Otherwise, ternary expressions
would need to be packed into a single statement by the
downstream polyhedral pass.

C. Connecting MLIR to Polyhedral Tools

Regions of the input program expressed using MLIR Affine
dialect are amenable to the polyhedral model. Existing tools,
however, cannot directly consume MLIR. We chose to imple-
ment a bi-directional conversion to and from OpenScop [20],
an exchange format readily consumable by numerous poly-
hedral tools, including Pluto [11], and further convertible to
isl [21] representation. This allows Polygeist to seamlessly
connect with tools created in polyhedral compilation research
without having to amend those tools to support MLIR.

Most polyhedral tools are designed to operate on C or
FORTRAN inputs build around statements, which do not have
a direct equivalent in MLIR. Therefore, we design a mecha-
nism to create statement-like structure from chains of MLIR

'All kernels within Polybench are successfully raised to Affine with or
without the use of #pragma scop.



void setArray(int N, double val,
int main(int argc, charxx argv) ({

doublex array) {...}

cmp = strcmp (strl, str2)
double array[10];
setArray (10, 42.0, array)
}

func @setArray (%N: i32, %val: f64,
%array: memref<?xf64>) {
%0 = index_cast %N : 132 to index
affine.for %1 = 0 to %0 {
affine.store %val, %array[%i]

}

return

: memref<?xf64>

}

func @main (%argc: i32,
$argv: !llvm.ptr<ptr<i8>>) -> i32 {
$cmp = llvm.call @strcmp (%$strl, %str2)

(!1lvm.ptr<i8>, !llvm.ptr<i8>) -> !1lvm.i32
: memref<l0xf64>

memref<10xf64> to

%array = memref.alloca()
%arraycst = memref.cast %array :
memref<?xf64>
%val = constant 42.0 : f64
call @setArray (%N, %val, %arraycst)
(132, fo64, memref<?xf64d>) -> ()

Fig. 5. Example demonstrating Polygeist ABI. For functions expected to be
compiled with Polygeist such as setArray, pointer arguments are replaced
with memre£’s. For functions that require external calling conventions (such
as main/strcmp), Polygeist falls back to emitting 11vm. ptr and generates
conversion code.

operations. We further demonstrate that this gives Polygeist
an ability to favorably affect the behavior of the polyhedral
scheduler by controlling statement granularity (Section [[II-D).

a) Simple Statement Formation: Observing that C state-
ments amenable to the polyhedral model are (mostly) variable
assignments, we can derive a mechanism to identify statements
from chains of MLIR operations. A store into memory is
the last operation of the statement. The backward slice of
this operation, i.e., the operations transitively computing its
operands, belong to the statement. The slice extension stops at
operations producing a value categorized as affine dimension
or symbol, directly usable in affine expressions. Such values
are loop induction variables or loop-invariant constants.

Some operations may end up in multiple statements if the
value is used more than once. However, we need the mapping
between operations and statements to be bidirectional in order
to emit MLIR after the scheduler has restructured the program
without considering SSA value visibility rules. If an operation
with multiple uses is side effect free, Polygeist simply dupli-
cates it. For operations whose duplication is illegal, Polygeist
stores their results in stack-allocated memref’s and replaces
all further uses with memory loads. Figure [f] illustrates the
transformation for value %0 used in operation %$20. This
creates a new statement.

b) Region-Spanning Dependencies: In some cases, a
statement may consist of MLIR operations across different
(nested) loops, e.g., a load from memory into an SSA register
happens in an outer loop while it is used in inner loops. The

affine.for %i = ...
%0 = affine.load $A[%1]
affine.store %other, $%A[%1] motion-barrier
affine.for $j = ... {
%1 = affine.load %B[%]]
$10 = mulf %0, %1 : f64 use
store %10, %res[%i, %7l
%20 = addf %0, %0 : fe64 use

4

: memref<lxf64>

N

Stmp = memref.alloca()
affine.for %i = ...
%0 = affine.load %A[%1
affine.store %0, %tmpl
affine.store %other, %
affine.for %3 = ...
%1 = affine.load %$B[%]]
%2 = affine.load %tmp[0] load back fc :
%10 = mulf %2, %1 : fo64 use—-1 (%2 stead of %0)
affine.store %10, Sres([%i, %7]
%19 = affine.load %tmp[0] load back for
%20 = addf %19, %19 : f64 use-2 (%19 in

]
0] store to scratchpac
A[%1] motion-barrie

Fig. 6. Polygeist breaks region-spanning use-def chains and handles multi-
use values by introducing scratchpad storage when operation duplication is
illegal. In absence of motion-barrier statement, the $0 load would be
duplicated and sunk. Pseudo-MLIR with types and braces omitted for brevity.

location of such a statement in the loop hierarchy is unclear.
More importantly, it cannot be communicated to the polyhedral
scheduler. Polygeist resolves this by storing the value in a
stack-allocated memref in the defining region and loading it
back in the user regions. Figure[]illustrates this transformation
for value %0 used in operation $10. Similarly to the basic
case, this creates a new statement in the outer loop that can
be scheduled independently.

This approach can be seen as a reg2mem conversion, the
inverse of mem2reg performed in the frontend. It only applies
to a subset of values, and may be undone after polyhedral
scheduling has completed. Furthermore, to decrease the num-
ber of dependencies and memory footprint, Polygeist performs
a simple value analysis and avoids creating stack-allocated
buffers if the same value is already available in another
memory location and can be read from there.

c¢) SCoP Formation: To define a SCoP, we outline indi-
vidual statements into functions so that they can be represented
as opaque calls with known memory footprints, similarly to
Pencil [22]. This process also makes the inter-statement SSA
dependencies clear. These dependencies exist between calls
that use the same SSA value, but there are no values defined
by these calls. We lift all local stack allocations and place them
at the entry block of the surrounding function in order to keep
them visible after loop restructuring. Figure [/| demonstrates
the resulting IR.

The remaining components of the polyhedral representation
are derived as follows: the domain of the statement is defined
to be the iteration space of its enclosing loops, constrained
by their respective lower and upper bounds, and intersected
with any “if” conditions. This process leverages the fact
that MLIR expresses bounds and conditions directly as affine
constructs. The access relations for each statement are obtained



func @S1(%A: memref<?xf64d>,
%$i: index)
%0 = affine.load $SA[%1i]
affine.store %0, $tmp[0]

Stmp: memref<lxf64>,

ratchpad

func @S2 (%A: memref<?xf64>, %other:
affine.store %other, %$A[%i]

£64, %i: index)

func @S3(%B:
Sres:
%1 = affine.load $B[%k, %]]
%2 = affine.load S$tmp[0] load back for use-1
%10 = mulf %2, %1 : f64 use-1
affine.store %10, S%res[%i, %7]

memref<?x?xf64>, Stmp:
memref<?x?xf64>, %$i:

memref<lxf64>,
index, %j: index)

func @S4 ($tmp: memref<lxfo6d>, ...)
%19 affine.load %$tmp[0] load back for use-2
%20 addf %19, %19 : f64

$tmp = memref.alloca() : memref<lxf64>
affine.for %i = ...
call @S1 (%A, Stmp, %i)
call @S2 (%A, %other, %i)
affine.for %3 = ...
call @S3(%B, S%tmp,
call @S4 (%tmp)

$res, %i, %7J)

Fig. 7. Outlining makes polyhedral “statements” visible in code from Fig. [f]

as unions of affine maps of the affine.load (read) and
affine.store (must-write) operations, with RHS of the
relation annotated by an ‘“array” that corresponds to the
SSA value of the accessed memref. Initial schedules are
assigned using the (2d + 1) formalism, with odd dimensions
representing the lexical order of loops in the input program
and even dimensions being equal to loop induction variables.
Affine constructs in OpenScop are represented as lists of
linear equality (= 0) or inequality (> 0) coefficients, which
matches exactly the internal representation in MLIR, making
the conversion straightforward.

d) Code Generation Back to MLIR: The Pluto scheduler
produces new schedules in OpenScop as a result. Generating
loop structure back from affine schedules is a solved, albeit
daunting, problem [13], [14]. Polygeist relies on CLooG [13]]
to generate an initial loop-level AST, which it then converts
to Affine dialect loops and conditionals. There is no need
to simplify affine expressions at code generation since MLIR
accepts them directly and can simplify them at a later stage.
Statements are introduced as function calls with rewritten
operands and then inlined.

D. Controlling Statement Granularity

Recall that Polygeist reconstructs “statements” from se-
quences of primitive operations (Section [[II-C). We initially
designed an approach that recovers the statement structure
similar to that in the C input, but this is not a requirement.
Instead, statements can be formed from any subsets of MLIR
operations as long as they can be organized into loops and
sorted topologically (i.e., there are no use-def cycles between
statements). To expose the dependencies between such state-
ments to the affine scheduler, we reuse the idea of going
through scratchpad memory: each statement writes the values
required by other statements to dedicated memory locations,

for (i=0; i<NI; i++)
for (§=0; Jj<NJ; j++)

for (k=0; k<NK; k++)
S: A[1] [J]+=£(B[k][i],C[k][3]);
for (i=0; 1<NI; i++) double M[NK];

for (j=0; J<NJ; J++) for (k=0; k<NK; k++)

double M[NK]; = for (i=0; i<NI; i++)

for (k=0; k<NK; k++) for (§=0; Jj<NJ; J++)
S: M{k]=£(B[k][1],C[k][3]); S: M[k]=£(B[k][1],C[k][3]);
T: A[i][3] += M[k]; T: A[i][J] += M[k];
Fig. 8. Splitting a nested reduction statement (top) into a fully parallel

compute statement and a trivial reduction statement (bottom left) makes Pluto
generate different schedules (bottom right). Further scratchpad array expansion
may enable loop fission and give scheduler even more liberty.

and the following statements read from those. The scratchpads
are subject to partial array expansion [23] to minimize their
effect on the affine scheduler as single-element scratchpad
arrays create artificial scalar dependencies. This change in
statement granularity gives the affine scheduler unprecedented
flexibility allowing it to chose different schedules for different
parts of the same C statement.

Consider, for example, the statement S in Figure [§{top)
surrounded by three loops iterating over i, j and k. Such
contraction patterns are common in computational programs
(this particular example can be found in the correlation
benchmark with B=C, see Section [V-E). The loop order that
best exploits the locality is (k, i, j), which results in temporal
locality for reads from B (the value is reused in all iterations
of the now-innermost j loop) and in spatial locality for
reads from C (consecutive values are read by consecutive
iterations, increasing the likelihood of L1 cache hits). Yet,
Pluto never proposes such an order because of a reduction
dependency along the k dimension due to repeated read/write
access to A[1] [J] as Pluto tends to pick loops with fewer
dependencies as outermost. While the dependency itself is
inevitable, it can be moved into a separate statement T in
Figure [§[(bottom left). This approach provides scheduler with
more freedom of choice for the first statement at a lesser
memory cost than expanding the entire A array. It also factors
out the reduction into a “canonical” statement that is easier to
process for the downstream passes, e.g., vectorization.

Implementing this transformation at the C level would
require manipulating C AST and reasoning about C (or even
C++) semantics. This is typically out of reach for source-to-
source polyhedral optimizers such as Pluto that treat state-
ments as black boxes. While it is possible to implement this
transformation at the LLVM IR level, e.g., in Polly, where
statements are also reconstructed and injection of temporary
allocations is easy, the heuristic driving the transformation
is based on the loop structure and multi-dimensional access
patterns which are difficult to recover at such a low level [9].

The space of potential splittings is huge—each MLIR
operation can potentially become a statement. Therefore, we
devise a heuristic to address the contraction cases similar to
Figure [8| Reduction statement splitting applies to statements:



o surrounded by at least 3 loops;
o with LHS#RHS, and using all loops but the innermost;
« with two or more different access patterns on the RHS.

This covers statements that could have locality improved by
a different loop order and with low risk of undesired fission.
This heuristic merely serves as an illustration of the kind of
new transformations Polygeist can enable.

E. Post-Transformations and Backend

Polygeist allows one to operate on both quasi-syntactic
and SSA level, enabling analyses and optimizations that are
extremely difficult, if not impossible, to perform at either level
in isolation. In addition to statement splitting, we propose two
techniques that demonstrate the potential of Polygeist.

a) Transforming Loops with Carried Values (Reduc-
tions): Polygeist leverages MLIR’s first-class support for loop-
carried values to detect, express and transform reduction-like
loops. This support does not require source code annotations,
unlike source-level tools [24] that use annotations to enable de-
tection, nor complex modifications for parallel code emission,
unlike Polly [25], which suffers from LLVM missing first-class
parallel constructs. We do not modify the polyhedral scheduler
either, relying on post-processing for reduction parallelization,
including outermost parallel reduction loops.

The overall approach follows the definition proposed in [26]
with adaptations to MLIR’s region-based IR, and is illustrated
in Figure [0 Polygeist identifies memory locations modified
on each iteration, i.e. load/store pairs with loop-invariant
subscripts and no interleaving aliasing stores, by scanning
the single-block body of the loop. These are transformed into
loop-carried values or secondary induction variables, with the
load/store pair lifted out of the loop and repurposed for
reading the initial and storing the final value. Loop-carried
values may be updated by a chain of side effect-free operations
in the loop body. If this chain is known to be associative and
commutative, the loop is a reduction. Loop-carried values are
detected even in absence of reduction-compatible operations.
Loops with such values contribute to memZ2reg, decreasing
memory footprint, but are not subject to parallelization.

b) Late Parallelization: Rather than relying on the de-
pendence distance information obtained by the affine sched-
uler, Polygeist performs a separate polyhedral analysis to
detect loop parallelism in the generated code. The analysis
itself is a classical polyhedral dependence analysis [27], [28]]
implemented on top of MLIR region structure. Performing
it after SSA-based optimizations, in particular mem2reg and
reduction detection, allows parallelizing more loops. In par-
ticular, reduction loops and loops with variables whose value
is only relevant within a single iteration similar to live-range
reordering [29] but without expensive additional polyhedral
analyses (live-range of an SSA value defined in a loop never
extends beyond the loop).

IV. EVALUATION

Our evaluation has two goals. 1) We want to demonstrate
that the code produced by Polygeist without additional op-

$init = affine.load %rl1[0]
Sred = affine.for %$i = ...
iter_args(%arg = %init) {
Reduc on accumulat
%5 = addi %arg, %2
p-dependen .
affine.load %r2[%i]

affine.for %1 = ... {
$1 affine.load %rl1[0]
%5 addi %1, %2
affine.store %5,

$rl[0]

1 . $10 =
cprdependent o = i g o
%10 = affine.load 3r2[%i] 015\\ ‘aqdl "1O" 52
$15 = i3 5 itelea sto
915 = addi %10, %2 = 320 = affine.load %r2[0]

Inteleaving store
%20 = affine.load %r2[0]
affine.store %21, %r2[0]
%25 = addi %20, %2

affine.store %21,
%25 = addi %20, %2

May have side eff ;
%30 = affine.load %r3[0]
call @f (%30, %2)

%r2[0]

%30 = affine.load %r3[0]
call @f (%30, %2)

eld cumt e
affine.yield %5
}

affine.store %red, %rl1[0]

Fig. 9. Polygeist detects memory locations accessed in all loop iterations,
e.g. reduction accumulators such as $r1[0] and transforms them to loop-
carried values (secondary induction variables), except when computed with
side-effects, interleaved stores or by non-associative/commutative operations.

timization does not have any inexplicable performance dif-
ferences than a state-of-the-art compiler like Clang. 2) We
explore how Polygeist’s internal representation can support
a mix of affine and SSA-based transformation in the same
compilation flow, and evaluate the potential benefits compared
to existing source and compiler-based polyhedral tools.

A. Experimental Setup

We ran our experiments on an AWS c5.metal instance
with hyper-threading and Turbo Boost disabled. The system is
Ubuntu 20.04 running on a dual-socket Intel Xeon Platinum
8275CL CPU at 3.0 GHz with 24 cores each, with 0.75,
35, 35775 MB L1, L2, L3 cache per socket, respectively,
and 256 GB RAM. We ran all 30 benchmarks from Poly-
Bench [19]], using the “EXTRALARGE” dataset. Pluto is
unable to extract SCoP from the adi benchmark. We ran
a total of 5 trials for each benchmark, taking the execution
time reported by PolyBench; the median result is taken unless
stated otherwise. Every measurement or result reported in
the following sections refers to double-precision data. All
experiments were run on cores 1-8, which ensured that all
threads were on the same socket and did not potentially
conflict with processes scheduled on core 0.

In all cases, we use two-stage compilation: (i) using clang
at —03 excluding unrolling and vectorization; or Polygeist to
emit LLVM IR from C; (ii) using clang at —03 to emit
the final binary. As several optimizations are not idempotent,
a second round of optimization can potentially significantly
boost (and rarely, hinder) performance. This is why we chose
to only perform vectorization and unrolling at the last opti-
mization stage. Since Polygeist applies some optimizations at
the MLIR level (e.g., mem2reg), we compare against the two-
stage compilation pipeline as a more fair baseline (CLANG).
We also evaluate a single-stage compilation to assess the effect
of the two-stage flow (CLANGSING).



B. Baseline Performance

Polygeist must generate code with runtime as close as
possible to that of existing compilation flows to establish a
solid baseline. In other words, Polygeist should not introduce
overhead nor speedup unless explicitly instructed otherwise, to
allow for measuring the effects of additional optimizations. We
evaluate this by comparing the runtime of programs produced
by Polygeist with those produced by Clang at the same
commit (Apr 2021} Figure [10] summarizes the results with
the following flows:

o CLANG: A compilation of the program using Clang, when
running two stages of optimization;

o CLANGSING: A compilation of the program using Clang,
when running one stage of optimization;

e MLIR-CLANG: A compilation flow using the Polygeist
frontend and preprocessing optimizations within MLIR,
but not running polyhedral scheduling nor postprocessing.

C. Compilation Flows

We compare Polygeist with a source-level and an IR-level
optimizer (Pluto and Polly) in the following configurations:

o PLUTO: Pluto compiler auto-transformation [11]] using
polyccﬂ with —noparallel and -tile flags;

o PLUTOPAR: Same as above but with —parallel flag;

e POLLY: Polly [7] LLVM passes with affine scheduling
and tiling, and no pattern-based optimizations [30];

e POLLYPAR: Same as above with auto-parallelization;

e POLYGEIST: Our flow with Pluto and extra transforms;

o POLYGEISTPAR: Same as above but with —-parallel
Pluto schedule, Polygeist parallelization and reductions.

Running between source and LLVM IR levels, we expect
Polygeist to benefit from both worlds, thus getting code that
is on par or better than competitors. When using Pluto, both
standalone and within Polygeist, we disable the emission
of vectorization hints and loop unrolling to make sure both
transformations are fully controlled by the LLVM optimizer,
which also runs in Polly flows. We run Polly in the latest stage
of Clang compilation, using -m11lvm -polly and additional
flags to enable affine scheduling, tiling and parallelization
as required. Polly is taken at the same LLVM commit as
Clang. We disable pattern-based optimizations [30] that are not
available elsewhere. Figures |11| and |12| summarize the results
for sequential and parallel flows, respectively.

V. PERFORMANCE ANALYSIS
A. Benchmarking

The transformation of reduction loops, in particular par-
allelization, may result in a different order of partial result
accumulation. This is not allowed under IEEE 754 semantics,
but is supported by compilers with —ffast-math option.

We found that Polybench allocation function hinders
Clang/LLVM alias analysis, negatively affecting performance

2LLVM commit 20d5c42e0ef5d252b434bcb610b04f1cb79fe771
3Pluto commit dae26e77b94b2624a540c08ec7128f20cd7b7985

in, e.g., adi. Therefore, we modified all benchmarks to use
malloc that is known to produce non-aliasing pointers.

B. Baseline Comparison

We did not observe a significant difference between the
runtimes of CLANG and CLANGSING configurations, with
a geometric mean of 0.43% symmetric differenc across
benchmarks. Therefore, we only consider CLANG as baseline
throughout the remainder of this paper. We did not observe
a significant difference between the runtimes of CLANG and
MLIR-CLANG configurations either, with a geometric mean
of 0.24% symmetric difference.

We found a variation in runtimes of short-running bench-
marks, in particular jacobi-1d. This can be attributed to the
interaction with the data initialization and benchmarking code,
and with other OS processes. Excluding the benchmarks run-
ning in under 0.05s (jacobi-1d, gesummv, atax, bicg)
from the analysis, we obtain 0.32% and 0.17% geomean
symmetric differences respectively for the two comparisons
above. These results suggest that our flow has no unexplained
(dis)advantages over the baseline.

C. Performance Differences in Sequential Code

Overall, Polygeist leads to larger speedups, with 2.53 %
geometric mean, than both Pluto (2.34x) and Polly (1.41x),
although improvements are not systematic. Some difference
between Polygeist and Polly is due to the employed polyhedral
schedulers, e.g., in 1u and mvt. Polygeist produces code faster
tha both Pluto and Polly in 2mm, 3mm and others thanks to
statement splitting, see Section

Given identical statements and schedules, codegen-level
optimization accounts for other performance difference.
seidel-2d is the clearest example: Pluto executes 2.7-10!
more integer instructions than Polygeist. Assuming these to
be index/address computations, a mix of add (throughput
1/2 or 1/4) and imul/shl (thoughput 1), we can expect
a ~ 59s difference at 3GHz, consistent with experimental
observations. Polygeist optimizes away a part of those in
its post-optimization phase and emits homogeneous address
computation from memref with proper machine size type,
enabling more aggressive bound analysis and simplification
in the downstream compiler. Conversely, jacobi-2d has
poorer performance because Polygeist gives up on simplifying
CLo00G code, with up to 75 statement copies in 40 branches,
for compiler performance reasons, as opposed to Clang that
takes up to Ss to process it but results in better vectorization.
Further work is necessary to address this issue by emitting
vector instructions directly from Polygeist.

D. Performance Differences In Parallel Code

Similarly to sequential code, some performance differences
are due to different schedulers. For example, in cholesky
and 1u, both Pluto and Polygeist outperform Polly, and the
remaining gap can be attributed to codegen-level differences.
Conversely, in gemver and mvt Polly has a benefit over both

“Symmetric difference is computed as 2 - |a — b|/(a + b).
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Fig. 10. Mean and 95% confidence intervals (log scale) of program run time across 5 runs of Polybench in CLANG, CLANGSING and MLIR-CLANG
configurations, lower is better. The run times of code produced by Polygeist without optimization is comparable to that of Clang. No significant variation is
observed between single and double optimization. Short-running jacobi-1d shows high intra-group variation.
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Fig. 11. Median speedup over CLANG for sequential configurations (log scale), higher is better. Polygeist outperforms (2.53x geomean speedup) both Pluto
(2.34x) and Polly (1.41x) on average. Pluto can’t process adi, which is therefore excluded from summary statistics.
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Fig. 12. Median speedup over CLANG for parallel configurations (log scale), higher is better. Polygeist outperforms (9.47x geomean speedup) both Pluto
(7.54x) and Polly (3.26x) on average. Pluto can’t process adi, which is therefore excluded from summary statistics.

Pluto and Polygeist. On ludcmp and syr (2)k, SSA-level
optimizations let Polygeist produce code which is faster than
Pluto and at least as fast as Polly. These results demonstrate
that Polygeist indeed leverages the benefits of both the affine
and SSA-based optimizations.

Polygeist is the only flow that obtains speedup on deriche
(6.9%) and symm (7.7x). Examining the output code, we
observe that only Polygeist manages to parallelize these two
benchmarks. Considering the input code in Figure [I3] one can
observe that the i loop reuses the ym1 variable, which is in-

terpreted as parallelism-preventing loop-carried dependency by
polyhedral schedulers. Polygeist performs its own parallelism
analysis after promoting ym1 to an SSA register (carried by the
j loop) whose use-def range does not prevent parallelization.

Similarly, the Polygeist parallelizer identifies two bench-
marks with parallel reduction loops that are not con-
tained in other parallel loops: gramschmidt and durbin.
gramschmidt benefits from a 56x speedup with Polygeist,
compared to 34x with Polly and 54 x with Pluto. durbin
sees a 6x slowdown since the new parallel loop has relatively



for (i=0; 1i<_PB_W; i++){ %z = constant 0.0 : f64
yml = SCALAR_VAL(0.0); affine.parallel %i = ... {
/). affine.for %j = ...
for (j=0; J<_PB_H; J++){ iter_args ($yml=%z)->f64 {
yml = y1[i][]]; %0=affine.load %yl[%i,%7]
Sreoox/ )

} affine.yield %0
H}

Fig. 13. Excerpt from the deriche benchmark. The outer loop reuses ym1l
which makes it appear non-parallel to affine schedulers (left). Polygeist detects
parallelism thanks to its mem2reg optimization, reduction-like loop-carried
%$yml value detection and late parallelization (right).

few iterations and is nested inside a sequential loop, leading
to synchronization costs that outweigh the parallelism benefit.
Section [V-F| explores the durbin benchmark in more detail.
Polybench is a collection of codes (mostly) known to be par-
allel and, as such, has little need for reduction parallelization
on CPU where one degree of parallelism is sufficient. When
targeting inherently target architectures as GPUs, however,
exploiting reduction parallelism could be vital for achieving
peak performance [31], [24].

E. Case Study: Statement Splitting

We identified 5 benchmarks where the statement splitting
heuristic applied: 2mm, 3mm, correlation, covariance
and trmm. To assess the effect of the transformation, we
executed these benchmarks with statement splitting disabled,
suffixed with -nosplit in Figure[I4] In sequential versions,
2mm is 4.1% slower (3.13s vs 3.26s), but the other benchmarks
see speedups of 25%, 50%, 51% and 27%, respectively. For
parallel versions, the speedups are of 36%, 20%, 44%, 40%
and —9% respectively.

Examination of polyhedral scheduler outputs demonstrates
that it indeed produced the desired schedules. For example,
in the correlation benchmark which had the statement
A[i][3] += BI[k][i]*B[k][Jj] Polygeist was able to
find the (k,4,j) loop order after splitting. Using hard-
ware performance counters on sequential code we confirm
that the overall cache miss ratio has indeed decreased by
75%, 50%, 20%, 27%, and —26%, respectively. However, the
memory traffic estimated by the number of bus cycles has
increased by 9% for 2mm, and decreased by 18%, 32%, 32%,
and 21% for the other benchmarks. This metric strongly
correlates with the observed performance difference in the
same run (r=0.99,p = 3-10~'1). This behavior is likely
due to the scheduler producing a different fusion structure,
e.g., not fusing outermost loops in 2mm, which also affects
locality. Similar results can be observed for parallel code.
Further research is necessary to exploit the statement splitting
opportunities, created by Polygeist, and interplay with fusion.

F. Case Study: Reduction Parallelization in durbin

In this benchmark, Polygeist uses its reduction optimization
to create a parallel loop that other tools cannot. For the
relatively small input run by default, N = 4000 iterations
inside another sequential loop with NN iterations, the overall

mmm polygeist-nosplit

polygeist

B polygeistpar-nosplit

polygeistpar
1.25

e
o«

R e
@ 0
« «©

(a) sequential (b) parallel

Fig. 14. Mean and 95% confidence intervals of run time across 5 runs of
Polybench where statement splitting is applicable (Section [[I-D), lower is
better. It results in faster run time (geomean 1.28 X sequential, 1.39x parallel
speedup) except for sequential 2mm (—4%) and parallel trmm (—9%).
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Fig. 15. Reduction parallelization allows POLYGEISTPAR to produce larger
speedups in durbin and at smaller sizes than POLLYPAR, POLYGEISTPAR
without reduction support. PLUTOPAR fails to parallelize, hence no speedup.

performance decreases. We hypothesize that the cost of cre-
ating parallel threads and synchronizing them outweighs the
benefit of the additional parallelism and test our hypothesis
by increasing N. Considering the results in Figure [T3] one
observes that Polygeist starts yielding speedups (> 1) for
N > 16000 whereas Polly only does so at N > 224000, and
to a much lesser extent: 6.62x vs 1.01x. Without reduction
parallelization, Polygeist follows the same trajectory as Polly.
Pluto fails to parallelize any innermost loop and shows no
speedup. This evidences in favor of our hypothesis and high-
lights the importance of being able to parallelize reductions.

VI. RELATED WORK

a) MLIR Frontends: Since the adoption of MLIR under
the LLVM umbrella, several frontends have been created for
generating MLIR from domain-specific languages. Teckyl [2]]
connects the productivity-oriented Tensor Comprehensions [1]]
notation to MLIR’s Linalg dialect. Flang—the LLVM’s Fortran
frontend—models Fortran-specific constructs using the FIR
dialect [32]. COMET, a domain-specific compiler for chem-
istry, introduces an MLIR-targeting domain-specific frontend
from a tensor-based language [33]. NPComp aims at providing
the necessary infrastructure to compile numerical Python and
PyTorch programs taking advantage of the MLIR infrastruc-
ture [34]. PET-to-MLIR converts a subset of polyhedral C code
to MLIR’s Affine dialect by parsing pet’s internal represen-



tation. In addition to currently not handling specific constructs
(ifs, symbolic bounds, and external function calls), parsing
pet’s representation limits the frontend’s usability as it cannot
interface with non-polyhedral code such as initialization, veri-
fication, or printing routines [35]]. In contrast, Polygeist gener-
ates MLIR from non-polyhedral code (though not necessarily
in the Affine dialect). CIRCT is a new project under the LLVM
umbrella that aims to apply MLIR development methodology
to the electronic design automation industry [[17]. Stripe uses
MLIR Affine dialect as a substrate for loop transformations in
machine learning models, including tiling and vectorization,
and accepts a custom DSL as input [36].

b) Compilers Leveraging Multiple Representations: The
SUIF compiler infrastructure pioneered a combined internal
representation that supports higher-level transformations, in-
cluding loop optimization and parallelization [37] and, in
particular, reduction parallelization [38]]. Polygeist leverages
MLIR abstractions unavailable in SUIF: regular and affine
for loops, OpenMP reduction constructs, etc. It also bene-
fits from the SSA+regions form, which is only available as
external extension in SUIF [39], for IR simplification. PIPS
supports loop transformations and inter-procedural optimiza-
tion when targeting OpenMP [40]], [41]]. Polygeist differs from
both by emitting machine code rather than source code, which
allows it to emit parallel runtime and other directives that have
no representation in the source language such as C.

c) Combining “Classical” and Polyhedral Flows: Few
papers have focused on combining “classical”’, mostly AST-
level, and polyhedral transformations. PolyAST pioneered
the approach by combining an affine scheduler with AST-
level heuristics for fusion and tiling [42], although simi-
lar results were demonstrated with only polyhedral transfor-
mations [43]. An analogous approach was experimented in
CUDA-CHILL [44]. Arguably, many automated polyhedral
flows perform loop fusion and/or tiling as a separate step that
can be assimilated to classical transformations. Pluto [11]] uses
several “syntactic” postprocessing passes to exploit spatial
locality and parallelism in stencils [45]. Several tools have
been proposed to drive polyhedral loop transformations with
scripts using classical loop transformations such as fusion and
permutation as operations, including URUK [46], CHiLL [47]
and Clay [48]]. Polygeist differs from all of these because it
preserves the results of such transformations in its IR along
with polyhedral constructs and enables interaction between
different levels of abstraction.

d) Additional (Post-)Polyhedral Transformations: Sup-
port for handling reduction loops was proposed in Polly [25],
but the code generation is not implemented. At the syntactic
level, reduction support was added to PET via manual anno-
tation with PENCIL directives [24]. R-Stream reportedly uses
a variant of statement splitting to affect scheduler’s behavior
and optimize memory consumption [49]. POLYSIMD uses
variable renaming around PPCG polyhedral flow to improve
vectorization [50]. Polygeist automates these leveraging both
SSA and polyhedral information.

e) Integration of Polyhedral Optimizers into Compilers:
Polyhedral optimization passes are available in production
(GCC [8], LLVM [7], IBM XL [51]) and research (R-
Stream [49], ROSE [52]]) compilers. In most cases, the
polyhedral abstraction must be extracted from a lower-level
representation before being transformed and lowered in a
dedicated code generation step [13[], [14]. This extraction
process is not guaranteed and may fail to recover high-level
information available at the source level [9]]. Furthermore,
common compiler optimizations such as LICM are known to
interfere with it [10]. Polygeist maintains a sufficient amount
of high-level information, in particular loop and n-D array
structure, to circumvent these problems by design.

Source-to-source polyhedral compilers such as Pluto [11]]
and PPCG [5] operate on a C or C++ level. They lack
interaction with other compiler optimizations and a global
vision of the code, which prevents, e.g., constant propagation
and inlining that could improve the results of polyhedral
optimization. Being positioned between the AST and LLVM
IR levels, Polygeist enables the interaction between higher-
and lower-level abstractions that is otherwise reduced to
compiler pragmas, i.e. mere optimization hints. Furthermore,
Polygeist can rely on MLIR’s progressive raising [53] to target
abstractions higher level than C code with less effort than
polyhedral frameworks [54].

VII. DISCUSSION
A. Limitations

a) Frontend: While Polygeist could technically accept
any valid C or C++ thanks to building off Clang, it has the
following limitations. Only structs with values of the same
type or are used within specific functions (such as FILE within
fprint£) are supported due to the lack of a struct-type in
high-level MLIR dialects. All functions that allocate memory
must be compiled with Polygeist and not a C++ compiler to
ensure that a memref is emitted rather than a pointer.

b) Optimizer: The limitations of the optimizer are inher-
ited from those of the tools involved. In particular, the MLIR
affine value categorization results in all-or-nothing modeling,
degrading any loop to non-affine if it contains even one non-
affine access or a negative step. Running Polygeist’s backend
on code not generated by Polygeist’s frontend, which reverses
loops with negative steps, is limited to loops with positive
indices. Finally, MLIR does not yet provide extensive support
for non-convex sets (typically expressed as unions). Work is
ongoing within MLIR to address such issues.

c) Experiments: While our experiments clearly demon-
strate the benefits of the techniques implemented in
Polygeist— statement splitting and late (reduction) paralleliza-
tion — non-negligible effects are due to scheduler difference:
Pluto in Polygeist and isl in Polly. The version of Polly
using Plutﬂ is not compatible with modern LLVM necessary
to leverage MLIR. Connecting is1 scheduler to Polygeist may
have yielded results closer to Polly, but still not comparable

Shttp://pluto-compiler.sourceforge.net/#libpluto
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more directly because of the interplay between SCoP detec-
tion, statement formation and affine scheduling.

B. Opportunities and Future Work

Connecting MLIR to existing polyhedral flows opens nu-
merous avenues for compiler optimization research, connect-
ing polyhedral and conventional SSA-based compiler transfor-
mations. This gives polyhedral schedulers access to important
analyses such as aliasing and useful information such as
precise data layout and target machine description. Arguably,
this information is already leveraged by Polly, but the represen-
tational mismatch between LLVM IR and affine loops makes
it difficult to exploit them efficiently. MLIR exposes similar
information at a sufficiently high level to make it usable in
affine transformations.

By mixing abstractions in a single module, MLIR provides
finer-grain control over the entire transformation process. An
extension of Polygeist can, e.g., ensure loop vectorization
by directly emitting vector instructions instead of relying on
pragmas, which are often merely a recommendation for the
compiler. The flow can also control lower-level mechanisms
like prefetching or emit specialized hardware instructions.
Conversely, polyhedral analyses can guarantee downstream
passes that, e.g., address computation never produces out-of-
bounds accesses and other information.

Future work is necessary on controlling statement gran-
ularity made possible by Polygeist. Beyond affecting affine
schedules, this technique enables easy rematerialization and
local transposition buffers, crucial on GPUs [35]], as well as
software pipelining; all without having to produce C source
which is known to be complex [56]. On the other hand, this
may have an effect on the compilation time as the number of
statements is an important factor in the complexity bound of
the dependence analysis and scheduling algorithms.

C. Alternatives

Instead of allowing polyhedral tools to parse and generate
MLIR, one could emit C (or C++) code from MLIRE] and
use C-based polyhedral tools on the C source, but this ap-
proach decreases the expressiveness of the flow. Some MLIR
constructs, such as parallel reduction loops, can be directly
expressed in the polyhedral model, whereas they would require
a non-trivial and non-guaranteed raising step in C. Some other
constructs, such as prevectorized affine memory operations,
cannot be expressed in C at all. Polygeist enables transparent
handling of such constructs in MLIR-to-MLIR flows, but we
leave the details of such handling for future work.

The Polygeist flow can be similarly connected to other
polyhedral formats, in particular is1. We choose OpenScop
for this work because it is supported by a wider variety of
tools. is1 uses schedule trees [57] to represent the initial and
transformed program schedule. Schedule trees are sufficiently
close to the nested-operation IR model making the conversion
straightforward: “for” loops correspond to band nodes (one

Shttps://github.com/marbre/mlir-emitc

loop per band dimension), “if”” conditionals correspond to filter
nodes, function-level constants can be included into the context
node. The tree structure remains the same as that of MLIR
regions. The inverse conversion can be obtained using is1’s
AST generation facility [[14].

VIII. CONCLUSION

We present Polygeist, a compilation workflow for importing
existing C or C++ code into MLIR and allows polyhedral
tools, such as Pluto, to optimize MLIR programs. This enables
MLIR to benefit from decades of research in polyhedral com-
pilation. We demonstrate that the code generated by Polygeist
has comparable performance with Clang, enabling unbiased
comparisons between transformations built for MLIR and
existing polyhedral frameworks. Finally, we demonstrate the
optimization opportunities enabled by Polygeist considering
two complementary transformations: statement splitting and
reduction parallelization. In both cases, Polygeist achieves
better performance than state-of-the-art polyhedral compiler
and source-to-source optimizer.
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APPENDIX

In this artifact appendix, we describe how to build Polygeist
and evaluate its performance (as well as baseline compilers) on
the Polybench benchmark suite. We provide two mechanisms
for artifact evaluation: a Docker container’] and a command-
by-command description of the installation process, along with

7Script available here: https:/github.com/wsmoses/Polygeist-Script/blob/
main/Dockerfile
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comments regarding how this may need to be modified to run
on a system with hardware or software configuration that is
distinct from what we used. As expected, the command de-
scription mirrors much of the content of the docker file. While
a docker file is certainly more convenient and a good way of
getting the compiler set up, similar changes to expectations
of how many cores the system has in the evaluation will be
required even with Docker.

To compile Polygeist, one must first compile several of its
dependencies. We ran our experiments on an AWS c5.metal
instance based on Ubuntu 20.04. We’ve tailored our build
instructions to such a system. While many of the instructions
are general and independent of machine, or OS, some steps
may not be (and we describe what locations they may occur
below).
$ sudo apt update
$ sudo apt install apt-utils
$ sudo apt install tzdata build-essential \

libtool autoconf pkg-config flex bison \

libgmp-dev clang-9 libclang-9-dev texinfo \
cmake ninja-build git texlive-full numactl
# Change default compilers to make Pluto happy
$ sudo update-alternatives —-install \

/usr/bin/llvm-config llvm-config \

/usr/bin/llvm-config-9 100
$ sudo update-alternatives —-install \

/usr/bin/FileCheck FileCheck-9 \
/usr/bin/FileCheck 100

$ sudo update-alternatives —--install \
/usr/bin/clang clang \
/usr/bin/clang-9 100

$ sudo update-alternatives —-install \

/usr/bin/clang++ clang++ \
/usr/bin/clang++-9 100

To begin, let us download a utility repository, which will
contain several scripts and other files useful for compilation
and benchmarking:

$ cd

$ git clone \
https://github.com/wsmoses/Polygeist—Script\
scripts

One can now compile and build Pluto as shown below:

$ cd

$ git clone \
https://github.com/bondhugula/pluto

cd pluto/

git checkout e5a039096547e0a3d34686295¢c
git submodule init

git submodule update

./autogen.sh

./configure

make —3j nproc’

Next one can build LLVM, MLIR, and the frontend by
performing the following:

$ cd

$ git clone -b main-042621 --single-branch \
https://github.com/wsmoses/Polygeist \
mlir-clang

$ cd mlir-clang/

U Ay

$ mkdir build

$ cd build/

$ cmake -G Ninja ../llvm \
-DLLVM_ENABLE_PROJECTS="mlir;

polly;clang; openmp" \

-DLLVM_BUILD_EXAMPLES=ON \
-DLLVM_TARGETS_TO_BUILD="host" \
-DCMAKE_BUILD_TYPE=Release \
-DLLVM_ENABLE_ASSERTIONS=0ON

$ ninja

From here, we need to modify omp . h by copying the version
from the scripts repository and replacing the version we
just builtff

$ cd

$ export OMP_FILE="find \
SHOME/mlir-clang/build —-iname omp.h’

$ cp SHOME/scripts/omp.h $SOMP_FILE

Let us now build the MLIR polyhedral analyses, along with
the specific version of LLVM it requires. We shall begin by
downloading the requisite code and building its dependencies.

S cd

$ git clone —--recursive \
https://github.com/kumasento/polymer -b pact
cd polymer/

cd 1lvm/

mkdir build

cd build/

cmake ../1llvm \
-DLLVM_ENABLE_PROJECTS="11lvm; clang;mlir" \
-DLLVM_TARGETS_TO_BUILD="host" \
-DLLVM_ENABLE_ASSERTIONS=ON \
-DCMAKE_BUILD_TYPE=Release \
-DLLVM_INSTALL_UTILS=ON \

-G Ninja

$ ninja —-3j nproc’

$ ninja check-mlir

Ur Uy O r

We can now build the MLIR polyhedral analyses and export
the corresponding build artifacts.

cd ~/polymer
mkdir build
cd build
export BUILD=S$PWD/../llvm/build
cmake .. \
-DCMAKE_BUILD_TYPE=DEBUG \
-DMLIR_DIR=$BUILD/lib/cmake/mlir \
-DLLVM_DIR=S$SBUILD/lib/cmake/llvm \
-DLLVM_ENABLE_ASSERTIONS=ON \
-DLLVM_EXTERNAL_LIT=$BUILD/bin/llvm-1it \
-G Ninja
$ ninja -j nproc’
$ export LD_LIBRARY_PATH= \

‘pwd’ /pluto/lib:$LD_LIBRARY_PATH
$ ninja check-polymer

v U

Finally, we are ready to begin benchmarking. We begin by
running a script that disables turbo boost & hyperthreading and
remaining nonessential services on the machine. The script is

8We modify omp.h to prevent a compilation error for Pluto parallel. The
generated code does not include stdint.h, thus getting the error: unknown type
name ’intptr_t’



specific to both the number of cores on the AWS instance (all
cores except the non hyperthreaded cores on the first socket
were disabled), as well as the image used (all nonessential
services still present on the image were disabled) and thus
may require modification if intending to be used on a different
machine.

$ cd ~/scripts/
$ sudo bash ./hyper.sh

We can now run the benchmarking script. The script
itself has assumptions about cores and layout (setting
taskset -c 1-8 numactl -i all for example). If
using a different machine, these settings may need to be
tweaked as appropriate.

cd ~/scripts/

$ cd polybench-c-4.2.1-beta/
$ ./run.sh

# Output comes through stdout

The output of this script will contain the runtime of each trial,
describing what compilation setting was used, as well as which
benchmark was run.
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