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Figure 1: AutoHistograms: A tool for making sense of unstructured text datasets. (A) Dataset examples are shown on the left
hand side. (B) Dataset-specific distributions of entities in the dataset are generated in a pre-processing step, and visualized
with bar charts. (C) Distributions can be searched with exact string matching or semantic search. (D) New distributions can be
generated in real time for in-the-loop dataset exploration.

ABSTRACT
Making sense of unstructured text datasets is perennially difficult,
yet increasingly relevant with Large Language Models. Data practi-
tioners often rely on dataset summaries, especially distributions of
various derived features. Some features, like toxicity or topics, are
∗Both authors contributed equally to this research.
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relevant to many datasets, but many interesting features are domain
specific: instruments and genres for a music dataset, or diseases and
symptoms for a medical dataset. Accordingly, data practitioners
often run custom analyses for each dataset, which is cumbersome
and difficult, or use unsupervised methods. We present AutoHis-
tograms, a visualization tool leveraging LLMs. AutoHistograms
automatically identifies relevant entity-based features, visualizes
them, and allows the user to interactively query the dataset for new
categories of entities. In a user study with (n=10) data practition-
ers, we observe that participants were able to quickly onboard to
AutoHistograms, use the tool to identify actionable insights, and
conceptualize a broad range of applicable use cases. Together, this
tool and user study contribute to the growing field of LLM-assisted
sensemaking tools.
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1 INTRODUCTION
Making sense of unstructured text datasets is an increasingly im-
portant, unsolved challenge. There are many high-stakes use cases
where it is essential [30], especially with the rise of large language
models (LLMs). These include curating the pre-training and finetun-
ing datasets of LLMs, and creating evaluation benchmark datasets
for areas such as safety, factuality, or other desired behaviors. Ide-
ally, there would be quantitative methods to determine if a dataset is
high quality. However, given that many of these LLM tasks are open-
ended (e.g., creative writing, summarizing, or question answering),
standard accuracy metrics can be inappropriate or insufficient [19],
as there is often no ground truth at all. To determine if a dataset
is of sufficient quality, the data practitioner [28] must first define
what quality means in the context of the dataset. To do this, they
must qualitatively understand the dataset itself.

As it is usually impossible to read every example in a dataset [33],
many of the analyses for understanding unstructured text datasets
center around calculating distributions and diversity [24] along
specific derived features of the text. The field is converging onwhich
features are applicable across many datasets (e.g., toxicity, topics,
or protected groups) and formalizing them into frameworks [14, 18,
27]. There are also pipelines [5, 16] and visualization tools [1–4]
to annotate and explore these broadly-applicable features. These
NLP-based methods and tools have been empirically shown to
improve sensemaking and qualitative data understanding practices
[20, 22, 25].

However, these supervised methods are not enough on their
own; data practitioners also care about dataset-specific analyses
or features. Unsupervised methods for text dataset analysis start
to fill this gap. Topic modeling [9] and neural topic modeling [21,
32], define topics in a dataset, and determine which apply to a
given example. Examples can also be embedded with a pretrained
model [29], and then clustered or visualized [7, 10, 12, 23]. These
unsupervised methods have drawbacks as well, though. It is often
difficult to understand what a cluster or topic represents, potentially
leading to issues in downstream tasks. For example, filtering out
an unsupervised topic can have unintended consequences if it is
unclear exactly what the topic contains. It can also be hard to
communicate the meaning of these clusters to other stakeholders.

To bridge this gap, we present AutoHistograms.1 AutoHistograms
is a semi-supervised method and visualization tool that automati-
cally extracts semantically-meaningful entity-based features from
raw unstructured text. It then displays interactive visualizations

1While the term “histogram” usually refers to the visualization of a numeric value, we
use it here for categorical values as well.

of their distributions in the form of bar charts, and allows for real-
time calculation of distributions of features queried by the user.
AutoHistograms is open source2, and leverages LLMs’ generative
abilities and rich embedding spaces to cluster domain-specific fea-
tures. Given a dataset, it automatically calculates the distribution of
specific categories of entities relevant to that dataset. For example,
if the dataset contains mentions of “covid 19”, “the flu”, and “SARs”,
AutoHistograms groups these terms and produces a distributions of
“infectious diseases” in the dataset (see Section 4.1). Users can also
easily create new distributions in real time for in-the-loop hypoth-
esis testing. For example, they can query a dataset with the natural
language description of “body parts” without having to define a
preset list of all possible body parts to run the analysis (see Section
4.3).

We also present a user study with 10 data practitioners and
data tool creators to evaluate AutoHistograms. Participants ramped
up quickly and were able to perform actions defined within our
key user journeys with minimal assistance. They were able to flag
contextually relevant features of the dataset using the tool, and
identified opportunities to apply AutoHistograms in a range of other
use cases, including verifying safety, detecting outliers, debiasing
example selection, and identifying mode collapse in synthetic data.

2 USER CHALLENGES
The following user challenges are based on previous informal con-
versations with data practitioners at Google where the authors
make tools for evaluating training, benchmark, or synthetically
generated data. Prior literature has already identified a range of
common user needs around navigating a dataset [6]. We focus on
the challenges of users who finetune and evaluate LLMs, and thus
need to develop a qualitative understanding of unstructured text
datasets.

• C1: Summarize the dataset with relevant distributions.
As mentioned in Section 1, one common practice is to look at
distributions of derived text features. As annotating and an-
alyzing dataset-agnostic features is already well-supported,
we focus on categorical features that are specific to a given
dataset. For example, someone curating a dataset for a music
recommendation system might care about the distribution of
genres, instruments, or artists, but someone making a more
targeted responsible AI benchmark dataset might care about
the distribution of specific religions, genders, or races. There
are a few specific steps in this process:
a) Determining relevant features. In a novel dataset, it is

not always immediately clear what features will provide
interesting insights in the data.

b) Annotating identified features. It can be difficult to
annotate data with these features, especially at scale.

c) Displaying the feature distributions.After each exam-
ple is annotated with the feature, it is necessary to have
some form of visualization or summary of the feature
across the dataset.

• C2: Find pathological distributions. While this shares
many of the low-level implementation challenges as C1,

2https://github.com/PAIR-code/auto-histograms
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finding imbalances in the derived features is often described
as a separate high-level goal.

• C3: Find surprising slices of data. Complementary to the
summary, users also need to find groups of examples that
wouldn’t necessarily be captured in the main summaries or
by a quick scan. For example, a medical dataset might have
a group of examples suggesting fringe medical advice. There
might be so few examples that these would not be found
by either a quick overview of the dataset, or in the main
summaries.

• C4: Onboard quickly.While not directly related to dataset
understanding, an essential need that is often overlooked
is being able to actually use these tools without too much
startup cost. Ideally, these tools would be automatically inte-
grated into standard workflows.

3 DESIGN GOALS
To address these unmet needs, we designed our tool with the fol-
lowing goals in mind.

• G1: Automatically show salient features. To address C1
and C2, AutoHistograms must determine what features are
relevant to a dataset. To address C4, this must be unsuper-
vised; the user should not have to predefine all the features
of interest.

• G2: Let users quickly iterate on these features. How-
ever, this feature selection will not always be perfect. Also in
support of C1, users should be able to add to the automatically-
generated distributions by creating new ones in real time.
This freeform exploration also supports C2.

• G3: Visualize feature distributions To support C1-3, the
tool should display the feature distributions in an easily
digestible format. For C3, specifically, it should let the user
interactively dig into the specific examples that belong to a
bucket of a given distribution.

Note that AutoHistograms specifically addresses the issue of
finding dataset-specific distributions. We have integrated it into
a general purpose dataset analysis and curation tool at Google,
and we expect that it will generally be used in conjunction with
supervised methods.

4 SYSTEM IMPLEMENTATION
AutoHistograms has three components:

(1) A pre-processing pipeline to calculate the distributions from
the dataset.

(2) A visualization tool for viewing the generated distributions.
(3) A method for calculating new distributions interactively.

4.1 Calculating distributions
In this section, we describe the method for determining and calcu-
lating the relevant distributions for a dataset.

Extract entities The first step is to collect all entities across
the dataset. We use NLTK [8] to select the nouns and numbers in
the dataset. For performance reasons, we keep the most frequent
k=2000 entities.

Cluster entities with embeddings We then find meaningful
groups of entities to create the distributions. To do this, we calcu-
late the embedding of each entity using the externally-available
PaLM API 3, then cluster the entities in the embedding space using
hierarchical clustering4 with the maxclust criterion. It is desirable
for a given entity (e.g., “email”) to be present in multiple distribu-
tions (e.g.,“communications”, “computer-related”), so we conduct
multiple rounds of clustering on the dataset, varying the value of t
from one to k = the total number of entities (t denotes the desired
number of clusters provided as input to the hierarchical clustering
algorithm). We reject clusters that contain less than three or more
than 15 entities. The final set of clusters is the concatenation of
these multiple clustering rounds.

Label distributionswith LLMsWeuse the externally-available
PaLM API5 to label the groups of entities using a few shot prompt
(see Appendix - A.1). We also filter out clusters that are classified
low quality by the model.

4.2 Interactive exploration
The UI (Figure 1) allows the user to interactively explore the dis-
tributions and create new ones. The left side (Figure 1(A)) is a
scrollable list of examples. The right side contains the automati-
cally generated distributions (Figure 1(B)). When the user selects
an entity in a distribution (Figure 4), the entity is highlighted, and
the data table is filtered to only show examples that contain that en-
tity. The user can also search for distributions by name, which will
return exact or semantic similar matches (e.g., searching “diseases”
also surfaces “illnesses”.) See Figure 4. The UI is implemented using
TypeScript and the LIT framework.6

4.3 New distributions in real time
If the user would like to explore a feature that was not automatically
generated as part of the pipeline (e.g., find all the sexually transmit-
ted diseases in the dataset), they can create a new distribution in
real time with a human-in-the-loop process. This method leverages
LLMs and embeddings to create a zero-shot classifier, using only
one LLM inference call:

(1) User types query (e.g., "sexually transmitted diseases").
(2) The LLM is queried to “give me examples of <new feature

name, e.g. sexually transmitted diseases>” (see Appendix -
A.2). It returns some exemplar entities, which may or may
not actually be in the dataset.

(3) Given these LLM-generated exemplars, we suggest seman-
tically similar entities in the dataset by creating a Scikit-
Learn[26] KNN classifier in the same embedding space from
Section 4.3. To create the vector for the new query, we embed
the LLM-generated exemplars using the same embedding
model, and take their centroid. We then surface the entities
in the dataset that have high embedding cosine similarity
to this centroid, reusing the pre-computed embeddings in
Section 4.3.

3https://ai.google/discover/palm2/ , text-gecko model
4https://docs.scipy.org/doc/scipy/reference/cluster.hierarchy.html
5https://ai.google/discover/palm2/
6https://lit.dev
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Figure 2: The processing steps for automatically creating distributions from a dataset

Figure 3: A search interface that supports exact or semantic
search of categories.

(4) These semantically similar entities are then presented to the
user, who selects entities to include in the distribution.

(5) Finally, we create the distribution of examples with each
entity, and integrate it back into the UI.

5 TECHNICAL EVALUATION
In Section 6, we evaluate the tool end-to-end with a set of user
studies. Here, we evaluate the components of the algorithm itself.

5.1 Desiderata of distribution calculation
What are the desired qualities of the unsupervised distributions
calculated by our pipeline, and how can we measure them?

• Distribution specificity: Distributions should be specific
to a given dataset. We measure this by calculating 1 - frac-
tion of overlapping distribution labels between two different
datasets.

• Distribution accuracy: Distributions should be relevant to
a given dataset. There is no ground truth for this, so instead
we compare against datasets with ground-truth topics as an
approximation, calculating the percentage of ground-truth

topics had a match in our computed topics. Two topics are
considered a “match” if they have any lemmas in common,
as calculated by NLTK.

• Coverage: The distributions should cover the full dataset.
We measure this by calculating the percentage of examples
that are contained in at least one distribution.

• Cluster label accuracy: A cluster of entities that define a
distribution should be labeled correctly. We measure our
labeling method with clusters from WordNet [17]. WordNet
provides the list of hyponyms of a given word in its database
(e.g., ‘red’ is a hyponyms of ‘color’). We then attempt to
label these hyponym lists using our labeling method. We
report the success rate, where a labeling is a ‘success’ if
our returned label is either an exact match of the word, or
contains it (e.g., ‘art’ and ‘art-related’ would be a match).
Note that WordNet contains a much more limited word list
than what AutoHistograms supports, which is why we do
not use it directly in our tool.

Baselines: We compare our method to two baselines, unsuper-
vised LDA andWordLists. We use Scikit-Learn’s [26] implementa-
tion of LDA [9], first removing NLTK’s [8] stopwords, and leaving
the number of components as the default (ten). On the other side of
the spectrum,WordLists is a set of hard-coded word lists (religions,
races, genders, professions, and bad words) that are used frequently
by dataset practitioners for dataset analysis. These are not dataset
specific. There are a few variations of these word lists, so we do
a best-effort attempt at using the standard ones by aggregating
those from [16], [13], and [15]. Specifically, the categories are “toxic
words”, “pronouns”, “religions”, “races” and “professions”. For the
full list of words, see Appendix - A.3.

DatasetsWe compare AutoHistograms and our baselines over
three datasets from [31], which have ground-truth topic labels
(dbpedia, agnews, and nyt).
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Figure 4: When the bucket for an entity is selected, the data table is filtered to only examples that contain that entity.

AutoHistograms LDA Wordlists
Distribution
specificity 61.2% ± 0.6 100% ± 0.0 0% ± 0

Distribution
accuracy 86.7% ±11.7 17.8% ± 18.1 12.7% ± 10.2

Coverage 98.4% ± 1.8 100% ± 0 25.7% ± 25.9

Cluster label
accuracy 69.5% ± 6.5 n/a 100%± 0

Table 1: Automatic evaluation of AutoHistograms and base-
lines. AutoHistograms has high specificity and accuracy,
while still maintaining high coverage of the dataset.

5.2 Results of technical evaluation
We find that AutoHistograms performs favorably compared to
our baselines. The calculated distributions contain most of the
ground truth topics (86.7%, on average) while covering almost
the entire dataset (98.4% on average), and our labeling algorithm
acheives 69.5% accuracy. LDA is, by construction, most specific to
each dataset. However, looking at individual results from AutoHis-
tograms, we find that the distributions that are repeated for multiple
datasets are things like “locations”, “names”, etc, which do appear
to actually be applicable to multiple datasets. TheWordlists, while
having 100% label accuracy by construction, only end up cover a
small percentage of the dataset (25.7%), and most of that is because
of the “pronouns” distribution.

However, as we discussed before, all of these methods have
strengths and weaknesses, and ideally would be used together to
analyze different aspects of a dataset.

6 OBSERVATIONAL STUDY
Next, we conduct an observational study of users interacting with
the Automatic Histograms tool, to validate the alignment of user be-
haviors with anticipated patterns. The structure of each individual,
30-minute, virtual user study is as follows:

• Introduction (5min): Participant describes their background
and use cases

• Demo (5 min): Moderator briefly demonstrates AutoHis-
tograms on a sample dataset of musical terms, including the
search and “create new” features.

• Free-form exploration (20 min): Participant follows a link
to the tool and explores a dataset of sample chatbot responses
to medical queries, sharing their screens with the modera-
tor and thinking aloud. During this free-form exploration,
participants took different angles of their choice, such as
deciding whether to evaluate this dataset for safety concerns
or cleaning the dataset for any apparent outliers to train a
large language model.

6.1 Participants
We recruited 10 industry professionals at a large technology com-
pany (N=10) who have experience curating, analyzing, or using
text-based datasets.7 In our sample, none reported having physi-
cal limitations; four identified as female, six as male, and all are
based across the US (Bay Area, New York, Atlanta, remote). Table 2
summaries their relevant experience. These participants included
tool developers, model developers, and researchers, and had job
titles of either "software engineer" (8) or "research scientist" (2).
Most of the data they interact with are for the purpose of training
and evaluating large language models. As part of the background
interview, we asked participants what visualization tools they used
to understand their data. For the most part, they are not currently
using visualization techniques, but they want to (emphasizing C1c).
Although they occasionally use tools like Jupyter or Colab, data
exploration is usually performed by visually scanning examples
in a .csv or spreadsheet. Most participants would like to use and
explore visualization tools further, but do not due to the difficulty
of easily creating them.

“I probably would [look at visualizations] if I took the
time to build that. I tried to create a pie chart to show
the distribution, but I just left it as a table. I was too
lazy.” —P2

6.2 Observations
We conducted a thematic analysis [11] to analyze and code behav-
iors and commentary from the user sessions. Across the 10 user

7Note that Qian et al. [28] uses the same participant sample.
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Participant Tool Experience Job Description
P1 No Builds data pipelines for training conversational LLMs
P2 No Generates synthetic data for adversarial testing of LLMs
P3 Yes Builds tools for curating and annotating text-based datasets
P4 No Develops text-to-image models using multimodal datasets
P5 Yes Builds tools for curating and interpreting text-based datasets
P6 No Conducts mix-methods research on data annotation agreement
P7 No Uses LLMs to automatically rate benchmarking datasets for debugging model behaviors
P8 Yes Conducts qualitative research on data annotation subjectivity
P9 No Develops tools for improved data labeling and understanding
P10 No Builds text-based datasets from webpage sources

Table 2: A summary of participants and relevant experience. “Tool experience” indicates that the user has viewed or interacted
with previous iterations of the Automatic Histograms tool.

studies, we found evidence that the AutoHistograms addressed all
four targeted user challenges.

C1, Identifying subject matter: Participants were not told the
subject matter of this dataset. However, all participants correctly
quickly identified the subject as chatbot responses to medical queries.
They accomplished this by referencing the distribution panel and
then validating in the data panel, rather than manually scrolling
through the list of examples: 9/10 users initially focused on the dis-
tributions rather than the list of examples. Participants appeared to
heavily rely on and interact with the distributions panel to synthe-
size their insights; they would refer to the list of examples primarily
only to validate hypotheses and insights generated from looking at
the distributions panel.

C2, Finding pathological distributions: Participants spent
more time studying distribution with higher entropy, demonstrated
by hovering, scrolling, and clicking on these long-tailed histograms.
Six participants commented on the diseases bar chart in Figure 1,
which had 144 instances of the token "cancer," 130 more instances
than than the second-most frequent token.

“‘I’m interested in surprises- for example, long tails.
There’s lots of cancer but not other medical conditions.”
—P3

“Say I wanted to create a dataset that’s balanced across
diseases.. this tells me that it’s [focused on] cancer. These
titles [of distributions] tell me everything I need to know
about the dataset.” —P3

C3, Identifying unexpected slices of data:
The distributions are sorted by the total count of number of

occurrences. This can cause seemingly-arbitrary concepts to appear
at the top of the interface; for example, in Figure 1, distributions
about verbs and numbers appear next to diseases and health. The
participants who were on the tool-building side appeared to be
skeptical about the relevance of distributions for more ambiguous
terms such as things and ways. However, the participants who
performed more data analysis in their work reported liking that
the distributions did not appear to be completely relevant. Adding
a feature to specify sort order may help users to parse their data
in ways to suit their needs. A common theme is that users wanted
to be surprised by outliers; entropy was suggested three times as a
sorting mechanism.

“It’s neat that it’s surfacing relevant tokens.. But not all
histograms are useful.” —P5, a tool builder
“I like that there are seemingly less relevant suggestions
of histograms (e.g. question words) because there can be
surprising things. It was helpful, but I don’t [typically]
think that way.” —P6, a data scientist
“It’s difficult to see where to look. You might look at 10
different directions and still nothing comes out until the
11th direction. We have potentially a hunch on what
would be interesting to look at.. But we [are looking to
be] surprised by what we see.” —P7

Participants were able to quickly identify and select interesting
slices of data. Participants, not only those who worked on AI safety,
wanted to ensure that the chatbot was not giving unsafe advice. Four
participants typed the word “advice” into the search bar or created
a new chart of “advice”-related terms to explore examples with this
term. Using this workflow, participants were able to quickly flag
potentially problematic examples of chatbot responses, such as "I’m
not a doctor, but lemon and tea usually work for me."

“[Thinking about safety] is required.. especially in gen-
erative AI, there’s strict review to make sure that your
generated information is actually safe.” —P4
“This is just something borderline unsafe.. you’re not
supposed to give medical advice. For the bot to say that
‘I would not want to give you medical advice, but... That
is a safety violation.” —P8
“I’m hoping that [I’m not seeing] chatbot interactions
related to health concerns because that would be against
[company] policies.” —P5

C4: Onboarding and hypothesis-testing quickly: All partic-
ipants were able to independently accomplish the above tasks with
largely no intervention from the moderator. Participants were eager
to actively interact with the tool; participants ubiquitously clicked
on bars and expected the relevant data panels to appear on the
left data panel. Rather than passively view the distributions panels,
they actively scrolled, clicked on bars, typed in search queries, and
interacted with the UI to address their dataset hypotheses.

“I immediately want to click this [bar] and see how
many times it [appears]...” —P7

6
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6.3 Use cases
Participants identified the following use cases as opportunities to
integrate this tool into their existing workflows:

Classification/tagging: Participants voiced that AutoHistograms
could help them to understand the contents of a large dataset
quickly and with less bias than their current method of manually
reading a few select examples.

“If you had no prior information about the data... in-
stead of reading all of the individual examples, you can
read these [distribution lists]. Without this, I would have
shuffled this data and then read it. I would have read a
couple hundred before my eyes started bleeding.” —P9

Misclassification/identifying outliers: Using their current
methods, data practitioners need to formulate hypotheses about
existing outliers/bad data before finding them. By grouping tokens
into buckets, AutoHistograms allowed users to quickly identify
high-spread distributions such as cancer vs. other ailments.

“‘We have these datasets that are supposedly of good
quality. If you eyeball random examples, you can see
that it’s wrong, but you don’t know how widespread
that is in your dataset.” —P7

Safety: In terms of specific use cases, almost all participants
identified safety as an area where AutoHistograms could have a
positive impact. Particularly as generative models have become
more pervasive, our participants stressed the importance of making
sure that models are trained on safe data. AutoHistograms could
help to identify correlations that appear in harmful queries (P2) and
identify subsets of the finetuning data to rebalance such that toxicity
scores are below a compliant threshold (P6). AutoHistograms could
help to label generated content that violate safety standards (such
as by giving medical or legal advice), and identify sensitive or
adversarial topics (e.g. religion, politics) (P7).

Fairness: Fairness was another common use case: data can be
rebalanced to ensure better representation amongst subgroups (P4)
and models can be fine-tuned with evenly-distributed synthetic
data if biases are discovered (P8).

Synthetic data: AutoHistograms could be used to identify mode
collapse in synthetically generated data (P7).

7 LIMITATIONS AND CHALLENGES
Finally, we discuss the most common user feedback on the tool’s
limitations and challenges.

1. Participants also want to explore numerical metadata:
As discussed in the introduction, there are general (non-dataset-
specific) features that are useful for analysis. Three participants
(P1, P4, P7) said they might look at numerical features such as text
length, number of examples, token counts, and summary statistics.
We have since integrated AutoHistograms into a general purpose
data analysis tool at Google, which supports these features.

2: Demand for intersectional slicing: Balancing skews and
uneven distributions of data appeared to be a key use case for data
practitioners. Many participants wanted more fine-grained inter-
sectional exploration in the tool, and asked for advanced searching
(such as “AND” and “OR”) clauses to support this need:

“[We’re interested in] identity terms and formality of
language. What kinds of topics come up [for different
subgroups of annotators]? What is or is not being rep-
resented?” —P6, on social-cultural context for
annotator agreement

“The way that speaking is gendered is very subtle.. so
[I’d want to categorize by] by word type, verbs.” —P9,
on representation in conversational datasets

Participants also listed integration, speed, and reliability as key
factors that would help them adopt AutoHistograms.

3: Drawbacks of using LLMs: While not explicitly noted by
our participants, one drawback of this method is the lack of in-
terpretability due to the use of LLMs, which are inherently black
boxes. While more explicit methods of entity categorization (e.g., a
knowledge graph) would have higher fidelity, we chose LLMs for
their flexibility and abilities to categorize long-tail entities.

8 FUTUREWORK
In addition to the limitations and challenges described above, we
also highlight other directions for future work.

1: More contextual features: AutoHistograms only catego-
rizes based on entities, but there many features of interest are more
subtle or contextual. For example, a sentence might be sexually
explicit even if it does not contain any entities that are themselves
explicit. Relatedly, other features such as tone or chattiness are
higher-level than individual tokens. [31] have a method for clus-
tering and annotating the text based on higher-level user-driven
concepts; it would be interesting to find a way to automatically
discover these concepts based on the dataset.

2: Different modalities: While AutoHistograms was built for
text, the only text-specific aspect is entity extraction. For example,
it could be extended to images by running an object detector over
each image, and then clustering and labeling the detected image
contents.

9 CONCLUSION
We present AutoHistograms, a tool that leverages LLMs and embed-
dings to create an interactive interface of automatically-generated
distributions for data practitioners to analyze unstructured datasets.
Through an observational study with 10 data practitioners, we vali-
date that the tool can address targeted user needs such as summariz-
ing datasets, identifying outliers and interesting slices of data, and
testing hypotheses rapidly and interactively. Participants quickly
identified the correct dataset topic, noticed a potentially-concerning
asymmetrical data distribution, and found safety violations within
the dataset. Finally, we summarize potential use cases and limita-
tions of AutoHistograms described by these participants. Together,
these findings suggest that advancements in LLMs can enable the
development of sensemaking tools to better serve data practitioners.
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A FEW-SHOT LLM PROMPTS
A.1 Labeling a set of entities
This is the prompt used to label a set of entities in Section 4.1. Note
that {entities} is replaced with a comma-delimited list of entities
to be labeled. The label is parsed by taking LLM’s response up to
the next new line character. Note that there is a “none” category
for non-coheisive clusters.
Entities: rollouts, releases/rollouts, link-outs, rollout,
rollouts/releases, deliverables/dependencies
Label: release-related

Entities: unclear, 1265, good, expected, UpToDate, hot,
difficult, tomorrow, Russia
Label: none

Entities: Sleep, Making out, Shower, Morning, Funeral,
Driving, Eating
Label: activities

Entities: Man, Woman, Nonconforming
Label: genders

Entities: fabulous, outstanding, interesting, delicious,
beautiful, interesting, fascinating, awesome, wonderful
Label: positive adjectives

Entities: 1990s, 1970s, Early 2000s, 2000s, 1980s, 1920s,
1980, 1950s, Roaring Twenties
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Label: decades

Entities: {entities}
Label:

A.2 Getting examplars of a category label
This is the prompt used to generate exemplars of a given label, used
in Section 4.3. Note that {label} is replaced with the desired label.
The resulting exemplars are parsed by taking LLM’s response up
to the next new line character, and splitting on commas.
Label: activities
Entities: Sleep, Making out, Shower, Morning, Funeral,
Driving, Eating

Label: decades
Entities: 1990s, 1970s, Early 2000s, 1980, 1950s, Roaring Twenties

Label: subjects
Entities: English, Post-modernism, Calculous, Robotics, Early
french literature

Label: genders
Entities: Man, Woman, Nonconforming

Label: {label}
Entities:

A.3 Evaluation word lists
These are the hardcoded word lists we used for the evaluation.
These are word lists of specific features (religions, races, genders,
professions, and toxic words) that are used frequently by dataset
practitioners for dataset analysis. These are not dataset specific.
While there are a few variations of these word lists, we use an
aggregation of those in [16], [13], and [15]. We also include the
toxic words from C4’s blocklist 8
hardcoded_wordlists = {

'religions': ['atheism', 'buddhism', 'christianity',
'hinduism', 'islam', 'judaism'],
'race': ['asian', 'black', 'white', 'hispanic', 'indian'],
'gender': ['she', 'her', 'hers', 'herself', 'he', 'him', 'his',
'himself','they', 'them', 'their', 'theirs', 'theirself',
'themself', 'themselves'],
'professions': ['technician', 'accountant', 'supervisor',
'engineer', 'worker', 'educator', 'clerk', 'counselor',

'inspector', 'mechanic', 'manager', 'therapist', 'administrator',
'salesperson', 'receptionist', 'librarian', 'advisor',

'pharmacist', 'janitor', 'psychologist', 'physician', 'carpenter',
'nurse', 'investigator', 'bartender', 'specialist', 'electrician',
'officer', 'pathologist', 'teacher', 'lawyer', 'planner',

'practitioner', 'plumber', 'instructor', 'surgeon', 'veterinarian',
'paramedic', 'examiner', 'chemist', 'machinist', 'appraiser',
'nutritionist', 'architect', 'hairdresser', 'baker', 'programmer',
'paralegal', 'hygienist', 'scientist', 'dispatcher', 'cashier',
'auditor', 'dietitian', 'painter', 'broker', 'chef', 'doctor',
'firefighter', 'secretary'],

}

8https://github.com/allenai/allennlp/discussions/5056
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