
Structured Multi-Hashing for Model Compression

Elad Eban∗

Google Research.
elade@google.com

Yair Movshovitz-Attias∗

Google Research.
yairmov@google.com

Hao Wu
Google.

haou@google.com

Mark Sandler
Google Research.

sandler@google.com

Andrew Poon
Google Research.
ayp@google.com

Yerlan Idelbayev†

University of California, Merced.
yidelbayev@ucmerced.edu

Miguel Á. Carreira-Perpiñán
University of California, Merced.
mcarreira-perpinan@ucmerced.edu

Abstract

Despite the success of deep neural networks (DNNs),
state-of-the-art models are too large to deploy on low-
resource devices or common server configurations in which
multiple models are held in memory. Model compression
methods address this limitation by reducing the memory
footprint, latency, or energy consumption of a model with
minimal impact on accuracy. We focus on the task of reduc-
ing the number of learnable variables in the model.

In this work we combine ideas from weight hashing and
dimensionality reductions resulting in a simple and power-
ful structured multi-hashing method based on matrix prod-
ucts that allows direct control of model size of any deep
network and is trained end-to-end.

We demonstrate the strength of our approach by com-
pressing models from the ResNet, EfficientNet, and Mo-
bileNet architecture families. Our method allows us to dras-
tically decrease the number of variables while maintaining
high accuracy. For instance, by applying our approach to
EfficentNet-B4 (16M parameters) we reduce it to to the size
of B0 (5M parameters), while gaining over 3% in accuracy
over B0 baseline.

On the commonly used benchmark CIFAR10 we reduce
the ResNet32 model by 75% with no loss in quality, and are
able to do a 10x compression while still achieving above
90% accuracy.

∗The author contribute equally to this paper.
Elad and Yair contributed equally to the paper. They jointly proposed
the idea of structured-multi-hashing. Yair was the main contributor to the
manuscript. Elad wrote most of the code and ran EfficentNet experiments.
Hao contributed to coding and experiments. Yerlan ran CIFAR and ResNet
experiments and simplified some aspects of the structured hashing. Miguel
advised Yerlan on issues about optimization and deep net compression.
Mark, and Andrew helped with MobileNet, and ResNet experiments.
†Worked performed while at Google Research.

1. Introduction
The main factor driving the success of machine learn-

ing in recent years is the ability to build and train increas-
ingly larger Deep Neural Networks (DNNs). This has been
enabled by a combination of algorithmic advances such as
ReLU activations [15, 32], Batch Normalization [22], and
residual connections [17]; large training datasets [8]; and
faster, specialized, hardware [24].

Overwhelmingly, when given enough data, larger mod-
els show improvements in accuracy. However, this march
upwards comes with a cost in terms of latency, energy, and
memory consumption. For example, the popular Resnet-
101 model [17] has 44 Million parameters and requires
150MB of storage; AmoebaNet-A [37] requires 469M pa-
rameters and 1800MB. The size of DNNs limits their de-
ployment in devices with low resources such as mobile
phones and wearables. On server side, multi-tenancy – the
practice of serving multiple models from the same hardware
accelerator – is also affected by the model size. Further-
more, during inference, layers deeper in the network can be
heavily affected by the cost of loading the weights.

From a scientific perspective, these models have many
more parameters than the number of data points in the
datasets they are trained on. This seems counter-intuitive as
it seems to contradict learning-theory (e.g. VC dimension
properties [43]), but has been widely recognized as critical
property of DNNs [2, 10, 1]. One wonders: Do the pa-
rameters of a network live in a lower dimensional space?
Can we restrict the model class in a way that models in it
can be represented efficiently (e.g. have low Kolmogorov
Complexity) without sacrificing accuracy? Can we find an
intrinsic connection between the number of parameters of a
model to its performance [28]?

Note that low dimensionality assumptions are core in
many CNN components. For example, convolutions are low
dimensional linear maps and separable convolutions (i.e.
depthwise followed by 1×1 convolutions) are based on de-

1

ar
X

iv
:1

91
1.

11
17

7v
1

 [
cs

.L
G

]
 2

5
N

ov
 2

01
9

composition restrictions. However, making strong assump-
tions about individual elements in the model can be overly
restrictive.

There is considerable interest in the machine learning
community in making models cheaper: Reducing their size,
either in number of parameters or as bytes on disk; lower-
ing their latency; or reducing their memory and energy con-
sumption during inference. Here we refer to these methods
as model compression.

We can partition the model compression field into sev-
eral types of techniques: architectural modifications, such
as width multiplier, a move to separable convolutions, or
filter number optimization [27, 14]; Neuron pruning, either
during or after training; disk size compression [34]; weight
quantization [11]; and hashing [45, 40]. These approaches
are in many ways complementary and have been used to-
gether [16]. In practice, hashing methods induce identity
constraints between model weight that are mapped to the
same variables. In addition, they lack memory locality
which makes them slow and increases their RAM footprint.
This has limited their adoption.

We present a new hashing approach for reducing the
number of trainable variables in a model. We consider all
weights in the DNN as if they are tiled into a single, large,
matrix and represent it as a sum of products of multiple
hashes, computed as matrix product. This defines a multi-
hash from model weights into sets of trainable variables in
which full collisions are exponentially rare, and are replaced
by higher order correlations between weights. Using this
representation, we then train the reduced model end to end.

We call this Structured Multi-Hashing (SMH). SMH has
a specific locality pattern which reduces cache misses and
increases the efficiency of the compressed model. This rep-
resentation is unique: it is not a linear subspace nor does
it assume that any specific operation in the network is low
rank. Furthermore, by re-parameterizing hashing as a ma-
trix product, the implementation becomes both simple and
fast. It has little overhead in training or inference and re-
sults in much faster models compared to hashed models. We
demonstrate the efficacy of SMH by applying it to state-of-
the-art image classification models and drastically reducing
their number of variables.

2. Related Work

Numerous efforts have been made on the topic of model
compression, here we give a brief overview of different ap-
proaches.

Hashing The seminal work of Weinberger et al. [45, 40]
showed how useful hashing is in the context of linear clas-
sifiers. The work builds upon the kernel-trick and is de-
signed to allow more efficient training and inference when
the number of features and labels is huge.

Chen et al. [5] extended this idea to the context of deep
networks introducing HashNets. Each layer in the network
is independently hashed into a smaller set of variables.

Reagen et al. [36] use Bloomier filters [4] in order to in-
dex the weights. This work takes a post-training/pruning
approach, the filters are not trained from scratch, and fine-
tuning is needed to achieve good performance. Similarly,
Locality Sensitive Hashing has been used in [41] to main-
tain smaller weight pool.

Pruning is the process of removing unnecessary
weights [27, 30] or entire neurons/filters [29, 48, 14]
of the trained neural networks with the goal of main-
taining as close as possible performance to the unpruned
version. This can be achieved by penalizing the model
with sparsifying norms [14, 29, 3] or by ranking the
weights/neurons [27], in one or multiple iterations.

Weight Quantization Model quantization works by ad-
justing parameter values to lower precision [11, 31, 46, 23]
or even binary weights [7, 49]. This has the desired effect
of drastically reducing the size, and can be efficiently com-
bined with pruning [16, 6] to get even higher compression
ratios.

Decomposition We can largely identify pure low-rank
methods [9, 10, 47] that apply matrix decomposition to fully
connected and suitably reshaped convolutional weight ma-
trices, and its generalization — tensor decomposition of
layers [33, 26, 12, 44].

Architecture Design A separate line of research is build-
ing compact models and training them from scratch [21, 20,
42], rather than compressing overparametrized ones. This
is intrinsically manual process, and reinforcement learning
methods are used to automate this task [18].

3. Method
Our method is based on a hashing scheme applied to the

original variables of the model. It is inspired by Chen et
al. [5] but rather than having a many-to-one mapping be-
tween weights and trainable variables, we use a many-to-
many mapping. This exponentially reduces the probabil-
ity of a full collision in the hash. Further, our approach
maintains memory locality and so can be implemented effi-
ciently, without latency overhead during inference.

Note that normally there is a 1-to-1 correspondence be-
tween the set of weight tensors of a model, and its set of
trainable variables. In fact the names weights and variables
are often used interchangeably. However, when considering
model compression, specifically a hashing based approach,
one needs to be clear about this distinction. Here we refer
to weights as the tensor values in convolution kernels, fully
connected layers, biases and so on. We call variables the
set of trainable elements into which weights get hashed.

We denote by wl the weight tensor associated with layer
l, and the elements of wl as [i1, . . . , ik] for a rank k tensor
(e.g. k = 4 for 2D convolutions, k = 2 for fully connected
layers).

For simplicity of notations, we will use wl[i] to cover
both kernel-weights and biases. We define W = {wl}Ll=1

the set of all weights of a network, and |W | is the total num-
ber of weights of the model. These weights are essentially
the set of all tensors which we set out to compress: convo-
lution kernels, fully connected weight matrices, and biases,
with the exception of the scale and bias parameters of batch-
normalization[22], as these parameters can be absorbed into
the next operation during inference.

Here we should note that while it is common to hash or
quantize weights after training, we consider the use case of
hashing weights into variables while the model is training.
This allows the values of the hashing variables to be learned
using back propagation.

Simple-hashing A simple hashing scheme is based on an
underlying set of S variables, which we call a variable pool
and denote by V .

The hashing is defined by a function h:

h : [l, il]→ S

where l takes values from 1 to L - the number of layers in
the network, and il are indices into wl.

The hash h induces a mapping between model weights
and variable: wl[i] = V[h(l, i)].

The simple-hashing is similar to the one proposed in [5],
with the difference that it does not have random signs, and
it operates on all the variables in the network (compared to
their per layer approach). This simple-hashing scheme is
shown in Figure 1a and can be thought of training a net-
work with a variable sharing pattern induced by the colli-
sions of h. The number of collisions is equal to the number
of weights reduced by the hashing scheme and when com-
pression is not trivial, there is a large number of constraints.
This could pose a problem if, for instance, a certain layer
needs its weights to be of large magnitude, while another
layer requires small values. When optimizing the model, an
unfortunate compromise would arise.

To overcome these hard collisions, we propose a multi-
hashing scheme shown in Figure 1b that induces a different
set of constraints on the network in which the collisions in-
duce softer, smoother, non-linear constraints.

Multi-hashing An M -hashing 1 is defined with a set of
M hash functions {hm}M1 and M variable pools {Vm}M1 ,

1To clarify, we use the term multi-hash differently than commonly used
in computer science theory - We employ our multi-hashes in parallel to
each weight index il to produce a set of variables, and then combine them
using the reducer function and produce a value to be placed in wl[i].

and a reducer function φ : RM → R.
These define the following mapping between model

weights and variables:

wl[i] = φ(V1[h1(l, i)], . . . ,VM [hM (l, i)])

The choice of the reduction function is an important
component in the multi-hashing scheme. The sum function
is an example of a simple reducing function:

φ(x1, ...xM) =

M∑
m=1

xm (1)

other functions such as the product, min, or max can also be
considered.

3.1. Structured Multi-Hashing

Instead, we use multi-hashing to partition the variables
into groups which share some dependency structure. Com-
mon hash functions would create random partitioning, but
this loses a property which could be important for our use
case: memory locality. Neighboring weights in the network
can be mapped to arbitrary variables in the pool and so a
layer l potentially needs to access all the variable pools to
compute its output.

Specifically, when we consider an implementation where
we do not unpack the hashing offline, but compute the val-
ues of the weight tensors on the fly, then the cost of fetching
all the variable pools could be significant. We propose the
notion of structured hashing which will increase the mem-
ory locality.

We define 2M sum-product reducer as:

φ∑∏(x1, ...x2M) =

M∑
m=1

x2m−1x2m (2)

Combined with a carefully chosen hashing scheme, this re-
ducer will maintain memory locality and is efficient during
inference.

First we re-parameterize the way we refer to the weights.
LetN = |W | be the number of total weights in the network.
Rather than wl[i] we think of all the weights of a model as
if coming from a single square matrix of dimension n =
d
√
Ne. The mapping between the weights and the elements

of the matrix is trivially achieved by tiling the weights in
the order of their creation:

wl[i] = M̂ [ri, ci] (3)

where ri and ci are row and column indices determined by
i. This mapping is illustrated in Figure 2.

The core idea of our structured hashing approach is to
encode the locality of weights using matrix operations. A

(a)

(b)

Figure 1: (a) Model compression using hashing. Each value in the set of weight tensors in the model (blue cubes) is mapped
into a single variable in the set of trainable variables. When strong compression is desired, many weight values are mapped
into the same variable, creating equality constraints in the network. (b) Model compression using multi-hashing. Each value
in the set of weight tensors in the model (blue cubes) is mapped into a number of trainable variables, each mapping using a
different hash function. The probability of two weights being mapped to the same set diminishes exponentially.

Figure 2: We conceptually represent the full set of weights
of a deep model as a single, square, matrix. In this matrix
wl[i] is mapped to some coordinates MW [r, k]. We then
apply structured multi-hash to represent this matrix using a
sum-product of smaller matrices.

multi-hashing scheme determines how we represent MW .
We define a 2M Matrix-Product Multi-Hashing:

M̂ = [V1;V2; . . .VM]t[VM+1;VM+2; . . .V2M] (4)

Where Vi are column vectors of size n. Note that the re-
parameterization defined in Eq. (3) combined with the de-
composition into hash functions in Eq. (4) implements a
2M multi-hash with a sum-product reducer in a way that
is memory efficient.

Note that our approach computes a low rank approxima-
tion of the weight matrix of the entire model. However, this
does not assume that any specific layer is low rank nor does
it enforce it.

3.2. Selecting the Number of Hashes

The size of the Matrix-Product Multi-Hash, i.e. the num-
ber of trainable variables it creates is 2Mn. This is deter-
mined by the size of the hash vectors V and the number of
hashes. These define the size of the matrices in Eq. (4) –
n ×M and M × n. We can hash the model into any tar-
get size T (up to rounding errors in the order of

√
N) by

setting M = dT/2ne.

3.3. Scaling and Initialization

Correctly initializing the weights of a deep network is
often important for it to train well. As such this is an ac-
tive area of research and there is a plethora of initialization
methods available to practitioners, and each model archi-
tecture is paired with an initialization scheme that fits it.
For our multi-hash compression method, to match the per-
formance of the uncompressed model, we would want the
weights to be initialized using a matching distribution. Note
however that a single weight value in our method is the sum-
of-products of 2M variables. For a target distribution D one
can define 2M distributions m such that the distribution of
their sum-product is equals D. Specifically, for the com-
monly used Gaussian distribution the sum part is trivial as
the Gaussian family is closed to additions. However, al-
though well defined, a distribution where its product is a
Gaussian is hard to sample from [35]. Instead, we focus on
matching two properties of D: its range, and scale. Note
that the common practice in deep models is to use the same
family of distributions in all layers, but with an appropri-
ately selected per-layer-scale. We follow that practice here.

Range Initialization schemes can be categorized into two
types: unbounded distributions (e.g. Normal), and bounded
ones (e.g. uniform, truncated normal). When initializing
variables in the pool we match the range property.

Scale The challenge with the scale is that different layers
can be initialized to different scales. This happens for in-
stance with Glorot [13] initialization where the standard de-
viation is a function of the fan-in and fan-out of the layer. In
this setting, it is impossible to initialize the hash variables
such that all layers simultaneously have the desired scale.
We solve this by first initializing variables so std(wl) = 1,
and then we re-scale each layer to match the target scale sl.
For the sum-product reducer we standardize the resulting
weights by setting the standard deviation σ or the underly-
ing variables according to:

std(wl) = std

(
M∑

m=1

x2m−1x2m

)

=

√√√√ M∑
m=1

var(x2m−1)var(x2m)

=
√
Mσ4

Setting σ =M−
1
4 creates weights with unit standard devia-

tion. Then, multiplying by sl allows us to effectively control
the scale of each layer.

3.4. Per-Layer Learnable Scale

While our multi-hash technique removes equality con-
straints, there are still dependencies between weights as
they share some of the variables used in their sum-products.
Consider two layers l and l′, it could be hard for the network
to learn different scales for wl and wl′ due to sharing of
the underlying variables. The per-layer scaling mentioned
above addresses this problem at initialization, but layers ini-
tialized with the same scale are bound to keep similar scales
while training. We allow the per-layer scale to be a learn-
able variable, which provides the network with another de-
gree of freedom to address this issue. Our experiments in
Sec 4.6 show that this small set of extra variables (one per
layer) are always helpful, and result in 0.5%−1% improve-
ment in accuracy.

4. Results

In this section, we evaluate our method on three model
families: ResNets, EfficientNets, and MobileNets. We
show that SMH compression can drastically reduce model
size with minimal loss in quality. In fact, when compressing
large models, we often outperform comparably sized mod-
els from the same family.

0M 2M 4M 6M 8M 10M 12M

Model Size

20

30

40

50

60

70

80

A
cc

u
ra

cy

Full Resnet101: 44M variables

ResNet101: Structured Multi Hashing

ResNet101: Width Multiplier

ResNet50: Structured Multi Hashing

ResNet50: Width Multiplier

Figure 3: Accuracy vs Model Size with ResNet based mod-
els on Imagenet. We compare SMH to shrinking using
Width Multiplier on ResNet50 and ResNet101. For both
model types, SMH finds better tradeoffs between size and
accuracy.

4.1. ResNet Models

ResNet architectures [17] are versatile and so are used
in many applications. They are also popular as bench-
mark models. There are two main procedures used to make
ResNet models cheaper: Changing the number of layers
(e.g. ResNet101, ResNet50, ResNet18) and changing the
number of filters, usually done with uniform scaling and is
commonly known as width multiplier.

Figure 3 shows our structured multi-hashing compres-
sion on ResNet50 and ResNet101. Each point on the curve
is one model trained to convergence to a specific target size.
We compare with shrinking each one of the models using
width multiplier. Note that SMH compresses the model
more efficiently. For example, for an accuracy of 70% SMH
models are half the size of the width multiplier models.

4.2. EfficientNet Models

The family of EfficientNet models [42] provides a natu-
ral and strong baseline for comparison. Using a large scale
study of model hyper-parameters that affect size and la-
tency, they propose a model scaling formula. By applying
this formula, the authors propose 8 different models span-
ning from very large (B7) to very small (B0).

To evaluate the merit of our compression technique, we
apply it to a subset of the EfficientNet family (namely B0 to
B6). For each model, we use the size of smaller variants as
target sizes. For example, we compress the B3 architecture
to 5.3M, 7.8M, and 9.2M parameters corresponding to the
sizes of B0, B1 and B2 variants. Figure 4 shows the results
of applying this procedure. The bars are grouped by the
target size to which they are compressed. Each bar indicates
a starting model architecture.

Note that we can significantly improve accuracy for any

B0 (5.3M) B1 (7.8M) B2 (9.2M) B3 (12M)
Target Model Size

76

77

78

79

80

A
cc

u
ra

cy

Compressed Architecture

Baseline (no compression)

B6

B5

B4

B3

B2

B1

Figure 4: Accuracy vs Target Model Size on EfficientNet.
Bars represent original architecture used. They are grouped
by the size of the model after compression. For example,
compressing a B6 architecture to the size of B0 has an ac-
curacy of 80.1% compared with the original B0 at 76.4%.
Note that the B5 and B6 architectures are slow to train and
are harder to find stable hyper-parameters.

desirable model size compared with the original model. For
example, the original B0 model has an accuracy of 76.3%,
but a B6 architecture compressed to the size of B0 has
80.3%. Even more drastic is comparing between groups
— a B4 model compressed to the size of B1 outperforms
the original B3 model even though it is 35% smaller.

4.3. MobileNets

MobileNets [20, 39, 19] are a family of models specifi-
cally targeted to mobile devices. These models have been
primarily optimized for FLOPs. However they are also sig-
nificantly smaller than other models considered above.

In this section, we measure the efficacy of apply-
ing structured multi-hashing to MobileNetV2 and Mo-
bileNetV3. The comparison is presented on Figure 5. In ad-
dition to the width-multiplier as we did for ResNet, we also
impose an additional, stronger baseline based on a combi-
nation of width-multiplier and resolution multiplier.

Width-multiplication reduces both FLOPs and model
size, while structured-hashing only reduces the model size.
To make a stronger baseline that produces comparable
FLOPs, when we apply width multiplier α to reduce the
model size, we increase resolution by≈ α that brings FLOP
count back to the original cost.

Note, in contrast with [42], and following [38], we don’t
actually use higher resolution image. Instead, we simply
up-sample the input. This guarantees that all models are
trained on exactly the same data. It is interesting that for
MobileNetV2, the multi-hash approach beats both base-

Compression Target Model Accuracy Samples
Method Size Per Second

SMH 5.3M 0.774 6060
1X Hash 5.3M 0.762 4000
2X Hash 5.3M 0.765 2800
10X Hash 5.3M 0.770 790

SMH 7.9M 0.782 6040
1X Hash 7.9M 0.773 3900
2X Hash 7.9M 0.775 2500
10X Hash 7.9M 0.779 760

Table 1: Hashing methods comparison on EfficientNet B2
model. We compare SMH to non-structured hashing with
1,2 and 10 hash functions. Note that not only is SMH more
accurate but also much faster. We measure training samples
per second on TPU V3 with a 4x4 topology.

lines. On the other hand, for MobileNetV3, the stronger
baseline produces slightly better trade-off curve around the
full model. However, we note that the strong baseline is
both slower and requires more memory to train (due to high
spatial resolution of early tensors). In fact, we were un-
able to train the strong baseline example with multiplier
less than 0.4, which required using input upsampled to
450x450 . Another potential issue that limits the usefulness
of the strong baseline is that it requires fractional upsam-
pling which introduces image artifacts.

4.4. Compared to Non Structured Hashing

Here we compare the results of SMH to a single and
multi-hashing baselines. We implement model hashing over
the full set of network weights. For standard hashing we
hash each weight into K ∈ {1, 2, 10} sets of trainable vari-
ables and use the sum reducer defined in Eq. (1). We com-
pare the methods on an EfficientNet B2 model compressed
to 5M and 7.9M trainable variables (the size of B0, and
B1 respectively). Table 1 shows the results. SMH is both
more accurate and much faster then standard hashing. The
memory locality of SMH and its implementation as a matrix
product result in this low overhead. Note that SMH in these
experiments is using ∼ 800 hash functions.

4.5. Extreme Compression

As noted above, deep networks are known to be over-
parameterized. Here, we examine this notion further. We
ask the question: Can deep models be accurate when us-
ing an extremely small number of trainable variables? Can
this be done for an architecture that was not specifically de-
signed for this purpose? To answer this question we per-
form two sets of experiments, on CIFAR10 [25] using a
ResNet32 model, and on ImageNet using EfficentNet mod-
els.

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

Model size, millions

50

55

60

65

70

75

A
cc

u
ra

cy

(0.4, 450)

(0.5, 400)

(0.6, 310)

(0.75, 260)

(1, 224)

0.15

0.25

0.33
0.4

0.5
0.6

0.75

MobilenetV2: Width multiplier + resolution

MobilenetV2: Width multiplier

MobilenetV2: Structured Multi Hashing

(a)

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0
Model size, millions

55

60

65

70

75

80

A
cc

u
ra

cy (0.4, 450)

(0.5, 400)

(0.75, 260)
(1, 224)

0.15

0.2

0.33
0.5

0.75

MobilenetV3: Width multiplier + resolution

MobilenetV3: Width multiplier

MobilenetV3: Structured Multi Hashing

(b)

Figure 5: Applying SMH to MobilenetV2 (a) and MobilenetV3 (b) on ImageNet. We compare to two baselines. Width-
multiplier: all layers are shrunk by a constant factor. Width-multiplier + resolution is a stronger baseline where we addition-
ally up-sample the input image to maintain the same number of FLOPS. Label for strong baseline such as (0.4, 450) represent
multiplier and up-sampled resolution respectively. Label for SMH is the target compression rate.

0K
(0%)

23K
(5%)

46K
(10%)

69K
(15%)

92K
(20%)

115K
(25%)

Model Size
(Fraction From Original)

70

75

80

85

90

95

A
cc

u
ra

cy

TensorTrain

Tucker

Full Resnet32

TRP

SMH

WM

TRN

Figure 6: Accuracy vs Model Size on CIFAR10. We com-
pare a number of compression methods on the ResNet32
model. We focus on the extreme compression regime. The
rightmost points represent models that are 25% of the orig-
inal ResNet32. Here TRP is low-rank ResNet32 from [47],
Tucker, Tensor-Train and Tensor-Ring-Net (TRN) results
obtained from [44], WM is width multiplier.

In Figure 6 different compression method applied to a
ResNet32 model trained on the CIFAR10 dataset are show.
First note that using our multi-hash approach we can effec-
tively discard 75% of the variables in the model, without
loss in performance. Furthermore, we can create a model
with only 10% of the original size (only 50K variables) and
still maintain an accuracy above 90%.

Secondly, we take EfficentNet B4 and B5 architectures

Model Accuracy Model Size

B0 76.3% 5M
SMH2M B4 76.6% 2M
SMH3M B5 78.3% 3M
B1 78.8% 7.9M

Table 2: SMH B4 model is 60% smaller than B0 with the
same accuracy. SMH B5 model is 40% smaller and 2%
better than B0 and 63% smaller than B1 with slightly lower
accuracy.

and compress them using SMH by 10x to 2M and 3M
parameters respectively. In Table 2 we compare them to
vanilla EfficentNet models with similar accuracy and see
accuracy gains in both cases.

4.6. Per-Layer Learnable Scale

To examine the benefits of adding a per-layer scale vari-
able, as described in Sec 3.4, we train 16 EfficientNet based
models on ImageNet. We train five different base models
B0 to B4, and for each base model set a number of target
sizes to compress to. We then train the models until conver-
gence with and without the per-layer scale variable using
the same hyper-parameters.

Table 3 shows the accuracy difference in accuracy when
adding per-layer scale variables. We usually see improve-
ments of about 0.5% to 1%. Also note that this procedure
never hurts performance.

Base Target Fixed Learnable Accuracy
Model Size Scale Scale Difference

B0 2.0M 71.9% 73.1% 1.2%
3.0M 73.7% 74.0% 0.3%

B1 2.0M 73.4% 74.2% 0.8%
3.0M 75.2% 76.5% 1.3%
5.0M 76.4% 76.8% 0.4%

B2 2.0M 73.9% 74.9% 1.0%
3.0M 75.7% 77.1% 1.4%
5.0M 77.0% 77.8% 0.8%

B3 2.0M 75.1% 75.5% 0.4%
5.0M 78.0% 78.6% 0.6%
7.9M 78.4% 79.1% 0.7%
9.3M 78.2% 79.1% 0.9%

B4 5.0M 78.8% 79.2% 0.4%
7.9M 79.2% 79.7% 0.5%
9.3M 79.3% 79.5% 0.2%

Table 3: Accuracy improvement when adding a per-layer
learnable scale. Average accuracy gain is 0.7%, note that
the per-layer scale is always beneficial.

4.7. Targeted Weight Compression

When compressing a neural network, one can choose to
target all weights, or a smaller subset of them. For example,
in all our experiments we do not to hash any of the Batch
Normalization variables, as those can be absorbed in the
following convolution during inference.

One natural distinction between model weights is to sep-
arate those coming from convolutional layers which are
usually in the early stages of a model, and those coming
from fully connected layers which are commonly at the later
part of the network. Figure 7 shows five base architectures
from the EfficientNet family (B1, ..., B5) all compressed to
the size of B0 (5M variables). For each base model we once
compress it by hashing all the weights, and once by only
hashing weights coming from the convolutions.

The differences are not big, indicating that the multi
hashing constraint has enough flexibility to make useful
trade-offs. Note also that when starting with smaller ar-
chitectures (B1, B2) it is better to limit the hashing to the
convolutions. The fully connected layers in those models
are smaller and have less representation power to spare.

When starting with bigger models however (B4, B5) the
trends reverses and higher accuracy is achieved when let-
ting the multi-hash compress all layers. For these models,
the fully connected layers have many parameters and with-
out access to those layers the hash must compress the rest of
the network more drastically. For example, the B5 architec-
ture has 2M weights in its dense layer, out of 30M. When
compressing it to the size of B0 without hashing the dense

B1 B2 B3 B4 B5
Base Model

0.74

0.75

0.76

0.77

0.78

0.79

A
cc

u
ra

cy

All

Convolutions

Figure 7: Compressing EfficientNet architectures to the size
of B0 (5M). Bars are grouped by the architecture being
compressed. We compare compressing all layers (blue),
with hashing only convolutional layers (orange). There is
a small difference - the method isn’t sensitive to this design
choice. Note that smaller models benefit from maintaining
the fully connected layers untouched, while the larger base
models gain from the flexibility to compress all layers.

layer we now need to hash 28M weights into 3M variables,
a 89% compression of those layers.

5. Discussion
In this paper we have presented an efficient model com-

pression method that builds on the idea of weight hashing,
while addressing its key limitations: We eliminate hash col-
lisions by introducing a multi-hash and reduce framework
which maps each weight in a model into a set of trainable
variables, and computes its value using a reduce operation
on the set. Memory locality is preserved by eschewing ran-
dom hashing, and defining a structured mapping instead.
The SMH approach can be represented as a matrix product
and does not add material overhead to model latency.

We show that a well optimized hashed model can be
strongly compressed with minimal loss in accuracy. We
demonstrated our results on the widely used ResNet family
of models, and on the newer and more powerful Efficient-
Net and MobileNet model family.

From a scientific perspective, model hashing is distinctly
different from quantization or pruning. Model quantiza-
tion changes the precision in which the underlying func-
tion is approximated, but does not change dimensionality
of the approximator. Pruning induces some weight values to
zero but this on its own has no effect on the overall dimen-
sion. If the pruning is strong enough to set complete rows
of weight matrices to zero, or if it has a structured form,
e.g. [14] it changes both the dimensionality of the approx-
imator (number of variables) and its expressivity (number
of layers, amount of non-linearity, etc). In contrast model

hashing does not change precision, but affects only the di-
mension (i.e. number of variables).

Model hashing then provides a useful tool for explor-
ing the role of the number of variables within an architec-
ture family. Our results on the ResNet family of models
shows that number of variables tracks closely with accu-
racy. ResNet101 and ResNet50 based models, compressed
to the same number of parameters perform almost indistin-
guishably from each other. This is true both for our hashing
technique, and for the width multiplier baseline.

In contrast this does not hold for the EfficientNet or Mo-
bilenet family, in which different architectures (e.g. B6 vs
B4, or V2 vs V3) compressed to the same size, differ sig-
nificantly in their accuracy. Clearly more work is needed
before we can fully understand the role of parameter counts.

References
[1] Jimmy Ba and Rich Caruana. Do deep nets really need to

be deep? In Advances in neural information processing sys-
tems, pages 2654–2662, 2014. 1

[2] Mikhail Belkin, Daniel Hsu, Siyuan Ma, and Soumik Man-
dal. Reconciling modern machine learning and the bias-
variance trade-off. ArXiv, abs/1812.11118, 2018. 1

[3] Miguel Á. Carreira-Perpiñán and Yerlan Idelbayev.
“Learning-compression” algorithms for neural net pruning.
In Proc. of the 2018 IEEE Computer Society Conf. Com-
puter Vision and Pattern Recognition (CVPR’18), pages
8532–8541, 2018. 2

[4] Bernard Chazelle, Joe Kilian, Ronitt Rubinfeld, and Ayellet
Tal. The bloomier filter: an efficient data structure for static
support lookup tables. In Proceedings of the fifteenth annual
ACM-SIAM symposium on Discrete algorithms, pages 30–
39. Society for Industrial and Applied Mathematics, 2004.
2

[5] Wenlin Chen, James Wilson, Stephen Tyree, Kilian Wein-
berger, and Yixin Chen. Compressing neural networks with
the hashing trick. In International Conference on Machine
Learning, pages 2285–2294, 2015. 2, 3

[6] Yoojin Choi, Mostafa El-Khamy, and Jungwon Lee. Towards
the limit of network quantization. In Proc. of the 5th Int.
Conf. Learning Representations (ICLR 2017), 2017. 2

[7] Matthieu Courbariaux, Yoshua Bengio, and Jean-Pierre
David. Binaryconnect: Training deep neural networks with
binary weights during propagations. In Advances in neural
information processing systems, pages 3123–3131, 2015. 2

[8] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li,
and Li Fei-Fei. Imagenet: A large-scale hierarchical image
database. In 2009 IEEE conference on computer vision and
pattern recognition, pages 248–255. Ieee, 2009. 1

[9] Misha Denil, Babak Shakibi, Laurent Dinh, Marc’Aurelio
Ranzato, and Nando De Freitas. Predicting parameters in
deep learning. In Advances in neural information processing
systems, pages 2148–2156, 2013. 2

[10] Emily L Denton, Wojciech Zaremba, Joan Bruna, Yann Le-
Cun, and Rob Fergus. Exploiting linear structure within con-
volutional networks for efficient evaluation. In Advances

in neural information processing systems, pages 1269–1277,
2014. 1, 2

[11] Julian Faraone, Nicholas Fraser, Michaela Blott, and
Philip H.W. Leong. SYQ: Learning symmetric quantization
for efficient deep neural networks. In Proc. of the 2018 IEEE
Computer Society Conf. Computer Vision and Pattern Recog-
nition (CVPR’18), pages 4300–4309, 2018. 2

[12] Timur Garipov, Dmitry Podoprikhin, Alexander Novikov,
and Dmitry Vetrov. Ultimate tensorization: compress-
ing convolutional and FC layers alike. arXiv:1611.03214
[cs.LG], Nov. 10 2016. 2

[13] Xavier Glorot and Yoshua Bengio. Understanding the diffi-
culty of training deep feedforward neural networks. In Pro-
ceedings of the thirteenth international conference on artifi-
cial intelligence and statistics, pages 249–256, 2010. 5

[14] Ariel Gordon, Elad Eban, Ofir Nachum, Bo Chen, Hao Wu,
Tien-Ju Yang, and Edward Choi. Morphnet: Fast & sim-
ple resource-constrained structure learning of deep networks.
In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pages 1586–1595, 2018. 2, 8

[15] Richard HR Hahnloser, Rahul Sarpeshkar, Misha A Ma-
howald, Rodney J Douglas, and H Sebastian Seung. Digi-
tal selection and analogue amplification coexist in a cortex-
inspired silicon circuit. Nature, 405(6789):947, 2000. 1

[16] Song Han, Huizi Mao, and William J Dally. Deep com-
pression: Compressing deep neural networks with pruning,
trained quantization and huffman coding. arXiv preprint
arXiv:1510.00149, 2015. 2

[17] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep residual learning for image recognition. In Proceed-
ings of the IEEE conference on computer vision and pattern
recognition, pages 770–778, 2016. 1, 5

[18] Yihui He, Ji Lin, Zhijian Liu, Hanrui Wang, Li-Jia Li, and
Song Han. AMC: AutoML for model compression and ac-
celeration on mobile devices. In Proc. 15th European Conf.
Computer Vision (ECCV’18), 2018. 2

[19] Andrew Howard, Mark Sandler, Grace Chu, Liang-Chieh
Chen, Bo Chen, Mingxing Tan, Weijun Wang, Yukun Zhu,
Ruoming Pang, Vijay Vasudevan, Quoc V. Le, and Hartwig
Adam. Searching for mobilenetv3. CoRR, abs/1905.02244,
2019. 6

[20] Andrew G. Howard, Menglong Zhu, Bo Chen, Dmitry
Kalenichenko, Weijun Wang, Tobias Weyand, Marco An-
dreetto, and Hartwig Adam. Mobilenets: Efficient convolu-
tional neural networks for mobile vision applications. CoRR,
abs/1704.04861, 2017. 2, 6

[21] Forrest N. Iandola, Song Han, Matthew W. Moskewicz,
Khalid Ashraf, William J. Dally, and Kurt Keutzer.
SqueezeNet: AlexNet-level accuracy with 50× fewer param-
eters and <0.5MB model size. arXiv:1602.07360 [cs.CV],
Nov. 4 2016. 2

[22] Sergey Ioffe and Christian Szegedy. Batch normalization:
Accelerating deep network training by reducing internal co-
variate shift. arXiv preprint arXiv:1502.03167, 2015. 1, 3

[23] Benoit Jacob, Skirmantas Kligys, Bo Chen, Menglong Zhu,
Matthew Tang, Andrew G. Howard, Hartwig Adam, and
Dmitry Kalenichenko. Quantization and training of neu-
ral networks for efficient integer-arithmetic-only inference.

IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 2704–2713, 2018. 2

[24] Norman P Jouppi, Cliff Young, Nishant Patil, David Patter-
son, Gaurav Agrawal, Raminder Bajwa, Sarah Bates, Suresh
Bhatia, Nan Boden, Al Borchers, et al. In-datacenter per-
formance analysis of a tensor processing unit. In 2017
ACM/IEEE 44th Annual International Symposium on Com-
puter Architecture (ISCA), pages 1–12. IEEE, 2017. 1

[25] Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple
layers of features from tiny images. Technical report, Cite-
seer, 2009. 6

[26] Vadim Lebedev, Yaroslav Ganin, Maksim Rakhuba, Ivan
Oseledets, and Victor Lempitsky. Speeding-up convolu-
tional neural networks using fine-tuned CP-decomposition.
In Proc. of the 4th Int. Conf. Learning Representations (ICLR
2016), 2016. 2

[27] Yann LeCun, John S Denker, and Sara A Solla. Optimal
brain damage. In Advances in neural information processing
systems, pages 598–605, 1990. 2

[28] Chunyuan Li, Heerad Farkhoor, Rosanne Liu, and Jason
Yosinski. Measuring the intrinsic dimension of objective
landscapes. arXiv preprint arXiv:1804.08838, 2018. 1

[29] Hao Li, Asim Kadav, Igor Durdanovic, Hanan Samet, and
Hans Peter Graf. Pruning filters for efficient convnets. In
Proceedings of International Conference on Learning Rep-
resentations 2017, 2017. 2

[30] Zhuang Liu, Mingjie Sun, Tinghui Zhou, Gao Huang, and
Trevor Darrell. Rethinking the value of network pruning.
arXiv preprint arXiv:1810.05270, 2018. 2

[31] Markus Nagel, Mart van Baalen, Tijmen Blankevoort, and
M. Welling. Data-free quantization through weight equaliza-
tion and bias correction. In ICCV, volume abs/1906.04721,
2019. 2

[32] Vinod Nair and Geoffrey E Hinton. Rectified linear units im-
prove restricted boltzmann machines. In Proceedings of the
27th international conference on machine learning (ICML-
10), pages 807–814, 2010. 1

[33] Alexander Novikov, Dmitrii Podoprikhin, Anton Osokin,
and Dmitry P. Vetrov. Tensorizing neural networks. In Ad-
vances in Neural Information Processing Systems (NIPS),
pages 442–450, 2015. 2

[34] Deniz Oktay, Johannes Ballé, Saurabh Singh, and Abhinav
Shrivastava. Model compression by entropy penalized repa-
rameterization. ArXiv, abs/1906.06624, 2019. 2

[35] Iosif Pinelis. The exp-normal distribution is infinitely divis-
ible. arXiv preprint arXiv:1803.09838, 2018. 4

[36] Brandon Reagen, Udit Gupta, Robert Adolf, Michael M
Mitzenmacher, Alexander M Rush, Gu-Yeon Wei, and David
Brooks. Weightless: Lossy weight encoding for deep neu-
ral network compression. arXiv preprint arXiv:1711.04686,
2017. 2

[37] Esteban Real, Alok Aggarwal, Yanping Huang, and Quoc V
Le. Regularized evolution for image classifier architecture
search. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 33, pages 4780–4789, 2019. 1

[38] Mark Sandler, Jonathan Baccash, Andrey Zhmoginov, and
Andrew Howard. Non-discriminative data or weak model?

on the relative importance of data and model resolution.
ArXiv, abs/1909.03205, 2019. 6

[39] Mark Sandler, Andrew G. Howard, Menglong Zhu, Andrey
Zhmoginov, and Liang-Chieh Chen. Mobilenetv2: Inverted
residuals and linear bottlenecks. mobile networks for classifi-
cation, detection and segmentation. CoRR, abs/1801.04381,
2018. 6

[40] Qinfeng Shi, James Petterson, Gideon Dror, John Lang-
ford, Alex Smola, and SVN Vishwanathan. Hash kernels
for structured data. Journal of Machine Learning Research,
10(Nov):2615–2637, 2009. 2

[41] Ryan Spring and Anshumali Shrivastava. Scalable and sus-
tainable deep learning via randomized hashing. In Proceed-
ings of the 23rd ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, KDD ’17, pages
445–454, New York, NY, USA, 2017. ACM. 2

[42] Mingxing Tan and Quoc V Le. Efficientnet: Rethinking
model scaling for convolutional neural networks. arXiv
preprint arXiv:1905.11946, 2019. 2, 5, 6

[43] Vladimir Vapnik. The nature of statistical learning theory.
Springer science & business media, 2013. 1

[44] Wenqi Wang, Yifan Sun, Brian Eriksson, Wenlin Wang, and
Vaneet Aggarwal. Wide Compression: Tensor Ring nets. In
Proc. of the 2018 IEEE Computer Society Conf. Computer
Vision and Pattern Recognition (CVPR’18), pages 9329–
9338, 2018. 2, 7

[45] Kilian Weinberger, Anirban Dasgupta, Josh Attenberg, John
Langford, and Alex Smola. Feature hashing for large scale
multitask learning. arXiv preprint arXiv:0902.2206, 2009. 2

[46] Jiaxiang Wu, Cong Leng, Yuhang Wang, Qinghao Hu, and
Jian Cheng. Quantized convolutional neural networks for
mobile devices. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, pages 4820–
4828, 2016. 2

[47] Yuhui Xu, Yuxi Li, Shuai Zhang, Wei Wen, Botao Wang,
Yingyong Qi, Yiran Chen, Weiyao Lin, and Hongkai Xiong.
Trained rank pruning for efficient deep neural networks.
arXiv:1812.02402, Dec. 8 2018. 2, 7

[48] Tien-Ju Yang, Andrew G. Howard, Bo Chen, Xiao Zhang,
Alec Go, Mark Sandler, Vivienne Sze, and Hartwig Adam.
Netadapt: Platform-aware neural network adaptation for mo-
bile applications. In ECCV, 2018. 2

[49] Shuchang Zhou, Zekun Ni, Xinyu Zhou, He Wen, Yuxin
Wu, and Yuheng Zou. Dorefa-net: Training low bitwidth
convolutional neural networks with low bitwidth gradients.
arXiv:1606.06160, July 17 2016. 2

