
Unbiasing Fermionic Quantum Monte Carlo with a Quantum Computer

William J. Huggins,1, ∗ Bryan A. O’Gorman,2 Nicholas C. Rubin,1

David R. Reichman,3 Ryan Babbush,1 and Joonho Lee3, 1, †

1
Google Quantum AI, Mountain View, CA, USA

2
Berkeley Quantum Information & Computation Center, University of California, Berkeley, CA, USA

3
Department of Chemistry, Columbia University, New York, NY, USA

Many-electron problems pose some of the greatest challenges in computational science, with im-
portant applications across many fields of modern science. Fermionic quantum Monte Carlo (QMC)
methods are among the most powerful approaches to these problems. However, they can be severely
biased when controlling the fermionic sign problem using constraints, as is necessary for scalability.
Here we propose an approach that combines constrained QMC with quantum computing tools to re-
duce such biases. We experimentally implement our scheme using up to 16 qubits in order to unbias
constrained QMC calculations performed on chemical systems with as many as 120 orbitals. These
experiments represent the largest chemistry simulations performed on quantum computers (more
than doubling the size of prior electron correlation calculations), while obtaining accuracy compet-
itive with state-of-the-art classical methods. Our results demonstrate a new paradigm of hybrid
quantum-classical algorithm, surpassing the popular variational quantum eigensolver in terms of
potential towards the first practical quantum advantage in ground state many-electron calculations.

Introduction. An accurate solution of the Schrödinger
equation for the ground state of many-electron systems
is of critical importance across many fields of modern
science.1–4 The complexity of this equation seemingly
grows exponentially with the number of electrons in the
system. This fact has greatly hindered progress to-
wards an efficient means of accurately calculating ground
state quantum mechanical properties of complex systems.
Over the last century, a substantial research effort has
been devoted to the development of new algorithms for
the solution of the many-electron problem. Currently,
all available general-purpose methods can be grouped
into two categories: (1) methods which scale exponen-
tially with system size while yielding numerically exact
answers and (2) methods whose cost scales polynomially
with system size but which are approximate by construc-
tion. Approaches of the second category are currently
the only methods that can feasibly be applied to large
systems. The accuracy of solutions obtained by these
methods may be unsatisfactory and is nearly always dif-
ficult to assess.

Quantum computing has arisen as an alternative
paradigm for the calculation of quantum properties that
may complement and potentially surpass classical meth-
ods in terms of efficiency.5,6 While the ultimate ambi-
tion of this field is to construct a universal fault-tolerant
quantum computer,7 the experimental devices of today
are limited to Noisy Intermediate-Scale Quantum (NISQ)

computers.8 NISQ algorithms for the computation of
ground states have largely centered around the varia-
tional quantum eigensolver (VQE) framework,9,10 which
necessitates coping with optimization difficulties, mea-
surement overhead, and circuit noise. As an alternative,
algorithms based on imaginary time evolution have been
put forward that, in principle, avoid the optimization
problem.11,12 However, due to the non-unitary nature of
imaginary time evolution, one must resort to optimiza-
tion heuristics in order to achieve reasonable scaling with

system size. New computational strategies which avoid
these limiting factors may help to enable the first practi-
cal quantum advantage in fermionic simulations. In this
work, we propose and experimentally demonstrate a new
class of quantum-classical hybrid algorithms that offers
a different route to addressing these challenges. We do
not attempt to represent the ground state wavefunction
using our quantum processor, choosing instead to use it
to guide a quantum Monte Carlo calculation performed
on a classical coprocessor. Our experimental demonstra-
tion surpasses the scale of all prior experimental works
on the quantum simulation of chemistry.13–15

Theory and algorithms. Quantum Monte Carlo (QMC)

approaches16,17 target the exact ground state |Ψ0〉 of a

many-body Hamiltonian, Ĥ, via imaginary time evolu-
tion of an initial state |Φ0〉 with a non-zero overlap with
|Ψ0〉:

|Ψ0〉 ∝ lim
τ→∞

|Ψ(τ)〉, |Ψ(τ)〉 ≡ e−τĤ |Φ0〉, (1)

where τ is imaginary time and |Ψ(τ)〉 denotes the time-
evolved wavefunction from |Φ0〉 by τ (see Fig. 1(a)). In
QMC, the imaginary-time evolution in Eq. (1) is imple-
mented stochastically, which can enable a polynomial-
scaling algorithm to sample an estimate for the exact
ground state energy by avoiding the explicit storage of
high dimensional objects such as Ĥ and |Ψ0〉. The
ground state energy, Eground = E(τ = ∞), is estimated
from averaging a time series of {〈E(τ)〉}, given by a
weighted average over M statistical samples,

〈E(τ)〉 =

M∑
i=1

wi(τ)E(i)(τ), (2)

where E(i)(τ) is the i-th statistical sample for the energy
and wi(τ) is the corresponding normalized weight for that
sample at imaginary time τ . While formally exact, such a
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Figure 1. (a) Depiction of the imaginary time evolution which shows an exponential convergence to the ground state as a function
of imaginary time τ . (b) Illustration of the fermionic sign problem. (b, top) Exact deterministic imaginary time evolution and
an unconstrained QMC calculation which is exact on average but the signal-to-noise ratio in the average energy 〈E(τ)〉 diverges
in τ due to the sign problem. (b, bottom) Constrained QMC calculations with classical and quantum constraints. The use of
quantum constraint can help to reduce the bias that is non-negligible when using the classical constraint. (c) Overview of the
quantum-classical hybrid QMC (QC-QMC) algorithm. Stochastic wavefunction samples are represented as {|φi〉}τ (depicted
as a matrix manageable to store classically) which are evolved in time along with associated weights {wi}τ . Throughout
the time evolution, queries to the quantum processor about the overlap value between the quantum trial wavefunction |ΨT 〉
and a stochastic wavefunction sample {|φi〉}τ are made while updating the gate parameters to describe {|φi〉}τ . Our quantum
processor uses N qubits to efficiently estimate the overlap which is then used to evolve wi and to discard stochastic wavefunction
samples with wi < 0. Finally, observables such as 〈E(τ)〉 are computed on the classical computer by only making overlap queries
to the quantum processor (see Appendix C 2).

stochastic imaginary time evolution algorithm will gener-
ically run into the notorious fermionic sign problem,18

which manifests due to alternating signs in the weights
of each statistical sample used in Eq. (2). In the worst
case, the fermionic sign problem causes the estimator of
the energy in Eq. (2) to have exponentially large vari-
ance (see Fig. 1(b) top), necessitating that one averages
exponentially many samples to obtain a fixed precision
estimate of observables such as the ground state energy.
Accordingly, exact, unbiased QMC approaches are only
applicable to small systems19,20 or those lacking a sign-
problem.21

The sign problem can be controlled to give an es-
timator of the ground state energy with polynomially
bounded variance by imposing constraints on the imagi-
nary time evolution of each statistical sample represented
by a wavefunction, |φi(τ)〉. These constraints (which in-

clude prominent examples such as the fixed node17,22

and phaseless approximations23,24) are imposed by the
use of trial wavefunctions (|ΨT 〉〉), and the accuracy of
constrained QMC is wholly determined by the choice
of the trial wavefunction (see Fig. 1(b) bottom). Such
constraints necessarily introduce a potentially significant

bias in the final ground state energy estimate which can
be removed in the limit that the trial wavefunction ap-
proaches the exact ground state.

Classically, computationally tractable options for trial
wavefunctions are limited to states such as a single
mean-field determinant (e.g. a Hartree-Fock state), a
linear combination of mean-field states, a simple form
of the electron-electron pair (two-body) correlator (usu-
ally called a Jastrow factor) applied to mean-field states,
or some other physically motivated transformations ap-
plied to mean-field states such as backflow approaches.25

On the other hand, any wavefunction preparable with a
quantum circuit is a candidate for a trial wavefunction on
a quantum computer, including more general two-body
correlators. These trial wavefunctions will be referred to
as “quantum” trial wavefunctions.

To be more concrete, there is currently no efficient
classical algorithm to estimate (to additive error) the
overlap between |φi(τ)〉 and certain complex quantum
trial wavefunctions |ΨT 〉 such as unitary coupled-cluster

with singles and doubles26 or the multiscale entangle-
ment renormalization ansatz,27 even when |φi(τ)〉 is sim-
ply a computational basis state or a Slater determinant.
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Since quantum computers can efficiently approximate
〈ΨT |φi(τ)〉, there is a potential quantum advantage in
this task as well as its particular use in QMC. This offers
a different route towards quantum advantage in ground-
state fermion simulations as compared to VQE, which in-
stead seeks an advantage in the variational energy eval-
uation. We expand on this discussion of quantum ad-
vantage in Appendix F. We also note that VQE may
be used to generate a sophisticated trial wavefunction
which alone would not be sufficient to achieve high ac-
curacy, but might offer quantitative accuracy and even
quantum advantage when used as a trial wavefunction in
our approach.

Our quantum-classical hybrid QMC algorithm (QC-
QMC) utilizes quantum trial wavefunctions while per-
forming the majority of imaginary time evolution on a
classical computer, and is summarized in Fig. 1(c). In
essence, on a classical computer one performs imaginary
time evolution for each wavefunction statistical sample,
|φi(τ)〉, and collects observables such as the ground state

energy estimate, E(i)(τ). During this procedure, a con-
straint associated with the quantum trial wavefunction
is imposed to control the sign problem. To perform the
constrained time evolution, the only quantity that needs
to be calculated on the quantum computer is the overlap
between the trial wavefunction, |ΨT 〉, and the statistical
sample of the wavefunction at imaginary time τ , |φi(τ)〉.

In this work, we estimate the overlap between the trial
wavefunction and the statistical samples using a tech-
nique known as shadow tomography.29,30 Experimentally,
this entails performing randomly chosen measurements
of a reference state related to |ΨT 〉 prior to beginning
the QMC calculation. In this formulation of QC-QMC,
we emphasize that there is no need for the QMC cal-
culation to iteratively query the quantum processor, de-
spite the fact that the details of the statistical samples
are not determined ahead of time. By disentangling
the interaction between the quantum and classical com-
puter we avoid feedback latency, an appealing feature
on NISQ platforms that comes at the cost of requiring
potentially expensive classical post-processing (see Ap-
pendix D 3 for more details). Furthermore, our algo-
rithm naturally achieves some degree of noise robustness
explained in Appendix D 6 because the quantity that is
directly is the ratio between overlap values, which is in-
herently resilient to the overlaps being rescaled by certain
error channels.

While our approach applies generally to any form
of constrained QMC, here we discuss an experimental
demonstration of the algorithm that uses an implemen-
tation of QMC known as auxiliary-field QMC (AFQMC),
which will be referred to as QC-AFQMC. In AFQMC, the
phaseless constraint24 is imposed to control the sign prob-
lem, and |φi(τ)〉 takes the form of a single Slater deter-
minant in an arbitrary single-particle basis. AFQMC has
been shown to be accurate in a number of cases even with
classically available trial wavefunctions;31,32 however, the
bias incurred from the phaseless constraint cannot be

overlooked, as we discuss in detail below. Since a single
determinant mean-field wavefunction is the most widely
used classical form of the trial function for AFQMC, here
we will use “AFQMC” to denote the use of AFQMC with
mean-field trial wavefunction.

Exact AFQMC CCSD(T) Q. trial QC-AFQMC
4-orbital 64.7 62.9 59.6 55.2 64.3

120-orbital 70.5 68.6 71.9 37.4 69.7

Table I. Atomization energy (kcal/mol) of H4 for quantum
trial (Q. trial; experiment), AFQMC (classical), QC-AFQMC
(experiment), CCSD(T) (classical “gold standard”), and ex-
act results for minimal (STO-3G; 4-orbital) and quadruple-
zeta (cc-pVQZ; 120-orbital) bases. Both of these experiments
use 8 qubits. The statistical error of AFQMC and QC-
AFQMC is less than 0.05 kcal/mol and therefore not shown
here. Note that for QT and QC-AFQMC we picked an ex-
periment done with a specific set of random measurements
that are converged at 1.5×10

7
measurements. As shown in

Appendix E, QT results vary significantly run-to-run while
QC-AFQMC results are nearly identical run-to-run (which
showcases the noise resilience of QC-AFQMC).

Results and discussion. The experiments in this work
were carried out on Google’s 54-qubit quantum proces-
sor, known as Sycamore.28 The circuits were compiled
using hardware-native CZ gates with typical error rates
of ≈ 0.5%.33 As the first example, in Fig. 2, we illustrate
the quantum primitive used to perform shadow tomog-
raphy on the H4 molecule in an 8-qubit experiment. Our
eight spin-orbital quantum trial wavefunction consists of
a valence bond wavefunction known as a perfect pair-
ing state34,35 and a hardware-efficient quantum circuit13

with an offline single-particle rotation applied to this,
which would be classically difficult to use as a trial wave-
function for AFQMC. The state preparation circuit in
Fig. 2(a) shows how this trial wavefunction can be effi-
ciently prepared on a quantum computer. Similar state
preparation circuits are used for the other chemical ex-
amples in this work.

In this 8-qubit experiment, we consider H4 in a square
geometry with side lengths of 1.23 Å and its dissocia-
tion into four hydrogen atoms. This system is often used
as a testbed for electron correlation methods in quan-
tum chemistry.37,38 We perform our calculations using
two Gaussian basis sets: the minimal (STO-3G) basis39

and the correlation consistent quadruple-zeta (cc-pVQZ)

basis.36 The latter basis set is of a size and accuracy re-
quired to make a direct comparison with laboratory ex-
periments. When describing the ground state of this sys-
tem, there are two equally important, degenerate mean-
field states. This makes AFQMC with a single mean-
field trial wavefunction highly unreliable. In addition,
a method often referred to as a “gold standard” classi-
cal approach (coupled-cluster with singles, doubles, and

perturbative triples, CCSD(T)40) also performs poorly
for this system.

In Table I, the difficulties of AFQMC and CCSD(T)
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Figure 2. (a) Experimental circuit used for the 8-qubit H4 experiment over a 2x4 qubit grid (from Q1,1 to Q2,1) on the Sycamore

quantum processor.
28

In the circuit diagram, H denotes the Hadamard gate, G denotes a Givens rotation gate (generated by
XX + YY), P denotes a Pauli gate, and |ΨT 〉 denotes the quantum trial wavefunction. Note that the “offline” orbital rotation
is not present in the actual quantum circuit because they can be efficiently handled via classical post-processing as discussed
in Appendix C 1. (b) and (c): Convergence of the atomization energy of H4 as a function of the number of measurements.
(b) a minimal basis set (STO-3G) with four orbitals total from four independent experiments with different sets of random
measurements and (c) a quadruple-zeta basis set (cc-pVQZ) with 120 orbitals total from two independent experiments. The
different symbols in (b) and (c) show independent experimental results. Note that the ideal (i.e., noiseless) atomization energy
of quantum trial in (b) is exactly on top of the exact one. Further note that the quantum resource used in (c) is 8-qubit, but
as shown in Appendix C 3, our algorithm allows for adding “virtual” electron correlation in a much larger Hilbert space. Top
panels of (b) and (c) magnifies the energy range near the exact answer.

Figure 3. (a, top) Circuit layout showing
spin-up and spin-down qubits for the 12-
qubit experiment. (a, bottom) Potential en-
ergy surface of N2 in a triple zeta basis set
(cc-pVTZ

36
; 60-orbital). For clarity, the rel-

ative energies are shifted to zero at 2.25Å.
Inset shows the error in total energy relative
to the exact results in kcal/mol. The dash
dotted line in the inset provides bounds for
chemical accuracy (1 kcal/mol). Note that
the variational energy of the quantum trial
used here is outside the plotted energy scale.
The statistical error bars of AFQMC and
QC-AFQMC are not visible on this scale.
(b, top) Circuit layout showing spin-up and
spin-down qubits for the 16-qubit experi-
ment. (b, bottom) Error in total energy as a
function of lattice constant of diamond in a
double zeta basis (DZVP-GTH; 26 orbitals).
The dash dotted line shows the bounds for
chemical accuracy. Our quantum trial re-
sults are not visible on this energy scale. For
high values of the lattice constant none of
these methods achieve chemical accuracy but
the use of the quantum trial still improves
the AFQMC result. Inset shows a supercell
structure of diamond where two highlighted
atoms form the minimal unit cell.

are well illustrated by comparing their atomization ener-
gies with exact values in two different basis sets. Both
approaches show errors that are significantly larger than
“chemical accuracy” (1 kcal/mol). The variational en-
ergy of the quantum trial reconstructed from experiment

has a bias that can be as large as 33 kcal/mol. The noise
on our quantum device makes the quality of our quantum
trial far from that of the ideal (i.e., noiseless) ansatz as
shown in Fig. 2(b) and (c), resulting in an error as large
as 10 kcal/mol in the atomization energy. Nonetheless,
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QC-AFQMC reduces this error significantly, and achieves
chemical accuracy in both bases.

As shown in Appendix C 3, for the larger basis set, we
obtain a residual “virtual” correlation energy by using
the quantum resources on a smaller number of orbitals to
unbias an AFQMC calculation on a larger number of or-
bitals, with no additional overhead to the quantum com-
puter. This capability makes our implementation com-
petitive with state-of-the-art classical approaches. Simi-
lar virtual correlation energy strategies have been previ-
ously discussed within the framework of VQE,41 but un-
like our approach, those strategies come with a significant
measurement overhead. To unravel the QC-AFQMC re-
sults on H4 further, we illustrate in Fig. 2(b) and (c) the
evolution of trial and QC-AFQMC energies as a func-
tion of the number of measurements made on the device.
Despite the presence of significant noise within approxi-
mately 105 measurements, QC-AFQMC achieves chemi-
cal accuracy while coping with a sizeable residual bias in
the underlying quantum trial.

Next, we move to a larger example, N2, which re-
quires a total of 12 qubits in our quantum experiment.
Here, a simpler quantum trial is used for QC-AFQMC
by taking just the valence bond part of the wavefunc-
tion depicted in Fig. 2(a). We examine the potential
energy surface of N2 from compressed to elongated ge-
ometries, which is another common benchmark problem
for classical quantum chemistry methods.38,42 In Fig. 3
(a), the QC-AFQMC result is shown for the calculations

performed in a triple zeta basis (cc-pVTZ),36 which corre-
sponds to a 60-orbital or 120-qubit Hilbert space. All ex-
amined methods, CCSD(T), AFQMC, and QC-AFQMC
perform quite well near the equilibrium geometry, but
CCSD(T) and AFQMC deviate from the exact results
significantly as one stretches the bond distance. As a
result, the error of “gold-standard” CCSD(T) can be as
large as 14 kcal/mol and the error of AFQMC with a
classical trial wavefunction can be as large as -8 kcal/mol.
The error in the QC-AFQMC computation ranges from
-2 kcal/mol to 1 kcal/mol depending on the bond dis-
tance. Thus, while we do not achieve chemical accuracy
with QC-AFQMC, we note that even with a very simple
quantum trial wavefunction, we produce energies that are
competitive with state-of-the-art classical approaches.

Lastly, we present a 16-qubit experiment result on the
ground state simulation of a minimal unit cell (2-atom)
model of periodic solid diamond in a double-zeta basis
set (DZVP-GTH43; 26 orbitals). While at this level of
theory the model exhibits significant finite-size effects
and does not predict the correct experimental lattice con-
stant, we aim to illustrate the utility of our algorithm in
materials science applications. We emphasize that this is
the largest quantum simulation of chemistry on a quan-
tum processor to date. Previously, the largest correlated
quantum simulations of chemistry involved half a dozen
qubits or less13 with more than an order of magnitude
fewer two-qubit gates than is used here, while the largest
mean-field calculation performed on a quantum computer

involved a dozen qubits with fewer than half as many
two-qubit gates.15 We again use the simple perfect pair-
ing state as our quantum trial wavefunction and demon-
strate the improvement over a range of lattice parameters
compared with classical AFQMC and CCSD(T) in Fig. 3
(b). There is a substantial improvement in the error go-
ing from AFQMC to QC-AFQMC showing the increased
accuracy due to better trial wavefunctions. Our accuracy
is limited by the simple form of our quantum trial and
yet we achieve accuracy nearly on par with the classical
gold standard method, CCSD(T).

Conclusion. In summary, we proposed a scalable,
noise-resilient quantum-classical hybrid algorithm that
seamlessly embeds a special-purpose quantum primi-
tive into an accurate quantum computational many-
body method, namely QMC. Our work offers an al-
ternative computational strategy that effectively unbi-
ases fermionic QMC approaches by leveraging state-of-
the-art quantum information tools. We have realized
this algorithm for a specific QMC algorithm known as
AFQMC, and experimentally demonstrated its perfor-
mance in experiments as large as 16-qubit on a NISQ pro-
cessor, producing electronic energies that are competitive
with state-of-the-art classical quantum chemistry meth-
ods. Our algorithm also allows for incorporating the elec-
tron correlation energy outside the space that is handled
by the quantum computer without increasing quantum
resources or measurement overheads. In Appendix F,
we discuss issues related to asymptotic scaling and the
potential for quantum advantage in our algorithm, in-
cluding the challenge of measuring wavefunction over-
laps precisely. While we have yet to achieve practical
quantum advantage over available classical algorithms,
the flexibility and scalability of our proposed approach
in the construction of quantum trial functions, and its
inherent noise resilience, promise a new path forward for
the simulation of chemistry in the NISQ era and beyond.
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Appendix A: Technical Introduction

Despite the tremendous advances made in theoretical chemistry and physics over the past several decades, problems
with substantial electron correlation, namely effects beyond those treatable at the Hartree-Fock level of theory, still
present great challenges to the field.1–4 Electron correlation effects play a central role in many important situations,
ranging from the treatment of transition-metal-containing systems to the description of chemical bond breaking.
Reaching so-called “chemical accuracy” (accuracy to within 1 kcal/mol) in such applications is the holy grail of
quantum chemistry, and is a goal which no single method can currently reliably and scalably achieve.

Among electronic structure methods, projector quantum Monte Carlo (QMC) has proven to be among the most
accurate and scalable. QMC implements imaginary-time evolution of a quantum state with stochastic sampling and
can produce unbiased ground state energies when the fermionic sign problem is absent, for example in cases with
particle-hole symmetry. Widely used QMC methods include diffusion Monte Carlo (DMC), Greens function Monte

Carlo (GFMC), and auxiliary-field QMC (AFQMC) approaches.25 Generally, chemical systems exhibit a fermionic
sign problem and this significantly limits the applicability of QMC to small systems due to exponentially decreasing
signal-to-noise ratio.18 Efficient QMC simulations for sizable systems are possible only with a constraint implemented
in conjunction with a trial wavefunction on the imaginary-time trajectories, which at the same time introduces a bias
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in the final ground state energy estimate.
The accuracy of QMC simulations is, therefore, wholly determined by the quality of the trial wavefunction. In cases

where strong electron correlation is not present, using a simple single Slater determinant trial wavefunction obtained
from a mean-field (MF) approach leads to accurate approximate ground state energies from QMC. However, for cases
where MF wavefunctions are qualitatively wrong, one must resort to other alternatives. The form of wavefunction
must be simple enough to evaluate the projection onto a working QMC basis in an efficient manner. The QMC basis
takes the form of real-space points in DMC, occupation vectors in GFMC, and non-orthogonal Slater determinants
in AFQMC. The projection onto the QMC basis often scales exponentially with system size for coupled-cluster states
and tensor-product states such as matrix product states. Trial wavefunctions consisting of a linear combination of
determinants have been widely used due to the simple evaluation of the projection in this case. However, obtaining an
accurate linear combination of determinants scales poorly because the number of important determinants generically
scales exponentially with system size. Given these facts, there is a need for a new paradigm that allows for more
flexible choices of trial wavefunctions which can lead to more accurate QMC algorithms without losing their scalability.

In this work, we have proposed harnessing the power of quantum computers in performing a hybrid quantum-
classical QMC simulation, which we refer to as the QC-QMC algorithm. The key observation that we exploit is that
it is possible to perform the QMC basis projection for a wide range of wavefunctions in a potentially more efficient
manner on quantum computers than on classical computers. This suggests that one may isolate the specific task of the
projection from the QMC algorithm and use quantum computers to perform this task and separately communicate
this information to a classical computer to continue the QMC calculation. In principle the required quantity is
straightforward to approximate using the Hadamard test.45 However, because the QMC basis projection needs to be
performed thousands of times for a single QMC calculation, for Noisy Intermediate-Scale Quantum (NISQ) devices
we propose using shadow tomography to characterize the trial wavefunction and evaluate the projection such that
the on-line interaction between the quantum and classical device no longer exists. This enables the exploration of
the utility of quantum trial wavefunctions without concern for the challenges of tightly coupling high performance
classical computing resources with a NISQ device. We demonstrate the usefulness and noise resilience of this approach
by producing accurate experiments through Google’s Sycamore processor on prototypical strongly correlated chemical
systems such as H4 in a minimal basis and a quadruple-zeta basis, as well as bond-breaking of N2 in a triple-zeta
basis. We also studied a minimal unit cell model of diamond within a double zeta basis.

Appendix B: Review of Projector Quantum Monte Carlo

QMC methods are among the most accurate approximate electronic structure approaches, and they can be sys-
tematically improved with the use of increasingly sophisticated trial functions. Here, we summarize the essence of
the algorithm and discuss a specific QMC method which works in second-quantized space, namely auxiliary-field
quantum Monte Carlo (AFQMC). While we focus on developing a strategy tailored for AFQMC in this work, the
general discussion is not limited to AFQMC and should be applicable to QMC in general.

1. Projector quantum Monte Carlo

The essence of any projector QMC methods is that one computes the ground state energy and properties via an
imaginary-time propagation

|Ψ0〉 ∝ lim
τ→∞

exp
(
−τĤ

)
|Φ0〉 = lim

τ→∞
|Ψ(τ)〉, (B1)

where τ is the imaginary time, |Ψ0〉 is the exact ground state and |Φ0〉 is an initial starting wavefunction satisfying
〈Φ0|Ψ0〉 6= 0. Without any further modification, this is an exact approach to the computation of the ground state
wavefunction. In practice, a deterministic implementation of Eq. (B1) scales exponentially with system size and
therefore one resorts to a stochastic realization of Eq. (B1) for scalable simulations. Such a stochastic realization is
typically referred to as projector QMC.

Unfortunately, a direct implementation of Eq. (B1) via QMC suffers from the infamous fermionic sign problem.18

In first quantized QMC methods such as DMC, fermionic antisymmetry is not imposed explicitly. Such approaches
require the imposition of the fermionic nodal structure using trial wavefunctions to compute the fermionic ground state.
The use of an approximate nodal structure introduces a bias. In second quantized QMC methods the sign problem
manifests in a different way. The statistical estimates from a second quantizated QMC method exhibit variances that
grow exponentially with system size. Therefore for simulations of large systems no meaningful statistical estimates
can be obtained. It is then necessary to impose a constraint in the imaginary-time propagation to deal with the
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the sign problem and to obtain statistical efficiency. An example of such a constraint is the “phaseless” constraint
in AFQMC (see below). While such constraints introduce biases in the final estimates, rendering QMC approaches
inherently approximate in practice, different constrained approaches will have relative strengths and weaknesses with
respect to accuracy and flexibility.

2. Auxiliary-field quantum Monte Carlo

Auxiliary-field quantum Monte Carlo (AFQMC) is a projector QMC method that works in second-quantized space.46

Therefore, the sign problem in AFQMC manifests in growing variance in statistical estimates. To impose a constraint
in the imaginary-time propagation, it is natural to introduce a trial wavefunction that can be used in the importance
sampling as well as the constraint. This results in a wavefunction at imaginary time τ expressed as

|Ψ(τ)〉 =
∑
i

wi(τ)
|φi(τ)〉
〈ΨT |φi(τ)〉

(B2)

where |φi(τ)〉 is the wavefunction of the i-th walker, wi(τ) is the weight of the i-th walker, and |ΨT 〉 is some a priori
chosen trial wavefunction. From Eq. (B2), it is evident that the importance sampling is imposed based on the overlap
between the walker wavefunction and the trial wavefunction.

Walker wavefunctions in Eq. (B2) are almost always chosen to be single Slater determinants and the action of the

imaginary propagation, exp
(
−∆τĤ

)
, for a small time step ∆τ in Eq. (B1) transforms the walkers in such a way that

they stay within the single Slater determinant manifold via the Hubbard-Stratonovich transformation. This property
is essential if the computational cost is to grow only polynomially with system size, and is at the core of the AFQMC
algorithm as well as that of another commonly used unconstrained (and therefore unbiased) projector QMC approach

called the determinant QMC method.19

While repeatedly applying the imaginary time propagator to the wavefunction, the AFQMC algorithm prescribes
a particular way to update the walker weight wi(τ) in Eq. (B2). In essence, it is necessary that all weights stay real
and positive so that the final energy estimator,

E(τ) =
〈ΨT |Ĥ|Ψ(τ)〉
〈ΨT |Ψ(τ)〉

=

∑
i ωiE

(i)(τ)∑
i ωi

, (B3)

has a small variance. Here, E(i)(τ) is so-called the local energy, which is defined as

E(i)(τ) =
〈ΨT |Ĥ|ψi(τ)〉
〈ΨT |ψi(τ)〉

. (B4)

We note that Eq. (B3) is not a variational energy expression and is commonly referred to as the “mixed” energy
estimator in QMC. The essence of the constraint is that one updates the i-th walker weight from τ to τ + ∆τ using

|Si(τ)| ×max(0, cos θi(τ)) (B5)

where

Si(τ) =
〈ΨT |φi(τ + ∆τ)〉
〈ΨT |φi(τ)〉

, (B6)

and θi(τ) is the argument of Si(τ). This is in a stark contrast with a typical importance sampling strategy which
updates the walker weights using Si(τ), which does not guarantee the positivity and reality of the walker weights. If
|ΨT 〉 is exact, this constraint does not introduce any bias, but simply imposes a specific boundary condition on the
imaginary propagation which can be viewed as a “gauge-fixing” of the wavefunction. In practice, one does not have
access to the exact |ΨT 〉 and therefore can only compute an approximate energy whose accuracy wholly depends on
the choice of |ΨT 〉. Such a constraint is usually referred to as the “phaseless approximation” in the AFQMC literature.

Currently, classically tractable trial wavefunctions that are commonly used are either single determinant trials or
take the form of a linear combination of determinants.47,48 The former is very scalable (up to 500 electrons or so) but
can be often inaccurate, especially for strongly correlated systems, while the latter is limited to a small number of
electrons (16 or so) but can produce results that are very accurate even for strongly correlated systems. The choice
of the trial wavefunction renders AFQMC limited by the evaluation of Eq. (B3) and Eq. (B6). If the computation
of either one of these quantities scales exponentially with system size, the resulting AFQMC calculation will be
exponentially expensive.
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Appendix C: Quantum-Classical Hybrid Auxiliary-Field QMC (QC-AFQMC) Algorithms

In the main text, we presented the general philosophy of the QC-QMC algorithm and here we wish to provide more
QC-AFQMC-specific details tailored to the experiments presented in this work.

From the perspective of QMC simulations, the main benefit of using a quantum computer is to expand the range of
available trial wavefunctions beyond what is efficient classically. Namely, we seek a class of trial wavefunctions that
are inherently more accurate than a single determinant trial while bypassing the difficulty of variational optimization
on the quantum computer. Among the set of possible trial functions, we are interested in using wavefunctions for
which no known polynomial-scaling classical algorithm exists for the exact evaluation of Eq. (B3) and Eq. (B6). The
core idea in the QC-AFQMC algorithm is that one can approximately measure Eq. (B3) and Eq. (B6) on the quantum
computer and implement the majority of the imaginary-time evolution classically. Our goal is provide a roadmap for
quantum computers to apply polynomial-scaling algorithms for the evaluation of Eq. (B3) and Eq. (B6) up to additive
errors and thus ultimately to observe quantum advantage in some systems. This clearly separates subroutines into
those that need to be run on quantum computers and those on classical computers.

1. Quantum trial wavefunctions

The specific trial functions of interest in this work are simple variants of so-called coupled-cluster (CC) wavefunc-

tions. In quantum chemistry, CC wavefunctions are among the most accurate many-body wavefunctions.49 They are
defined by an exponential parametrization,

|Ψ〉 = eT̂ |ψ0〉, (C1)

where |ψ0〉 is a single determinant reference wavefunction and the cluster operator T̂ is defined as

T̂ =
∑
ai

tai a
†
aai +

∑
ijab

tabij a
†
ba
†
aajai + · · · . (C2)

We use {i, j, k, · · · } to denote occupied orbitals and {a, b, c, · · · } for unoccupied orbitals. T̂ can be extended to include
single excitations (S), double excitations (D), triple excitations (T) and so on. The resulting CC wavefunction is then
systematically improvable by including higher-order excitations. The most widely used version involves up to doubles
and is referred to as CC with singles and doubles (CCSD). There is no efficient algorithm for variationally determining
the CC amplitudes, t; however, there is an efficient projective way to determine these amplitudes and the energy,
although the resulting energy determined by this procedure is not variational. Such non-variationality manifests as a
breakdown of conventional CC, although it has been suggested that the underlying wavefunction is still qualitatively
correct and the projective energy evaluation is partially responsible for this issue.50

Employing CCSD (or higher-order CC wavefunctions) within the AFQMC framework is difficult because the overlap
between a CCSD wavefunction and an arbitary Slater determinant cannot be calculated efficiently without approxima-
tions. This is true for nearly all non-trivial variants of coupled cluster. Notably, there is currently no known efficient
classical algorithm for precisely calculating wavefunction overlaps even for the cases of coupled cluster wevefunctions
with a limited set of amplitudes, such as generalized valence bond perfect-pairing (PP).34,35 In QC-AFQMC, we can
efficiently approximate the required overlaps of such wavefunctions by using a quantum computer to prepare a uni-
tary version of CC wavefunctions or approximations to them. By using CC wavefunctions that we can obtain circuit
parameters classically, we are able to avoid a costly variational optimization procedure on the quantum device.

The simplified CC wavefunction ansatz that we utilize in this work is the generalized valence bond PP ansatz. This
ansatz is defined as

|ΨPP〉 = eT̂PPeκ̂ |ψ0〉 , (C3)

where the orbital rotation operator is defined as

κ̂ =

Norbitals∑
pq

(κ↑pq − κ
↑
qp)â

†
p↑
âq↑ + (κ↓pq − κ

↓
qp)â

†
p↓
âq↓ , (C4)

and the PP cluster operator is

T̂PP =

Npairs∑
i

tiâ
†
i
∗
↑
âi↑ â

†
i
∗
↓
âi↓ . (C5)
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In this equation, each i is an occupied orbital and each i∗ is the corresponding virtual orbital that is paired with the
occupied orbital i. We map the spin-orbitals of this wavefunction to qubits using the Jordan-Wigner transformation.
We note that the pair basis in ti is defined in the rotated orbital basis defined by the orbital rotation operator.

Due to its natural connection with valence bond theory which often provides a more intuitive chemical picture
than does molecular orbital theory, the PP wavefunction has played an important role in understanding chemical
processes.34 Despite its exponential scaling when implemented exactly on a classical computer, PP in conjunction
with AFQMC has been discussed previously; see Ref. 51. We will explore the scaling of the PP-based approach in
classical AFQMC and QC-AFQMC in more in detail below because this wavefunction is used in all of our experimental
examples (see Appendix F).

The PP wavefunction is known to provide insufficient accuracy for the ground state energy in many important
examples. This is best illustrated in systems where inter-pair correlation becomes important, such as multiple bond
breaking processes.52 While there exist ways to incorporate inter-pair correlation classically,53–55 in this work we focus
on adding multiple layers of hardware-efficient operators to the PP ansatz. There are two kinds of these additional
layers that we have explored:

1. The first class of layers includes only density-density product terms of the form

eJij n̂in̂j . (C6)

2. The second class includes only “nearest-neighbor” hopping terms between same spin (σ) pairs

eQij â
†
iσ
âjσ
−Q∗ij â

†
jσ
âiσ . (C7)

In both cases, the i and j orbitals are physically neighboring in the hardware layout. We alternate multiple layers
of each kind and apply these layers to the PP ansatz to improve the overall accuracy. The efficacy of these layers
varies with their ordering with the choice of the i,j pairs. Lastly, we also employ a full single particle rotation at
the end of the hardware-efficient layers. This last orbital rotation can be applied to 1-body and 2-body Hamiltonian
matrix elements classically, so we do not have to implement this part on the quantum computer. We refer this orbital
rotation as “offline orbital rotation” as noted in Fig. 2. H4 was the only example where we went beyond the PP
wavefunction. When this type of hardware-efficient layers is used, we no longer have an efficient classical algorithm to
optimize the wavefunction parameters. In such cases, one can resort to the variational quantum eigensolver to obtain
these parameters. Nevertheless, in the case of H4, the Hilbert space is small enough (4-orbital) that we still could
optimize everything classically.

2. Overlap and Local energy evaluation

As mentioned above, the overlap and local energy evaluations are the key subroutines that involve the quantum
trial wavefunctions. One approach to the overlap evaluation is to use the Hadamard test.45 Using modern methods,
one could do this without requiring the state preparation circuit to be controlled by an ancilla qubit.56–58 However,
this approach would require a separate evaluation for each walker at every time step. To avoid a steep prefactor
in quantum device run time, we propose the use of the technique known as shadow tomography as discussed in
Appendix D. For now, we will assume that one can make a query to the quantum processor to obtain the overlap
between a quantum trial state and an arbitrary Slater determinant efficiently up to additive error of the overlap.

With the ability to measure the overlap between |ΨT 〉 and an arbitrary single Slater determinant, |φi(τ)〉 we can
easily estimate the local energy in Eq. (B4). The evaluation of the denominator is just an overlap quantity and an
efficient estimation of the denominator is possible via

〈ΨT |Ĥ|φi(τ)〉 =
∑
pr

〈ΨT |φ
r
p〉〈φ

r
p|Ĥ|φi(τ)〉+

∑
pqrs

〈ΨT |φ
rs
pq〉〈φ

rs
pq|Ĥ|φi(τ)〉, (C8)

where |φrp〉 and |φrspq〉 denote single and double excitations from |φi(τ)〉, respectively. We only need up to double
excitations because our Hamiltonian has up to two-body terms. It is then evident that the ability to estimate 〈ΨT |φ

r
p〉

and 〈ΨT |φ
rs
pq〉 efficiently is sufficient to evaluate the entire local energy because the rest of the terms in Eq. (C8)

follow from the simple application of the Slater-Condon rule.59 The number of overlap queries made to the quantum
processor scales as O(N4) with N being the system size in this algorithm. Other “mixed” local observables can be
computed via similar algorithms.
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3. Virtual correlation energy

Obtaining the correlation energy outside the “active” space, where the actual quantum resource is spent, is critical
for converging our simulation results to the basis set limit (or the continuum limit). The correlation energy outside
the active space will be referred to as “virtual correlation energy”. We are limited in terms of the number of qubits on
NISQ devices, so a procedure to incorporate correlation energy outside the relatively small active space is essential. To
this end, a virtual correlation energy strategy has been proposed within the framework of VQE,41 but this approach
comes with a significant measurement overhead due to the requirement of three- and four-body reduced density
matrices within the active space.

In this section, our goal is to show that a similar technique for QC-AFQMC exists where we can obtain the virtual
correlation energy without any additional qubits or any measurement overhead. We write our trial wavefunction as

|ΨT 〉 = |ψT 〉 ⊗ |ψc〉 ⊗ |0v〉, (C9)

where |ψT 〉 is the quantum trial wavefunction within the active space, |ψc〉 is a Slater determinant composed of
occupied orbitals outside the active space (i.e. frozen core orbitals), and |0v〉 is a vacuum state in the space of
unoccupied orbitals outside the active space (i.e., frozen virtual orbitals). We want to compute the overlap between
|ΨT 〉 and a single Slater determinant |φ〉

〈φ|ΨT 〉 = 〈φ| (|ψT 〉 ⊗ |ψc〉 ⊗ |0v〉) =
∑

x∈{0,1}Na

y∈{0,1}Nc

z∈{0,1}Nv

〈φ |x, y, z〉 〈x |ψT 〉 〈y |ψc〉 〈z | 0v〉 (C10)

=
∑

x∈{0,1}Na

y∈{0,1}Nc

z∈{0,1}Nv

φ∗(x, y, z)ψT (x)ψc(y)δz,0v (C11)

=
∑

x∈{0,1}Na

 ∑
y∈{0,1}Nc

φ∗(x, y, 0v)ψc(y)

ψT (x), (C12)

where φ(x, y, z) = 〈x, y, z |φ〉, ψT (x) = 〈x |ψT 〉, ψc(y) = 〈y|ψc〉 Na is the number of active spin orbitals, and Nc and
Nv are the number of occupied and unoccupied spin orbitals outside of the active space, respectively. We are using
x, y, z to denote bit strings in the space composed of single particle orbitals used to construct |ΨT 〉. Because the
tensor φ∗(x, y, z) represents a Slater determinant, it is a special case of what is known as a matchgate tensor with
Na +Nc +Nv open indices. This is also the case for ψc(y) and δz,0v (with Nc and Nv open indices respectively). Thus,

their contraction
(∑

y∈{0,1}Nc φ
∗(x, y, 0v)ψc(y)

)
is also a matchgate with Na open indices and support on states of a

fixed Hamming weight (i.e. an unnormalized Slater determinant), and can be formed efficiently by contracting over

Nc + Nv legs with |ψc〉 ⊗ |0v〉.
60–62 Let φ̃(x) denote the resulting matchgate tensor after normalization and

∣∣∣φ̃〉 the

associated state. Then
∣∣∣φ̃〉 is a normalized Slater determinant in the same Hilbert space as |ψT 〉. Thus, we have

〈φ|ΨT 〉 = 〈φ| (|ψT 〉 ⊗ |ψc〉 ⊗ |0v〉) = constant×
〈
φ̃
∣∣∣ψT〉 , (C13)

where the constant can be efficiently evaluated classically by contracting matchgate states and the evaluation of〈
φ̃
∣∣∣ψT〉 can now be performed on the quantum computer with only Na qubits.

For the local energy evaluation in Eq. (B4), we leverage the same technique that we used in Eq. (C8). The numerator
of the local energy expression is

〈φ|Ĥ| (|ψT 〉 ⊗ |ψc〉 ⊗ |0v〉) =
∑
pr

〈φ|Ĥ|φrp〉〈φ
r
p| (|ψT 〉 ⊗ |ψc〉 ⊗ |0v〉) +

∑
pqrs

〈φ|Ĥ|φrspq〉〈φ
rs
pq| (|ψT 〉 ⊗ |ψc〉 ⊗ |0v〉) , (C14)

and we only need to focus on the computing the following term:

〈φrspq| (|ψT 〉 ⊗ |ψc〉 ⊗ |0v〉) =
∑

x∈{0,1}Na

y∈{0,1}Nc

φrspq(x, y, 0v)ψT (x)ψc(y) =
∑

x∈{0,1}Na

 ∑
y∈{0,1}Nc

φrspq(x, y, 0v)ψc(y)

ψT (x).

(C15)
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Then
(∑

y∈{0,1}Nc φ
rs
pq(x, y, 0v)ψc(y)

)
is the tensor corresponding to a matchgate state itself (with Na open indices)

and thus can be computed efficiently classically. Since an equation of the form Eq. (C13) also holds for |φrspq〉, the
local energy evaluation can be performed on the quantum computer with only Na qubits.

Appendix D: Experimental Implementation via Shadow Tomography

The basic goal of shadow tomography is to estimate properties of a quantum state without resorting to full state
tomography. This task was introduced in Ref. 29 and has been considered in a number of subsequent works.30,63–70 In
the experiments performed in this work, we make use of these tools to approximate the quantities required to perform
AFQMC, Eq. (B3) and Eq. (B6). We focus here on the proposal put forward by Huang et al. in Ref. 30. This version
of shadow tomography is experimentally simple to implement and compatible with today’s quantum hardware.

As we shall explain, the use of shadow tomography makes our experiment particularly efficient in terms of the
number of repetitions required to evaluate the required wavefunction overlaps. This allows us to avoid performing a
separate set of experiments (e.g. using the Hadamard test) for each timestep and walker. However, this efficiency
comes at a cost; the way in which we extract these overlaps from the experimental measurement record requires an
exponentially scaling post-processing step. We note that this difficulty is specific to the particular choice we made to
demonstrate QC-QMC using AFQMC rather than some other QMC method. For example, if we were using a quantum
computer to provide the constraint for a Green’s function Monte Carlo calculation, the walker wavefunctions would
be computational basis states and we could make use of shadow tomography without this issue. It is an open question
whether a more sophisticated measurement strategy could be equally efficient in terms of the number of measurements
required while also avoiding this additional bottleneck for QC-AFQMC. Exploring the use of shadow tomography with
random fermionic gaussian circuits, as in Ref. 66, seems like a promising direction to explore for this purpose.

In Appendix D 1, we review the general formalism of shadow tomography as proposed in Ref. 30. We continue in
Appendix D 2 by showing how we can use shadow tomography to approximate the wavefunction overlaps required to
perform QC-QMC and discussing the scaling in terms of the number of measurement repetitions performed on the
quantum device. We explain the challenges associated with the classical post-processing of the experimental record for
QC-AFQMC in Appendix D 3. In Appendix D 4 and Appendix D 5, we describe two strategies we adopt for reducing
the number of quantum gates required for our experimental implementation. Appendix D 4 deals with compiling the
measurements, while Appendix D 5 explains how we make a tradeoff between the number of gates and the number
of measurements. Finally, in Appendix D 6, we show that the quantities we ultimately estimate using the quantum
device are resilient to noise, particularly noise during the shadow tomography measurement procedure.

1. Review of Shadow Tomography

Let ρ denote some unknown quantum state. We assume that we have access to N copies of ρ. Let {Oi} denote a
collection of M observables. Our task is to estimate the quantities tr(ρOi) up to some additive error ε for each Oi.
The key insight of Ref. 30 is that we can accomplish this efficiently in certain circumstances by randomly choosing
measurement operators from a tomographically complete set.

To specify a protocol, we choose an ensemble of unitaries U . We then proceed by randomly sampling Uk ∈ U
and measuring the state UkρU

†
k in the computational basis to obtain the basis state |bk〉〈bk|. Consider the state

U†k |bk〉〈bk|Uk. In expectation, the mapping from ρ to U†k |bk〉〈bk|Uk defines a quantum channel,

M(ρ) := Ek
[
U†k |bk〉〈bk|Uk

]
. (D1)

We require that M be invertible, which is true if and only if the collection of measurement operators defined by
drawing U ∈ U and measuring in the computational basis is tomographically complete. Assuming that this is true,
we can apply M−1 to both sides of Eq. (D1), yielding

ρ =M−1
(
Ek
[
U†k |bk〉〈bk|Uk

])
=Ek

[
M−1(U†k |bk〉〈bk|Uk)]. (D2)

We call the collection
{
M−1(U†k |bk〉〈bk|Uk)} the classical shadow of ρ.

Many choices for the ensemble U are possible.30,66,69,70 Formally, the condition that the measurement channel is
invertible is sufficient. In practice, it is also desirable to impose the constraint that the classical post-processing
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involved in making use of the shadow can be done efficiently. In this work, we utilize randomly selected N -qubit
Clifford circuits, as well as tensor products of randomly selected Clifford circuits on fewer qubits.

2. Approximating Wavefunction Overlaps with Shadow Tomography

Let |ΨT 〉 denote our trial wavefunction. We restrict ourselves to considering |ΨT 〉 that represent fermionic wavefunc-
tions with a definite number of particles η > 0. We focus on states encoded with the Jordan-Wigner transformation,
so that the qubit wavefunction for |ΨT 〉 is a superposition of computational basis states with Hamming weight η. Let
|φ〉 denote our walker wavefunction, which is also a superposition of computational basis states with Hamming weight
η. In this section, we explain how to approximate the wavefunction overlap 〈φ|ΨT 〉 using shadow tomography.

Our protocol begins by preparing the state |τ〉〈τ | on the quantum computer, where |τ〉 = (|0〉+ |ΨT 〉)/
√

2, with |0〉
denoting the all-zero (vacuum) state. The wavefunction overlap of interest is therefore equal to

〈φ|ΨT 〉 = 2〈φ |τ〉〈τ | 0〉 = 2 Tr [|τ〉〈τ | · |0〉〈φ|] , (D3)

where we used the fact that 〈ΨT | 0〉 = 〈φ | 0〉 = 0. If we define the observables

P+ = |0〉〈φ|+ |φ〉〈0| ,
P− = −i(|0〉〈φ| − |φ〉〈0|), (D4)

then we have

Re(〈φ|ΨT 〉) = Tr [|τ〉 〈τ |P+] , (D5)

Im(〈φ|ΨT 〉) = Tr [|τ〉 〈τ |P−] , (D6)

where z = Re(z) + i Im(z) for z ∈ C. Note that Tr [P±] = 0 and

Tr
[
P 2
±

]
= Tr [|φ〉〈φ|+ |0〉〈0|] = 2. (D7)

assuming |φ〉 is a normalized wavefunction.
Let us assume for now that U is the Clifford group on N qubits. Therefore, we can use the expression for the inverse

channel from Ref. 30,

M−1(X) = (2N + 1)X − I, (D8)

where X is a placeholder variable. In particular, we have

Tr
[
(P+ + iP−) |τ〉〈τ |

]
≈ Tr

[
(P+ + iP−)M−1(U†k |bk〉〈bk|Uk)] = (2N + 1) Tr

[
(P+ + iP−)U†k |bk〉〈bk|Uk

]
. (D9)

The full expression for 〈φ|ΨT 〉 then becomes

〈φ|ΨT 〉 = (2N + 1)Ek
[

Tr
[
(P+ + iP−)U†k |bk〉〈bk|Uk

]]
= (D10)

2(2N + 1)Ek
[
〈φ|U†k |bk〉〈bk|Uk |0〉

]
. (D11)

Furthermore, because we are expressing 〈φ|ΨT 〉 in terms of the expectation values of the two operators P± with

Tr
[
P 2
±

]
= O(1), Theorem 1 of Ref. 30 allows us to bound the number of measurement repetitions we require for a

target precision. Specifically, when we take the ensemble of random unitaries to be the Clifford group on all N qubits,
as we do in this section, this bound scales with the Hilbert-Schmidt norm of the operators of interest. Consider the
case where we would like to estimate the overlap of |ΨT 〉 with a collection of M different wavefunctions {φi}. Let c̃i
denote our estimate of 〈φi|ΨT 〉. We specify a desired accuracy in terms of two parameters, ε and δ, by demanding
that

|c̃i − 〈φi|ΨT 〉 | ≤ ε ∀ 1 ≤ i ≤M (D12)

with probability at least 1 − δ. Theorem 1 of Ref. 30 implies that shadow tomography using the N -qubit Clifford
group allows us to achieve this accuracy using

R = O
( log(M)− log(δ)

ε2
)

(D13)

repetitions of state preparation and measurement.
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3. Classical Post-processing for Wavefunction Overlaps

In the previous section, we described how we can use shadow tomography to estimate overlaps of the form 〈φ |ΨT 〉
by evaluating the expression in Eq. (D11), 2(2N + 1)Ek

[
〈φ|U†k |bk〉〈bk|Uk |0〉

]
, where the Uk are Clifford circuits

and bk are computational basis states. We explained how these estimates can be made using a modest number of
experimental repetitions, even for a large collection of different |φi〉. However, we have not yet described the classical
post-processing required to perform this estimation. This section addresses this aspect of our experiment and explains
how the approach we took for our implementation of QC-AFQMC in practice involves an exponentially scaling step.
We will utilize the fact that overlap between stabilizer states (including basis states) can be efficiently computed

classically using the Gottesman-Knill theorem.71,72 For instance, the terms 〈bk|Uk|0〉 can be efficiently calculated for

any Clifford circuit Uk. Therefore, we can just focus on computing 〈φ|U†k |bk〉 to evaluate the expression in Eq. (D11).

In special cases, this can be computed efficiently. For example, if |φ〉 =
∑
α cα |φα〉 can be written as a linear

combination of a polynomial number of stabilizer states {|φα〉}α, then we can efficiently compute 〈φα|U
†
k |bk〉 for each

α and sum them together. QMC methods such as Green’s function Monte Carlo where the walker wavefunctions are
computational basis states are a special case that trivially satisfies this requirement. Even when |φ〉 is not exactly
sparse, it may be approximately sparse in the computational basis (in the sense of being close to an exactly sparse
state). In such a case, provided that we can sample from |φ〉 efficiently (which is possible for a Slater determinant), we
could construct a sparse approximation to |φ〉 (see, e.g., Ref. 73) and use this state to approximate the overlap. In our
QC-AFQMC experiments, we expanded |φ〉 in this way, except that we performed a sum over all of the computational
basis states with the correct symmetries, incurring an exponential overhead. We emphasize, however, that the cost
of this post-processing has no effect on the number of quantum samples needed to produce the classical shadow.

For a general wavefunction |φ〉, computing
〈
φ
∣∣∣U†k ∣∣∣ bk〉 may be classically intractable. Specifically, when |φ〉 is a

Slater determinant, as our walkers are, there is no known way to efficiently compute the desired overlap classically.
Existing strategies for approximating the overlap between two states can allow us to bypass this exponential scaling
if an additive error is acceptable. In general, it is possible to approximate the overlap between two states up to some
additive error provided that one can sample from one of the states in the computational basis and query each of them
for the amplitudes of particular bitstrings. Techniques of this sort are used in variational Monte Carlo25 and have also
been studied in the context of dequantizing quantum algorithms. In particular, Ref. 74 showed that for normalized

states |ψ〉, |φ〉, the random variable 〈φ | x〉〈ψ | x〉 with probability |〈x |ψ〉|2 has mean 〈ψ |φ〉 and constant variance:

〈ψ|φ〉 =
∑
x

〈ψ |x〉〈x|φ〉 =
∑
x

〈ψ|x〉
〈φ|x〉

|〈x|φ〉|2. (D14)

This implies an algorithm to calculate 〈ψ |φ〉 to within ε additive error with failure probability at most δ using

O( 1

ε
2 log 1

δ ) samples from |ψ〉 and queries to the amplitudes of |ψ〉 and |φ〉. Unfortunately, the prefactor of 2(2N + 1)

in Eq. (D11) seems to preclude benefiting from a strategy that estimates 〈φ|U†k |bk〉 up to an additive error. This is
why we chose to compute the overlap using the exponential scaling enumeration of basis states in our QC-AFQMC
experiments.

4. Global Stabilizer Measurements

In this section, we outline a strategy for reducing the size of the circuits required to perform shadow tomography.
This strategy leverages the fact that we measure in the computational basis immediately after performing a randomly
sampled Clifford. Therefore, any permutation of the computational basis states that occurs immediately prior to
measurement is unnecessary.

In general, applying a unitary U and then measuring in the computational basis
{
|x〉 : x ∈ {0, 1}N

}
, as shadow

tomography was originally presented, is equivalent to measuring in the rotated basis
{
U† |x〉 : x ∈ {0, 1}N

}
. For a set

of unitaries U , choosing a unitary therefrom uniformly at random and then measuring in the computational basis is

equivalent to measuring the positive operator-valued measure (POVM)
{

1
|U|U

† |x〉 〈x|U : x ∈ {0, 1}N , U ∈ U
}

. Note

that the |U| 2N measurement operators need not be distinct (e.g., if the unitaries in U only permute the computational

basis states). In particular, when U is the set of N -qubit Clifford unitaries CN , each measurement operator U† |x〉 〈x|U
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is a stabilizer state, and the POVM is {
2N

|stabN |
|ψ〉 〈ψ| : |ψ〉 ∈ stabN

}
, (D15)

where stabN is the set of N -qubit stabilizer states. That the weight of the measurement operators is uniform follows
from the symmetry of U (appending any Clifford to each U ∈ U leaves the distribution unchanged); that the uniform

weight is 2N/ |stabN | will be explained later. There are |CN | = 2N
2
+2N ∏N

i=1(4i − 1) Clifford unitaries75 and only

2N
∏N
i=1(2i + 1)� 2N |CN | stabilizer states.72 This suggests that sampling a uniformly random Clifford is unnecessary.

We will now construct a smaller set of 2−n |stabN | unitaries C̃N such that the corresponding POVM is equivalent to

that of CN . Specifically, stabN =
{
U† |x〉 : U ∈ C̃N ,x ∈ {0, 1}

N
}

.

Let FN be the “H-free” (Hadamard-free) group on N qubits, i.e. the group generated by X, CNOT, CZ. The action

of any H-free operator can be written as75

F (Γ,γ,∆, δ) |x〉 = ix
T

Γx(−1)
γ·x |∆x + δ〉 , (D16)

where Γ is symmetric Boolean matrix; γ, δ ∈ {0, 1}N ; and ∆ is an invertible Boolean matrix. (A Boolean matrix is
one whose entries are 0 or 1.) The action of an H-free operator thus is to simply permute the basis states and add
some phase. If we are measuring in the computational basis, the phase does not affect the outcome probabilities and
the affine change x 7→ ∆x + δ is invertible. Therefore measuring a state in the computational basis and applying

the transformation y 7→ ∆−1(y + δ) to the outcome y is equivalent to applying F † and then measuring in the

computational basis (i.e., measuring in the basis
{
F |x〉 : x ∈ {0, 1}N

}
). As shown by Bravyi and Maslov,75 any

Clifford operator can be written in the form F ·H ·F ′, where F, F ′ ∈ FN and H is a layer of single-qubit Hadamards.
In shadow tomography, we apply a Clifford F ·H · F ′ and measure in the computational basis. As explained above,
however, the second H-free operator F need not actually be applied; its effect can be implemented entirely in classical
post-processing. In general, F and F ′ are not unique. However, Bravyi and Maslov give a canonical form for Clifford
operators (by constraining the H-free operators F, F ′) that allows for uniform sampling. If we start with their canonical

form and “push” as much of F ′ through the Hadamard layer into F , yielding a new form F̃ ·H · F̃ ′ = F ·H · F ′, and
neglect the new final H-free operator F̃ , we are left with an operator of the form

G(I,Γ,∆) =
∏
i∈I

HiP
Γi,i
i

∏
i∈I

j∈I:j 6=i

CZ
Γi,j
i,j

∏
i∈I

j /∈I:j>i

CX
∆i,j

i,j , (D17)

where I ⊂ [N ] is a subset of qubit indices, Γ is a Boolean upper-triangular matrix with support only on I, and ∆ is
Boolean. Applying a Clifford operator and measuring in the computational basis can thus be replaced by applying
an operator of the form in Eq. (D17) and measuring in the computational basis. A priori, we would also need to do
post-processing to account for the affine transformation effected by the neglected H-free operator, but in fact this is
not needed.

5. Partitioned Shadow Tomography

As we discussed in Appendix D 2, shadow tomography using the N -qubit Clifford group can be used to simulta-
neously estimate M wavefunction overlaps using a number of samples that scales logarithmically in M . However,
performing these measurements on a NISQ devices can be challenging because of the required circuit depth. Alter-
native choices of the ensemble of random unitaries, U , can alleviate this difficulty. In Ref. 30, Huang et al. consider a
second choice of U where the unitaries U ∈ U are instead chosen to be tensor products of single-qubit Clifford opera-
tors. This choice leads to especially simple circuits. In the worst case, however, it requires a number of measurements
scaling exponentially with the locality of the operators to be estimated.

In the experiments performed in this work, we found it useful to interpolate between these two extremes. Specifically,
we use an ensemble of random circuits U consisting of tensor products of random Clifford circuits on N/2 qubits. In
this section, we explain how the the techniques for overlap estimation we presented in Appendix D 2 can be generalized
to this case. Ref. 30 explains how each choice of U has an associated norm which can be used to bound the variance
of the estimators derived from the classical shadow. We do not work out the norm or the associated bounds on the
number of measurements for our partitioned shadow tomography here. Instead, we merely note that it performed
well in practice and leave this elaboration for a future work.
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Recalling and simplifying the expression in Eq. (D9), we have

〈φ|ΨT 〉 = 2Ek
[
〈φ|M−1(U†k |bk〉〈bk|Uk) |0〉 ]. (D18)

We can use an expression like the one from Eq. (D8) to apply the inverse channel, but first we need to specify some
notation. We take a partitioning of the N qubits into P parts. Let N1, N2, ...NP be the number of qubits in each
part of the partition. We consider a shadow tomography protocol that applies a randomly selected Np-qubit Clifford
to each part, p ∈ {1, 2, ...P}. Thus, we have

Uk = U1
k ⊗ U

2
k ⊗ · · ·U

P
k . (D19)

The inverse of the shadow tomography measurement channel is simply

M−1 =

P⊗
p=1

M−1
Np
, (D20)

where, as in Eq. (D8),

M−1
Np

(X) = (2Np + 1)X − INp . (D21)

where X is a placeholder variable.
Now we specialize to the case where |φ〉 is a computational basis state, which we denote by |β〉. We could instead

take |φ〉 to be any state which is separable between the parts of the partition (or a sum of such states), but specializing
to computational basis states is sufficient for our purposes. Let

∣∣βp〉 denote the component of |β〉 associated with the
p-th part of the partition. Using this notation, we can evaluate Eq. (D18) to yield

〈β|ΨT 〉 = 2Ek
[ P∏
p=1

(2Np + 1)
〈
βp
∣∣Up†k |bpk〉〈bpk|Upk ∣∣0p〉− 〈βp∣∣0p〉 ]. (D22)

In carrying out our experiments, we specifically chose to use a partition with two parts, one for each of the spin
sectors. All of our walker wavefunctions |φ〉 were superpositions of basis states with a Hamming weight η overall
and a nonzero number of electrons in each spin sector. Therefore, when we used shadow tomography to evaluate
the overlap of our walker wavefunctions |φ〉 with |ΨT 〉 as described in Appendix D 2 and Appendix D 3,

〈
βp
∣∣0p〉 = 0

for the calculations we performed. Because of this, we were able to evaluate the wavefunction overlaps using the
expression

〈φ|ΨT 〉 =
∑
i

ci

〈
βi
∣∣∣ΨT

〉
=
∑
i

ci2Ek
[ P∏
p=1

(2Np + 1)
〈
βip

∣∣∣Up†k |bpk〉〈bpk|Upk ∣∣0p〉 ], (D23)

where the ci’s are the amplitudes of |φ〉 in the computational basis, {|βi〉}.

6. Noise Resilience

We show in this section that, in certain circumstances, noise has a negligible impact on the measurement of overlap
ratios such as

〈φ1 |ΨT 〉
〈φ2 |ΨT 〉

, (D24)

where |ΨT 〉 is some fixed trial wavefunction and |φ1〉 , |φ2〉 are two arbitrary determinants. Recall that the overlap
〈φi |ΨT 〉 = 2 〈φi | ρ | 0〉, where ρ = |τ〉〈τ | = (|0〉+ |ΨT 〉)(〈0|+ 〈ΨT |)/2.

As a warm up, consider a simple noise model: a global depolarizing channel76

ρ 7→ ρ′ = (1− p)ρ+ pI (D25)
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applied right before measurement. Then, neglecting the error in estimating the overlaps due to measurement, our
estimate of the overlap becomes

2
〈
φ1

∣∣ ρ′ ∣∣ 0〉
2
〈
φ2

∣∣ ρ′ ∣∣ 0〉 =

〈
φ1

∣∣ ρ′ ∣∣ 0〉〈
φ2

∣∣ ρ′ ∣∣ 0〉 (D26)

=
(1− p) 〈φ1 | ρ | 0〉+ p 〈φ1 | 0〉
(1− p) 〈φ2 | ρ | 0〉+ p 〈φ2 | 0〉

(D27)

=
(1− p) 〈φ1 | ρ | 0〉
(1− p) 〈φ2 | ρ | 0〉

(D28)

=
〈φ1 | ρ | 0〉
〈φ2 | ρ | 0〉

, (D29)

where we used the fact that 〈φi | 0〉 = 0. Thus the depolarizing channel has no effect on our estimate.
Now suppose we were to apply the robust shadow tomography procedure of Ref. 63 to determine the overlap ratio

in Eq. (D24). We will assume for now that the state ρ is prepared without error and that we have some unknown
noise process occurring during the shadow tomography procedure. We focus first on the case where our ensemble of
random unitaries (U) is the Clifford group on all N qubits, which we refer to as the global case. First, we would
estimate a noise parameter f . Then we would calculate the classical shadow using the inverse channel

M−1(X) = f−1X − 1− f−1

2N
I, (D30)

where X is a placeholder variable. Note that, in the absence of noise, we have f−1 = 2N + 1 and we recover Eq. (D8).
This yields a single-round estimate of the overlap,

2
〈
φi

∣∣∣M−1(U†k |bk〉 〈bk|Uk)
∣∣∣ 0〉 = 2f−1

〈
φi

∣∣∣U†k ∣∣∣ bk〉 〈bk |Uk | 0〉 − 1− f−1

2N
Tr
[
U†k |bk〉 〈bk|Uk

]
〈φi | 0〉 (D31)

= 2f−1
〈
φi

∣∣∣U†k ∣∣∣ bk〉 〈bk |Uk | 0〉 . (D32)

As above, the factor of f−1 drops out when taking ratios. Therefore, when doing shadow tomography (using global
Cliffords) to calculate ratios as above, we get robustness for free. That is, we can use the true value in the noiseless

case f = (2N + 1)
−1

as in vanilla shadow tomography and the estimates for the ratios are exactly the same as if
we had done robust shadow tomography, without actually doing robust shadow tomography (i.e., estimating f and
using that estimate to obtain the corrected inverse channel). This is true whenever the assumptions of robust shadow
tomography hold, i.e., that the noise is gate-independent, time-stationary and Markovian.

For partitioned shadow tomography with two partitions (as described in Appendix D 5), the same conclusion holds.
Ref. 63 describes in detail how robust shadow tomography applies to to a random ensemble consisting of a tensor
product of single-qubit Clifford operators. We can apply the same logic to the case when we have a tensor product of
random N

2 -qubit Cliffords. This yields an inverse channel,

M−1(ρ) =

[
2−n

(
f−1

0,0 − f
−1
0,1 − f

−1
1,0 + f−1

1,1

)
In (D33a)

+ 2−n/2
(
f−1

0,1 − f
−1
1,1

) (
In/2 ⊗ TrP1

[ρ]
)

(D33b)

+ 2−n/2
(
f−1

1,0 − f
−1
1,1

) (
TrP2

[ρ]⊗ In/2
)

(D33c)

+ f1,1ρ

]
, (D33d)

where f0,0, f0,1, f1,0, f1,1 are four four parameters which characterize the impact of the noise. These parameters could
be learned from calibration experiments, but, as we will see, this is unnecessary for our purposes.

In our particular case, the two partitions correspond to two spin sectors. We will assume that |ψi〉 has no overlap
with any state of the form |0〉⊗ |ψ〉 or |ψ〉⊗ |0〉; in other words, that the state always has at least one particle of each

spin. Now again consider a single-round estimate of the overlap 2
〈
φi

∣∣∣M−1(U†k |b〉 〈b|Uk)
∣∣∣ 0〉, where Uk = U1 ⊗ U2
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and |bk〉 = |b1〉 ⊗ |b2〉. There will be four contributions, corresponding to Eq. (D33a)–Eq. (D33d). The first is zero
because 〈φi | 0〉 = 0. The second is proportional to〈

φi

∣∣∣ In/2 ⊗ TrP1
[U†k |b〉 〈b|Uk]

∣∣∣ 0〉 =
〈
φi

∣∣∣ In/2 ⊗ U†2 |b2〉 〈b2|U2]
∣∣∣ 0〉 (D34)

∝ 〈φi|
(
|0〉 ⊗ U†2 |b2〉

)
= 0. (D35)

The third is also zero for the same reason. That leaves just the last term, so that

2
〈
φi

∣∣∣M−1(U†k |b〉 〈b|Uk)
∣∣∣ 0〉 = 2−nf1,1

〈
φi

∣∣∣U†k ∣∣∣ b〉 〈b |Uk | 0〉 . (D36)

Therefore, the inverse channel for the noisy implementation of this form of partitioned shadow tomography would
simply rescale all of the estimated overlaps by the same noise parameter (when compared with the inverse channel
in the absence of noise). This rescaling cancels out when we calculate the overlap ratios and we get robustness
automatically whenever the assumptions of robust shadow tomography are satisfied, just as in the global case.

Appendix E: Computational and Experimental Details and Supportive Numerical Results

We used quantum computing tools provided in Cirq,77 qsim,78 and Fermionic Quantum Emulator.79 For the shadow
tomography experiment, we executed each Clifford circuit measurement 1000 times.

All AFQMC calculations presented here were performed with PAUXY80 and QMCPACK.81 All integrals are ob-
tained using PySCF82 and some of the calculations were verified using Q-Chem.83 Exact energies within a basis were
all obtained using a brute-force approach called heat-bath configuration interaction (HCI).84 For AFQMC, we used
more than 1000 walkers in all numerical data presented here to ensure that the population control bias is negligible.
∆t = 0.005 was used for the time step and the resulting time step error was found to be insignificant. When choosing
a set of orbitals for the active space, we decided to use orbitals from a brute-force complete active space self-consistent
field (CASSCF) calculation. This is not really a necessary component in our method and in the future one may deter-
mine those orbitals by performing an active-space self-consistent calculation with some other lower-scaling methods
such as orbital-optimized Møller-Plesset perturbation theory.85 We do not think that the conclusion of this work will
be affected by the choice of single particle basis (i.e., orbitals).

In this section, we will provide the raw data of numerical results that were used in the main text. We will use
atomic units for the total energies reported in this section.

1. H4, 8-qubit experiment

We studied a square geometry of H4 given as

H1 : (0, 0, 0)

H2 : (0, 0, 1.23)

H3 : (1.23, 0, 0)

H4 : (1.23, 0, 1.23).

To compute the atomization energy, one needs an energy of a single hydrogen atom. Since Hartree-Fock is an exact
approach for a single electron system (e.g., a hydrogen atom), all correlated methods considered in this work should
be exact for this. For a minimal basis (STO-3G), we used -0.46658185 and for a correlation-consistent quadruple zeta
basis (cc-pVQZ) we used -0.499945569 for the hydrogen atom energy.

The classical AFQMC calculations were all performed with a spin-unrestricted Hartree-Fock (UHF) trial wavefunc-

tion and we also found that the spin-projection technique (which is often employed to improve the AFQMC results)51

did not provide any improvement to the AFQMC results. We got -1.96655(4) for STO-3G and -2.10910(8) for cc-
pVQZ. CCSD(T) (classical “gold standard”) was also performed with a UHF reference wavefunction with energies,
-1.961308 (STO-3G) and -2.114275 (cc-pVQZ).

We performed both unpartitioned and partitioned shadow tomography four times for STO-3G and twice for cc-
pVQZ. To get some sense for the convergence of the shadow tomography experiments as a function of the number of
sampled Cliffords, we compute the variational energy of the trial wavefunction via

Evar =
〈ΨT |Ĥ|ΨT 〉
〈ΨT |ΨT 〉

, (E1)
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as a function of the number of Cliffords.

NCliffords repeat 1 repeat 2 repeat 3 repeat 4
10 -1.800644 -1.764747 -1.813274 -1.658202
16 -1.823041 -1.802192 -1.840494 -1.730591
28 -1.906644 -1.839835 -1.843326 -1.746749
47 -1.925654 -1.888527 -1.860863 -1.809656
80 -1.909567 -1.869456 -1.887139 -1.846339
136 -1.930880 -1.902309 -1.889992 -1.879164
229 -1.944249 -1.921523 -1.903710 -1.890947
387 -1.947362 -1.934682 -1.910477 -1.901883
652 -1.952416 -1.939853 -1.912790 -1.905250
1100 -1.955544 -1.944651 -1.915073 -1.909122
1856 -1.955028 -1.945966 -1.909558 -1.908038
3129 -1.953877 -1.947763 -1.913386 -1.908835
5276 -1.954697 -1.947323 -1.912284 -1.909315
8896 -1.954930 -1.947458 -1.913889 -1.913068
15000 -1.954356 -1.948894 -1.913894 -1.913082

Table II. Variational energy of |ΨT 〉 from four independent repeated partitioned shadow tomography experiments with a
different set of random Cliffords for H4, STO-3G (minimal basis). If the experiment was perfect (i.e., no circuit noise), then
the variational energy should approach -1.969512.

NCliffords repeat 1 repeat 2 repeat 3 repeat 4
10 -1.643633 -1.798261 -1.671065 -1.462214
16 -1.720721 -1.848279 -1.747911 -1.645383
28 -1.816519 -1.911599 -1.786704 -1.737425
47 -1.867034 -1.920776 -1.777655 -1.819957
80 -1.887030 -1.901445 -1.825170 -1.844560
136 -1.924619 -1.930137 -1.845217 -1.858595
229 -1.929421 -1.933710 -1.847781 -1.871717
387 -1.940266 -1.936080 -1.851352 -1.880681
652 -1.936394 -1.937956 -1.860513 -1.878550
1100 -1.935905 -1.936406 -1.875337 -1.881012
1856 -1.938452 -1.938114 -1.877807 -1.884442
3129 -1.939407 -1.939186 -1.880363 -1.887409
5276 -1.936669 -1.939222 -1.882466 -1.890464
8896 -1.937593 -1.938921 -1.872013 -1.888485
15000 -1.938364 -1.939795 -1.871097 -1.887922

Table III. Same as Table II but for the unpartitioned shadow tomography experiments.

The corresponding variational energies are shown in Table II and Table III for a minimal basis set (STO-3G) varying
the number of Clifford circuits. Using these trial wavefunctions we computed the phaseless AFQMC energies (i.e.,
QC-AFQMC energies) as shown in Table VI and Table VII. There is significant variation in the variational energy
depending on the number of Cliffords and whether one uses partitioned shadow tomography or not. Nonetheless,
the subsequent AFQMC energy is nearly converged with respect to the number of Cliffords at 15000 and run-to-
run variation is negligible. We observe essentially the same qualitative results in the case of cc-pVQZ as shown in
Table VIII and Table IX.

2. N2, 12-qubit experiment

For N2, we performed only one set of partitioned shadow tomography experiments with a total of 15000 Cliffords
because we observed that our final AFQMC energy varies very slightly run-to-run in the case of H4. We used a
correlation-consistent triple-zeta basis, cc-pVTZ.36 The classical AFQMC calculations done with UHF trial wavefunc-
tions and the spin-projection technique did not change the results discussed here. Similarly, we used UHF reference
states for CCSD(T) calculations. Here, we provide the raw data which was used in Fig. 3 (a). Our exact results are
obtained from HCI where the second-order perturbation correction was found to be smaller than 0.002 a.u. We believe
that these “exact” results are converged with enough precision that these numbers can be used as a benchmark for
this system.
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NCliffords repeat 1 repeat 2
10 -1.996118 -1.658351
16 -1.988746 -1.557607
28 -2.009853 -1.873220
47 -2.019875 -1.976545
80 -2.026756 -1.983726
136 -2.034241 -2.005448
229 -2.030444 -2.045285
387 -2.051324 -2.052698
652 -2.053210 -2.056238
1100 -2.059021 -2.054032
1856 -2.059920 -2.053114
3129 -2.057736 -2.053142
5276 -2.060762 -2.054276
8896 -2.060786 -2.053847
15000 -2.059437 -2.054775

Table IV. Variational energy of |ΨT 〉 from four independent repeated partitioned shadow tomography experiments with a
different set of random Cliffords for H4, cc-pVQZ (a quadruple-zeta basis). If the experiment was perfect (i.e., no circuit noise),
then the variational energy should approach -2.069364.

NCliffords repeat 1 repeat 2
10 -1.794532 -1.961018
16 -1.864535 -1.963510
28 -1.971853 -2.015256
47 -2.028933 -2.025942
80 -2.022666 -2.029521
136 -2.044745 -2.032204
229 -2.050697 -2.036077
387 -2.055859 -2.038768
652 -2.054068 -2.042764
1100 -2.055576 -2.047633
1856 -2.054740 -2.049588
3129 -2.055636 -2.051308
5276 -2.056442 -2.052641
8896 -2.056741 -2.052579
15000 -2.056641 -2.051843

Table V. Same as Table IV but for the unpartitioned shadow tomography experiments.

3. Diamond, 16-qubit experiment

For diamond, we used the GTH-PADE pseudopotential86 and the DZVP-GTH basis.43 Only the Γ-point was
considered in the Brillouin zone sampling and the computational unit cell consists of only two carbon atoms. We
used spin-restricted HF (RHF) trial wavefunctions for classical AFQMC calculations and CCSD(T) also employed
RHF reference states. The “exact” results are obtained from HCI and the second-order perturbation correction was
found to be smaller than 0.0001 a.u. These results should be good as reference data. We took a total of 50000
Clifford samples to perform a set of partitioned shadow tomography experiments at all lattice constants considered.
In Table XI, we present the raw data used for Fig. 3 (b).

4. Quantum Circuit Details

In this section we describe the construction of the particular circuits we used in our experiments. In Table XII and
Table XIII, we summarize the quantum resource usage in our experiments and other prior works.

The circuits to be applied have two parts: the part that prepares the superposition of the trial wavefunction and
the zero state, and the shadow tomography part that implements the measurement operator.

Our trial wave functions are perfect pairing states, followed by some number preserving fermionic gates in the case
of the eight qubit experiment. Because the state we want to prepare is

|τ〉 = (|0〉+ |ΨT 〉) /
√

2, (E2)
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NCliffords repeat 1 repeat 2 repeat 3 repeat 4
10 -1.96943(5) -1.98295(6) -1.96873(6) -1.9724(1)
16 -1.97376(5) -1.97385(6) -1.97175(4) -1.9672(1)
28 -1.97019(3) -1.97083(4) -1.97267(4) -1.97343(8)
47 -1.97033(2) -1.96931(3) -1.97261(4) -1.97400(7)
80 -1.97016(3) -1.97398(4) -1.97061(4) -1.97038(6)
136 -1.97042(2) -1.97240(4) -1.97054(4) -1.96821(5)
229 -1.97046(2) -1.97090(2) -1.96931(4) -1.96844(5)
387 -1.97019(2) -1.97076(2) -1.97010(4) -1.96831(5)
652 -1.97030(2) -1.97013(2) -1.96929(4) -1.96861(4)
1100 -1.96928(2) -1.96958(2) -1.96931(4) -1.96882(5)
1856 -1.96942(2) -1.96964(1) -1.96974(4) -1.96909(5)
3129 -1.96914(2) -1.96948(2) -1.96933(4) -1.96922(4)
5276 -1.96879(2) -1.96947(2) -1.96914(4) -1.96944(5)
8896 -1.96877(2) -1.96959(2) -1.96918(4) -1.96952(4)
15000 -1.96877(2) -1.96964(2) -1.96922(4) -1.96941(4)

Table VI. AFQMC energy using |ΨT 〉 from four independent repeated partitioned shadow tomography experiments with a
different set of random Cliffords for H4, STO-3G (minimal basis). The exact ground state energy is -1.969512. The numbers
in parentheses indicate the statistical error of the AFQMC energy.

NCliffords repeat 1 repeat 2 repeat 3 repeat 4
10 -2.0058(1) -1.97058(9) -1.9712(1) -1.9823(2)
16 -1.9907(1) -1.96982(8) -1.97094(9) -1.9869(1)
28 -1.98318(7) -1.96711(4) -1.97036(9) -1.97288(6)
47 -1.97642(5) -1.96859(3) -1.9823(1) -1.97291(6)
80 -1.97430(4) -1.97010(5) -1.9833(1) -1.96990(5)
136 -1.97131(3) -1.96846(3) -1.97343(8) -1.97025(6)
229 -1.97114(2) -1.96934(3) -1.97253(8) -1.96970(6)
387 -1.96995(2) -1.97006(3) -1.97059(8) -1.96981(6)
652 -1.96982(3) -1.96995(3) -1.97024(7) -1.96980(7)
1100 -1.96975(3) -1.97054(3) -1.96955(7) -1.96958(7)
1856 -1.96940(3) -1.97017(3) -1.96886(7) -1.96975(7)
3129 -1.96926(3) -1.97013(3) -1.96884(7) -1.96984(7)
5276 -1.96940(3) -1.96999(3) -1.96931(7) -1.96968(7)
8896 -1.96950(3) -1.97011(3) -1.96918(8) -1.96954(7)
15000 -1.96952(3) -1.97022(3) -1.96943(7) -1.96930(7)

Table VII. Same as Table VI but for the unpartitioned shadow tomography experiments.

it is sufficient to prepare

(|0〉+ |PP(θ)〉) /
√

2, (E3)

where

|PP(θ)〉 =

N/4⊗
i=1

|PP(θi)〉 (E4)

and N is the number of spin orbitals. We do this by creating a state(
|0〉+ |1000〉⊗N/4

)
/
√

2 (E5)

using a single-qubit Hadamard and a ladder of CNOT and SWAP gates. Then for each set of 4 qubits corresponding
to a pair of spatial orbitals we prepare

|PP(θ)〉 = cos(θ) |1100〉+ sin(θ) |0011〉 ∝ CNOT1,2CNOT3,4

(
iSWAP1,3

)θ |1000〉 , (E6)

where the CNOTs and iSWAP gates leave the zero part of the state unchanged. See the portion of Figure 2 (a)
labelled ”perfect pairing” for a circuit diagram illustrating this step. Figure 2 (a) also shows a circuit diagram of the
aforementioned additional number preserving gates used in the eight qubit experiment. The perfect pairing states, as
well as the number preserving gates, are discussed from a quantum chemical perspective in Appendix C 1.
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NCliffords repeat 1 repeat 2
10 -2.10573(9) -2.1461(3)
16 -2.10766(9) -2.1214(5)
28 -2.1095(1) -2.1344(3)
47 -2.1107(2) -2.1214(1)
80 -2.11063(5) -2.1313(2)
136 -2.11039(6) -2.1220(1)
229 -2.11044(6) -2.11312(5)
387 -2.11120(7) -2.11141(4)
652 -2.11026(7) -2.11176(7)
1100 -2.11090(4) -2.11105(4)
1856 -2.11067(3) -2.11131(4)
3129 -2.11055(6) -2.11120(5)
5276 -2.11105(4) -2.11090(4)
8896 -2.11119(5) -2.11092(6)
15000 -2.11081(3) -2.11098(4)

Table VIII. AFQMC energy using |ΨT 〉 from four independent repeated partitioned shadow tomography experiments with a
different set of random Cliffords for H4, cc-pVQZ (a quadruple-zeta basis). The exact ground state energy is -2.11216599. The
numbers in parentheses indicate the statistical error of the AFQMC energy.

NCliffords repeat 1 repeat 2
10 -2.1188(2) -2.1070(1)
16 -2.1146(1) -2.1080(1)
28 -2.10942(9) -2.11169(9)
47 -2.10951(6) -2.11108(7)
80 -2.1111(1) -2.11219(7)
136 -2.11100(4) -2.11064(6)
229 -2.11105(4) -2.11218(6)
387 -2.11069(3) -2.11197(7)
652 -2.11068(4) -2.11159(8)
1100 -2.11048(4) -2.11180(5)
1856 -2.1109(1) -2.11206(6)
3129 -2.11092(6) -2.11198(5)
5276 -2.11015(3) -2.11186(5)
8896 -2.11045(3) -2.11220(5)
15000 -2.11040(4) -2.11182(5)

Table IX. Same as Table VIII but for the unpartitioned shadow tomography experiments.

Now we discuss how to implement the measurement operators. As discussed in Sec. D 4, the measurement operators
have the form

G(I,Γ,∆) =
∏
i∈I

HiP
Γi,i
i

∏
i∈I

j∈I:j 6=i

CZ
Γi,j
i,j

∏
i∈I

j /∈I:j>i

CX
∆i,j

i,j . (E7)

Let Γ̃ = Γ + ∆. We can rewrite G as

G(I,Γ,∆) = H⊗n
∏
i∈I

P
Γi,i
i

∏
i,j

CZ
Γ̃i,j
i,j

∏
i/∈I

Hi, (E8)

i.e., a CZ layer sandwiched by two layers of single-qubit gates. Maslov and Roetteler88 showed that a CZ layer followed
by complete reversal of the qubits can be implemented using a circuit of 2n+ 2 CNOT layers (plus intervening layers
of single qubit powers of P). Because the CZ layer in the circuit for G is followed only by single-qubit gates and
measurement in the computational basis, the reversal of qubits can be easily undone in post-processing. Thus the
shadow tomography circuits have a 2-qubit gate depth of at most 2n+ 2. This is a significant improvement over using
the full Clifford group for shadow tomography; the best known circuit for a general Clifford has 2-qubit depth 9n.75

Furthermore, the CZ circuits have the additional properties that they contain only four unique CNOT layers and that
they act only along a line, which are advantageous for calibration and qubit mapping, respectively.
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R(Å) Exact CCSD(T) Quantum trial AFQMC QC-AFQMC
1.000 -109.366398 -109.365383 -109.017231 -109.3672(3) -109.36697(7)
1.125 -109.399981 -109.398412 -109.043176 -109.4003(3) -109.40094(7)
1.250 -109.360887 -109.355280 -109.000672 -109.3603(4) -109.36085(8)
1.500 -109.233325 -109.215012 -108.874636 -109.2342(3) -109.23109(9)
1.750 -109.132826 -109.110942 -108.808418 -109.1408(2) -109.13325(8)
2.000 -109.080654 -109.066772 -108.790143 -109.0939(2) -109.08341(7)
2.250 -109.061147 -109.053758 -108.788486 -109.07392(8) -109.06177(7)

Table X. Raw data for N2 potential energy surface for seven bond distances (R). Note that the energy of our quantum trial
here is obtained from a single set of experiment which may vary significantly run-to-run.

R(Å) Exact CCSD(T) Quantum trial AFQMC QC-AFQMC
2.880 -9.545911 -9.546464 -9.121081 -9.5415(1) -9.54582(5)
3.240 -10.229155 -10.230100 -8.625292 -10.2241(3) -10.23051(7)
3.600 -10.560477 -10.562229 -10.277938 -10.5525(2) -10.55861(8)
3.960 -10.700421 -10.703884 -10.368882 -10.6869(2) -10.6949(1)
4.320 -10.744089 -10.751103 -10.222206 -10.7177(3) -10.73701(9)

Table XI. Raw data for the diamond cold curve for five lattice constants (R). Note that the energy of our quantum trial
here is obtained from a single set of experiment which may vary significantly run-to-run. Note that these energies include the
Madelung constant.

Appendix F: Outlook on Potential Quantum Advantage

In the typical electronic structure context, quantum advantage is focused on the approximation of the ground
state energy. In this outlook, we consider the potential for quantum advantage in this general sense, as well as for
the specific quantum subroutine used in our QC-AFQMC algorithm, namely the overlap evaluation. We explain
our understanding here of the current computational scaling and limits of our proposed approach for the overlap
evaluation and the path towards the first “practical” quantum advantage.

System size scaling. In general, we expect the overlap between 〈ΨT |φ〉 to approach zero exponentially quickly
as the system size increases. For example, the typical overlap value of the walker wavefunction with a simple trial
wavefunction can be as small as 10−5 for 16 atoms, 10−16 for 54 atoms, and 10−38 for 128 atoms under periodic
boundary conditions.89 These examples suggest that the system size scaling consideration is not just an asymptotic
consideration but is practically relevant for system sizes that one may wish to study in the near future. Performing
AFQMC requires evaluating these overlaps to a fixed relative precision. Therefore, as the system size increases towards
the thermodynamic limit, we would expect that QC-AFQMC formally requires exponentially more measurements to
maintain the relative precision.

In order to address the challenges due to this scaling, QC-AFQMC might need to be developed beyond the formu-
lation used in our experiment. For example, using more sophisticated wavefunction forms for |φ〉 than a single Slater
determinant could allows one to maintain good overlap between |ΨT 〉 and |φ〉. Again, as long as |φ〉 can be prepared
efficiently on a quantum computer, one can efficiently estimate the overlap 〈ΨT |φ〉 to fixed additive error using the
Hadamard test. In some cases, these overlaps might still be too small as a consequence of the QMA-Hardness of the
electronic structure problem.90 However, the onset of this sort of exponential scaling would also render intractable
other quantum computing algorithms such as energy estimation via quantum phase estimation.91 The reason for this
is because such approaches have a cost that is inversely proportional to the overlap between the target eigenstate of
interest and the initial state. Thus, if one can make quantum phase estimation efficient by preparing a suitable initial
state, we are optimistic that one can use parameterized versions of those states as the initial |φ〉 in QC-QMC in order
to avoid the problem of vanishing overlaps. We note that VQE is also expected to face similar difficulties in the worst
case since no polynomial scaling circuit ansatz is able to prepare ground states of the most challenging instances of

Experiment # Qubits # CZ Gates (State Prep) # CZ Gates (Total) Circuit Depth
Hydrogen (Partitioned) 8 36 66 52
Hydrogen (Unpartitioned) 8 36 99 67
Nitrogen 12 22 92 53
Diamond 16 34 160 65

Table XII. Resource counts for the QC-AFQMC experiments realized in this work.
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Experiment Reference # Qubits # 2q Gates

BeH2
13

6 5 (UENT)

H2O
14

5 6 (XX(θ))

Hydrogen
15

12 72 (
√
iswap)

Diazene
15

10 50 (
√
iswap)

Hubbard, interacting (8-site)
87

16 608 (
√
iswap)

Hubbard, non-interacting (8-site)
87

16 1568 (
√
iswap)

Table XIII. Resource estimates from prior fermionic simulations using gate model quantum computers on more than four qubits.
For the two Hubbard model experiments we distinguish between dynamics simulated for an interacting versus a non-interacting
model. N = 8 indicates an eight site linear lattice with open boundary conditions. UENT is a nearest-neighbor cross-resonance
style gate and XX(θ) is a exp(−iθσixσ

j
x/2). As far as we are aware, these are the largest simulations using a gate-model

quantum computer targeting fermionic ground states or dynamics.

the electronic structure problem to target precision.
Alternatively, one could pursue strategies for controlling the sign problem which do not require computing the

global wavefunction overlaps to a high precision directly. Classically, the exponential decay of these overlap values
with respect to system size for single Slater determinant walkers is numerically well handled by computing the log
of the overlap value directly and working only with the overlap ratio when performing the AFQMC calculations.
While that particular strategy seems difficult to implement on a quantum computer, it seems reasonable that one
could leverage the finite correlation length of physical systems to avoid the need for an exponentially growing number
of measurements. More specifically, our virtual correlation technique allows for choosing a relatively small physical
space to treat with the quantum processor while computing the correlation energy in a much larger space. The use of
such a small physical space (known as an active space in quantum chemistry) can be rigorously justified for systems
with a finite correlation length. The typical wavefunction overlaps under this approach would therefore be (at worst)
exponentially small in a quantity related to the correlation length rather than the size of the system. Furthermore, it
is often possible to keep the physical space small by identifying a reduced set of physically relevant degrees of freedom.
In practice, the combination of these facts will help us maintain overlaps much larger than we would expect in the
most general cases.

Quantum advantage in the overlap estimation. A related but independently interesting question is whether there
is a potential for quantum advantage with regards to the specific task of estimating the overlap up to an additive
error between some quantum state and an arbitrary walker wavefunction (a single Slater determinant in our particular
experiments). Although the use of shadow tomography is guaranteed to be efficient for this task in terms of the number
of measurements, the classical post-processing used in our shadow tomography experiments was performed with an
exponential overhead incurred by enumerating all possible determinants in the Hilbert space (see Appendix D 2 and
Appendix D 3). One open question raised by our work is whether there is a way to remove this exponential overhead in
the classical post-processing of shadow tomography for QC-AFQMC, possibly by using a different ensemble of random
unitaries. Building on Ref. 66’s fermionic shadow tomography seems promising in this regard. Even if the answer is
no, one does not need to use shadow tomography; using the Hadamard test, one can obtain the overlaps up to additive
error efficiently without any problematic classical post-processing. Thus, in general, one can estimate these overlaps
up to an additive error in a fashion that is entirely efficient. One could also pursue a version of QC-QMC that avoids
this obstacle by using walkers that are particularly well suited for use with shadow tomography, e.g., composed of
a linear combination of stabilizer states (states generated by Clifford circuits). The Green’s function Monte Carlo
method is one example of this (as the walker wavefunctions are computational basis states).

We employed the perfect pairing (PP) wavefunction as a workhorse in all our experiments. While to the best of our
knowledge there is no efficient classical algorithm that can compute the overlap between a PP state and an arbitrary
single Slater determinant exactly, there is an efficient classical algorithm (see Appendix D 3) that can approximate
this quantity up to some additive error. Therefore, we can assert that there is no quantum advantage in using
PP trial wavefunctions in QC-AFQMC. On the other hand, more complex states such as the one used in our H4

experiment (i.e., PP state with hardware efficient layers), other hardware-efficient wavefunctions, some variants of the
unitary coupled-cluster (UCC) wavefunction (see Appendix C 1), and the two-dimensional multiscale entanglement
renormalization (2D-MERA) wavefunction may be good candidates for seeking a quantum advantage in the estimation
of overlaps. This is due to the fact that no known classical algorithms (including the one described in Appendix D 3)
efficiently yield the overlap of these wavefunctions (up to an additive error) with an arbitrary Slater determinant,
or indeed, a computational basis state. Overlaps between all these states and a single Slater determinant can be
approximated efficiently up to additive error on the quantum computer using the Hadamard test. Overlaps of these
states with stabilizer states (including computational basis states) can be approximated efficiently using existing
shadow tomography techniques.
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Quantum advantage in the ground state energy computation. When the number of electrons that we consider is not
too large, it is possible to assume that the measurement overhead due to the vanishing overlap may not be a practical
concern. With our virtual correlation technique, we can maintain a good overlap value within the active space while
producing accurate energies overall. Given this, we are optimistic about routes to achieve quantum advantage in
fermionic ground state simulation through the QC-AFQMC algorithm. The aforementioned complex quantum states
such as hardware efficient ansatze, UCC and 2D-MERA can be good candidates for trial wavefunctions although
the relevance of 2D-MERA for chemistry simulations is yet to be seen. An important consideration here is how
one actually obtains wavefunction parameters of those complex quantum states. One may optimize them using the
variational quantum algorithm or one may take states that can be efficiently optimized classically. For the latter
case, it seems likely that approximating the overlap between these states and an arbitrary Slater determinant up to
additive error is difficult despite the fact that some of them can be optimized efficiently using classical algorithms.

We hope to observe quantum advantage either in the overlap estimation or in the ground state energy computation
using QC-AFQMC and believe that continued advancement along this direction will lead us to one of the first
realizations of practical quantum advantage in NISQ fermionic simulations.
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