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ABSTRACT 
Despite the great potential, Massive Open Online Courses 
(MOOCs) face major challenges such as low retention rate, 
limited feedback, and lack of personalization. In this paper, we 
report the results of a longitudinal study on AttentiveReview2, a 
multimodal intelligent tutoring system optimized for MOOC 
learning on unmodified mobile devices. AttentiveReview2 
continuously monitors learners’ physiological signals, facial 
expressions, and touch interactions during learning and 
recommends personalized review materials by predicting each 
learner’s perceived difficulty on each learning topic. In a 3-week 
study involving 28 learners, we found that AttentiveReview2 on 
average improved learning gains by 21.8% in weekly tests. 
Follow-up analysis shows that multimodal signals collected from 
the learning process can also benefit instructors by providing 
rich and fine-grained insights on the learning progress.1Taking 
advantage of such signals also improves prediction accuracies in 
emotion and test scores when compared with clickstream 
analysis. 
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1 INTRODUCTION 
The rise of Massive Open Online Courses (MOOCs) presents 
both opportunities and challenges to knowledge dissemination at 
scale.  By December 2017, MOOCs have attracted more than 81 
million registered learners [12]. When taking MOOCs, learners 
can control their learning process and have access to high 
quality learning material at low cost [20]. In a recent survey 
involving 52 thousand MOOC learners, researchers also found 
that MOOCs were particularly beneficial to economically and 
academically disadvantaged populations [6]. However, despite 
the promising growth, today’s MOOCs also suffer from 
challenges such as low retention rate (e.g. around 4.0% in 
Coursera [6], and 7.7% in edX [7]), low engagement with the 
learning materials (52.0% in-video dropout rate [21]), and more 
importantly, lack of personalization [27]. As a result, today’s 
MOOCs are still an inferior choice when compared with one-on-
one tutoring or even traditional classroom teaching.  

 

Figure 1: The primary interface of AttentiveReview2.* 

Paradoxically, advantages in today’s MOOCs are often the 
fundamental causes of the challenges in MOOCs. First, pre-
recorded lecture videos are easy to distribute to tens of 
thousands of learners. Meanwhile, the passive, one-size-fits-all 
videos also reduce learners’ engagements and isolate instructors 
from important cues in traditional classrooms, such as facial 
expressions or raised hands to assess teaching effectiveness. 
Although clickstream analysis [21], quizzes, and post-
lecture/course surveys [6][20] can be used to analyze the 
learning process, such post-hoc techniques are usually coarse-
grained and highly delayed [42]; Second, the scalability and 
ubiquity of MOOCs (e.g. 7,902 participants per course in [7]) also 
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restricted the choice of technologies that can be adopted. For 
example, it will be hard for most of the affect-based Intelligent 
Tutoring Systems (ITS) that require additional hardware 
[1][11][36] to be deployed in MOOC environments due to 
challenges in equipment costs and portability. 
In response to these challenges, we propose AttentiveReview2 
(Figure 1), a multimodal intelligent mobile learning system 
optimized for MOOC learning on unmodified smartphones. 
AttentiveReview2 is a multimodal adaptive learning technology 
built on top of the sensing infrastructure enabled by 
AttentiveLearner2 [33]. AttentiveReview2 uses on-lens finger 
gestures for both tangible video control and implicit 
Photoplethysmography (PPG) sensing. A learner covers and 
holds the back camera lens to play a lecture video, uncovering 
the lens will pause the video. Furthermore, AttentiveReview2 
leverages the front camera for real-time Facial Expression 
Analysis (FEA). AttentiveReview2 then infers the learner’s 
perceived difficulty towards each topic in a lesson from both 
collected PPG signals and facial expressions, and recommends an 
appropriate reviewing topic that would benefit her learning 
outcome. The idea of supporting personalized review to improve 
mobile MOOC learning without additional hardware 
requirements has been explored by AttentiveReview [31] in the 
past. However, there are two major improvements when 
compared with AttentiveReview. First, AttentiveReview only 
relies on PPG signals to predict learners’ cognitive states while 
our system demonstrates the feasibility and efficacy of a 
multimodal intelligent tutoring system for adaptive review on 
unmodified smartphones; Second, there was only one 24-minute 
learning session on an introductory topic in the study of 
AttentiveReview. In comparison, we explore the effectiveness of 
our intervention in a more realistic setting by conducting a 3-
week longitudinal study on a more challenging (math heavy) 
learning topic. As detailed in the follow-up sections, we found 
that instead of recommending the most difficult/confusing topic 
for review as in AttentiveReview, adaptive reviewing of more 
complex learning topics should take into account both the 
absolute difficulty of learning topics and the learner’s zone of 
proximal development (ZPD). 

This paper offers three significant contributions: 

 The design, prototyping, and evaluation of a multimodal 
adaptive intervention technology optimized for enabling 
personalized MOOC learning on unmodified smartphones. 

 A 28-participant longitudinal study to investigate the 
feasibility, efficacy, and challenges of affect-aware 
interventions in informal learning environments.  

 A direct, quantitative comparison of three modalities, i.e. 
PPG signals, facial expressions, and touch landing points as 
feedback channels to measure learning outcome in the 
context of mobile MOOC learning. 

 

 

2 RELATED WORK 

2.1 Learning Activities in MOOCs 
Clickstream analysis [15][21][38] and user-generated content 
(UGC) analysis [45] are the two most popular techniques for 
researchers to understand learning activities in MOOCs. For 
example, by analyzing mouse click logs in 6.9 million video 
watching sessions on edX, Kim et al. [21] discovered that the 
logarithmic value of video length can predict the in-video 
dropout rate. Informed by quantitative log analysis of learning 
activities in MOOCs, Guo et al. [15] proposed a set of video 
production recommendations to create more engaging contents 
for MOOCs. Van der Sluis et al. [38] revealed the negative 
impact of contents’ difficulty level on video watching time, 
arguing that tutorial videos should be personalized for each 
learner to reduce in-video drop-outs. By combining learners’ in-
video activities with their posts in course-specific discussion 
forums, Yang and colleagues [45] found that students who 
discuss more frequently are less likely to drop a course. 
Although clickstream analysis and UGC analysis can reveal key 
insights from existing activity logs, they work better for 
capturing the aggregated trends from thousands of learners, 
rather than enabling personalized interventions for individual 
learners. 
Researchers have explored various interaction techniques 
[8][22][23] to facilitate MOOC learning. For example, Kovacs 
[22] designed a quiz-driven video navigation interface for 
MOOCs and found such interface can help learners to seek for 
answers in MOOC videos. Coetzee et al. [8] proposed the use of 
a real-time chatroom to facilitate discussions during MOOC 
learning. Krause and colleagues [23] integrated social 
gamification mechanisms with MOOCs and found a 25% increase 
in video watching time and a 23% increase in test scores.  
Researchers have also explored the idea of personalized learning 
in MOOCs [3][28][35]. Brinton et al. [3] proposed a personalized 
schedule via learners’ browsing history and found this technique 
led to a 70% increase in the number of lessons viewed. Miranda 
and colleagues [28] explored adaptive assessment questions 
based on learners’ performance on previous questions in 
MOOCs. Raghuveer et al. [35] proposed a technique to customize 
learners’ paths of learning based on corresponding learning 
objectives. In summary, most personalization techniques for 
today’s MOOCs either rely on clickstream analysis, which can be 
sparse within a single lecture video or require learners’ active 
participation (e.g. taking quizzes, reporting learning objectives). 
In comparison, we explore the implicit collection of learners’ 
physiological signals as well as facial expressions in MOOC 
learning and provide adaptive learning experiences by inferring 
learners’ cognitive and affective states in learning from signals 
beyond clickstream analysis. 

2.2 Affective Computing in Education 
Affective computing [34] aims to design, implement, and 
evaluate computing techniques for recognizing, interpreting, and 
responding to human affects. Since learners’ cognitive and 
affective states have a direct impact on learning [40], affective 



  
 

 

computing is important in both understanding the learning 
process and designing intelligent tutoring systems in education. 
During the past decade, researchers have investigated various 
modalities and physiological signals [1][31][41] to identify 
learners’ affective states in teaching and learning.  
Szafir and Mutlu [36] used learners’ electroencephalogram (EEG) 
signals to predict attention in MOOCs. Afergan et al. [1] 
explored the dynamic adjustment of task difficulty in a path 
planning task by analyzing participants’ brain activities from 
functional Near Infrared Spectroscopy (fNIRS). D’Mello and 
colleagues [11] showed the feasibility of inferring students’ mind 
wander moments from eye gaze moment patterns. Grafsgaard et 
al. [14] classified learners’ engagement and frustration events via 
facial expressions. Pham and Wang [32] explored the detection 
of learners' Mind Wandering (MW) events from 
photoplethysmography (PPG) signals implicitly captured from 
unmodified smartphones.  Xiao and Wang [41] further improved 
the reliability of AttentiveLearner by predicting extreme 
personal events and aggregated learning events.  
Various intervention technologies have been proposed based on 
the inferred cognitive/affective states. The learning content 
could be adjusted adaptively based on learners’ perceived 
difficulty [1]. Reorienting pop-up messages were a widely used 
intervention technology and can be triggered when the system 
found learners mind wandered [11] or disengaged [41]. Adaptive 
review is another effective intervention technology [13]. An 
adaptive review algorithm is usually composed of two parts: 1) 
Choosing the reviewing content based on learners’ attention 
[36], perceived difficulty [31], or the number of mind wandering 
events [11]; 2) Determining the reviewing schedule.  According 
to Dunlosky [13], the spaced rereading approach was more 
effective than massed rereading (review immediately) in the 
reading comprehension context. 
Previous work [9][29] showed the benefits in prediction 
accuracies by combining multiple channels of signals into a 
multimodal system. D’Mello and Graesser [9] achieved a 0.2 
increase in Kappa for predicting learners' emotions by 
combining facial expressions, posture data, and dialog cues. 
Monkaresi et al. [29] achieved higher accuracy in detecting 
engagement by ensembling models of heart rate and models of 
facial expressions. Unfortunately, most of the existing 
multimodal research require additional sensors for collecting 
signals from learners. The cost, availability, and portability of 
such equipment have prevented the wide adoption of such 
systems in MOOCs. 

2.3 Facilitating Mobile MOOC Learning 
Researchers have explored the idea of designing affect-aware 
interfaces to support MOOC learning on mobile devices in the 
past [31][32][33][41][42]. In the AttentiveLearner project, 
researchers were able to infer learners’ mind wandering events 
[32], boredom, and confusion [42] via implicit PPG sensing on 
unmodified smartphones. Built upon AttentiveLearner, 
AttentiveReview [31] demonstrated the effectiveness of adaptive 
review by predicting learner's perceived difficulty levels of 
corresponding learning materials. C2F2 [41] explored pop-up 

reminders during learning sessions to re-engage learners when a 
disengagement is detected before an important learning topic. 
AttentiveLearner2 [33] supplemented AttentiveLearner with 
real-time facial expression analysis (FEA) via the front camera 
on an unmodified smartphone and achieved a 6.4% improvement 
in Accuracy averaging across 6 emotions. Nevertheless, 
AttentiveLearner2 was only evaluated via offline benchmarking 
and it was unclear whether such a multimodal system can lead 
to direct learning gain in a real learning environment. 
By comparison, our new system supplements AttentiveReview 
[31] with real-time facial expression analysis from the front 
camera to improve the robustness and accuracy of affect 
prediction in learning. Further, we deploy AttentiveReview2 in a 
three-week longitudinal study to verify its usability and efficacy 
in a more realistic MOOC learning task and conduct a direct, 
quantitative comparison of the multiple streams of signals 
collected. To the best of our knowledge, AttentiveReview2 is the 
first multimodal learning system that enables personalized 
MOOC learning experiences via a combination of implicit PPG 
sensing and real-time facial expression analysis on today's 
unmodified mobile devices. 

3  DESIGN OF ATTENTIVEREVIEW2 
AttentiveReview2 has three main components: 1) the tangible 
video control channel, 2) a triple stream signal sensing module, 
and 3) algorithms for supporting adaptive review. 

3.1 Tangible Video Playback Control 
AttentiveReview2 uses on-lens finger gestures for video control, 
i.e. the video is played when a learner covers and holds the back 
camera lens with her fingertip while uncovering the lens will 
pause the video (Figure 1). We used the Static LensGesture 
algorithm [44] for lens covering detection. Existing research [42] 
found this control mechanism easy to learn and responsive to 
use. 

3.2 Triple Stream Signal Sensing 
AttentiveReview2 collects three complementary streams of 
signals, i.e. PPG signals, facial expressions, and on-screen touch 
interactions, implicitly from learners during MOOC learning. As 
a by-product of the tangible video control, AttentiveReview2 can 
extract a learner's waveforms of heart beats (i.e. PPG signals) 
from the back camera. The underlying mechanism is: in each 
cardiac cycle, the arrival and withdrawal of fresh blood change a 
learner’s skin transparency, including her fingertip covering the 
back camera lens. AttentiveReview2 uses the LivePulse algorithm 
[17] to compute NN intervals from raw PPG waveforms 
collected. By detecting the peaks and valleys of these skin 
transparency changes, LivePulse can extract the normal to 
normal (NN) intervals in each heartbeat.  
At the same time, AttentiveReview2 utilizes the front camera to 
capture a learner’s facial expressions while watching lecture 
videos. As a result, AttentiveReview2 enables the automatic 
collection of both PPG signals and facial expressions implicitly 



  
 

 

 

during mobile MOOC learning. We used Affdex SDK [26] for 
real-time facial expression analysis through the front camera. 
Last but not least, AttentiveReview2 collects on-screen touch 
interaction events as its third channel of feedback signals. 

3.3 Adaptive Review Algorithm 
Our adaptive algorithm is based on two educational principles: 1) 
reviewing relevant and appropriate tutorial materials will improve 
learning [13] and 2) learners’ performance depends on the 
appropriate difficulty level of learning materials [1][31]. 
AttentiveReview2 recommends a learner to review a learning topic 
based on her perceived difficult levels. We will discuss how to 
extract features from both PPG signals and facial expressions, and 
train the adaptive review algorithm in detail. Our algorithm 
suggests the learner review either the most difficult topic or the 
easiest topic depending on the reviewing strategies in use. 

3.3.1 Feature Extraction. 
After discarding the first and the last 10s of each learning topic, 
AttentiveReview2 extracts Heart Rate Variability (HRV) features 
using a global window and non-overlapping sliding windows 
(Figure 2). For each window type (global or sliding), 8 dimensions 
of HRV features are extracted from the normal to normal (NN) 
intervals: 1) AVNN (average NN); 2) SDNN (standard deviations of 
NN); 3) pNN60 (percentage of adjacent NN with a difference > 60 
ms); 4) rMSSD (root mean square of successive differences); 5) 
SDANN (standard deviation of averages of NN within an m-
second segment); 6) SDNNIDX (mean of the standard deviations of 
NN within an m-second segment); 7) SDNNIDX / rMSSD; 8) MAD 
(median absolute deviation). Only top 8 HRV features are chosen 
using univariate ANOVA. 
Different from existing research [9][14] that use the existence and 
frequency of static facial expressions as features. We propose a 
new set of Action Unit Variability (AUV) features to capture the 
temporal dynamics of facial expression within a given amount of 
time. The notations of AUVs are in part inspired by HRV features 
reported above. 

 

Figure 2. Feature extraction from the PPG signal of a topic 
(facial features were extracted using the same method). 

AttentiveReview2 extracts top 8 dimensions of AUV features from 
facial expressions within a global window and non-overlapping 
sliding windows. For each window type, 8 dimensions of AUV are 
extracted: 1) AVAU (average action unit value); 2) SDAU (temporal 
standard deviations of action unit value); 3) MAXAU (the 
maximum value of action unit value); 4) rMSSD; 5) SDAAU 

(standard deviation of the averages of action unit value within an 
m-second segment); 6) SDAUIDX (mean of the standard deviations 
of action unit within an m-second segment); 7) SDAUIDX / 
rMSSD; 8) MAD. 

3.3.2 Perceived Difficulty Ranking. 
AttentiveReview2 uses a ranking SVM model with a linear kernel 
[31] to determine a learners’ perceived difficulty of each topic in a 
lesson. The ranking SVM model uses the top 8 HRV features and 
top 8 AUV features selected by the highest F-ratios from a 
univariate ANOVA test. We train the ranking SVM using data 
from Pham and Wang [33]. The training dataset contains PPG 
signals and facial expressions of 26 users collected while they were 
watching 6-minute tutorial videos on a Nexus 6 smartphone. The 
users reported their perceived difficulty of each video after 
watching the video. We optimized the tradeoff margins for hyper-
parameter tuning. 

4 USER STUDY 

4.1 Experimental Design 
Our longitudinal study lasted 3 weeks and there were two lessons 
per week. We chose three weeks to evaluate AttentiveReview2 for 
two reasons: First, we wanted to investigate the course level 
performance of adaptive review in MOOC learning and it is 
possible to finish a small MOOC course within three weeks. 
Second, as reported by Gütl et al. [16], most of the dropouts in 
MOOCs occur within the first 3 weeks. We wanted to take a closer 
look at how students learn in a technology instrumented MOOC 
environment. 

4.1.1 Learning Material. 
We chose a well-received but math-intensive course – “Model 
Thinking” by Professor Scott E. Page from the University of 
Michigan in this study. The original course has been offered in 
Coursera since 2012. We split the course into six lessons, with 
three topics in each lesson (3 × 6 = 18 topics in total).  We offered 
two lessons per week. Each topic was modified to fit within 6 
minutes (i.e. 18 minutes per lesson). In addition to the lecture 
videos, there were 6 multiple choice questions for each topic (3 for 
pretest and 3 for weekly test). 

4.1.2 Reviewing Methods. 
Pham and Wang [31] showed the effectiveness of reviewing the 
most difficult topic over reviewing the easiest topic in a single-
lesson user study. However, in a multi-session learning setting, we 
hypothesize that reviewing the easiest topic would also be 
beneficial in certain situations. For example, if a learner could not 
understand any topics in a lesson, starting to review the easiest 
topic would be more effective than starting to review the most 
difficult topic. Therefore, we evaluated two reviewing conditions: 
reviewing the most difficult topic (Hard-Review) and reviewing 
the least difficult topic (Easy-Review). Since both Hard-Review 
and Easy-Review were significantly better or equivalent to a No-
Review baseline [31], we removed the No-Review condition in this 
study to make the scale of the longitudinal study manageable. 
  



 

Figure 3. Procedure of the user study. 

Pham and Wang [31] found the Easy-Review condition was 
significantly worse than a full review condition. Therefore, the 
performance and motivation of a participant would be negatively 
affected if she was exposed to Easy-Review condition 
multipletimes in this longitudinal study. To reduce the effects of 
this confounding factor, we used a within-subject design to 
alternate the reviewing condition for each participant instead of 
assigning a single reviewing condition to a particular group as in a 
between-subjects design. We made two additional modifications of 
the within-subject design to further relax the negative effects (if 
any) from the Easy-Review condition. First, we reduced the 
number of Easy-Review compared to Hard-Review by using a 
single-subject design which assigns 2 Easy-Reviews and 4 Hard-
Reviews to each participant. Second, we interleaved a Hard-
Review between 2 Easy-Reviews. The locations of Easy-Review 
were distributed across 6 lessons. As a result, we had 4 groups of 
participants: HHHEHE, HHEHEH, HEHEHH, and EHEHHH; 
given H stands for Hard-Review and E means Easy-Review (Figure 
3). 

4.2 Procedure 
Figure 3 showed the procedure of this study. Each participant 
visited our lab 6 times to take MOOC courses. The participant also 
visited our lab one more time for the final exam. To simulate self-
paced learning in MOOCs, we let participants select the schedule 
by themselves. 
Before starting a new lesson, participants review a topic 
(suggested by AttentiveReview2) of the previous lesson. This 
spaced reviewing approach has shown to be more effective than 
instant reviewing in reading comprehension [39]. Participants 
took a weekly test after taking 2 lessons in a week. The weekly 
test was conducted before the start of the next lesson, except for 
the last weekly test. We also collected weekly usability from 
participants. The usability survey includes 10 questions of the 
System Usability Scale (SUS) [4]. The usability survey was 
collected at the end of each week allowing participants to have 
more time to experience the system, especially in the first week. A 
pretest was conducted before lesson 1 of the study. 

After each lesson, we collected participants’ self-reports about 
their emotions, e.g. curiosity, boredom, and confusion, towards 
each topic in the lesson using 7-point Likert scale questions. 

4.3 Participant and Apparatus 
28 subjects from a local university (12 females), of whom average 
age was 26.3 (σ = 3.9), participated in the user study. 20 
participants have taken at least one MOOC in the past. 18 
participants have had the experience of watching tutorial videos 
on their smartphones. 
The user study was conducted on a Nexus 6 smartphone (Android 
7.0) with a 5.96 inch, 2560 x 1440 pixel display and a 2.7 GHz quad-
core processor. The phone was equipped with a 13-megapixel back 
camera and a 2-megapixel front camera. 

5 RESULTS 

5.1 Subjective Feedback 

 

Figure 4. Learning gains of 3 weeks. * indicates a significant 
better performance than the pretest. 

The average SUS over 3 weeks of this study was 80.5 (σ = 11.8), in 
which week 1 was 79.2 (σ = 10.6), week 2 was 80.5 (σ = 12.4), and 
week 3 was 81.6 (σ = 12.4). Note that previous research found the 
average SUS from 500 products was 68.0 [36] and an 80-ish SUS 
indicates a good product [2]. Even though there was a small 
increase of SUS after every week, the difference was not 

Week 1 Week 2 Week 3 Week 4

Pre-test
Lesson1

Lesson2
Usability1

Weekly test 1
Lesson3

Lesson4
Usability2

Weekly test 2
Lesson5

Lesson6
Usability3 Weekly test 3

Survey Survey SurveySurvey Survey Survey

Hard-Review Hard-Review Hard-Review Easy-Review Hard-Review Easy-Review

Hard-Review Hard-Review Easy-Review Hard-Review Easy-Review Hard-Review

Review group

Hard-Review Easy-Review Hard-Review Easy-Review Hard-Review Hard-Review

Easy-Review Hard-Review Easy-Review Hard-Review Hard-Review Hard-Review



  
 

 

 

statistically significant. The result suggests that AttentiveReview2 
was easy to learn and enjoyable to use. 
Besides the SUS, we also collected subjective feedback from 
participants. In general, participants like AttentiveReview2 because 
of its responsiveness and personalized recommendations. Some 
reoccurring positive feedback include: “I like the auto pause feature 
[on-lens finger gesture]”, “A lot of functions [a]b[o]ut video play very 
smoothly”, “very easy to use and learn, very responsive”, and 
“personalized review recommendations”. 
On the other hand, there was also negative feedback to both 
AttentiveReview2 and the learning material, such as (“A video is 
long” or “can only review 1 sub session among 3. There is a 
possibility that I didn't learn well for 2 or 3 of them”) and the front 
camera widget (“Face detection was not stable which consistently 
made me distracted”). 

5.2 Learning Outcome 

5.2.1 Learning Gain 
We use the normalized learning gain, i.e. (weekly test - pretest) / (1 
- pretest), as the performance metric. On average, participants in 
this study gained positive learning outcomes, i.e. mean learning 
gain of weekly test = 21.8% (σ = 0.4) when using AttentiveReview2. 
As shown in Figure 4, the average learning gains of week 1 was 
26.1% (σ = 0.5), week 2 was 36.3% (σ = 0.3), and week 3 was 2.9% (σ 
= 0.4). Using one-sampled t-tests, we found the test scores of week 
1 and week 2 were significantly better than pretest (p < 0.01). 
While the test score of week 3 was comparable to pretest 
(t(27)=0.54, p = 0.29). 

 

Figure 5. Average test scores of Hard-Review and Easy-
Review in 2 groups: easy lessons and hard lessons. 

5.2.2 Review Effectiveness. 
In general, using AttentiveReview2 led to a positive learning gain 
for our participants. However, we hypothesize that different 
recommending strategies (Hard-Review vs. Easy-Review) have 
different effectiveness when applied to learning materials with 
different difficulty levels (difficult topics vs. easy topics). To 
evaluate the reviewing effectiveness in different difficulty levels, 
we group the lessons based on the average pretest scores, into two 
groups: easy lessons (4, 2, 1) and difficult lessons (6, 3, 5). 
Figure 5 showed the average weekly test scores of Hard-Review 
and Easy-Review in easy lessons and difficult lessons. The average 
score of Hard-Review on easy lessons was 53.8% (σ = 0.2) and on 
difficult lessons was 36.7% (σ = 0.2). While the mean score of Easy-

Review on easy lessons was 65.5% (σ = 0.2) and on difficult lessons 
was 45.2% (σ = 0.2). Applying Hard-Review on easy lessons was 
significantly worse than applying Easy-Review (t(64)=-2.38, p < 
0.05). However, the performance of the Hard-Review was 
comparable with the Easy-Review in difficult lessons as there were 
no significant differences between them (t(64)=-1.88, p = 0.06). 
This result suggested that, Hard-Review was not as effective as 
Easy-Review when reviewing easy lessons. 
An explanation for this observation comes from Vygotsky’s ZPD 
(zone of proximal development) theory [5]. The ZPD theory 
argues that a learner can only benefit from scaffolding if the lesson 
is still within her ZPD (not completely mastered, or too difficult). 
We hypothesize that all topics in the difficult lessons in this study 
were out of the participants’ ZPD hence participants cannot 
benefit from any adaptive reviewing methods. On the other hand, 
the easy lessons may contain topics that were either within the 
ZPD or beyond (too difficult). Consequently, Easy-Review was 
more effective than Hard-Review in the easy lessons setting of our 
study as participants could review topics within the ZPD. This 
hypothesis also explains the difference in findings between this 
study and Pham and Wang [31] where Hard-Review was found 
more effective than Easy-Review. We hypothesize that the simple 
introduction of law topics in [31] would lie within participants’ 
ZPD. Therefore, the authors found reviewing the most difficult 
topic (Hard-Review) was more effective than reviewing the easiest 
topic (Easy-Review). However, this hypothesis needs to be 
validated in follow-up studies. 

5.3 Signal Analysis 
In-depth signal analysis shows that the multimodal signals from 
AttentiveReview2 can provide fine-grained feedback and benefit 
MOOC instructors. Moreover, these signals outperform the 
traditional clickstream analysis in predicting learners’ emotion 
ratings and learning outcomes. 

5.3.1 Facial Expression. 
Figure 6 showed types of emotions expressed by each participant 
across six lessons. Each row is a lesson and each column is a 
participant. A 3x3 square indicated which emotion type a 
participant expressed in a lesson. An empty cell in the square 
means the participant did not express that emotion anytime 
during the lesson. Emotion types are (from left to right, top to 
bottom): anger, fear, sadness, surprise, joy, disgust, contempt, 
engagement, and attention. The output range of these 9 emotions 
in Affdex is [0, 100] which implies the detection confidence. We 
discarded all outputs less than 50 to avoid noisy predictions. Three 
emotions (contempt, engagement, and attention) were expressed 
by all participants in all lessons. Besides contempt, another 
negative emotion (disgust) was also expressed by many 
participants. In fact, AttentiveLearner2 [33]  found that both 
contempt and disgust expressions are helpful to detect learners’ 
confusion, which frequently appears [9] and has a positive impact 
in learning [24]. From Figure 6, an instructor can quickly identify 
which lesson received the most negative emotions or whether a 
participant is getting bored when taking more lessons from the 
course. 



 

Figure 6. Facial emotions expressed by participants. A 3x3 square indicates which emotion types expressed by a participant: 
anger, fear, sadness, surprise, joy, disgust, contempt, engagement, and attention (left to right, top to bottom). 

In addition to feedback from individual participants, the 
aggregated values of each emotion type can be valuable to 
instructors. Figure 7 shows the percentage of participants 
expressing engagement in every 30s of each lesson. We observed 
there was a sudden drop in participants expressing engagement 
(only within the first 30s) at the beginning of all lessons. The 
high engagement expression drop at the beginning of each 
lesson can be explained as - all participants adjusted their 
postures to make sure the facial recognition works before 
learning. On the other hand, each lesson has different temporal 
locations where most participants stay engaged, e.g. lesson 1: the 
9.5th minute with 18 participants or lesson 3: the 11th minute 
with 20 participants. These high peaks in Figure 7 could serve as 
examples of good instruction for later deployments. By contrast, 
not many participants were engaged throughout lesson 4, which 
could raise an immediate alert to the course instructors 
implicitly. 

 

Figure 7. Number of participants showed Engagement 
expressions in every 10s across six lessons. 

One major limitation of facial expression analysis in our study 
was the missing data. Compared to PPG signal, FEA experienced 
significantly more missing data. We defined a time t as a missing 
moment of a modality (facial data or PPG) when t lasts longer 
than 2s and AttentiveReview2 did not receive any data from the 

modality during t. This 2-second threshold is quite conservative 
considering that the framerate of the back and the front cameras 
is around 30 frames per second. Using pairwise t-tests, we found 
the average missing data of for facial expression analysis 
(223.60s, σ=281.14) was significantly longer than that of PPG 
signal (5.69s, σ=6.33) with t(54)=4.03, p < 0.01.  

5.3.2 Touching Data. 

 

Figure 8. On-screen click locations and timestamps of all 
participants in all lessons. 

Since AttentiveReview2 uses on-lens finger gestures for video 
play back, clicking on the touch screen is not necessary during 
MOOC learning. Unexpectedly, participants still clicked on the 
touch screen frequently throughout the study (on average, there 
were 10.25 clicks per participant per lesson). Figure 8 showed the 
locations and timestamps of finger touches in this study. The 
darker a click is plotted, the later the click was done in a lesson 
(normalized by the lesson’s length). Most of the clicks were not 
directly on the interface’s widgets but located on the left-hand 
side and the right hand sides of the lecture videos. 
Figure 9 showed the temporal touching distribution of 28 
participants. The figure was sorted by the total number of 
touching moment of each participant. More clicks were done in 
the later lessons, e.g. lesson 5 and lesson 6, than at the first 
lessons. We also saw more clicks at the end of a lesson than at 
the beginning. From our observations during the study and 
follow up interviews, participants clicked the touch screen to 
check the tutorial’s remaining time from the pop-up progress 
bar. By selecting the extreme groups of clicking participants, i.e. 
top 25.0% (Figure 9, top row) and bottom 25.0% (Figure 9, bottom 
row), we found a correlation between their curiosity ratings and 



  
 

 

 

number of clicks using Spearman correlation (rho = 0.17, p < 0.1). 
The result suggested that when a participant clicked a lot while 
watching a tutorial video, she would lose curiosity about the 
lesson and only wait for the end of the lesson. 

 

Figure 9. Touching data from 28 participants across 6 
lessons. In each subplot, the horizontal axis is the lesson 
length and vertical axis is lesson number. Subplots were 

sorted by the number of click moments. 

We compared the performance of screen touches (traditional 
clickstream analysis in MOOCs) and other fine-grained 
modalities (PPG signals and facial expressions) in predicting 
Curiosity and results in weekly tests. As in [33], we used 16 HRV 
features (8 global features and 8 local features). With facial 
features, we selected top 16 AUV features [33] in each tutorial 
video. For clickstream, we extracted 9 features (for both global 
and local sliding windows): total touches, mean of touching 
moment, standard deviation of touching moment, max of 
touching moment, min of touching moment, mean of latency 
between adjacent touches, standard deviation of latency between 
adjacent touches, max of latency between adjacent touches, and 
min of latency between adjacent touches. We selected the top 16 
clickstream features to balance total of features between 
different modalities. A feature fusion model was created by 
concatenating 16 HRV features, 16 AUV features, and 16 
clickstream features. All feature selections were done using 
univariate regression analysis. All features were fed into a linear 
regression model to predict curiosity ratings and weekly test 
scores. 
Table 1 showed the mean square errors (MSEs) of unimodal and 
multimodal models. Overall, the fine-grained channels from 
AttentiveReview2 outperformed the traditional clickstream 
channel. PPG signals had the best performance in predicting 
Curiosity when it was marginally better than facial features 
(t(27)=-1.75, p < 0.1) and clickstream features (t(27)=-1.98, p < 
0.1). We did not find any significant difference between the 
performance of screen touch and facial data (t(27)=1.06, p = 0.29). 
Similar to this result, Pham and Wang [33] also found PPG 
signals gave a better performance than facial feature when 
predicting Curiosity in mobile MOOC learning. While PPG 
signals also gave the best performance in predicting weekly test 
score, we did not find any significant differences between these 
modalities. We found the feature fusion model were comparable 
with the best unimodal models in all tasks. When predicting 
Curiosity, the fusion model was comparable with PPG signals 
(t(27)=-0.09, p = 0.93). There was no significant difference 

between the fusion model and the PPG-based model in 
predicting weekly test score (t(27)=1.22, p = 0.23). 

Table 1. Mean Square Error (MSE) of unimodal and feature 
fusion models in Curiosity rating and Weekly Test score. 

The reported results are MSE (standard deviation). 

Modality Curiosity Weekly Test 

Clickstream 1.96 (±1.72) 5.41% (±0.03) 

PPG 1.87 (±1.63) 5.21% (±0.03) 

Facial 1.93 (±1.69) 5.24% (±0.03) 

Fusion 1.86 (±1.62) 5.41% (±0.03) 

6 FUTURE WORK 
There are at least three major directions in the near future. First, 
although we conducted a longitudinal study for three weeks, the 
study was still completed in a lab setting. The findings in this 
project may be biased to the environment in our lab. We plan to 
deploy AttentiveReview2 in the wild to observe how to learners 
use AttentiveReview2 in everyday environments. 
Second, Verkoeijen et al. [39] found the reviewing performance 
depends on the distance between the learning time and the 
reviewing time, e.g. reviewing after 3.5 weeks did not give 
advantage compared to reviewing after 4 days. We also 
identified another factor affecting the reviewing performance, 
i.e. the relationship between a topic’s difficulty and the learner’s 
current ZPD. We plan to study the effectiveness of reviewing 
strategies which take both reviewing time and learners’ ZPD 
into account. 
Last but not least, we are working on a new design for the facial 
widget. The facial widget intents to be an awareness channel 
revealing whether AttentiveReview2 can capture learners’ facial 
expressions reliably. However, many participants reported the 
widget to be distracting because it revealed too many details 
from the learning environment.  We plan to design an icon style 
facial widget that can facilitate facial data collection without 
disclosing private information around learners. 

7 CONCLUSIONS 
We presented AttentiveReview2, a multimodal intelligent 
tutoring system running on unmodified smartphones. 
AttentiveReview2 collects rich learning signals from three 
modalities: PPG signals, facial expressions, and clickstream. 
Through a 3-week longitudinal study with 28 participants, we 
found that AttentiveReview2 on average improved learning gains 
by 21.8% in weekly tests. Follow-up analysis showed that 
multimodal signals collected from the learning process can also 
benefit instructors by providing rich and fine-grained insights on 
the learning progress. In summary, AttentiveReview2 showed 
the feasibility and potential of a multimodal affect-aware 
intelligent tutoring system for MOOC learning on today’s 
smartphones without additional hardware modifications. 
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