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Abstract
We present a new method for estimating the sparse non-negative
model (SNM) by using a small amount of held-out data and the
multinomial loss that is natural for language modeling; we vali-
date it experimentally against the previous estimation method
which uses leave-one-out on training data and a binary loss
function and show that it performs equally well. Being able
to train on held-out data is very important in practical situa-
tions where training data is mismatched from held-out/test data.
We find that fairly small amounts of held-out data (on the order
of 30-70 thousand words) are sufficient for training the adjust-
ment model, which is the only model component estimated us-
ing gradient descent; the bulk of model parameters are relative
frequencies counted on training data.

A second contribution is a comparison between SNM and
the related class of Maximum Entropy language models. While
much cheaper computationally, we show that SNM achieves
slightly better perplexity results for the same feature set and
same speech recognition accuracy on voice search and short
message dictation.
Index Terms: language modeling, maximum entropy, speech
recognition, machine learning

1. Introduction
A statistical language model estimates probability values
P (W ) for strings of words W in a vocabulary V whose size
is in the tens, hundreds of thousands and sometimes even mil-
lions. Typically the string W is broken into sentences, or other
segments such as utterances in automatic speech recognition,
which are often assumed to be conditionally independent; we
will assume that W is such a segment, or sentence.

Since the parameter space of P (wk|w1, w2, . . . , wk−1) is
too large, the language model (LM) is forced to put the context
Wk−1 = w1, w2, . . . , wk−1 into an equivalence class deter-
mined by a function Φ(Wk−1). As a result,

P (W ) ∼=
n∏
k=1

P (wk|Φ(Wk−1)) (1)

Research in language modeling consists of finding ap-
propriate equivalence classifiers Φ and methods to estimate
P (wk|Φ(Wk−1)). Once the form Φ(Wk−1) is specified, only
the problem of estimating P (wk|Φ(Wk−1)) from training data
remains.

The contribution of this paper is two-fold:
• Sections 2 and 3 present a new way of estimating the

sparse non-negative model (SNM) by using a small
amount of held-out data and the multinomial loss that
is natural for LM; we validate it against the previous es-
timation method in [1]-[2]

• Section 4 contrasts the SNM LM with the related class
of maximum entropy (MaxEnt) LMs; experiments on the
One Billion Words corpus [3] show that SNM achieves
slightly better perplexity results for the same feature set,
and same speech recognition accuracy on voice search
and short message dictation.

2. Notation and Modeling Assumptions
We denote with e an event in the training/development/test data
corresponding to each prediction (wk|Φ(Wk−1)) in Eq. (1);
each event consists of:

• a set of features F(e) = {f1, . . . , fk, . . . , fF (e)} ⊂ F ,
where F denotes the set of features in the model, col-
lected on the training data: F = ∪e∈T F(e);

• a predicted (target) word w = t(e) from the LM vo-
cabulary V; we denote with V = |V| the size of the
vocabulary.

The set of features F(e) is obtained by applying the equiv-
alence classification function Φ(Wk−1) to the context of the
prediction. The n-gram model is a particular case extracting all
n-gram features of length 0, . . . , n−1 from theWk−1 context1,
respectively.

2.1. Skip-n-gram Language Modeling

A simple variant on the n-gram model is the skip-n-gram
model; a skip-n-gram feature extracted from the context Wk−1

is characterized by the tuple (r, s, a) where:

• r denotes number of remote context words

• s denotes the number of skipped words

• a denotes the number of adjacent context words

relative to the target word wk being predicted. For example, in
the sentence,
<S> The quick brown fox jumps over
the lazy dog </S> a (1, 2, 3) skip-gram feature for
the target word dog is:
[brown skip-2 over the lazy]

To control the size of F(e) it is recommended to limit the
skip length s and also either (r+a) or both r and s. We config-
ure the skip-n-gram feature extractor to produce all features f
defined by the equivalence class Φ(Wk−1) that meet constraints
on minimum and maximum values for:

• the number of context words used r + a;

• the number of remote words r;

1The empty feature is considered to have length 0, it is present in
every event e, and it produces the unigram distribution on the language
model vocabulary.



• the number of adjacent words a;

• the skip length s.

We also allow the option of not including the exact value
of s in the feature representation; this may help with smoothing
by sharing counts for various skip features. Tied skip-n-gram
features look like: [curiosity skip-* the cat]

A simple extension that leverages context beyond the cur-
rent sentence, as well as other categorical features such as geo-
location is presented and evaluated in [4].

In order to build a good probability estimate for the target
word wk in a context Wk−1, or an event e in our notation, we
need a way of combining arbitrary features which do not fall
into a simple hierarchy like regular n-gram features. The fol-
lowing section describes a simple yet novel approach for com-
bining such predictors in a way that is computationally easy,
scales up gracefully to large amounts of data and as it turns out
is also very effective from a modeling point of view.

3. Multinomial Loss for the Sparse
Non-negative Matrix Language Model

The sparse non-negative matrix (SNM) language model
(LM) [1]-[2] assigns probability to a word by applying the
equivalence classification function Φ(W ) to the context of the
prediction, as explained in the previous section, and then using
a matrix M, where Mfw is indexed by feature f ∈ F and word
w ∈ V . We further assume that the model is parameterized as a
slight variation on conditional relative frequencies for words w
given features f , denoted as c(w|f):

P (w|Φ(W )) ∝
∑

f∈Φ(W )

c(w|f) · exp(A(f, w;θ))︸ ︷︷ ︸
Mfw

(2)

The adjustment function A(f, w;θ) is a real-valued function
whose task is to estimate the relative importance of each input
feature f for the prediction of the given target word w. It is
computed by a linear model on meta-features h extracted from
each link (f, w):

A(f, w;θ) =
∑
k

θkhk(f, w) (3)

The meta-features are either strings identifying the feature type,
feature, link etc., or bucketed feature and link counts. We also
allow all possible conjunctions of elementary meta-features,
and estimate a weight θk for each (elementary or conjoined)
meta-feature hk. In order to control the model size we use the
hashing technique in [5],[6]. The meta-feature extraction is ex-
plained in more detail in [7].

Assuming we have a sparse matrix M of adjusted relative
frequencies, the probability of an event e = (w|Φ(W )) predict-
ing word w in context Φ(W ) is computed as follows:

P (e) = yt(e)/y(e)

yt(e) =
∑
f∈F

∑
w∈V

1f (e) · 1w(e)Mfw

y(e) =
∑
f∈F

1f (e)Mf∗

where Mf∗ ensures that the model is properly normalized over
the LM vocabulary:

Mf∗ =
∑
w∈V

Mfw

and the indicator functions 1f (e) and 1w(e) select a given fea-
ture and target word in the event e, respectively.

With this notation and using the shorthand Afw =
A(f, w;θ), the derivative of the log-probability for event ewith
respect to the adjustment function Afw for a given link (f, w)
is:

∂ logP (e)

∂Afw
=

∂ log yt(e)

∂Afw
− ∂ log y(e)

∂Afw

=
1

yt(e)

∂yt(e)

∂Afw
− 1

y(e)

∂y(e)

∂Afw

= 1f (e)Mfw

[
1w(e)

yt(e)
− 1

y(e)

]
(4)

making use of the fact that ∂Mfw

∂Afw
=

∂c(w|f)exp(Afw)

∂Afw
=

c(w|f)exp(Afw) = Mfw

Propagating the gradient ∂ logP (e)
∂Afw

to the θ parameters of
the adjustment functionA(f, w;θ) is done using mini-batch es-
timation for efficiency reasons:

∂ logP (e)

∂θk
=

∑
(f,w):hk∈meta−feat(f,w)

∂ logP (e)

∂Afw

θk,B+1 ← θk,B − η
∑
e∈B

∂ logP (e)

∂θk
(5)

Rather than using a single fixed learning rate η, we use Ada-
Grad [8] which uses a separate adaptive learning rate ηk,B for
each weight θk,B :

ηk,B =
γ√

∆0 +
∑B
b=1

[∑
e∈b

∂ logP (e)
∂θk

]2 (6)

whereB is the current batch index, γ is a constant scaling factor
for all learning rates and ∆0 is an initial accumulator constant.
Basing the learning rate on historical information tempers the
effect of frequently occurring features which keeps the weights
small and as such acts as a form of regularization.

We refer the reader to Sections 3.1-2 of [7] for further
details on the implementation and a description of the meta-
features used by the adjustment model.

4. Maximum Entropy Language Model
Maximum entropy (MaxEnt) is a well studied modeling tech-
nique that similarly to SNM allows the use of arbitrary fea-
tures for estimating P (w|Φ(W )). It differs from the SNM pa-
rameterization of P (w|Φ(W )) for an event e = (w|Φ(W )),
see Eq. 2 for a direct comparison:

P (w|Φ(W )) =
exp[

∑
f,w 1w(e) · 1f (e) · λf,w]

ZΦ(W )

(7)

where λf,w is the parameter associated with the joint MaxEnt
feature (f, w) and ZΦ(W ) is a normalization factor or partition
function.

We train our MaxEnt models using stochastic gradient de-
scent. The computational complexity of each update is O(|V|),
similar to multinomial SNM updates. In practice one SNM up-
date on a given held-out event is more expensive due to the large
number of meta-feature being updated; on the other hand Max-
Ent training requires multiple iterations though the full training
data set, making it orders of magnitude more expensive to train.



Model Lexicalized Meta-features Test Set PPL
Interpolated Kneser-Ney, baseline
5-gram 67.6
SNM, Leave-one-out on Training Data
5-gram yes 70.8
skip-5-gram yes 52.9
SNM, Multinomial Loss on Held-out Data
5-gram Unadjusted Model 86.0

yes (one epoch) 71.4
no 69.6

skip-5-gram Unadjusted Model 69.2
yes (one epoch) 54.4
no 50.9

Table 1: Experiments on the One Billion Words Language Mod-
eling Benchmark in 5-gram and skip-10-gram configura-
tion; 20 million maximum number of hashed parameters, 2048
mini-batch size, one or five training epochs.

We distribute the training of MaxEnt model using hun-
dreds of machines using the Iterative Parameter Mixture (IPM)
method [9] as described in [10].

4.1. Hierarchical Modeling

Even using the IPM method, MaxEnt model training is still too
expensive for very large corpora. We partition the vocabulary
in clusters c(w) and use a hierarchical model:

P (w|Φ(W )) ∝ P (c(w)|Φ(W )) · P (w|Φ(W ), c(w)) (8)

where P (c(w)|Φ(W )) is a model over the cluster vocabulary
and P (w|Φ(W ), c(w)) is a model similar to Equation 7, but
normalized over the words in cluster c(w). Now, instead of one
update with complexity O(|V|), training requires two updates
with complexity as low as O(|

√
(V)|. Hierarchical modeling

can improve model quality [11]. The quality of the hierarchical
model depends crucially on the clustering method. In this paper
we use the algorithm described in [12]. SNM can also benefit
from hierarchical modeling in which case P (c(w)|Φ(W )) and
P (w|Φ(W ), c(w)) are independent SNM models.

4.2. Contrasting SNM versus MaxEnt Model Estimation

SNM and MaxEnt differ in the estimation procedure. Most
SNM parameters are stored in the matrix M which is initialized
with counts from the training data. These parameters are fixed
during the adjustment procedure, which only needs to estimate
a relatively small set of parameters whose size is controlled by
the types of meta-features used in the model. This can be done
reliably and efficiently with a small held-out set of high qual-
ity in-domain data. MaxEnt does not have a known comparable
initialization procedure; training requires updating all param-
eters from scratch by iterating through the training data until
each feature is seen enough times; it is often beneficial to have
a second training stage that adapts the model to in-domain tran-
scribed data.

5. Experiments
5.1. Experiments on the One Billion Words Language Mod-
eling Benchmark

Our first experimental setup used the One Billion Word Bench-
mark (OBWB) corpus2 made available by [3]. For complete-

2http://www.statmt.org/lm-benchmark

Model Number Parameters Test Set PPL
(billions)

SNM 5-gram 2.6 67.4
MaxEnt 5-gram 2.1 77.1

Table 2: Experiments on the One Billion Words Language Mod-
eling Benchmark with hierarchical configurations.

ness, here is a short description of the corpus, containing only
monolingual English data:

• total number of training tokens is about 0.8 billion

• the vocabulary provided consists of 793471 words in-
cluding sentence boundary markers <S>, </S>, and was
constructed by discarding all words with count below 3

• words outside of the vocabulary were mapped to an
<UNK> token, also part of the vocabulary

• sentence order was randomized

• the test data consisted of 159658 words (without count-
ing the sentence beginning marker <S> which is never
predicted by the language model)

• the out-of-vocabulary (OOV) rate on the test set was
0.28%.

The foremost concern when using held-out data for estimat-
ing the adjustment model is the limited amount of data available
in a practical setup, so we used a small development set consist-
ing of 33 thousand words.

We conducted experiments using two feature extraction
configurations identical to those used in [1]: 5-gram and
skip-10-gram, see Appendix in [7]. The AdaGrad parame-
ters in Eq. (6) are set to: γ = 0.1, ∆0 = 1.0, and the mini-batch
size is 2048 samples. We also experimented with various adjust-
ment model sizes (200M, 20M, and 200k hashed parameters)
and non-lexicalized meta-features. The results are presented in
Table 1; since there was little dependence on the adjustment
model size, we only list results for the 20M hashed parameters
setting.

A first conclusion is that training the adjustment model on
held-out data using multinomial loss matches the previous re-
sults reported in [1].

A second conclusion is that we can indeed get away with
very small amounts of development data. This is excellent
news, because development data is typically in short supply.

5.2. Comparison with Equivalent Maximum Entropy
Model

Table 2 shows the perplexity of various hierarchical models on
the OBWB, all experiments use the same 1000 cluster vocab-
ulary partition. We observe that hierarchical modeling slightly
improves SNM modeling relative to the best 5-gram model in
Table 1. We also see that the SNM model has significantly lower
perplexity than the MaxEnt model. The number of parameters
is higher for SNM because it stores an extra parameter per con-
text.

5.3. ASR Experiments

We conducted automatic speech recognition (ASR) experiments
to compare SNM and MaxEnt hierarchical models. All exper-
iments were based on Google’s cloud based mobile ASR sys-
tem for Italian. This is a state of the art system with an LSTM
acoustic model and a 15 million n-gram LM for the first pass,
estimated from various data sources using Bayesian interpo-
lated [13]. In this work the proposed second pass SNM and



Stage MaxEnt SNM
Word Clustering 4:00 4:00
Initial Model Building 0.40 1:50
Training 4:50 (500 workers)
Adapt 0:30 (50 workers)
Adjust 0:40 (1 worker)
Total 12:00 6:30

Table 3: Model training times (h:mm) along with number of
machines used for each training stage.

MaxEnt models, respectively, are used to rescore n-best lists
generated by the first pass system. The score of the second pass
LM is log linearly interpolated with the first pass LM score and
with the acoustic model score.

The corpus used to train the second pass models consists of
35 billion words of mobile written sentences and a small subset
of 15 million transcribed words. All data were anonymized and
stripped of personally identifying items.

The vocabulary contains 3.9 million words. We rank the
vocabulary according to the distribution in automatically recog-
nized ASR logs. The most frequent million words are clustered
in 1000 clusters. The remaining words are assigned to a spe-
cial cluster <TAIL>. For efficiency its cluster conditional sub-
model P (w|Φ(W ), c(w) = <TAIL>) is estimated using uni-
gram relative frequencies instead of an SNM or MaxEnt model.

The types of features used fall into the following feature
templates:

• word n-grams, y, wi−1, · · · , wi−k up to 5-gram.
• word cluster n-grams, y, c(wi−1), · · · , c(wi−k) from 3

to 5-gram.
• skip 2-grams, y, ∗, wi−k up to 5 word gap.
• left and right skip 3-grams, y, ∗, wi−k+1, wi−k, and
y, wi−1, ∗, wi−k up to 3 word gap.

y is the token being predicted c(wi) in the case of the cluster
sub-model and wi in the case of the cluster conditioned sub-
models.

We trained MaxEnt models with and without PrefixBack-
off 0 features as described in [10]. These features are shared be-
tween contexts Wk−1 in the same feature template and trigger
when a regular feature is missing. We selected approximately
5 billion features per model using counts cut offs. The Max-
Ent models were first trained for 5 epochs on the training data
and then adapted by continuing training on the transcribed data
subset for 3 additional epochs using a small learning rate.

Counts for the unadjusted SNM model were collected dur-
ing initialization. The model was then adjusted using a 500k
word held-out subset of the transcribed data. We used 20 mil-
lion hashed parameters and trained for 3 epochs using AdaGrad.
We observed no improvements by increasing the size of the
held-out set or the number of epochs.

We shared as many components as possible between the
MaxEnt and SNM implementations, including: all data pro-
cessing, clustering, feature extraction, ASR rescorer, etc. The
differences between the two systems are mostly limited to the
probability and gradient computation functions.

Table 3 shows a breakdown of the training time for the Max-
Ent and SNM LMs, respectively. Our MaxEnt training pipeline
is highly optimized but it is clear that multinomial SNM train-
ing requires a very small fraction of the computational resources
of MaxEnt: MaxEnt training and adapting requires about 2,442
machine hours whereas SNM adjustment requires only 2/3 ma-
chine hours. While still very significant, the end to end training

Model WER (%)
Voice Search Short Message

SNM 8.0 14.9
MaxEnt 8.0 14.9
Back-off MaxEnt 7.9 14.8

Table 4: Word Error Rate of MaxEnt and SNM hierarchical
models.

time reduction is not as impressive due to MaxEnt’s distributed
implementation and to lengthy sibling stages such as word clus-
tering.

Table 4 presents the word error rate (WER) of various mod-
els measured on voice search and short message held-out test
sets. We observe that SNM matches the accuracy of standard
MaxEnt. When augmented with back-off features MaxEnt im-
proves slightly; experiments adding similar back-off features to
SNM were unproductive.

6. Conclusions and Future Work
The main conclusion is that training the adjustment model on
held-out data using multinomial loss introduces many advan-
tages while matching the previous results reported in [1]: as
observed in [14], Section 2, using a binary probability model
is expected to yield the same model as a multinomial probabil-
ity model. Correcting the deficiency in [1] induced by using a
Poisson model for each binary random variable does not seem
to make a difference in the quality of the estimated model.

Being able to train on held-out data is very important in
practical situations where the training data is mismatched from
the held-out/test data. It is also less constrained than the previ-
ous training algorithm using leave-one-out on training data: it
allows the use of richer meta-features in the adjustment model,
e.g. the diversity counts used by Kneser-Ney smoothing which
would be difficult to deal with correctly in leave-one-out train-
ing, or taking into account the data source for a given skip-
/n-gram feature and combining them for best performance on
held-out/test data (similar to the Bayesian interpolation algo-
rithm [13] used for estimating the first-pass model in our ASR
system).

We find that fairly small amounts of held-out data (on the
order of 30-70 thousand words) are sufficient for training the
adjustment model.

Just like MaxEnt, SNM can be extended to hierarchical
modeling and we observe significant perplexity improvements:
multinomial adjusted SNM achieves 14% relative lower per-
plexity than similar MaxEnt models on the One Billion Words
Benchmark. In terms of ASR quality SNM matches the WER
of standard MaxEnt while being orders of magnitude cheaper
to train. However, MaxEnt augmented with back-off features is
slightly better. In future work we plan to research techniques
for adding similar features to SNM models.
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