(In)Security of File Uploads in Node.js

Harun Oz
Florida International University
Miami, Florida, USA
hoz001@fiu.edu

Giiliz Seray Tuncay
Google
Mountain View, California, USA
gulizseray@google.com

ABSTRACT

File upload is a critical feature incorporated by a myriad of web
applications to enable users to share and manage their files conve-
niently. It has been used in many useful services such as file-sharing
and social media. While file upload is an essential component of
web applications, the lack of rigorous checks on the file name, type,
and content of the uploaded files can result in security issues, often
referred to as Unrestricted File Upload (UFU). In this study, we ana-
lyze the (in)security of popular file upload libraries and real-world
applications in the Node.js ecosystem. To automate our analysis, we
propose NODESEC- a tool designed to analyze file upload insecuri-
ties in Node.js applications and libraries. NODESEC generates unique
payloads and thoroughly evaluates the application’s file upload se-
curity against 13 distinct UFU-type attacks. Utilizing NoDESEC, we
analyze the most popular file upload libraries and real-world ap-
plications in the Node.js ecosystem. Our results reveal that some
real-world web applications are vulnerable to UFU attacks and dis-
close serious security bugs in file upload libraries. As of this writing,
we received 19 CVEs and two US-CERT cases for the security is-
sues that we reported. Our findings provide strong evidence that
the dynamic features of Node.js applications introduce security
shortcomings and that web developers should be cautious when
implementing file upload features in their applications.

CCS CONCEPTS

« Security and privacy — Web application security.

KEYWORDS
Web Application Security, Node.js, Unrestricted File Upload

ACM Reference Format:

Harun Oz, Abbas Acar, Ahmet Aris, Giiliz Seray Tuncay, Amin Kharraz,
and Selcuk Uluagac. 2024. (In)Security of File Uploads in Node.js. In Pro-
ceedings of the ACM Web Conference 2024 (WWW °24), May 13-17, 2024,
Singapore, Singapore. ACM, New York, NY, USA, 12 pages. https://doi.org/
10.1145/3589334.3645342

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

WWW 24, May 13-17, 2024, Singapore, Singapore

© 2024 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-0171-9/24/05.

https://doi.org/10.1145/3589334.3645342

Abbas Acar
Florida International University
Miami, Florida, USA
aacar001@fiu.edu

Amin Kharraz
Florida International University
Miami, Florida, USA
ak@cs.@fiu.edu

Ahmet Aris
Florida International University
Miami, Florida, USA
aaris@fiu.edu

Selcuk Uluagac
Florida International University
Miami, Florida, USA
suluagac@fiu.edu

1 INTRODUCTION

File upload is a critical feature incorporated by a myriad of web
applications to share and manage their files conveniently. It has
been used in many useful services such as file-sharing and social
media. While file upload is an essential part of web applications, it
also extends the attack surface in these applications by creating an
opportunity for adversaries to upload malicious payloads to web
applications. In particular, the lack of rigorous checks on the file
name, type, and content of the uploaded files can result in security
issues, often referred to as the Unrestricted File Upload (UFU). A
successfully uploaded malicious payload can cause potential code
execution on both the client side or the server side of the web
application.

The popularity of Node.js has grown significantly over the years
with over one billion downloads !. It is especially preferred by major
companies to develop scalable high-traffic web applications. Node.js
developers frequently depend on third-party libraries to important
features such as file upload, authentication, logging that require
security attention. Given the sheer number of existing security
issues and implementation mistakes discovered in the third-party
libraries [1, 4, 15, 28, 36], we argue that there is a dire need to further
investigate the security of the file upload libraries in Node.js.

While previous works proposed tools for identifying UFU vul-
nerabilities in other ecosystems [7, 8, 10], there is a dire need for
a tool that is tailored for testing Node.js applications. As existing
tools face challenges when applied to Node.js applications due to
their unique features such as syntax, file handling, and distinct exe-
cution environments. Consequently, adapting these existing tools
to test Node.js applications requires significant domain expertise
and in-depth knowledge of the existing tools’ source code. More-
over, the techniques employed by other tools primarily focus on
identifying the incompleteness of the file upload checks in web
applications rather than examining potential implementation mis-
takes in security-related functions. Considering almost 93.2% of the
code in Node.js applications comes from third-party libraries [9],
a tool tailored for Node.js applications must also be capable of
detecting implementation issues in the file upload libraries.

Motivated by the urgent need, in this work, we propose NODESEC to
analyze Node.js applications and file upload libraries against UFU
attacks. Our tool includes 13 distinct UFU-type attacks, derived
from a thorough review of previously published UFU-related CVEs,
OWASP resources, and GitHub issues. Furthermore, we conducted

!https://nodejs.org/metrics/

https://doi.org/10.1145/3589334.3645342
https://doi.org/10.1145/3589334.3645342
https://doi.org/10.1145/3589334.3645342

WWW ’24, May 13-17, 2024, Singapore, Singapore

an exhaustive literature review by examining UFU vulnerabilities
across various ecosystems and adapted these attacks to the Node.js
environment, if applicable. Finally, we examined common security
mistakes made by developers and previous bugs to identify possible
implementation errors specific to Node.js developers.

Based on our investigation, we identified three generic objec-
tives that a secure file upload implementation must meet to prevent
UFU attacks. We leverage NODESEC to analyze the six most popular
server-side file upload libraries. Our findings revealed that none of
these libraries fulfilled all three objectives, as they contained imple-
mentation mistakes in their validation functions and lacked critical
security measures, potentially exposing them to attack vectors that
allow the uploading of malicious payloads that would affect millions
of live web applications using these libraries to implement their
file upload feature. Moreover, we examined 11 popular real-world
web applications written in Node.js using NoDESEC. Our analysis
revealed that these applications are not resilient against UFU due
to several reasons: 1) they overrely on file upload libraries for se-
curity 2) they make errors when configuring security options in
the libraries, and 3) they fail to address all edge cases in their cus-
tom implementation. Our analysis also revealed that some of these
real-world web applications use additional packages or custom
implementations to prevent UFU attacks. Moreover, our findings
demonstrate that web application developers should not blindly
trust a file upload library despite its popularity in the ecosystem
and instead should implement their own metadata and content
checks or use additional packages that implement these security
checks for uploaded files.

Contributions. Our contributions are as follows:

o Comprehensive Analysis of UFU in Node.js: For the
first time in the literature, we investigate the security pos-
ture of the Node.js file upload ecosystem. We outline three
objectives for securely handling the file upload process in
Node.js applications and present prevention methods and
mechanisms, that can be used by web application developers
to prevent file upload attacks and satisfy objectives.

e Node.js UFU Analysis Tool: We implement and open
source 2 NoDESEC- a tool designed to analyze file upload
insecurities in Node.js applications and file upload libraries.
This tool will serve as a valuable resource for the community
to test their web applications and libraries against file upload
insecurities before deployment.

¢ Evaluation of Web Applications & Libraries: Utilizing
NoDESEC, we investigate the security of the Node.js file up-
load ecosystem. Our analysis discloses that some real-world
web applications are insecure against our attacks and we
disclose serious security bugs in the popular file upload li-
braries. As of this writing, we received 19 CVEs and two
US-CERT cases for the security issues that we reported.

¢ Root Causes & Recommendations: Based on our knowl-
edge gained from these experiments and experience from
responsibly disclosing these security issues to developers
we enumerate root causes leading to the insecurity of the
Node.js file upload ecosystem and our recommendations.

2https://github.com/cslfiu/NodeSec

Harun Oz et al.

Responsible Disclosure. We responsibly reported the security
issues we found in all of the server-side file upload libraries and
real-world web applications, resulting in 19 CVEs at the time of this
writing. We also notified the US-CERT about the issues and they
acknowledged our findings. We detail our vulnerability disclosure
process in Section 9 in the Appendix.

2 UNRESTRICTED FILE UPLOAD

In this section, we discuss the general file upload process and unre-
stricted file upload in Node.js applications.

2.1 File Upload in Node.js

A typical scenario of the file upload process with HTTP(S) protocol
is shown in Figure 1. First, the user picks a file and initiates the
upload process to a web application. Following that, the user’s client
machine sends an HTTP(S) request that contains a multipart/form-
data form of the uploaded file to the web application server. As
shown in Figure 1, the web application can perform various checks
to validate the uploaded file both on the client and the server. For
instance, it can validate the file type by checking its MIME (i.e.,
Content) type on the server side. If the file type is not valid or
is undesired, the web application may reject the uploaded file to
prevent any unintended file on the web application server.

File Upload Library Usage in Node.js Applications. Third-
party libraries have become an integral component of the Node.js
ecosystem. In a typical Node.js application, over 90% of the code
originates from third-party libraries [9]. To properly handle the
file upload process, Node.js developers often utilize server-side file
upload libraries available in the Node Package Manager (npm). For
example, the file upload library formidable is downloaded over
8.6 million times weekly and it is used by 1.5 million open-source
applications. These libraries serve as middleware for Node.js web
applications, providing file upload capabilities and implementing
the necessary security checks and validations to prevent any attacks
that could be exploited via uploading a file.

While using third-party libraries is convenient for developers to
develop Node.js applications, it comes with security risks [5, 36].
Recent incidents [19] and studies have shown that developers tend
to assume that popular third-party libraries are safe to use, which
can result in the introduction of vulnerabilities into applications.
When a vulnerability exists in a middleware or library or it is inse-
cure, it can transmit to a web application and potentially impact a
vast number of Internet users. Conversely, If the library (i.e., mid-
dleware) handled the security checks, the web application would
be automatically secured, in contrast to the situation where the
checks were not done by the library. Furthermore, addressing vul-
nerabilities in third-party packages can be time-consuming, and
developers may not prioritize fixes [36]. Consequently, this practice
poses a significant security threat to the entire web ecosystem.

2.2 Unrestricted File Upload in Node.js

Unrestricted File Upload is a type of security weakness that enables
an attacker to upload malicious files to a web application server.
Even if the target server does not immediately execute the uploaded
file, the web application can still be considered vulnerable or inse-
cure with respect to UFU. This is because the presence of malicious

https://github.com/cslfiu/NodeSec

(In)Security of File Uploads in Node.js

(7 4A\N

‘ APP B (D
=2
le—-)

- HTTP(s) POST
Client-side Multipart/form-data » =~

1 File Upload LibraryIMiddIeware‘l

o
Uploads the file
via user interface

User O ° = = o Clientside o e mmmaaao
NeX 4
Content Filtering,

Sanitize, Validate

’

Figure 1: A typical scenario of file upload procedure in web
applications.

files in the web application server poses a natural security risk as
malicious content in the file can later be executed in various ways,
such as exploiting other vulnerabilities in the third-party packages,
direct object references, or even tricking users/admins into execut-
ing it. Once the file is executed, depending on the content of the
file, this vulnerability can lead to server-side attacks such as RCE
or client-side attacks such as XSS [22].

Listing 1 shows a code snippet from the GhostCMS Node.js appli-
cation that implements security checks for uploaded files through
the checkFileIsValid function. Line 3 checks if the file’s MIME
type and extension are included in the provided arrays. However,
relying solely on MIME type and file extension for validation in-
troduces security risks, as both can be easily bypassed by an at-
tacker [12]. Consequently, the web application remains susceptible
to file upload vulnerabilities, potentially leading to arbitrary code
execution on either the client or server side. For example, an at-
tacker could upload a malicious client-side script (e.g., HTML) that
executes in the victim’s browser context when the file’s URL is
accessed. The primary goal of the attacker is to exploit the UFU
security weaknesses within the target Node.js application to exe-
cute malicious code on the client-side or server-side that can lead
to various types of attacks.

The consequences of UFU attacks may differ depending on the
specific features and functionalities of the programming language
of the server. For instance, languages like PHP can directly execute
code embedded in uploaded files if they are placed in an executable
path and have the executable file extension (e.g., .php) [11]. In con-
trast, as Node.js applications do not directly map URLSs to file paths
by default, it does not automatically execute code from uploaded
files in response to HTTP requests [13]. Although this reduces the
likelihood of direct arbitrary code execution on the server, it does
not completely eliminate the possibility of UFU vulnerabilities, as
the presence of a malicious file in the web application server in-
troduces an inherent security weakness to the web application. As
evading security checks in a web application to upload a malicious
payload is itself unintended and exposes the application’s insecurity
and attackers can still exploit UFU vulnerabilities in various ways
as explained in Section 11 in Appendix.

3 METHODOLOGY

In this section, we outline our methodology for analyzing UFU on
file upload libraries and Node.js applications.

WWW ’24, May 13-17, 2024, Singapore, Singapore

1 const checkFileIsValid = (fileData, types, extensions)=>{

2 const type = fileData.mimetype;

3 if (types.includes(type) && extensions.includes(
fileData.ext)) {

4 return true; }

5 return false; };

Listing 1: A sample code snippet from the GhostCMS
implementing content-filtering checks that can lead to UFU
vulnerabilities.

3.1 Attack Identification

Our research includes the following objectives: 1) identifying tech-
niques that adversaries can employ to exploit UFU 2) investigating
the common mistakes made by developers on file upload libraries 3)
evaluating the effectiveness of Node.js libraries in preventing UFU
vulnerabilities. We initiated our analysis by exploring the CVEs
related to UFU. To achieve this, we developed a Python script that
utilizes the NIST National Vulnerability Database (NVD) API, al-
lowing us to extract all the CVEs from the NVD dataset. Utilizing
this script, we retrieved all CVEs ranging from the year 2002 to
February 2023. This provided us with a comprehensive dataset that
includes over two decades of vulnerability data, consisting of a
total of 221,549 CVEs. Given the scope of this work, we checked the
descriptions and Common Weakness Enumeration (CWE) codes
of the CVEs. In particular, we checked for terms such as ’file up-
load’, "unrestricted upload’, ’arbitrary file upload’, and also the
CWE-434 "Unrestricted Upload of Files with Dangerous Types’. Our
final dataset includes 1846 CVEs that are all related to the UFU
vulnerabilities. We also checked for any false positives or dupli-
cates and removed them from the dataset. To make our dataset
more comprehensive to identify our attacks we analyzed OWASP,
sources and GitHub issues of the file upload libraries to investi-
gate recent techniques employed by adversaries to exploit UFU
in Node.js applications. Furthermore, we examined the common
security mistakes made by the developers [34] and previous GitHub
issues of libraries to identify implementation errors. Lastly, we con-
ducted an exhaustive literature review on prior research examining
UFU vulnerabilities across various ecosystems [7, 8, 10], adapting
these attacks to the Node.js environment, if applicable. From our
analysis, we selected 13 different attacks, grouped into three cate-
gories: (1) File Name-based Attacks (File Extension Injection, Null
Byte Injection, Script-Named File Name, Path Traversal, Overwrite),
(2) File Type-based Attacks (Spoofing-based, Polyglot File Attacks,
Executable File Attack), and (3) File Content-based Attacks (PDF
File Attacks, SVG Upload Attack).

3.2 Attack Descriptions

In this section, we provide detailed descriptions of the attacks and
their respective categories considered in this work. We elaborate
on the impact of each attack, discuss its possible consequences, and
explain their differences.

File Name-based Attacks In this attack category, an adversary
modifies the file name to alter the intended logic of the web applica-
tion or injects malicious characters into the file name to abuse the
file upload inputs of the web application. The malicious characters

WWW ’24, May 13-17, 2024, Singapore, Singapore

can be in the form of multiple file extensions, without file exten-
sion, null bytes, scripts, or non-alphanumeric characters. Further
details about different file naming-based attacks that are employed
by NODESEC are enumerated in below.

e [A1] File Extension Injection: In this attack, an adversary modifies
the extension of the file name to exploit improper file name ex-
tension controls in the web application. For example, an attacker
can inject multiple file extensions to bypass the file validation
logic based on file extensions.

o [A2] Null Byte Injection: In this attack, the attacker inserts a null-
byte into a file name to alter the intended logic of the application.
An attacker can inject different portions of the file name to per-
form this type of attack. For example, similar to the File Extension
Injection attack (A1), an attacker injects a null byte between a for-
bidden extension and an allowed extension to alter the intended
logic of the targeted Node.js application.

o [A3] Script-named file name: In this attack, the attacker inserts
a script into a file name, such as an XSS payload, which may
trigger the execution of the payload in the victim’s browser if
the name of the uploaded file is not sanitized properly.

o [A4] Path Traversal: In this attack, the adversary inserts malicious
characters into the file name to achieve path traversal attacks, po-
tentially allowing them to access directories outside the restricted
directory in the Node server.

o [A5] Overwrite Attack: In this attack, an adversary aims to over-
write a file on a target web application server, particularly server
configuration files, to maliciously change the server settings.
With this attack, an attacker can externally control critical con-
figuration files that play a crucial role in the operation of the
target web application,

File Type-based Attacks In these attacks, an adversary modifies
the file type of the malicious payload. In the next subsections, we
explain the details of how it can be realized to create a malicious
payload.

Spoofing-based Attacks. In these attacks, the adversary bypasses
the file type validation logic of the web application by spoofing the
file content-type (MIME-type) and magic header bytes of a file [16].
These attacks can lead to the execution of malicious code on the
server or client-side, unauthorized access, and data leaks.

e [A6] MIME Type Spoofing: A file’s content-type represents the
file’s MIME type, which describes the file and its structure. File
upload libraries may use MIME types to validate file types. How-
ever, an attacker can easily bypass this attempt by modifying
or spoofing the content type of the file. If the target server re-
lies only on the MIME type check to validate the file content,
MIME type spoofing can enable the attacker to bypass the checks
and upload a malicious payload file, potentially leading to code
execution on the server-side.

o [A7] Magic Byte Spoofing: Another technique used to validate
file types is checking the magic header byte [2]. An attacker can
create a malicious file, such as a script, and change the magic
byte to other file types, such as a PNG file, to bypass the file type
validation checks performed by the web application. This attack
can lead to the execution of malicious code on the server.

Polyglot File Attacks. Polyglot files are files that are valid in mul-
tiple different file formats, allowing adversaries to create these files

Harun Oz et al.

to hide malicious payloads and bypass the file type validation logic
of the web application [14]. Unlike spoofing-based attacks, where
an adversary only changes the magic bytes and/or MIME type of
the file, polyglot files are constructed by merging the syntax and
semantics of multiple file formats. As a result, a web application
might be resilient against spoofing-based attacks but still be vul-
nerable to polyglot file attacks. Polyglot files can be used to inject
malicious scripts and bypass the content security policy of the file
upload mechanism of a web application, leading to various types
of attacks such as XSS and RCE.

o [A8] JS+JPEG Polyglot: This type of polyglot file is valid in both
JPEG and JS file formats. If the content-filtering mechanism of the
web application accepts it as a JPEG file, it will be uploaded to the
server. Once the file is uploaded to the web application server, the
attacker can execute the malicious payload by remotely accessing
the file or during the parsing it can cause to server to down.
[A9] HTML+PDF Polyglot: A PDF+HTML polyglot file is valid in
both PDF and HTML file formats. It can be used by adversaries to
bypass the content security checks of web applications and insert
a malicious payload within the HTML file. Similar to the JS+JPEG
Polyglot file, the attacker can execute the malicious payload by
remotely accessing the file from the browser [3].

[A10] Executable File Upload Attack. In this attack, an attacker
uploads an executable file (e.g., EML, HTML) that is possible to be
executed on the client or server side of a web application. In this
attack, an attacker uploads an HTML payload file to a target web
application. The uploaded payload file can redirect a victim to a
malicious website or execute a JavaScript payload embedded on a
payload file [23-25, 29].

File Content-based Attacks In these attacks, an adversary em-
beds malicious content into a seemingly benign file, such as a PDF
or SVG. Although these types of attacks can be achieved by insert-
ing malicious content into different file types. We focus on PDF and
SVG files due to their popularity in the web ecosystem in general
and their potential malicious impacts.

PDF File Attacks. PDF is one of the most popular file formats used
in web applications. Web applications, such as PDF editors, may
render the PDF file on the server side to display the document to
the user. Additionally, web applications used by law firms (e.g.,
DocuSign) may require users to upload necessary information in
PDF format and store it on the server side. The structure of PDF files
can be abused by adversaries by embedding a JavaScript payload
or compressing the content to exhaust the resources of the target
server.

o [A11] JavaScript Embedded PDF: In this attack, adversaries inject
malicious JavaScript code inside a PDF document. For instance, an
attacker can inject a JavaScript payload into a PDF document and
upload it to a web application to perform a stored XSS attack [32].

e [A12] PDF Bomb Attack: This attack involves adversaries abusing
the encoding options of a PDF file to compress the streams. Once
the malicious PDF file is uploaded to a web application server, it
decompresses the content, causing resource exhaustion on the
target server [17].

[A13]SVG File Upload Attack. SVG file attacks exploit the features
of SVG files, which support inline JavaScript code. In this attack, the

(In)Security of File Uploads in Node.js

adversary injects a JS payload into an SVG file to achieve different
types of attacks, such as XSS.

3.3 Secure File Upload Validation Objectives

Our goal in this section is to enumerate a set of objectives that
should be implemented by web applications utilizing file upload
features. We enumerate these objectives by searching the following
resources: secure file upload implementation principles described
by OWASP [22], prevention techniques and tools against the at-
tacks enumerated in Section 3.2, secure file upload implementation
practices in other ecosystems.

Our search resulted in two types of techniques: 1) Techniques
to validate the uploaded files, and 2) Techniques to minimize the
risks of malicious file uploads. The former includes efforts to iden-
tify malicious intent from the file and methods to prevent them,
while the latter includes other practices such as storing the up-
loaded files on a different server, authentication, and authorization
mechanisms, and file size and upload request limiting mechanisms
against DoS attacks. In this paper, we only study the attacks that
can be performed by modifying the uploaded files, we consider the
techniques in the latter as out of scope. In conclusion, a file upload
mechanism in the web application should satisfy the following file
upload validation objectives to prevent UFU attacks:

o Objective-1: File Name Validation: An adversary can abuse the
file name of the uploaded file to trigger a UFU vulnerability
in the web application, as given in Section 3.2. To validate the
file name, a web application can assign a randomly generated
safe string such as UUID to the file name. Additionally, a web
application can also sanitize the file name of an uploaded file
by removing malicious characters before it is uploaded to the
server. The developers either implement their own sanitization
functions or integrate third-party packages to sanitize the file
name.

o Objective-2: File Type Validation: A web application can check the
MIME type of the uploaded file from the file upload request and
reject the uploaded files with unexpected MIME types. While
this method prevents crude file upload attacks, the MIME type of
file provided by the client cannot be trusted and it can be easily
spoofed by the attacker. Validating the file type directly from
the content of the uploaded file is robust against such spoofing
techniques. Depending on the expected file type of the web ap-
plication, the techniques for the validating file type can differ. A
developer can make use of open-source packages by detecting
the file type by its metadata or file stream.

o Objective-3: File Content Sanitization: An adversary can insert
malicious content (i.e., script) into a seemingly benign file to
trigger UFU vulnerability on the server or client side. To prevent
this, a web application should sanitize the malicious content
in the file. The sanitization technique can differ based on the
file type [21]. A developer can utilize open source packages to
sanitize the file or set security headers to prevent arbitrary code
execution.

Overall, implementing these techniques mitigates against UFU
attacks and ensure that only safe and authorized files are allowed
to be uploaded to the system. However, it is important to note
that there is no silver bullet solution for secure file upload, and

WWW ’24, May 13-17, 2024, Singapore, Singapore

@ Malicious Payload Generator

Extension Injector

é _—

Null-byte Injector
—_—

Script Injector

@ Validator

@ Payload Database

O Uploader

-

ety N
1 -»>

© Authorizator CONF File

Non-alphanumeric Injector [=

—_

i
(110 — [

Spoofer

Polyglot File Generator

_TOyelot Tiie benerator,
Malicious PDF Generator
é S e,

...... T [pep—]

Seed Files Attack Payloads

Node
Server

- m@

Figure 2: The architecture of NoDESEC and experiment setup
to test the security of file upload vulnerabilities in Node.js
applications.

web applications should continually monitor and update their file
validation processes to stay ahead of new attack vectors. File size
limiting/validation can also be added to the list to prevent a DoS
attack on the server, but file size-based attacks are out of the scope
of this paper. Finally, we note that there is at least one open source
Node.js package for each objective, and if a web application sat-
isfies these objectives, it would prevent all of the thirteen attacks
explained in Section 3.2.

3.4 NODESEC

To systematically analyze file upload security weaknesses in Node.js
applications and libraries, we developed NopESEC, which automat-
ically generates attack payload files for our attacks (A1-A13) and
uploads the malicious payloads to the target web application in
an automated fashion. The architecture of NoDESEC is depicted in
Figure 2 and consists of five main modules. The first module, @
Malicious Payload Generator, creates payload files to trigger the
attacks. It comprises multiple attack generator components that
transform seed files into attack payloads. The second module, @
Payload Database, serves as a comprehensive repository for attack
payloads. @ For authorization purposes, the Authorization module
automates the collection of essential data, such as login creden-
tials, cookie tokens, and request headers. The @ Uploader module
then automates the process of uploading attack payload files to the
server side of the target application. Lastly, the @ Validator module
conducts the validation process after each payload is successfully
uploaded. Due to space limitations, we give the full implementation
details of NoDESEC in Appendix Section 10.

4 ANALYZING LIBRARIES & APPLICATIONS

In this section, we analyze the security of file upload libraries and
real-world web applications written in Node.js using NoDESEC. To
create our experimental setup, we first downloaded packages from
npm containing file upload libraries and real-world web applica-
tions, then created sample web applications on our local server.
Next, we executed NODESEC to evaluate the security of these real-
world web applications and file upload libraries.

WWW ’24, May 13-17, 2024, Singapore, Singapore

For server-side file upload libraries, we adhered to the guide-
lines provided in their official documentation and employed the
widely-used Express.js framework on the server side incorporating
libraries as middleware. To assess the libraries’ security against
UFU, we enforced all available security settings and conducted
checks for potential UFU attacks and possible implementation mis-
takes. We further discuss the functionality of these settings and
their effectiveness against UFU. Following a similar approach, we
installed real-world web applications according to the instructions
provided in their official documentation. Subsequently, we assessed
the security of these sample real-world web applications without
modifying their source code.

4.1 (In)Securities in File Upload Libraries

We selected the popular server-side file upload libraries based on
the following criteria: (1) It should be implemented in Node.js. (2)
It should have more than 1K stars on GitHub or received over 80K
weekly downloads from npm. Based on this criteria, we selected the
most popular six server-side file upload libraries, which, on average,
have 2 million weekly downloads from the npm. We analyzed these
libraries with NoDESEC to see whether they satisfy the file upload
validation objectives presented in Section 3.3. We examined both the
availability and effectiveness of the security checks. We summarize
the results in Table 1.

Poorly Handling File Name. To fulfill the file upload validation
objective, a library must handle the file name safely. A library can
achieve this either by sanitizing or randomizing the name of the
uploaded file. While libraries such as multer, formidable, connect-
multiparty, and skipper adopt file name randomization techniques,
express-fileupload and graphgl-upload employ file name saniti-
zation methods to mitigate file name-based attacks. Our analysis
revealed that some popular file upload libraries such as express-
fileupload and formidable were improperly implementing their
functions related to the uploaded file name. In express-fileupload,
implementation mistakes in its options cause both the upload of
hidden files to a web application server and incorrect trimming
of file extensions. In formidable, due to a regex implementation
issue, the function fails to correctly parse extensions with multiple
dots and does not sanitize characters between the dots, leaving the
malicious payload exposed on the application server.
Insufficient File Type Validation. As we defined in our second
objective, a secure file upload implementation must validate the
expected file type correctly to prevent UFU attacks. Our analysis re-
vealed that all of the file upload libraries are performing MIME type
validation for file type validation. While this technique can prevent
the executable file upload attack, it can be evaded by performing
spoofing attacks [26]. Hence, web applications using one of these
popular file upload libraries without any additional prevention
method would be insecure to all file type-based attacks.

No Malicious Content Sanitization. An adversary can insert
malicious content into a seemingly benign file to trigger the UFU
vulnerability in the web application. To prevent that, web applica-
tions can either sanitize the malicious content in the file or detect
and prevent the upload of the malicious file. Nevertheless, our anal-
ysis revealed that none of the file upload libraries in our dataset
provides a mechanism to detect or sanitize any malicious content-
embedded file. Hence, we found that any web application using one

Harun Oz et al.

Table 1: The analysis of popular file upload libraries.

Library | Version | | Vatudnion | Valdnains | Sasionton
‘ express-fileupload ‘ 1.21 ‘ 276,281 ‘ © ‘ © ‘ O ‘
| multer | 144 | 4200142 | [] \ © \ O \
| formidable | 201 | 8736018 | 0 \ © \ O \
‘ connect-multiparty ‘ 220 ‘ 81,248 ‘ [‘ © ‘ O ‘
| skipper | o091 | 25672 | [] \ © \ O \
| graphgl-upload | 1300 | 358743 | © | © | O |

@: Fully implemented, O Partially/Improperly implemented
O: Not implemented,

of these popular file upload libraries as it is would be insecure to
all file content-based attacks.

4.2 (In)securities in Real world Applications

In this section, we present our analysis of real-world Node.js web
applications. We utilize NODESEC to perform experiments. We de-
picted our experiment results on in Table 2. We use output of the
NobESEC too fill our table. As explained in Section 2, Node.js servers
do not execute files in response to a upload request. So, in our anal-
ysis, we did not consider the execution of the file in the server
response regarding file execution. As our scope is only analyz-
ing Node.js applications, we consider whether the uploaded file
poses a security threat for Node.js application. v indicates that the
real-world web application is secure against the attack. In other
words, the real-world web application has prevention mechanism
against the attack. On the other hand, X indicates that the real-
world web application is insecure against the attack. Particularly,
the real-world web application has no security mechanism against
the attack.

Our investigation throughout this study revealed that mitigat-
ing one attack does not necessarily guarantee protection against
other attacks within the same category. For instance, during the
responsible disclosure process, in one case, after we report the
insecurity on real-world web application against Executable File
Upload Attack. The maintainer fixed the issue by implementing a
MIME-type checking which caused the application to be insecure
to other types of file type attacks. This implies that each attack
in our attack dataset require a unique consideration, and maybe a
specific prevention technique depending on the implementation.
Considering these, we decided that grouping the insecurities based
on their root causes could potentially underestimate risks and fail
to capture variations in the actual exploitation of attacks. Instead,
we adopted an approach that treats each successful attack as an
individual insecurity. In addition to analyzing real-world web ap-
plications with NoDESEC, we manually examined their source code
to highlight the reasons of these insecurities and good practices
currently implemented in these applications. Below, we discuss our
findings for each real-world web application.

« GhostCMS: currently receives over 10k weekly downloads and
is used by more than 50k live websites. It uses multer file upload
library to handle the file upload process and it does not use any
additional package to prevent UFU. Thus, similar to multer, it is also
insecure to four file type-based and content-based attacks. Interest-
ingly, although Multer randomizes the file name by default, instead
of using Multer’s randomization function, GhostCMS implements

(In)Security of File Uploads in Node.js

WWW ’24, May 13-17, 2024, Singapore, Singapore

Table 2: Evaluation of NODESEC against 11 real-world applications.

File Name-based

File Type-based File Content-based

Web Application Version Library Attacks Attacks Attacks
Al A2 A3 A4 A5 A6 A7 A8 A9 A10 All A12 A13

Strapi 4.17 formidable X v v v / X X X X X X X v
GhostCMS 4.42.0 multer X v v v / X X X X v X X X
payloadCMS 0.15.1 express-fileupload X v V / / X X X X X X X X
ButterCMS 1.2.9 formidable X v v v / X x X X X X X X
Keystone 421 graphgql-upload v v v v/ o v v/ 4 X X 4
Apostrophe 3.17.0 connect-multiparty v v V / / v v v/ v 4 v v
Wikijs 2.5.2 multer v /7 v/ / v /7 v v/ v v v
Sanity 2.29.3 Custom v v v v v v v/ v 4 v v
FireCMS 1.0.0 Custom X v v v / X X X X X X X X
Tiddlywiki 5.2.2 Custom X v v v / X X X X 4 X X X
totaljs 4.0.0 Custom v v v v/ A S X X 4 X

v/: Secure, X: Insecure

A1: File Extension Injection; A2: Null Byte Injection; A3: Script-named file name; A4: Path Traversal via inserting Non-Alpha; A5: Overwrite
Attack; A6: MIME Type Spoofing; A7: Modified Magic Header Bytes; A8: JS+JPEG Polyglot A9: HTML+PDF Polyglot; A10: Executable File
Upload Attack; A11: JavaScript Embedded PDF; A12: PDF Bomb Attack; A13: SVG File Upload Attack.

its own custom sanitization function, which causes it to be insecure
against A1 attack.

[X Not using already existing function in the library:

Our analysis reveals that despite the availability of a security
function in the file upload library, an ineffective implementation
of a custom validation function can introduce security flaws.

« Tiddlywiki: is another popular open-source interactive wiki-like
website builder. Although Tiddlywiki implements a file name fil-
tering function to prevent four types of file name-based attacks, it
relies on the MIME type for validating the type of the file which
resulting in Tiddlywiki being insecure against all types of file type-
based and content-based attacks.

« PayloadCMS: makes use of the express-fileupload library to pro-
cess files uploaded to the server. Our examination of its source code
revealed that the security options available in express-fileupload
has not been utilized at all. Moreover, PayloadCMS has a custom
getSafeFileName function, which causes it to be insecure to Al
attack. However, it is also insecure to SVG upload attack and Ex-
ecutable File Upload since it does not utilize any file validation
method.

[X Missing edge cases in the custom implementation:

Our analysis highlights that a custom security implementation
must address all edge cases. Consequently, they may defend
against certain attacks within an attack category, yet remain
susceptible to others from the same group.

« Strapi: is the second most popular headless CMS in the top 1M
sites. It utilizes the formidable library to process files uploaded to
the server. Our investigation shows that Strapi uses the formida-
ble library without utilizing any additional security mechanism
to prevent all the attacks we consider in this work, except for the
SVG upload attack. Thus, same as formidable, Strapi is insecure

to all types of file type-based and two types of content-based at-
tacks. Different from formidable, it uses a security package named
koa-helmet module to prevent the code execution in the browser
which makes resilient against SVG Upload attack.

X Blind-trust to the file upload library:

Our analysis disclose that some application developers may place
undue trust in the security features provided by upload libraries,
which can lead to overlooked insecurities.

« Apostrophe is a popular website builder with currently 4.3k weekly
downloads and having received over 4K stars on GitHub. It uses
the file upload library connect-multiparty as a file upload library.
We found Apostrophe is resilient to all attacks we tested against.
The reason is that, similar to wikijs, Apostrophe uses additional
security packages such as Imagemagick to validate file type. Thus,
it is resilient to all types file type-based attacks. Also, it makes use
of sanitize-html package to sanitize malicious HTML payload
inside files. Therefore, it is resilient against the SVG upload attack.
« Wikijs: is a Wikipedia-like informative website builder with over
2.8k weekly downloads and over 22k stars on GitHub. It uses the
multer library to handle the file upload process. We found that it is
resilient against all types of UFU attacks. We analyzed its source
code and found that developers of wikijs utilize different types
of open-source security packages to prevent all types of attacks.
Particularly, wiki’s uses sanitize-filename package for handling
uploaded file names, file-type package package to determine the
file type of the uploaded files. Finally, to prevent the code execution
via SVG Upload attack, it utilizes xss package.

« Sanity: is a popular open-source CMS that receives more than 72k
weekly downloads. It uses custom functions to handle the uploaded
files before they are transmitted to its backend. To prevent file name-
based attacks, it assigns a random file name to any uploaded file,
which makes sanity resilient to all types of file name-based attacks.
Moreover, it validates file type from the metadata of the uploaded

WWW ’24, May 13-17, 2024, Singapore, Singapore

file by utilizing the exif-js package and it is resilient against all
types of spoofing-based, polyglot file, and PDF file attacks. Similarly
to Apostrophe, it uses an additional security package, sanitize-html
to prevent the SVG file upload attack.

v Utilizing custom functions and packages to prevent UFU:

Our analysis showed that demonstrates that a combination of
custom implementations and open-source packages can effec-
tively prevent all attacks, while also providing the flexibility to
defend against specific attacks as needed.

In addition to these seven real-world applications, we also an-
alyzed ButterCMS, FireCMS, total.js, and Keystone. Their results
are presented in Table 2. Due to the page limit, we present their
detailed explanation in Section 12 in Appendix.

5 ROOT CAUSES & RECOMMENDATIONS

In this section, based on the knowledge gained from our responsible
disclosure process and our experiments we enumerate primary
factors contributing to the challenges faced by file upload library
and Node.js application developers.

Security Documentation is Imperative. Our analysis identified
a lack of well-designed and comprehensive security documentation
for current file upload libraries. This deficiency is a significant chal-
lenge for security-unaware developers, as they may be unaware
on these issues. While developers are encouraged to incorporate
such ready-to-use third-party software packages into their systems,
due to missing security documentation, they are unfortunately left
with minimal guidance on how to implement security against UFU
attacks. Our analysis of real-world web applications concluded
that the absence of security documentation on file upload libraries
places application developers to an uncertain position, where they
inadvertently introduce security misconfigurations to their appli-
cations or fail to implement necessary file validation/sanitization
mechanisms which makes their applications insecure against UFU
attacks. Consequently, library developers should explicitly enumer-
ate the use cases of the file upload library and clearly state both
the absent and present security mechanisms against UFU attacks
in their security documentation.

Lack of Consensus of Responsibility. Our analysis elucidates
that the process to report and patch critical libraries is not entirely
clear to the involved parties as our disclosure process exhibits an
absence of a well-defined consensus concerning the allocation of
accountability for implementing content and metadata validation
within the file upload ecosystem. While some library developers
took the reported issues very seriously and initiated the patching
process, others conveniently deferred the responsibility to web ap-
plication developers. This confusion on where the responsibility
lies greatly endangers the overall security of the file upload ecosys-
tem. Consequently, we posit that the responsibility to implement
defense against UFU should be clearly defined and we suggest that
the implementation of security checks at the file upload library level
would be scalable and substantially contribute to mitigating the
risks associated with this critical issue in the file upload ecosystem.
Lack of Comprehensive Security Test Cases. Our analysis dis-
closed that popular file upload libraries (e.g., express-fileupload,
formidable) contain bugs within their security-related functions. As

Harun Oz et al.

we detail in Section 4, these bugs not only present theoretical risks
but also attack vectors that can be exploited by malicious actors to
launch various types of UFU attacks on web applications utilizing
these libraries. Our analysis on the source code of these libraries
revealed that they have not been tested against all the attack scenar-
ios that can be utilized by an attacker. For example, the sanitization
function in the formidable library did not consider payloads that
can be inserted between the extensions of the uploaded files. Con-
sequently, our recommendation is the developers must consider all
the edge cases while implementing these functions in their libraries.

6 RELATED WORK

Node.js Security. In [31], the authors proposed a static analysis-
based prevention tool against injection attacks in the Node.js ecosys-
tem. In [30] investigated the security of Node.js applications against
ReDoS attacks. Differently, Nielsen et al. [18] proposed a modular
call graph-based approach for security scanning in Node.js applica-
tions. In [35], the authors focused on the communication process
between client- and server-side code in Node.js programs and iden-
tified vulnerabilities that can lead to different types of server-side
attacks.

File Upload Security. Uddin et al. [33], investigated the file up-
load security in a cloud service model. Huang et al. proposed
UChecker [7], a static analysis-based tool that automatically de-
tects UFU vulnerabilities in PHP-based server-side web applications.
Likewise, Huang et al. introduced UFuzzer [8], a locality analysis-
based UFU vulnerability detection system for PHP applications.
In [10], the authors proposed a penetration testing tool for identify-
ing file upload bugs in PHP-based web applications. We enumerate
the challenges in using existing tools for Node.js and compare the
attack coverage of NoDESEC with existing tools in Section 13 in
Appendix.

7 CONCLUSION

In this paper, we analyzed the security posture of the file upload
ecosystem in Node.js. We introduce NoDESEC a tool designed to
analyze Node.js applications and libraries in the context of UFU-
related security issues and we analyze popular file upload libraries
and real-world web applications using NoDESEc. Our analysis re-
vealed security issues in eleven popular Node.js web applications
and bugs in file upload libraries and received 19 CVEs. With this
study, we aim to raise awareness about the importance of security
measures in file upload libraries and web applications, contributing
to the development of better practices and tools to protect users
from UFU attacks.

8 ACKNOWLEDGEMENT

We thank the anonymous reviewers for their helpful feedback and
time. This work was partially supported by the US National Sci-
ence Foundation (Awards: 2039606, 2219920, 2113880), US National
Security Agency (Award: H982302110324). Florida International
University Graduate School, Cyber Florida, Google ASPIRE Pro-
gram, and Microsoft. The views expressed are those of the authors
only, not of the funding agencies.

(In)Security of File Uploads in Node.js

REFERENCES

[1] Abbas Acar, Giliz Seray Tuncay, Esteban Luques, Harun Oz, Ahmet Aris, and
Selcuk Uluagac. 2024. 50 Shades of Support: A Device-Centric Analysis of Android
Security Updates. In Network and Distributed System Security Symposium.
Mehdi Chehel Amirani, Mohsen Toorani, and A. Beheshti. 2008. A new ap-
proach to content-based file type detection. In IEEE Symposium on Computers
and Communications.

[3] Anton Barua, Hossain Shahriar, and Mohammad Zulkernine. 2011. Server-Side
Detection of Content Sniffing Attacks. In International Symposium on Software
Reliability Engineering.

[4] Shrenik Bhansali, Ahmet Aris, Abbas Acar, Harun Oz, and Selcuk Uluagac. 2022.
A First Look at Code Obfuscation for WebAssembly. In In the Proceedings of the
15th ACM Conference on Security and Privacy in Wireless and Mobile Networks.

[5] D. Cayir, A. Acar, R. Lazzeretti, M. Angelini, M. Conti, and S. Uluagac. 2024.
Augmenting Security and Privacy in the Virtual Realm: An Analysis of Extended
Reality Devices. IEEE Security & Privacy (2024).

[6] James Davis, Arun Thekumparampil, and Dongyoon Lee. 2017. Node.fz: Fuzzing
the Server-Side Event-Driven Architecture. In Proceedings of the Twelfth European
Conference on Computer Systems. Association for Computing Machinery.

[7] Jin Huang, Yu Li, Junjie Zhang, and Rui Dai. 2019. UChecker: Automatically De-
tecting PHP-Based Unrestricted File Upload Vulnerabilities. In 2019 49th Annual
IEEE/IFIP International Conference on Dependable Systems and Networks (DSN).

[8] Jin Huang, Junjie Zhang, Jialun Liu, Chuang Li, and Rui Dai. 2021. UFuzzer:
Lightweight Detection of PHP-Based Unrestricted File Upload Vulnerabilities Via
Static-Fuzzing Co-Analysis. In Proceedings of the 24th International Symposium
on Research in Attacks, Intrusions and Defenses.

[9] Igibek Koishybayev and Alexandros Kapravelos. 2020. Mininode: Reducing
the Attack Surface of Node.js Applications. In 23rd International Symposium on
Research in Attacks, Intrusions and Defenses.

[10] Taek-Jin Lee, Seongil Wi, Suyoung Lee, and Sooel Son. 2020. FUSE: Finding File
Upload Bugs via Penetration Testing. In Network and Distributed System Security
Symposium.

[11] R. Lerdorf, K. Tatroe, B. Kaehms, R. McGredy, N. Torkington, and P.M. Ferguson.

2002. Programming PHP. O’Reilly Media.

Xiaowei Li and Yuan Xue. 2014. A Survey on Server-Side Approaches to Securing

Web Applications. ACM Comput. Surv. (2014).

Magnus Madsen, Frank Tip, and Ondfej Lhotak. 2015. Static analysis of event-

driven Node.js JavaScript applications. In Proceedings of the 2015 ACM SIGPLAN

International Conference on Object-Oriented Programming, Systems, Languages,

and Applications.

Jonas Magazinius, Billy K. Rios, and Andrei Sabelfeld. 2013. Polyglots: crossing

origins by crossing formats. ACM conference on Computer & communications

security (2013).

[15] Yassine Mekdad, Giuseppe Bernieri, Mauro Conti, and Abdeslam El Fergougui.

2021. The rise of ICS malware: A comparative analysis. In European Symposium

on Research in Computer Security. Springer.

MITRE. 2022. CWE-1287: Improper Validation of Specified Type of Input. https:

//cwe.mitre.org/data/definitions/1287 html.

Jens Miiller, Dominik Noss, Christian Mainka, Vladislav Mladenov, and Jorg

Schwenk. 2021. Processing Dangerous Paths-On Security and Privacy of the

Portable Document Format. In Network and Distributed System Security Sympo-

sium.

[18] Benjamin Barslev Nielsen, Martin Toldam Torp, and Anders Meller. 2021. Modular

Call Graph Construction for Security Scanning of Node.Js Applications. In ACM

International Symposium on Software Testing and Analysis.

Andres Ojamaa and Karl Diitina. 2012. Assessing the security of Node.js platform.

In International Conference for Internet Technology and Secured Transactions.

Behzad Ousat, Mohammad Ali Tofighi, and Amin Kharraz. 2023. An End-to-End

Analysis of Covid-Themed Scams in the Wild. In Proceedings of the 2023 ACM

Asia Conference on Computer and Communications Security. 509-523.

OWASP. 2022. File Content Validation OWASP . https://cheatsheetseries.owasp

.org/cheatsheets/File_Upload_Cheat_Sheet.html#file-content-validation.

[22] OWASP. 2023. Unrestricted File Upload. https://owasp.org/www-community/vu

Inerabilities/Unrestricted_File Upload.

Harun Oz, Ahmet Aris, Abbas Acar, Giiliz Seray Tuncay, Leonardo Babun, and

Selcuk Uluagac. 2023. {ReB}: Ransomware over Modern Web Browsers. In 32nd

USENIX Security Symposium (USENIX Security 23). 7073-7090.

[24] Harun Oz, Ahmet Aris, Albert Levi, and A. Selcuk Uluagac. 2022. A Survey on
Ransomware: Evolution, Taxonomy, and Defense Solutions. ACM Comput. Surv.
(jan 2022). https://doi.org/10.1145/3514229

[25] Harun Oz, Faraz Naseem, Ahmet Aris, Abbas Acar, Guliz Seray Tuncay, and

A Selcuk Uluagac. 2022. Poster: Feasibility of Malware Visualization Techniques

against Adversarial Machine Learning Attacks. In 43rd IEEE Symposium on Secu-

rity and Privacy (S&P).

Upasana Sarmah, D.K. Bhattacharyya, and].K. Kalita. 2018. A survey of detection

methods for XSS attacks. Journal of Network and Computer Applications (2018).

[2

[

[12

(13

[14

[16

[17

[19

[20

[21

[23

[26

WWW ’24, May 13-17, 2024, Singapore, Singapore

[27] Ax Sharma. 2022. Node]S module downloaded 7M times lets hackers inject
code. https://www.bleepingcomputer.com/news/security/nodejs-module-
downloaded-7m-times-lets-hackers-inject-code/.

Konstantinos Solomos, Panagiotis Ilia, Soroush Karami, Nick Nikiforakis, and
Jason Polakis. 2022. The Dangers of Human Touch: Fingerprinting Browser
Extensions through User Actions. In 31st USENIX Security Symposium.

Mahdi Soltani, Behzad Ousat, Mahdi Jafari Siavoshani, and Amir Hossein Jahangir.
2023. An Adaptable Deep Learning-based Intrusion Detection System to Zero-day
Attacks. Journal of Information Security and Applications 76 (2023), 103516.
Cristian Staicu and Michael Pradel. 2018. Freezing the Web: A Study of ReDoS
Vulnerabilities in JavaScript-based Web Servers. In USENIX Security Symposium.
Cristian Staicu, Michael Pradel, and Benjamin Livshits. 2018. SYNODE: Under-
standing and Automatically Preventing Injection Attacks on Node.js. In Network
and Distributed System Security Symposium.

Phil Stokes. 2019. Malicious PDFs. https://www.sentinelone.com/blog/malicious-
pdfs-revealing-techniques-behind-attacks/.

Nasir Uddin and Mohammad Jabr. 2016. File Upload Security and Validation in
Context of Software as a Service Cloud Model. In 6th International Conference on
IT Convergence and Security (ICITCS).

Daniel Votipka, Kelsey R. Fulton, James Parker, Matthew Hou, Michelle L.
Mazurek, and Michael Hicks. 2020. Understanding security mistakes devel-
opers make: Qualitative analysis from Build It, Break It, Fix It. In 29th USENIX
Security Symposium.

Feng Xiao, Jianwei Huang, Yichang Xiong, Guangliang Yang, Hong Hu, Guofei
Gu, and Wenke Lee. 2021. Abusing Hidden Properties to Attack the Node.js
Ecosystem. In USENIX Security Symposium.

Markus Zimmermann, Cristian Staicu, Cam Tenny, and Michael Pradel. 2019.
Small World with High Risks: A Study of Security Threats in the npm Ecosystem.
In 28th USENIX Security Symposium.

[28

[29

[30

w
—

[32

[33

(34

[35

&
2

APPENDIX

9 VULNERABILITY DISCLOSURE AND
RESPONSES

We responsibly disclosed our findings to the respective developers
and maintainers of the libraries and CMSs. As of writing this paper,
we received 8 CVEs (CVE-2022-26963, CVE-2022-27140, CVE-2022-
27261, CVE-2022-27141, CVE-2022-29622, CVE-2022-27262, CVE-
2022-29623, CVE-2022-29353) for libraries and 11 CVEs (CVE-2022-
27263, CVE-2022-27951, CVE-2022-27266, CVE-2022-27952, CVE-
2022-27139, CVE-2022-28397, CVE-2022-27260, CVE-2022-29351,
CVE-2022-29354, CVE-2022-30013, CVE-2022-45775) for CMSs. For
disclosure, we sent an initial notification email to each developer.
We sent a second email to the ones that responded to our notification
email. In the second email, we included the following: (i) general
description, (ii) implementation issues, (iii) steps for reproducing
the vulnerabilities, (iv) the proof-of-concept attack videos, and (v)
potential countermeasures for each vulnerability. The summary of
library and CMS developers’ responses is given in the Table 3.

Library Developers’ Responses and Reactions. We received an
initial response from five libraries within three days after the initial
notification email. We did not receive a response from the connect-
multiparty library. Meanwhile, express-fileupload and formidable
libraries acknowledged the issues and implementation mistakes
related to their file name handling on uploaded files. They fixed
the problems and released patched versions. Moreover, although
the multer library acknowledged the issue, they refused to patch
the library, claiming that their library simply accepts all files re-
gardless of their content and deferred the responsibility to web
application developers to apply the necessary security checks. Fur-
thermore, the graphql-upload library considered the reported issue
to be outside the scope of the offered service since the library op-
erates as middleware. We recommended that they clarify this in
their security documentation, stating that they do not perform any

https://cwe.mitre.org/data/definitions/1287.html
https://cwe.mitre.org/data/definitions/1287.html
https://cheatsheetseries.owasp.org/cheatsheets/File_Upload_Cheat_Sheet.html#file-content-validation
https://cheatsheetseries.owasp.org/cheatsheets/File_Upload_Cheat_Sheet.html#file-content-validation
https://owasp.org/www-community/vulnerabilities/Unrestricted_File_Upload
https://owasp.org/www-community/vulnerabilities/Unrestricted_File_Upload
https://doi.org/10.1145/3514229
https://www.bleepingcomputer.com/news/security/nodejs-module-downloaded-7m-times-lets-hackers-inject-code/
https://www.bleepingcomputer.com/news/security/nodejs-module-downloaded-7m-times-lets-hackers-inject-code/
https://www.sentinelone.com/blog/malicious-pdfs-revealing-techniques-behind-attacks/
https://www.sentinelone.com/blog/malicious-pdfs-revealing-techniques-behind-attacks/

WWW ’24, May 13-17, 2024, Singapore, Singapore

Table 3: Library/CMS developer responses and patching sta-
tus of the reported vulnerabilities.

Name ‘ Type ‘ Version | Response | Ack IsCstd ‘ P;:}::;g
express-fileupload	Library	1.2.1	02/02/2022	Yes	Yes	Yes
multer	Library	144	03/12/2022	No	Yes	No
formidable	Library	2.0.1	04/02/2022	Yes	Yes	Yes
‘ connect-multiparty ‘ Library ‘ 2.0.0 ‘ No ‘ No ‘ Yes ‘ No ‘						
skipper	Library	0.9.1	09/09/2022	No	Yes	No ‘
graphql-upload	Library	13.0.0	04/13/2022	No	Yes	No
GhostCMS	CMS	4420	04/07/2022	Yes	Yes	No
payloadCMS	CMS	0151	04/06/2022	Yes	Yes	No
Strapi	CMS	417	04/13/2022	Yes	Yes	Yes
‘ ButterCMS ‘ CMS ‘ 1.2.9 ‘ 04/12/2022 ‘ Yes ‘ Yes ‘ Yes ‘						
Keystone	CMS	421	No	No	Yes	No
FireCMS [CMS	100	No	No	No	No	
Tiddlywiki	CMS	522	04/03/2022	Yes	Yes	No
totaljs	CMS	400	04/252022	Yes	Yes	No

security checks in their library to avoid misleading web application
developers.

CMS Developers’ Responses and Reactions. As for the responses
from the real-world web applications, six out of the eight vulnerable
real-world web applications analyzed, namely GhostCMS, Payload-
CMS, Strapi, ButterCMS, Tiddlywiki, totaljs, replied to our notifi-
cation email in two weeks. So far, ButterCMS and Strapi fixed the
vulnerabilities. On the other hand, GhostCMS and PayloadCMS
refused to patch the vulnerabilities. They claimed that all users
were considered to be trusted in their "threat model", and that they
did not expect them to upload malicious files. Furthermore, totaljs
and Tiddlywiki acknowledged our findings and requested more
information about our findings. After, we sent the aforementioned
detailed attack description email. However, we have not received
any reply as of the writing of this paper. At the time of this writing,
we unfortunately still have not heard back from the developers of
fireCMS, and keystone for the vulnerabilities notified.

US-Cert Involvement. We also notified the US-CERT about the
issues. They acknowledged our findings and decided to create two
cases, one for the libraries and one for impacted CMSs.

10 IMPLEMENTATION DETAILS OF NODESEC

To systematically analyze the file upload security weaknesses in
Node.js applications and libraries, we developed NoDESEC, which
automatically generates attack payload files for our attacks (A1-A13)
and uploads the malicious payloads to the target web application
in an automated fashion. The architecture of NoDESEC is depicted
in Figure 2 and consists of the following main modules: 1) Mali-
cious Payload Generator, 2) Payload Database, 3) Authorization 4)
Uploader, and 5) Validator.

Malicious Payload Generator. This module creates payload files
to trigger the attacks detailed in Section 3.2. It comprises multiple
attack generator components that transform seed files into attack
payloads. After generating the payloads, we verify whether they are
executable following the modification and ensure the preservation
of their semantics. Its components include:

Harun Oz et al.

o Malicious Extension Injector. This component takes a seed file as
input, such as test.js, and injects multiple extensions through
either random prepending or appending with benign extensions
(e.g., test.js.png, test.png.js), removing the file extension entirely
(e.g., test), disguising the file extension by randomly altering the
case of its characters (e.g., testJs, testJS), and appending unusual
extensions (e.g., seed.html5, test.js6). It also generates filenames
with triple-appended extensions (e.g., seed.pdf. html.png), ran-
domly mixed case extensions (e.g., test.Js, test hTml jPEg), and
unusual extensions (e.g., jsx, mjs, xhtml).

o Null-byte Injector. This module inserts null-byte characters at
random positions within the file name. To enhance the attack
coverage, we base this component on the set of files generated
by the Malicious Extension Injector. Specifically, this component
places different null-bytes in random positions in the file name.
For example, this module creates file names such as test.js%00.png,
test.js%.png.

o Script Injector. This component receives a seed input file and in-
jects script payloads at random positions within the file name.
Similar to the Null-byte Injector component, this module in-
creases the attack coverage of our tool by injecting payload scripts
into random positions of the file name. For instance, using this
module, a JavaScript seed payload file named "test.png.js" can be
transformed into "test.png[payload].js".

o Non-alphanumeric Injector. This component takes a seed input file
and injects malicious non-alphanumeric characters into random
positions in the file name. For example, given a valid PNG file
named "file.png" as input, the component can generate file names
such as "/../.png".

e Spoofer. This component takes an input file and generates a
spoofed version with either altered MIME type or magic bytes.
It consists of two separate functionalities: MIME type spoofing
and magic-byte spoofing. For MIME type spoofing, the compo-
nent reads a JSON file containing a list of MIME types and their
corresponding file extensions. It iterates through the input files
and alters their MIME type from the original value (e.g., "tex-
t/javascript”) to a different MIME type (e.g., "application/pdf")
while keeping the file content unchanged. The output files are
saved with the same file extension but with an updated MIME
type, potentially bypassing file type validation checks based on
MIME types. In the case of magic-byte spoofing, the component
reads a JSON file containing a list of magic bytes associated with
different file formats. It iterates through the input files and mod-
ifies the magic byte of each file with another file format. The
output files are saved with a new file extension corresponding to
the spoofed magic byte, while the file content remains the same.

e Polyglot File Generator. This component creates polyglot files,
specifically PDF+HTML and PNG+JS combinations. Polyglot files
are files that are valid in multiple file formats, allowing them to
bypass certain file validation mechanisms and introduce security
risks in web applications [14]. To generate PDF+HTML polyglot
files, the script creates a simple PDF file using the ReportLab
library and a basic HTML file with a heading. It then combines
the PDF and HTML data, separated by a custom delimiter, into a
single file. For PNG+]JS polyglot files, the script reads an existing

(In)Security of File Uploads in Node.js

PNG file, calculates its header size, and injects a JavaScript pay-
load, preceded by a sequence of null bytes, into the file without
affecting its validity as a PNG image.

o Malicious File Generator. This component generates various types
of malicious files by embedding payloads within benign PDF, SVG,
and HTML files. The generator creates JavaScript-embedded and
compressed PDF files, SVG files with different payloads, and
modified HTML and EML files.

Payload Database. This component serves as a comprehensive
repository for attack payloads, which are then uploaded to the
target web application through the Uploader module. In addition
to the payloads generated by the Malicious Payload Generator for
our attacks considered in this study, the users can employ their
own scripts to generate different payload files or directly import
pre-created payload files to the database.

Authorization Module. The Authorization module is a Node.js
script that automates the collection of essential data, such as login
credentials, cookie tokens, and request headers. The script prompts
the user for required details such as login URL, upload target URL,
upload directory, username, and password. After, it navigates and
extracts the session cookie and headers, creates a configuration
object, and saves it as a JSON file. The configuration file is employed
by the Uploader module to automate the upload of payload files.
Uploader. The Uploader module automates the process of upload-
ing attack payload files to the server side of the target web ap-
plication. This module necessitates two critical input files: 1) a
configuration file retrieved from the Authorization module and 2)
a payload file designated for uploading to the target web applica-
tion. It employs the request-promise library to generate upload
requests and accepts configuration and payload files as inputs. The
module includes necessary functions that automate the upload
process for different payload files such as preparing form data.
Validator. The Validator module conducts the validation process af-
ter the successful upload of the payload for each attack. For attacks
involving malicious characters or extensions in the file name (A1-
A5), this component examines the web application’s sanitization
process. It determines whether the file name has been adequately
sanitized by checking the name of the uploaded file. If the file name
retains any malicious characters and/or patterns after a successful
upload, the Validator module classifies the web application as vul-
nerable. To validate the attacks that could result in code execution
on Node.js servers or browsers (A6-A13), the module checks the
file contents by searching for malicious content signatures. For
example, to validate the attack A13, the module scans the SVG file
and checks for a malicious script. After validating the presence of
malicious content, it remotely executes the file using the Node.js
interpreter v16.14.0 by employing Node.js script. The execution
is performed by a script that accesses the uploaded payload file’s
path via the URL obtained from the target web application’s Node
server.

11 ATTACK EXECUTION & IMPACT

Evading security checks in a web application to upload a malicious
payload is itself unintended and exposes the application’s insecurity.
However, to successfully exploit the vulnerability, as explained in
our threat model in Section, the attacker still needs to find a way to

WWW ’24, May 13-17, 2024, Singapore, Singapore

execute the uploaded payload, either on the client or server side [20].
We discuss these methods and their potential consequences below.
Executing on the client side. The file name or content reflected by
the web page can cause arbitrary code execution on the client side.
The attacker can employ various tactics to trigger code execution
on the client side, such as directly uploading an HTML or JS file
to a web page. Then, a user can trigger the execution of the file
by accessing or opening it from the public path of the file. This
can lead to various attacks, such as stealing sensitive user data or
redirecting users to malicious websites.

Executing on the server side. Unlike PHP, Node.js compiles
JavaScript code into machine code before execution, to minimize
the arbitrary code execution [9]. Nevertheless, the attackers can still
exploit UFU vulnerabilities to execute code in the server-side. For
instance, attackers may exploit dangerous Node.js functions, like
eval() and exec(), to enable server-side execution of uploaded
files. For example, after the malicious payload file is uploaded to
the server, the eval () function implemented on the server side
can execute a JavaScript code embedded in the payload file. While
the security sandboxing of JavaScript decreases the dangers/risks
of these functions by preventing the execution of the code in the
browser, Node.js does not have a built-in security sandbox [19, 31].
In some cases, the reliance on third-party libraries and modules
in Node.js applications can introduce vulnerabilities. For example,
after uploading a malicious payload file, an attacker could exploit an
insecure implementation of the security-related function (e.g., sani-
tization function) in a third-party library, executing the embedded
JavaScript code in the payload file [27].

12 ANALYSIS OF MORE REAL-WORLD WEB
APPS

« ButterCMS: is another popular CMS with over 20k weekly down-
loads. It employs the formidable library for processing the uploaded
files. Our analysis, conducted with NODESEC, reveals that it does
not use any additional security mechanisms to strengthen its file
upload security. As a result, ButterCMS is vulnerable to the same set
of attacks as the formidable library, which includes file type-based
attacks and content-based attacks.

« FireCMS: is a CMS used by various websites from different sec-
tors and received nearly 1k stars on GitHub. It utilizes custom-
implemented functions to process the uploaded files before sending
them to the server. Thanks to its custom build fileNamebuilder
function, FireCMS is resilient to four types of file name-based at-
tacks. Nevertheless, it does not utilize any type of file validation
mechanism to prevent the uploading of malicious files which results
in FireCMS being insecure to other types of attacks.

« Totaljs: is an open-source CMS, It uses custom file upload functions
to process the uploaded files. We found that it is resilient against
all types of file name-based attacks since it assigns a random name
to an uploaded file via a custom-implemented function. Nonethe-
less, it does not utilize any type of file validation technique before
uploading a file to its server. Thus, it is insecure against the A10
attack type. However, it performs pre-processing and resizing op-
erations on the images before displaying them on the front end. In
this process, it raises an exception while pre-processing the image
files with a payload. Thus, it is resilient against three types of file

WWW ’24, May 13-17, 2024, Singapore, Singapore

type-based attacks and one type of content-based attack. However,
it is not resilient against two types of content-based attacks.

« Keystone: is a popular CMS with over 1.7k weekly downloads.
It makes use of graphql-upload for uploading files to the server.
Our analysis showed that Keystone implements additional security
mechanisms by assigning a safe file name to an uploaded file before
sending it to the server by using filenamify package, which makes
it resilient against all types of file name-based attacks. Moreover,
it uses the image-type module to determine and validate the file
types of images, which prevents three types of file type-based at-
tacks and SVG upload attacks. Nevertheless, it does not utilize any
mechanism to detect malicious content within PDF files. Hence,
Keystone is only insecure against two types of content-based at-
tacks.

13 COMPARISON WITH EXISTING TOOLS

The fundamental concept of file uploading remains consistent (i.e.,
transferring a file from a client to a server) among different server-
side technologies. So, theoretically, all the existing tools can be
adapted for analyzing Node.js applications. Whereas, this requires
significant domain expertise and in-depth knowledge of the existing
tools’ source. Below, we enumerate the challenges in using existing
tools for Node.js and compare the attack coverage of NoDESEC with
existing tools.

A Challenges in Using Existing Tools for
Node.js

During our experiment, we observed the main challenges of using
existing tools for Node.js applications as follows:

Syntax and Structure. The syntax, structure, and functions of pro-
gramming languages can differ significantly, leading to challenges
in detecting and addressing UFU vulnerabilities across different
languages. These differences in syntax and structure makes static
analysis techniques tailored for PHP syntax, such as those em-
ployed by UChecker [7] and UFuzzer [8], inapplicable for Node.js
applications. For instance, the lack of tag-based syntax in Node.js
might influence the detection process, as tools designed for PHP do
not parse or analyze JavaScript code to detect UFU vulnerabilities.
Moreover, the execution of listeners within third-party packages in
Node.js applications is event-driven, which can pose challenges for
static analysis-based approaches [6].

Library Usage and Different File Handling. PHP-based web ap-
plications commonly use the _FILES superglobal array and built-in
functions (e.g., finfo_file), during the file upload process [11].
These built-in functions are part of the core PHP language. So,
they inherently provide a safer setup. Conversely, Node.js web ap-
plications frequently use third-party file upload libraries. Hence,
when analyzing UFU vulnerabilities in Node.js applications, it’s
vital to create attack payloads that specifically address edge cases
in these libraries. We evaluated the existing tools on the formida-
ble library and found that the techniques employed by these tools
were unable to detect the existing implementation flaws since their
attacks mostly focus on the lack of checks during the file upload
mechanisms of the web application. On the other hand, as detailed

Harun Oz et al.

in Section 4.1, NODESEC uniquely generates file names by insert-
ing payloads at random positions, which enabled it to exclusively
identify implementation error in the formidable.

Different Execution Environments. PHP-based web applications
typically run on web servers like Apache or Nginx, whereas Node.js-
based web applications either have their own integrated web server
or use a server like Express.js. Our experiments have shown that
existing tools, such as FUSE and Fuxploider, generate payloads
based on PHP tags and PHP-specific functions in their payload
generation process. These tools are designed to detect UFU vulner-
abilities in PHP web applications, and their payloads are intended
for execution within PHP interpreters on Apache or Nginx servers
or specific server configurations. Although these payloads can suc-
cessfully identify distinct UFU vulnerabilities in PHP applications,
they are not applicable to Node.js applications. We observed that
FUSE-generated payloads such as ’seed. PHP, incorrectly labeled
the application as vulnerable. However, Node.js applications are
not designed to process PHP code, which results in false positives.
Furthermore, existing file upload analysis tools primarily focus
on the execution of JavaScript files on the client side. In contrast,
Node.js environments also allow for the execution of JavaScript
files server-side [31].

B Attack Coverage

FUSE. is designed to identify UFU vulnerabilities in PHP-based
web applications by performing 13 different mutation techniques
(M1 to M13) on seed files such as HTML, JS, XHTML, and PHP.
NODESEC covers mutations M1, M2, M3, M6, M8, M9, and M13. The
mutation M5 replaces PHP tags in PHP files, is not applicable to
Node.js applications that do not use PHP tags. Mutations M4, M7,
M10, M11, and M12 in FUSE are designed to modify the name of
an uploaded file, all of which are covered by NoDESEC. Moreover,
unlike FUSE, NoDESEC considers several other attacks related to
file name and file type, such as null-byte injected file name, script-
named file name, path traversal, and PDF bomb attack.
UploadScanner allows testing of web application security mecha-
nisms against both file type-based and file content-based attacks. To
evaluate web applications against file name-based attacks, Upload-
Scanner generates payloads by prepending an extension to a file
name, changing the file’s extension, and injecting scripts, null-bytes,
and path traversal payloads into the file name. NODESEC enhances
these attacks by integrating randomization logic and inserting null
bytes, scripts, and path traversal payloads into random positions of
the file names. This enables the generation of more sophisticated
payloads, such as test.js[payload].png. Notably, with this approach,
NobDESEc uncovered 3 different implementation mistakes in the
popular file upload libraries.

Fuxploider is an open-source tool that automates the detection and
exploitation of file upload vulnerabilities. It focuses on detecting
UFU vulnerabilities in PHP and JSP applications by employing the
issues in specific functions in these languages function, and server
configurations. In terms of attack coverage, Fuxploider can upload
a file by changing its extension to upper and lower case, using an
uncommon extension, and altering the MIME-type, all of which are
already covered by NoDESEC.

	Abstract
	1 Introduction
	2 Unrestricted File Upload
	2.1 File Upload in Node.js
	2.2 Unrestricted File Upload in Node.js

	3 Methodology
	3.1 Attack Identification
	3.2 Attack Descriptions
	3.3 Secure File Upload Validation Objectives
	3.4 NodeSec

	4 Analyzing Libraries & Applications
	4.1 (In)Securities in File Upload Libraries
	4.2 (In)securities in Real world Applications

	5 Root Causes & Recommendations
	6 Related Work
	7 Conclusion
	8 Acknowledgement
	References
	9 Vulnerability Disclosure and Responses
	10 Implementation Details of NodeSec
	11 Attack Execution & Impact
	12 Analysis of More Real-world Web Apps
	13 Comparison with Existing Tools
	A Challenges in Using Existing Tools for Node.js
	B Attack Coverage

