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ABSTRACT

Cloud-based file storage platforms such as Google Drive are widely

used as a means for storing, editing and sharing personal and or-

ganizational documents. In this paper, we improve search ranking

quality for cloud storage platforms by utilizing user activity logs.
Different from search logs, activity logs capture general document

usage activity beyond search, such as opening, editing and sharing

documents. We propose to automatically learn text embeddings

that are effective for search ranking from activity logs. We develop

a novel co-access signal, i.e., whether two documents were accessed

by a user around the same time, to train deep semantic matching

models that are useful for improving the search ranking quality.

We confirm that activity-trained semantic matching models can

improve ranking by conducting extensive offline experimentation

using Google Drive search and activity logs. To the best of our

knowledge, this is the first work to examine the benefits of leverag-

ing document usage activity at large scale for cloud storage search;

as such it can shed light on using such activity in scenarios where

direct collection of search-specific interactions (e.g., query and click

logs) may be expensive or infeasible.
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1 INTRODUCTION

Cloud storage platforms, such as Google Drive or Dropbox, are

widely used as a means for storing, editing and sharing personal

and organizational documents. They are characterized by storing

documents in the cloud and facilitating easy assess across different

devices. Unlike traditional Web-based search, cloud storage search
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is challenging because it involves searching through private collec-

tions of documents. Due to the private nature of the documents, it is

impossible to gather relevance judgments from professional annota-

tors, instead necessitating the use of click logs [40]. As such, existing

work has extensively explored the use of click logs [19, 32, 33, 40, 41].

Most of this existing work focuses on extracting features and labels

from large-scale search logs and using those to train a ranker.

Semantic matching models are effective at matching queries to

documents in situations where traditional lexical matching fea-

tures fail due to the vocabulary gap [39]. Recent work on semantic

matching models use neural networks to improve ranking qual-

ity [17]. Semantic matching models can be trained using either

(a) self-supervision (e.g. word2vec [25]), or, (b) labeled data (e.g.

DSSM [18]). Self-supervised models, while they do not require any

search logs or human labels for training, may not work well as

they cannot take advantage of any relevance or user behavior data.

On the contrary, supervised semantic matching models require

large amounts of labeled data and may fail to generalize when

sufficiently large search logs are not available. In this paper we

investigate non-search user interaction data with which we can

train semantic matching models: user activity logs. User activity
logs are typically more abundant than search logs and can pro-

vide an adequate substitute for search logs when training semantic

matching models.

Our goal is to improve the search ranking quality for cloud stor-

age platforms by utilizing user activity logs, which record user’s

interactions with the cloud storage platform. Examples of such

interactions include opening, editing or sharing a document. In

contrast to search logs, activity logs contain a richer set of interac-

tions beyond clicks, span more than just the search component, and

are available in much more abundant quantity. As demonstrated

in several user studies on personal search [14, 16], activity-based

signals such as the recency and the context in which the documents

are accessed play an important role in determining the relevance

of the document to the tasks that the user may be working on.

Despite the fact that activity logs are more abundant than search

logs, using them to train semantic matching models is not trivial.

In contrast to search logs, activity logs are not necessarily tailored

towards ranking and activity-trained semantic matching models

may not work well for improving search quality. To overcome

this, we propose to use co-access, a signal that measures whether

two documents are accessed in sequence and within a short time

span as a proxy for relevance; we then use this information as a

weakly supervised label for training text embeddings and semantic

similarity models.

Our experiments using large-scale Google Drive search and activ-

ity data show that semantic matching models trained with co-access

can improve ranking performance significantly compared to lexical

matching and semantic matching baselines that are not trained on
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activity logs. Furthermore, we show that incorporating activity-

trained semantic matching models with strong hand-crafted fea-

tures further improves ranking performance, especially in cases

where hand-crafted features alone do not provide sufficient signals.

Finally, our results show that, by leveraging activity logs, practi-

tioners of cloud storage systems can train effective ranking models

without requiring a large amount of search logs. This shows that ac-

tivity logs can significantly help when search logs are not available

in abundant quality.

To the best of our knowledge, this is the first work to examine the

benefits of leveraging non-search related document usage activity

for cloud storage search in a large-scale production system. We

demonstrate that such activity can be used to not only provide

features to ranking models, but also to derive semantic similarity

models that improve lexical text matching. As such, this work can

shed light on employing user activity in scenarios where direct

collection of search-specific interactions (e.g., query and click logs)

may be expensive or infeasible, or in cloud storage services that

have no existing search functionality.

2 RELATEDWORK

Cloud storage is widely used by individuals and organizations as a

means of storing, organizing and sharing documents. Cloud storage

faces several research challenges, for example: scaling to large traffic

volume [8, 13], anonymizing data [36], and optimizing search [3].

Cloud storage search is related to email search [3, 6], enterprise

domain search [38], desktop search [21], and other personal search

problems [14, 16] in that they typically involve searching through

private corpora; however, it is also unique in that rich non-search

user activities, such as opening, editing and sharing documents, can

be logged at large scale in cloud storage systems, which inspires

our work.

Learning to Rank (LTR) is a widely used approach to optimize

search engine quality. Recent research on LTR focuses on learning

from user interactions [19, 24, 40]. State-of-the-art approaches for

optimizing search rely on combining large sets of high-quality hand-

crafted features into a well performing model. Tree-based methods,

specifically LambdaMart [5, 43], excel at combining high-quality

features into a single strong performing model. LambdaMart has

enjoyed considerable success in the past and is still considered state-

of-the-art [42]. In particular, LambdaMart has repeatedly outper-

formed all other models on public benchmarks, where the number

of training examples is limited [7, 20], even with the advancement

of neural ranking methods [4]. Therefore, we use it as the ranking

model of choice in this paper.

More recently, advances in neural networks enabled signifi-

cant progress on semantic matching models for information re-

trieval (see [26] for a recent comprehensive survey on this topic).

Most generally, these semantic matching models use either search

logs [17, 18, 35, 35, 45] or weak supervision [9, 11] to learn text em-

beddings that best capture query-document similarities. Subsequent

work introduced multiple advanced variations on these semantic

matching models including (among many others) convolutional

networks [10], kernel pooling [44] and transformers [29]. However,

note that these advanced method cannot be readily applied to our

Figure 1: An example of Google Drive’s top-5 ranking list.

heavily reducted dataset, which, due to privacy constraints, does

not preserve word ordering (see Section 3.3).

In contrast to prior work on semantic matching models, text

embeddings based on user activity do not require learning query-

document similarities. This is a highly desirable property for cloud

storage systems where either no existing search solutions exist or

search logs are sparse due to low search volume and / or private

nature of search intents. For instance, a study by Ai et al. [1] shows

that email search queries are much shorter than those in web search,

and are often based on a particular email metadata (e.g., sender or

received / sent date). Such queries are less likely to generate robust

generalizable semantic matching models.

User activity has been extensively used for user modeling [2,

28, 31], predicting future user behavior [12, 37], or document re-

trieval [14, 16] to name just a few. More recently, Kong et al. [22]

used activity logs for learning to cluster documents. However, to

the best of our knowledge, there is no prior work on learning se-

mantic matching models from activity logs at large scale, especially

in the context of cloud storage search.

3 PROBLEM SETTING

3.1 Cloud Storage Search

Cloud storage search can be formulated as a Learning to Rank (LTR)

problem. More formally, we wish to learn a ranking function f (q,d),
which, for given query q and document d , produces a score such
that relevant documents are assigned high scores and less relevant

documents are assigned low scores. The learned function can then

be applied to a query q and a collection of candidate documents

D = {d1,d2, . . . ,dn } to rank the documents by relevance, placing

highly relevant documents at the top.

3.2 Solution Overview

In this paper we focus on improving the top-5 ranking of the search

component of Google Drive (see Figure 1). We provide an overview

of our solution in Figure 2. More specifically, we train a Lamb-

daMart [43] model on a click log spanning several weeks. We chose

to use a Gradient Boosted Decision Tree (GBDT) approach as these

methods have demonstrated very strong ranking performance [43],

are computationally easy to scale, are robust against outliers and

can naturally handle input of varying distributions [15]. We incor-

porate the output of activity-trained semantic similarity models as

features for training the GBDT.
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Figure 2: An overview of the proposed solution for cloud

storage search. On the left are hand-crafted features for

given query q and document d . On the right a deep semantic

matchingmodel produces both an encoding (the last hidden

layer) and a similarity score sim(q,d). Both the hand-crafted

and learned features are combined in an LTR model.

3.3 Privacy

Google Drive contains private document corpora and requires spe-

cial treatment to protect user privacy. For this reason, our data used

for the experiments are k-anonymized [36] and are inaccessible

to individual engineers. Moreover, for our proposed methods, we

limit the use of text content to the document titles, not the full

content. The titles are also k-anonymized, i.e., only frequent words

used by sufficiently many users in the corpus are retained with

no word sequence information preserved. Note that this limits our

choices of text embedding models to word-level and character-level

embeddings. Some of our baseline models / features are based on

document full content, but these models / features are computed on

the fly – document content is never materialized for model training.

4 USING ACTIVITY LOGS FOR SEMANTIC

MATCHING

Directly applying existing semantic matching models on query logs

for cloud storage search is not trivial because click logs for cloud

storage search may not be available in sufficient quantity to learn

effective semantic matching models, and training them with too

few data points may lead to poor generalization. To overcome this

limitation we propose to use a different, more abundant, source of

data for training semantic matching models: activity logs. Our goal
is to learn semantic matching models from activity logs and apply

them for ranking.

4.1 Semantic Matching Models

A Semantic Matching Model (SMM) learns to compute the semantic

similarity of two pieces of text (typically a query and document

for search problems) [17, 18]. The model takes a text pair (t , t ′)
as input and produces sim(t , t ′), a score indicating the similarity

between the two texts, as output. This formulation is quite general

text t

embedding

text t ′

embedding

concatenation

feed-forward

linear

sigmoid

sim(t , t ′)

emb(t) emb(t ′)

h0

hk

text t

embedding

text t ′

embedding

feed-forward feed-forward

dot-product

sigmoid

sim(t , t ′)

emb(t) emb(t ′)

htk ht
′

k

Figure 3: On the left is the Concatenation Semantic Match-

ingModel (Concat) and on the right is the Siamese Semantic

MatchingModel (Siam). Dotted lines indicate sharedweights

between components.

as the text pair (t , t ′) could be any two pieces of short text. For

example, in ranking we would use a query q and document d to

predict the similarity between the query and document: sim(q,d).
Similarly, if we were interested in modeling document similarity we

could use two documents (d,d ′) as input and predict their similarity:

sim(d,d ′). As we will see later, this general formulation is beneficial

as we will train our semantic matching models on document pairs,
but apply them to queries and documents when ranking.

To train semantic matching models we would need to obtain a

dataset containing textual pairs and their respective relevance la-

bels. It is not possible to collect labeled examples from professional

annotators due to the privacy considerations when dealing with

cloud storage data. Even for cases where collecting labels from hu-

man annotators is possible, conducting such an annotation process

at large scale could be too expensive and infeasible. Our proposed

solution to this is to extract relevance labels automatically from

users’ activity logs.

We emphasize that the specific architecture of the SMM is not the

focus of our paper, nor do we claim that any specific architectures

we use are novel. Instead we are interested in understanding how

one can learn semantic matching models from activity data. We

use two popular architectures, a concatenation semantic matching

model and a Siamese semantic matching model, shown in Figure 3

and described briefly below.

(1) Concatenation SemanticMatchingModel (Concat). Themodel

first computes an embedding for the texts t and t ′. Each character

n-gram in the text is mapped to an embedding, where only the most

frequent n-grams are retained to limit the vocabulary and make the

problem computationally feasible. The character n-grams for t and
t ′ are then averaged to obtain emb(t) and emb(t ′) respectively. The
representations are concatenated to obtain:

h0 =
[
emb(t), emb(t ′)

]
.

Note that more advanced text encoders such as recurrent neural

networks and transformers are not applicable to our problem. This



is because, as mentioned in Section 3.3, to protect user privacy, we

are only allowed to use k-anonymized words with no sequence

information for model training.

This joint representation is then passed through a series of dense

feed-forward layers, where each layer hi is defined as:

hi = ϕ(Wihi−1 + bi ),

where ϕ is an activation function such as ReLU [27] or tanh. Finally,

the last layer of this feed-forward neural network, hk , is reduced to
a scalar value and mapped to a probability via a sigmoid function:

sim(t , t ′) = sigmoid(Wfinalhk + bfinal).

(2) Siamese Semantic Matching Model (Siam). This model embeds

the texts t and t ′ to their respective representations emb(t) and
emb(t ′). The process of producing these embeddings is exactly the

same as in the Concat. Next, these representations are passed

through a shared feed-forward neural network. More formally:

ht
0
= emb(t), ht

′

0
= emb(t ′),

hti = ϕ(Wih
t
i−1 + bi ), ht

′

i = ϕ(Wih
t ′
i−1 + bi ).

Note that the weightsWi and bi at each layer are shared for both t

and t ′. The output vectors of the last layer, htk and ht
′

k , are joined

via dot product and then passed through a sigmoid to obtain:

sim(t , t ′) = sigmoid
(
htk · ht

′

k

)
.

To apply the two SMMs for ranking, we feed the given query q
and document d into the models, and extract the following output

and hidden states as features for a LTR model: (a) the predicted

semantic similarity, sim(q,d); (b) the last hidden layer of Concat,

hk , which provides a richer representation for the query-document

pair; and (c) the last hidden layers in the towers of Siam, h
q
k and hdk ,

which encode q and d respectively. This is illustrated in Figure 2.

4.2 Weak Supervision Using Co-access Labels

In order to train semantic matching models we would like to obtain

relevance labels yt,t ′ ∈ {0, 1} that indicate whether text t is se-
mantically related to text t ′. We take a weakly-supervised learning

approach, and propose a co-access label, with the assumption that

it can serve as a proxy for relevance.

We say that two documents are co-accessed iff a user opens the

two documents in sequence and within a τ -minute time window.
We illustrate this concept in Figure 4 with τ = 2 minutes1. While

there are multiple alternative ways to design the co-access label,

we found that the method proposed here is conceptually simple,

yet empirically effective. The co-access label is motivated by the

fact that users often open multiple related documents in a single

session, yet it strives to reduce the number of false positive labels

by keeping a narrow time window and discarding non-consecutive

co-accesses.

The following procedure is employed to collect training exam-

ples with co-access labels: (1) We first sample segments of a user’s

activity logs, which we call activity segments. Each activity seg-

ment contains events from the same user in a consecutive time

1
During our initial investigationswe found that co-accesses have a long tail distribution,

with 70% of co-accesses occurring within the two minute window. Therefore, we fix

the co-access time window to two minutes in the remainder of this paper.

d1 d1 d2 d1 d3 d4

time

30 sec 1 min 1 min 1 min 3 min

co-access

{d1,d2}
co-access

{d2,d1}
co-access

{d1,d3}

no

co-access

{d3,d4}

Figure 4: Co-access as a label for document similarity. Doc-

ument pairs {d1,d2}, {d2,d1} and {d1,d3} are co-accessed, but
{d3,d4} is not since their co-access time is > 2 minutes.

window; (2) For each activity segment, we collect a set of docu-

ments the user accessed, D = {di }
|D |

i=1 . From the document set we

then collect all the unordered pairs of documents in the document

set, PD = {{d,d ′} | d,d ′ ∈ D ∧ d , d ′}; (3) Lastly, we extract co-
access labels for all the document pairs, and the co-access label

yd,d ′ is defined as:

yd,d ′ =

{
1, co_accesses(d,d ′) > 0

0, otherwise,

(1)

where co_accesses(d,d ′) is the number of co-access events between

d and d ′ in the activity segment. To give an example, for the ac-

tivity segment shown in Figure 4, the collected document set is

D = {d1,d2,d3,d4} and the extracted co-access labels for all the

document pairs are: yd1,d2 = yd1,d3 = 1, and, yd1,d4 = yd2,d3 =
yd2,d4 = yd3,d4 = 0.

This procedure yields a training dataset

D =

{
(d,d ′,yd,d ′) | {d,d ′} ∈

N⋃
i=1

P
(i)
D

}
from a large number of activity segments, where N is the number

of the segments. We then train a semantic matching model by

minimizing the weighted cross-entropy loss defined as follows:

−
∑

(d,d ′,yd,d′ )∈D

yd,d ′ log(sim(d,d ′))+λ(1−yd,d ′) log(1−sim(d,d ′)),

(2)

in which we use document titles as the text representations for each

document when scoring sim(d,d ′), and use λ ∈ (0, 1] as a hyper

parameter to down-weight the loss for negative document pairs.

We use this weighting to address data imbalance problem in the

dataset – in practice only a small percentage of document pairs

are co-accessed and the majority of the document pairs are not

co-accessed.

4.3 Co-access and Document Relevance

The co-access label as described in the previous section is attractive

for modeling relevance for a few reasons. First, it can be extracted

automatically from activity logs at large scale with little cost, even

for cloud document repositories with no available search data. Sec-

ond, it produces semantically related document pairs (d,d ′), where
d can viewed as an information need, and d ′ as a document satis-

fying this need. Lastly, the co-access label definition in Equation 1

closely matches the assumptions of the widely adopted probability

ranking principle (PRP) [34], where (a) relevance is assumed to



be a property of a document and the information need, and no

other information, and, (b) relevance can be modeled as a binary

probabilistic variable.

5 EXPERIMENTAL SETUP

We conduct experiments using large-scale Google Drive logs to

better understand whether semantic matchingmodels trained on ac-

tivity logs can improve the ranking quality of the search component

in Google Drive. As mentioned in Section 3.2 we focus on the top-5

ranking component of Google Drive and train a LambdaMart model

that incorporates the output of our semantic matching models (see

Figure 2).

5.1 Data collection

We collect two datasets from the search and activity logs of Google

Drive: (1) Co-access dataset Dc used for building our Semantic

Matching Models, and (2) Search dataset Ds used mainly for build-

ing learning to rank models. We describe them in more detail below.

5.1.1 Co-access dataset. We collect the co-access dataset Dc
from activity logs as follows: (1) We randomly sample different sets

of users for training, validation and testing. (2) For each user, we

sample 10 segments of the user’s event stream from the activity

logs. Each segment contains activity events of 3 consecutive weeks.

We sample the start timestamps of the activity segments uniformly

within a 2-week time window. We filter out segments that do not

contain sufficient activity events, i.e., less than 75 events. (3) From

each activity segment, we collect up to n most recently accessed

documents from the first two weeks of the segment. For each col-

lected document pair, we extract document titles and co-access

labels from the last week of the segment (i.e., whether the two

documents are co-accessed in that week). The size of the document

pair set could be very large – up to n · (n − 1)/2 pairs. To improve

efficiency as well as reducing noise, we filter the document pairs

by requiring them to be co-accessed in the first two weeks of the

segment. This reduces the size of document pair set dramatically

to around 10 per segment on average.

Table 1 shows some statistics for the collected co-access dataset

for training, validation and testing. The table reports the number

of activity segments and document pairs. Note that the training

set Dtrain
c is fairly large. This is because we can easily extract

the co-access data from a large set of eligible Google Drive users

and sample multiple activity segments from their activity logs.

The table also reports the percentages of co-accessed document

pairs (postive rate), which are quite consistent across the training,

validation and testing sets. Note that the positive rates are only

around 10%. To address this data imbalance issue, we down-weight

the negative document pairs when training our models as described

in Section 4.2. Moreover, the dataset is k-anonymized to protect

user privacy as described in Section 3.3.

5.1.2 Search dataset. The search dataset Ds comprises a set

of queries and clicks collected from the Google Drive search logs

over a period of several weeks. Here we select dates that are after

the dates of the co-access dataset Dc to prevent any potential data

peeking issues when training our LTR models on Ds . We then

extract all the features (see Section 5.4) and search clicks for the

Table 1: Statistics for co-access dataset Dc . The train, vali,
test superscript indicates the dataset is for training, valida-

tion or testing respectively. "#segments", "#pairs" and "% co-

accessed" report the total number of activity segments, doc-

ument pairs and percentage co-accessed pairs respectively.

Data split #segments #pairs % co-accessed

Dtrain
c 44.3M 448M 10.5%

Dvali
c 20.6K 205K 10.3%

Dtest
c 20.6K 205K 10.2%

sampled queries from the search logs and activity logs. Each query

is associated with about 5 documents on average, which is a direct

result of the search user interface.We discard all the queries without

clicks. We then split the data into training, validation and testing

set by dates, using the earlier dates for training, later dates for

validation and the latest dates for testing. This data split prevents

accidental leaking of future test queries and documents into the

training set. In total, we collected 31,421 queries for training, 25,412

queries for validation, and 24,595 queries for testing.

5.2 Evaluation

We evaluate the performance of each ranking model using Mean Re-

ciprocal Rank (MRR) and Negative Average Click Position (NACP),

which are defined as,

MRR =
1

|Q|

∑
q∈Q

1

rankq
, NACP = −

1

|Q|

∑
q∈Q

rankq ,

where Q = {q} is the evaluation query set, rankq is the rank of

the first clicked document for query q. To address click position

bias, we use propensity-weighted MRR and NACP which tend to

be more consistent with online experiment results [23, 40].

We tune each ranking model on the search validation dataset,

and report evaluation results on the test dataset. We performed

statistical significance tests using paired t-test with 0.01 as the p-

value threshold. In all tables we denote a statistically significant

increase and decrease compared to the baseline with △ and ▽
respectively.

5.3 Baselines

We compare the following semantic matching baseline models with

ours. Note that more advanced models like recurrent neural net-

works and transformers are not applicable to our problem. As men-

tioned in Section 3.3, to protect user privacy, our dataset only con-

tains k-anonymized words. Character n-grams extracted from these

words retain no sequence information for model training.

W2V We compare our work to Word2Vec (W2V) [25] since both

methods train text embeddings without needing access to search

logs. We use a straightforward approach to apply Word2Vec to

ranking: we compute the Word2Vec embeddings for query q and

document d , producing emb(q) and emb(d). We can then take the

dot product of these embeddings to produce a similarity score:

sim(q,d) = emb(q) · emb(d).

We train the embeddings using the Word2Vec skip-gram approach

on the 107 million document titles extracted from the search



dataset Ds . We retain the 500,000 most frequent n-grams as the

vocabulary and choose 90 as the dimensionality of these embed-

dings. We use the full document title as the context, since the text

does not retain word sequence information.

DSSM The Deep Structured Semantic Model (DSSM) [18] is a com-

monly used semantic matching model for ranking and we include

it in our comparison. The DSSM architecture is implemented us-

ing TF-Ranking [30], and is trained on the search dataset Ds . We

choose the softmax ranking loss function as our training objec-

tive [30]. We use a dimension size of 159 for the character n-gram

embeddings and ReLU as the activation function. The hidden layer

dimensions, learning rate, dropout rate and vocabulary size are

tuned via grid search.

5.4 Features

We compare different sets of features combined in LambdaMART.

We list all the studied features in Table 2 and describe them in

groups below.

Table 2: The full set of features used to train LTR models.

Feature Description

Lexical text matching features (TM)

Overlap # of query terms in the document title.

Normalized Same as Overlap, but after lexical normalization.

BM25V A variant of BM25 [34]

Activity-based features (ACT)

Last Access Time since last access.

Last Edit Time since last edit.

Doc Age Time since the document was created.

Activity-based semantic matching models (Section 4)

Concatsim Output of Concat: sim(q, d ).
Concatrep State of last hidden layer of Concat: hk .
Siamsim Output of Siam: sim(q, d ).
Siamrep State of last hidden layers of Siam: hqk , h

d
k .

Other semantic matching models (Section 5.3)

W2Vsim Output of W2V: sim(q, d ).
W2Vrep Embeddings of q and d : emb(q), emb(d ).
DSSMsim Output of DSSM: sim(q, d ).
DSSMrep State of last hidden layer of DSSM: hk .

Lexical text matching features (TM) These features perform var-

ious forms of lexical matching of the query and document.

Activity-based features (ACT) We use three simple but effec-

tive activity-based features, that characterize document recency,

namely Last Access, Last Edit, and, Doc Age.
Semantic matching features We extract the similarity scores as

well as the internal representations from our proposed and baseline

Semantic Matching Models. The similarity scores and internal rep-

resentations are denoted with subscript sim and rep respectively
in Table 2. Using both sim and rep is denoted using subscript both
in our experiment result tables, e.g., Concatboth includes both

Concatsim and Concatrep. We use a dimension size of 159 for

character n-gram embeddings. We cap the vocabulary size at 500k

by mapping less frequent character n-gram to out-of-vocabulary

embeddings. We tune the hidden layer size, learning rate and

activation functions.

Table 3: Ranking performance of SemanticMatchingModels

and activity-based features. The table reports relative per-

formancewith respect toW2Vsim baseline.△/▽ indicates sta-

tistically better/worse results over the baseline.

Model MRR NACP

W2Vsim +0.00% +0.00%

DSSMsim +1.64%
△

+2.92%
△

Siamsim +6.40%
△

+6.34%
△

Concatsim -5.56%
▽

-3.28%
▽

Last Access -1.10% +1.84%

Doc Age +2.01%
△

+2.32%
△

Last Edit +2.08%
△

+2.45%
△

BM25V +12.74%
△

+11.76%
△

TM +15.90%
△

+14.77%
△

6 RESULTS

6.1 Comparing Individual Models

In this section, we study the ranking performance of the Semantic

Matching Models when used independently. Our results are dis-

played in Table 3. TM is a fine-tuned combination of all the lexical

text matching features in Table 2 used by the production system.

All of these models, with the exception of DSSMsim and TM, do not

require any search training data.

First, we observe that the activity-based features perform rea-

sonably well, reaching levels similar to Semantic Matching Models

such as W2V and in the cases of Doc Age and Last Edit, performing

even better. These results seem surprising as features like Doc Age
and Last Edit are comparatively simple features. However, this can

be explained by the fact that our task is to re-rank the top 5 results

in Google Drive. Nevertheless, these findings reinforce our belief

that activity-based signals can be useful for search tasks.

Second, we see that supervised embeddings DSSM andweakly su-

pervised embeddings Siam aremore effective than the self-supervised

W2V approach. The Concat model underperforms significantly,

especially when compared to the very similar Siam model. Interest-

ingly, we find the Concat model performs significantly better on
the co-access prediction task, improving Area Under Curve (AUC)

by 10%. We hypothesize that the Siam architecture has an inductive

bias by forcing the representations of both query and document to

be directly comparable via dot product. Conversely, for the Concat

model, the concatenation of the embeddings allows the model to

learn complex feature interactions between the texts t and t ′, which
may learn useful patterns for co-access, but likely does not gener-

alize well to generic semantic similarity tasks and also not well to

ranking.

To further analyze this behavior we investigate to what extent

the different semantic matching models are correlated with the

lexical text matching and activity-based features. In Table 4 we

present the Pearson correlation between each model’s similarity

score output and those features. The findings here suggest that

W2V has the strongest correlation with lexical matching features

but does not correlate at all with activity-based features, which is

expected as the W2V model is trained on unlabeled text corpora



Table 4: Pearson Correlation between semantic matching

scores and lexical matching and activity-based features.

Model BM25V Normalized DocAge LastEdit

W2Vsim 0.3014 0.3798 0.0168 0.0104

Siamsim 0.2347 0.3044 -0.1256 -0.1183

Concatsim 0.0799 0.1126 -0.1478 -0.1305

DSSMsim 0.1784 0.2401 -0.0792 -0.0774

not on any user logs. Furthermore, we see that Concat correlates

weakly with lexical matching but much more strongly with activity-

based features, compared with other semantic matching models.

This indicates that the Concat architecture could capture activity-

based patterns more than the other Semantic Matching Models.

Finally, it seems that Siam correlates strongly with both lexical

matching features and activity-based features (when compared to

other models), which explains its strong performance in Table 3.

Finally, it is clear that none of the semantic similarity models

beat the simple ad-hoc retrieval baselines BM25V and TM. Because

of the strong performance of the lexical matching features, we

next investigate whether Semantic Matching Models could improve

ranking performance on top of TM in the next section.

6.2 Combined With Lexical Matching Features

We incorporate the semantic matching models with the text match-

ing features in a LambdaMart ranker. The results are displayed in

Table 5. For all Semantic Matching Models, we find that adding both

the similarity score (sim) and the representation (rep) as features
performs the best. Thus, we only report results when using both

sim and rep features (denoted by subscript both) in the rest of this

paper due to space limitation.

Table 5: Ranking performance (relative to the TM baseline)

of Semantic Matching Models when combined with lexical

text matching features.

Model MRR NACP

TM +0.00% +0.00%

TM +W2Vboth +1.46%
△

+1.52%
△

TM + DSSMboth +1.59%
△

+2.08%
△

TM + Concatboth +2.67%
△

+3.53%
△

TM + Siamboth +2.88%
△

+3.37%
△

In all cases, incorporating Semantic Matching Models together

with lexical text matching features improves the ranking perfor-

mance. Moreover, we observe that our weakly supervised activity-

trained semantic models (Concat and Siam) significantly outper-

form (p-value < 0.01, t-test) both the unsupervised (W2V) and the

supervised (DSSM) methods. We believe this could be explained by

that our Semantic Matching Models could capture some activity-

based patterns in addition to semantic similarity, as we discussed in

the correlation analysis (Table 4) of Section 6.2. Next, we find there

does not seem to be a discernible difference between the Concat

and Siam architectures. This indicates that the difference in ranking

performance between Concat and Siam that we observed in the

Table 6: Ranking performance of SemanticMatchingModels

(relative to the TM+ACT baseline) when combined with lex-

ical text matching features and activity-based features.

Model MRR NACP

TM + ACT +0.00% +0.00%

TM + ACT +W2Vboth +0.15% +0.35%
△

TM + ACT + DSSMboth -1.39%
▽

-2.18%
▽

TM + ACT + Concatboth +0.46%
△

+0.93%
△

TM + ACT + Siamboth +0.13% +0.29%

previous section (see Table 3) is largely overcome by incorporating

text matching features in the model.

6.3 Combined With All Hand-crafted Features

In this section we explore what benefit the Semantic Matching

Models have on top of hand-crafted text matching and activity-

based features. The main results are provided in Table 6.

First, we find the improvement from Semantic Matching Models

over TM + ACT becomes marginal, except for our Concat model.

Concat outperforms (p-value < 0.01) all the other baseline semantic

matching models (W2V, DSSM), and is the only model that provides

a statistically significant improvement over TM+ACT on both MRR

and NACP, achieving nearly +1% improvement on NACP.

Our further analysis in Table 7 shows Concat is especially help-

ful for the hard queries on which the activity-based features have

less discriminative power. Specifically, we measure their discrimi-

native power using the range of the Last Access feature defined as

follows:

range(Last Access) = max {Last Access} −min {Last Access} .

A lower range indicates the documents have similar activity-based

features and thus the features are less discriminative for ranking

the documents. Table 7 reports the improvement of Concat over

TM + ACT for queries within different Last Access range. We find

Concat improves over the strong TM + ACT baseline by +1.16%

and +2.22% on MRR and NACP respectively, impacting more than

20% of the test queries.

Table 7: Relative performance improvements of Concat

over TM + ACT for queries of different range(Last Access). %
of queries indicates what percentage of the queries have a

range within the specified threshold.

range (in days) % of queries MRR NACP

2 10.7% +1.55%
△

+2.93%
△

8 20.7% +1.16%
△

+2.22%
△

18 30.1% +0.97%
△

+1.89%
△

53 50.1% +0.67%
△

+1.33%
△

198 90.1% +0.48%
△

+1.94%
△

+∞ 100.0% +0.46%
△

+0.93%
△

6.4 Training With Abundant Search Data

We regard our semantic matching models weakly-supervised, since
they are trained on document co-access labels and do not require



any relevance labels or search clicks. In contrast, DSSM is a su-

pervised model that relies on a large number of search clicks or

relevance labels for training. That said, it plausible that with abun-

dant search clicks or relevance labels, the supervised model DSSM

could provide stronger ranking performance improvements than

our weakly supervised models. Therefore, in this last experiment,

we collect more search data (up to 23 million queries) to train DSSM,

and compare Concat with DSSM in Table 8.

Before analyzing the results, we emphasize that our work aims

to leverage co-access labels extracted from activity logs to improve

ranking when the search training data is limited. This is often the

case for cloud storage systems, in which users access documents

much more frequently than they search for documents. We further

collect more search data in order to investigate whether our weakly
supervised semantic matching models trained only on co-access la-

bels can provide similar performance as DSSM trained on abundant

search clicks.

Table 8: Relative performance of DSSM trained with dif-

ferent size of search training data with respect to Concat.

#Queries reports the number of queries used for training the

semantic matching models. △/▽ indicates statistically bet-

ter/worse results over Concat (p-value<0.01).

Model #Queries MRR NACP

TM + ACT + Concatboth 0 +0.00% +0.00%

TM + ACT + DSSMboth 31K -1.84%
▽

-3.15%
▽

TM + ACT + DSSMboth 63K -1.35%
▽

-2.13%
▽

TM + ACT + DSSMboth 1M -0.03% -0.13%

TM + ACT + DSSMboth 23M +0.28% +0.54%

In Table 8, we find that Concat still significantly outperforms

DSSM, when the search training data contains less than 1 million

queries. When training with 1 million to 23 million queries, DSSM

becomes comparable or slightly better than Concat, however, the

differences are quite small and not statistically significant (p-value

< 0.01). These results are exciting, as they indicate that, even in

cases with sparse and limited search logs, activity-based semantic

matching models could provide an adequate substitute.

6.5 Discussion

It is clear from Table 5 and Table 6, that our semantic matching mod-

els trained on document co-access labels can effectively improve

ranking performance, and they significantly outperform W2V (text

representations learned from unlabeled text corpora) and DSSM

(text representations learned from clickthrough data). Moreover,

Table 8 suggests that Concat can provide comparable performance

to DSSM even when DSSM is trained with orders of magnitude

more search queries.

The concatenation structure of Concat allows complex feature

interaction between the two text inputs. Because of this, Concat

significantly outperforms the Siamese network model Siam in co-

access prediction. Concat is also better than Siam at capturing

effective signals from the co-access labels that are not fully covered

by the lexical and activity-based features (Table 6). However, we

find Concat is less effective than Siam at capturing textual simi-

larity according to the correlation analysis (Table 4). We believe

this is because the Siamese structure forces Siam to learn represen-

tations for text matching, and therefore it’s more effective when

transferred from the co-access prediction task to the search ranking

task. Thus, when the lexical text matching features are absent, Siam

significantly outperform Concat (Table 3).

Our offline experiments using large scale Google Drive search

and activity logs provide strong evidence that activity logs are

an adequate substitute for search logs when training semantic

matching models. This is especially important for cloud storage

systems or other domain-specific applications, where search logs

may not be available in large quantity or even at all. For example,

when search is first introduced as a feature to a cloud storage system,

search logs will be non-existent, but activity logs are abundant. As

another example, a small enterprise may not have enough search

traffic to build a specialized semantic matching model, however it

may have enough activity data to do so.

7 CONCLUSION

In this paper, we demonstrate that leveraging user activity, e.g.,

document access, editing and sharing, can significantly improve

the quality of cloud storage search. In cloud storage search, users

often eschew using search altogether, opting out for navigation

instead. This makes it challenging to leverage click data as it may

not be available in the quantity necessary to train ranking models.

Compared to search logs in cloud storage system, user activity
logs are always available in abundant quantities, as they capture

any user interaction with the stored documents, however they are

not directly tied to search intents and information needs. To this

end, we introduce a novel method for automatically learning text

embeddings from activity logs, by employing document co-access
as a label for document similarity.

Our experiments demonstrate that such embeddings can signifi-

cantly outperform standard semantic matching approaches, and can

be combined with other features to further improve performance

when search data is limited. Furthermore, combining hand-crafted

features with activity-trained text embeddings provides the best of

both worlds, and offers significant improvements over either using

hand-crafted features or embeddings individually.

To the best of our knowledge, we are the first to examine the

use of activity logs in a large scale cloud storage search engine. As

more document collections are moving to the cloud, the benefits

of activity logs for improving cloud storage search is an important

finding that opens up several directions for future work.

As an example, in this work we do not use more complex text

embedding models such as recurrent neural networks or transform-

ers, due to privacy constraints that are in place to protect the users.

In future work, we would like to explore ways of using such models

while retaining user privacy.

As another example, in future work we would also like to con-

sider more expressive models of user activity, such as recurrent

neural networks to model the historical activity of a user in order to

predict future document usage. This can be helpful in reducing the

noise in user activity data, and contribute to further improvements

in search quality.
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