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Abstract
Personal search, including email, on-device, and
personal media search, has recently attracted a con-
siderable attention from the information retrieval
community. In this paper, we provide an overview
of challenges and opportunities of learning with im-
plicit user feedback (e.g., click data) in personal
search. Implicit user feedback provides a conve-
nient source of supervision for ranking models in
personal search. This feedback, however, has two
major drawbacks: it is highly sparse and biased due
to the personal nature of queries and documents.
We demonstrate how these drawbacks can be over-
come, and empirically demonstrate the benefits of
learning with implicit feedback in the context of a
large-scale email search engine1 .

1 Introduction
Researchers have been exploring how to successfully lever-
age user feedback to improve search quality for over a decade
[Joachims, 2002; Joachims et al., 2005]. User feedback most
often comes in the form of clicks on links to search re-
sults, but may be derived from other sources, including page
visits [Richardson et al., 2006], cursor tracking [Guo and
Agichtein, 2012], or touch gestures [Guo et al., 2013]. Such
user interaction data has been shown to be particularly useful
for training learning to rank models [Agichtein et al., 2006;
Richardson et al., 2006] and click-through rate prediction
[Richardson et al., 2007].

However, even though the use of interactions for improv-
ing search over public search corpora (e.g., web search)
is commonplace, there is little to no research regarding
its use for search over personal corpora, a.k.a. personal
search. Personal search has many real-life applications in-
cluding (but not limited to) email search [Carmel et al., 2015;
Wang et al., 2016], desktop search [Dumais et al., 2003],

1This paper is an abridged version of the paper “Learning from
User Interactions in Personal Search via Attribute Parameterization”
that was nominated for the Best Paper Award at WSDM 2017 con-
ference. It also contains some material from the paper “Position
Bias Estimation for Unbiased Learning to Rank in Personal Search”
which appeared at WSDM 2018 conference.

Figure 1: Illustrative example of email search results for query [book
order number]. The first two results are skipped, and the last one is
clicked.

and, most recently, on-device search [Kamvar et al., 2009]
and personal media search [Anguera et al., 2008; Guy et al.,
2018].

In all of these personal search applications, leveraging user
feedback for improving search quality has been limited by
its sparseness. This sparseness arises from the fact that in
the personal search scenario each user has access only to
their own private corpus (e.g., emails, documents or multi-
media files). This means that cross-user interactions with the
same item, which are common in web search (i.e., millions of
users visiting the same web page) are non-existent in personal
search.

Second, user queries in personal search may not generalize
as well as in web search due to the private nature of the under-
lying corpora. For instance, one common use case in email
search is retrieving some personal information of a correspon-
dent, e.g. [marta schedule], or [from:john highest-priority]
[Carmel et al., 2015]. This is very different from web search,
where the most common queries are issued by multiple users
with the same underlying target page in mind.

For instance, consider the email search example in Figure
1. In this case the user skipped the first two results (even
though they might have more terms in common with the
query book order number) and clicked on the last result. It
would be impossible to directly leverage this specific interac-
tion to learn a model for other users given the private nature
of the interaction (since no other user received an email with
the exact same order number).
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Figure 2: An illustration of selection bias in click data. The shaded
documents are the relevant ones. A check mark indicates a click.

However, by aggregating non-private query and document
attributes (i.e., those that exclude any personal information
such as order number) across a large number of user inter-
actions, it is possible to identify privacy-preserving query-
document associations that can be leveraged to improve
search quality across all users. For instance, by using term
associations, we can learn that emails with the frequent term
receipt in the subject are likely to be relevant to queries con-
taining the frequent n-gram order number. As another ex-
ample, using structural associations [Ailon et al., 2013], we
can learn that emails from an online bookstore AliceBook-
seller.com that correspond to a subject template Your order
receipt * are more likely to be relevant to queries containing
the frequent n-gram book order.

In addition to the sparsity problem, implicit user feed-
back such as click data is biased [Joachims et al., 2005;
Wang et al., 2016]. For instance, consider Figure 2, which
shows two queries Q1 and Q2. The relevant document for
Q1 is at position 1 and is clicked every time the query is is-
sued. On the contrary, the relevant document for Q2 is at
position 2 and is clicked only half of the time, due to the user
propensity to pay less attention to the lower rank results.

The problem illustrated in this example is confirmed by eye
tracking studies as well, which found that the users are less
likely to see, and hence click on, lower-ranked documents
[Joachims et al., 2005; Richardson et al., 2007]. This click
position bias leads, in turn, to selection bias – queries with
clicks on lower rank positions tend to be under-represented in
training data for learning to rank models, as shown by [Wang
et al., 2016].

While in a public search setting such as web search se-
lection bias could be corrected by collecting explicit human
ratings, in the personal search setting collecting such ratings
is much harder since raters can only label their own queries
and the corresponding results. In addition, such ratings will
be heavily dependent on the selected raters, creating yet an-
other source of bias. Finally, such ratings are costly to main-
tain due to the dynamic nature of personal search collections.
Therefore, in personal search, researchers and practitioners
[Tromba et al., 2017] often have to rely on click data to opti-
mize and evaluate ranking models.

In the next section, we provide an exposition of our recent
work on dealing with the challenges of sparse and biased user
feedback in the personal search setting. Then, in Section 3,
we provide a brief overview of empirical evaluation of our

Figure 3: Attribute aggregation and matching.

methods in the context of a large-scale email search engine.
We conclude the paper in Section 4.

2 Model Overview
In this section, we overview several models that deal with
the sparsity and bias that are inherent to learning with click
data in personal search, and in particular in an email search
setting. We start with a brief overview of the learning to rank
[Liu, 2009] methodology for email search in Section 2.1. In
Section 2.2, we propose a novel way to reduce sparcity in user
feedback via cross-user aggregation [Bendersky et al., 2017].
In Section 2.3 we describe how we deal with position bias in
user feedback [Wang et al., 2016; Wang et al., 2018]

2.1 Learning to Rank in Email Search
In the most general setting, a training data for learning the
optimal search ranking (a.k.a. learning to rank [Liu, 2009])
consists of a query set Q, where for each query q, we are
given a list of corresponding documents Dq . Each query-
document pair (q ∈ Q, d ∈ Dq), is associated with a feature
vector xq,d and a corresponding relevance label lq,d. While
in scenarios like web search, relevance labels lq,d are often
obtained using explicit relevance judgments, in the personal
search setting such as email search labels are usually derived
from click data, and thus are sparse and biased.

The goal of learning to rank algorithms is to produce an op-
timal ranking function sc(xq,d). There are many approaches
to this problem, roughly categorized as pointwise, pairwise
and listwise [Liu, 2009]. Their overview is out of the scope of
this paper, however it is important to note that the techniques
discussed in the next sections are agnostic to the choice of
any particular approach.

Feature vector xq,d may contain any signals derived from
query q, document d or both. In particular, for email search,
the features may be derived from the message metadata,
sender, recipient and textual similarity between the message
and the query (see [Carmel et al., 2015] for an overview).
In the next section, we demonstrate how click-based features
can also be incorporated in the feature vector.

2.2 Learning with Sparse Feedback
Historical user click data, as observed in the search logs,
can provide a powerful signal for click-through rate predic-
tion and learning to rank models, since it directly reflects
user behavior. For instance, if we observe previous inter-
actions for a given query-document pair (q, d), we may use
it as a query-dependent matching feature in a feature vector
xq,d in a learning to rank model (e.g., aggregate number of



Document Query
Categories Small set of commonly used email labels, e.g., Purchases,

Promos, Forums, etc. (see, e.g., [Agarwal, 2014] for label ex-
amples).

Structure Frequent machine-generated subject templates, e.g., Your
package number 123 → Your package number *
(see, e.g., Ailon et al. [Ailon et al., 2013] for more details on
subject template generation).

Content Set of frequent n-grams appearing in the email subject,
e.g., Friday lunch invitation for Alice →
[‘friday lunch’, ‘lunch invitation’]

Longest frequent n-gram appearing in the
query, e.g., bob weekly schedule →
[‘weekly schedule’]

Table 1: Summary of the query and document attribute types. Only attribute values that appear across more than u users in our dataset are
considered to be frequent. The infrequent attribute values are discarded.

clicks [Agichtein et al., 2006]). Similarly, if we observe that
a document d is often clicked across searches, we may use
it as a static a-priori feature of the overall document quality
[Richardson et al., 2006].

The case in personal search is different. Users usually do
not share documents (e.g., emails or personal files), and there-
fore directly aggregating click history across users becomes
infeasible. To address this problem, instead of directly learn-
ing from user behavior for a given (q, d) pair, we instead
choose to represent documents and queries using semanti-
cally coherent attributes that are in some way indicative of
their content.

This approach is schematically described in Figure 3. Both
documents and queries are projected into an aggregated at-
tribute space, and the matching is done through that interme-
diate representation, rather than directly. Since we assume
that the attributes are semantically meaningful, we expect
that similar personal documents and queries will share many
of the same aggregate attributes, making the attribute level
matches a useful feature in a learning to rank model.

Some examples of privacy-preserving query-document as-
sociations that could potentially be learned by aggregating
across a large number of private user interactions are pre-
sented in Table 1.

In [Bendersky et al., 2017] we demonstrate that even very
highly-dimensional attributes like n-grams can be efficiently
incorporated into the learning to rank paradigm described in
Section 2.1 without dramatically increasing the size of the
feature vector xq,d. This is achieved via an attribute param-
eterization technique, in which sparse attributes are parame-
terized using their respective clickthrough rates. [Bendersky
et al., 2017] show that for m document attribute types and
n query attribute types, attribute parameterization will gener-
ate anm-dimensional feature vector Pd of query independent
features and anmn-dimensional feature vector Pq,d of query-
dependent features.

In general, we will assume that there exists a base score
scb(xq,d) for every query-document pair. It can be based
on keyword matching or some other ranking features used
in private corpora (see, e.g., [Carmel et al., 2015] for an
overview). In [Bendersky et al., 2017], we use an adap-
tive approach, and train the adjustment δ(Pd,Pq,d) over
the base score scb(xq,d). The scoring function thus be-
comes scb(xq,d) + δ(Pd,Pq,d), which is convenient for our

production-environment system, where the base score is al-
ready highly optimized, and is disjoint with the newly intro-
duced attribute parameterization features.

The additive nature in this adaptive formulation naturally
fits the Multiple Additive Regression Trees (MART) learning
algorithm [Hastie et al., 2001]. In every iteration, MART
trains a new tree to be added to the existing list of trees. In
our setting, we start with the base score scb(xq,d) and then
train additive trees over this score.

2.3 Learning with Biased Feedback
The position bias model assumes that the observed click –
modeled by Bernoulli variable C – depends on two factors:
(a) whether a user examines a document at position k, and
(b) whether document d is relevant to query q. We can then
model the probability of a click as

P (C = 1|q, d, k) = θkγq,d, (1)

where θk is the probability that position k is examined, and
γq,d is the probability that document d is relevant to query
q. Note that the model assumes that the examination only
depends on the position and the relevance only depends on the
query and document, a common assumption in click models
[Chuklin et al., 2015].

Both θk and γq,d are hidden, and there are several ways to
estimate these parameters. It is easy to show that by random-
izing the results shown to the user, the expected relevance at
each position is constant, and θk will be proportional to the
number of clicks at position k in the randomized data. How-
ever, this can hurt the performance by up to 30% in live traffic
systems [Wang et al., 2018]. To avoid this quality degrada-
tion, we can instead resort to random pair inversion, which
can significantly reduce the quality decrease. Can we do even
better and estimate the position bias directly from click data?

To this end, we propose a novel regression-based EM al-
gorithm [Wang et al., 2018]. Note that in a standard EM al-
gorithm, we would require multiple observations from each
query-document pair (q, d) to reliably estimate the relevance
γq,d. This is not feasible in a personal search scenario where
click data is highly sparse. Therefore, in the regression-based
EM algorithm we use the feature vector xq,d, and use a func-
tion f to compute the relevance: γq,d = f(xq,d). The Max-
imization step attempts to find a regression function f(xq,d)
to maximize the likelihood given the estimation from the Ex-
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Figure 4: Position bias estimated by several methods and normalized
by the top position.

%MRR
RandPair Correction EM Correction

+2.14 +1.94

Table 2: Effects of bias correction on ranking performance. All the
differences are reported compared to the unweighted baseline, and
are statistically significant.

pectation step. For a detailed description of this process see
Algorithm 1 in [Wang et al., 2018].

3 Experimental Results
3.1 Position Bias Estimation
To evaluate the EM algorithm described in Section 2.3 we
examine how well it approximates the empirical position bias
that can be obtained using full result randomization. The re-
sults are presented in Figure 4, where we compare four al-
ternatives (a) Full result randomization (Empirical), (b) ran-
dom pair inversion (RandPair), (c) regression-based EM al-
gorithm described in Section 2.3 (EM), and (d) an embedded
approach, where position is directly embedded into the func-
tion g(xq,d, k) as a feature to approximate bias (Embedded).

As we can see from Figure 4, all the techniques underes-
timate the Empirical position bias. EM clearly outperforms
the Embedded approach, especially at the lower ranks. It
achieves an estimation comparable to RandPair, without in-
curring any loss in quality (as RandPair requires result ran-
domization on live search traffic).

3.2 Ranking with Biased Feedback
As shown in Figure 4, clicks are biased. Therefore, when
evaluating quality changes using click data in lieu of explicit
human ratings (as we do in this paper due to the personal
nature of the data), this bias needs to be corrected by incorpo-
rating it into the evaluation metric. To this end, [Wang et al.,
2016] propose a weighted variant of a standard MRR (mean
reciprocal rank) metric. In this variant, query i is weighted
by wi = 1

bk(i)
, where k(i) is the click position for query i,

and bk(i) is the empricial bias at k(i)-th position, as shown

%MRR
Attribute Type Query-Independent Query-Dependent

Categories +0.48* +0.80**
Structure +1.56** +1.22**
Content +1.27** +2.11**

All +2.10** +2.60**
Full Model +3.24**

Table 3: Overall comparison of different variants. * and ** mean
the improvement is significant at 0.05 and 0.01 levels respectively.

in Figure 4. Then, the MRR for a set of queries is defined as
MRR = 1∑

i
wi

∑
i
wi

ki
.

Table 2 shows the effects of correcting the bias when rank-
ing with biased feedback. In both cases, the original train-
ing data is reweighted to correct the bias as estimated by ei-
ther RandPair or EM techniques. As we can see, although
the EM algorithm does not require any prior randomization it
achieves ranking performance that is roughly 2% better than
the unweighted variant, and statistically indistiguishable from
the RandPair algorithm (which requires randomization).

3.3 Attribute Parameterization Evaluation
Using the weighted MRR metric presented in the previ-
ous section, in Table 3 we evaluate the variants of the at-
tribute parameterization approach described in Section 2.2.
In this table, we compare both query-dependent and query-
independent features. For each of them, we train our ranking
function by adding each attribute type individually as a fea-
ture (the first 3 rows in the table). We then combine all the
query-dependent and query-independent parameterized at-
tribute types respectively to form the “all” in the two columns
of the table. The “Full Model” uses both the query-dependent
and query-independent parameterized attribute types as fea-
tures in a single ranking function.

From Table 3 we can observe that a combination of all
the attribute types outperforms each individual attribute type,
resulting in overall improvements of +2.10% for query-
independent and +2.60% for query-dependent features. This
highlights the fact that the selected attribute types are indeed
complimentary to each other, and can provide incremental
improvements. Further combining all the features and at-
tribute types in the full model results in the best performance,
and outperforms the baseline by +3.24%. These improve-
ments unequivocally demonstrate the importance of cross-
user feedback aggregation for personal search quality.

4 Conclusions
In this paper we have discussed two novel approaches of deal-
ing with sparsity and bias of user feedback in the personal
search setting: query and document attribute parameteriza-
tion and a regression-based EM algorithm to learn click bias.
The proposed approaches are both motivated theoretically as
well as demonstrate significant quality improvements in a set-
ting of a large-scale email search engine. They also open up
several interesting possibilities for future exploration of other
types of bias (e.g., presentation bias [Yue et al., 2010]) and
other attribute types.
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