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A B S T R A C T

Satellite-derived estimates of the Earth’s radiation budget are crucial for understanding and predicting the
weather and climate. However, existing satellite products measuring broadband outgoing longwave radiation
(OLR) and reflected shortwave radiation (RSR) have spatio-temporal resolutions that are too coarse to evaluate
important radiative forcers like aircraft condensation trails. We present a neural network which estimates OLR
and RSR based on narrowband radiances, using collocated Cloud and Earth’s Radiant Energy System (CERES)
and GOES-16 Advanced Baseline Imager (ABI) data. The resulting estimates feature strong agreement with the
CERES data products (𝑅2 = 0.977 for OLR and 0.974 for RSR on CERES Level 2 footprints), and we provide
open access to the collocated satellite data and model outputs on all available GOES-16 ABI data for the 4
years from 2018–2021.
1. Introduction

Direct measurements of top-of-atmosphere (TOA) outgoing long-
wave radiation (OLR) and reflected shortwave radiation (RSR) flux are
essential to our understanding of the Earth system. While the CERES
sensor (Wielicki et al., 1996) aboard the polar-orbiting Terra and
Aqua satellites provides this capability, the product’s spatio-temporal
resolution is too coarse to study the radiative impact of short-lived
and/or individually small features. Such phenomena can be studied
using geostationary satellite imagery, as has been done for aircraft
condensation trails (contrails), ship tracks, and atmospheric convection
(Meijer et al., 2022; Schreier et al., 2010; Cintineo et al., 2020).
However, since this imagery consists of narrow band radiance measure-
ments it cannot directly be used to quantify the radiative effects these
phenomena have on the earth system. This paper develops a method
that uses the narrowband radiance measurements by geostationary
satellite imagers to estimate the OLR and RSR broadband quantities at
a spatio-temporal resolution that is higher than currently possible using
CERES measurements alone. These high resolution estimates enable the
quantification of the radiative impact of the aforementioned climate
forcers, which will inform mitigation efforts.

∗ Corresponding author.
E-mail address: mccloskey@google.com (K. McCloskey).

Several methods have been introduced that perform a regression
using geostationary narrowband radiance measurements as input and
produce single-kilometer-scale resolution estimates of OLR and RSR
as output. The majority of these methods (reviewed in detail in Sec-
tion 2) have used radiative transfer simulations to generate datasets
for developing the OLR and RSR regression models.

The approach developed here differs fundamentally from those in
that we developed a neural network regressor that estimates OLR
and RSR using only collocated data from GOES-16 ABI and CERES
aboard Terra and Aqua satellites. Because of this, we call the method
COllocated Irradiance Network, or COIN. The primary strength of this
approach is that we avoid potential discrepancies between modeled
and measured broadband fluxes which can lead to decreased perfor-
mance of regression models that are developed using such simulation
outputs; this phenomenon is generally known as ‘‘covariate shift’’ (Shi-
modaira, 2000; Huang et al., 2006). Our design choice to rely solely on
collocated geostationary/CERES data is associated with several other
advantages and disadvantages, which are detailed further in Section 5.

In addition to reporting aggregated evaluation of the approach we
developed here, we report model error characteristics on subsets of the
034-4257/© 2022 The Author(s). Published by Elsevier Inc. This is an open access a

https://doi.org/10.1016/j.rse.2022.113376
Received 22 August 2022; Received in revised form 16 November 2022; Accepted
rticle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
18 November 2022

https://www.elsevier.com/locate/rse
http://www.elsevier.com/locate/rse
https://github.com/google-research/google-research/tree/master/collocated_irradiance_network/
https://github.com/google-research/google-research/tree/master/collocated_irradiance_network/
https://github.com/google-research/google-research/tree/master/collocated_irradiance_network/
https://github.com/google-research/google-research/tree/master/collocated_irradiance_network/
https://github.com/google-research/google-research/tree/master/collocated_irradiance_network/
https://github.com/google-research/google-research/tree/master/collocated_irradiance_network/
https://github.com/google-research/google-research/tree/master/collocated_irradiance_network/
https://github.com/google-research/google-research/tree/master/collocated_irradiance_network/
https://github.com/google-research/google-research/tree/master/collocated_irradiance_network/
https://github.com/google-research/google-research/tree/master/collocated_irradiance_network/
https://github.com/google-research/google-research/tree/master/collocated_irradiance_network/
https://github.com/google-research/google-research/tree/master/collocated_irradiance_network/
https://github.com/google-research/google-research/tree/master/collocated_irradiance_network/
https://github.com/google-research/google-research/tree/master/collocated_irradiance_network/
https://github.com/google-research/google-research/tree/master/collocated_irradiance_network/
https://github.com/google-research/google-research/tree/master/collocated_irradiance_network/
https://github.com/google-research/google-research/tree/master/collocated_irradiance_network/
https://github.com/google-research/google-research/tree/master/collocated_irradiance_network/
https://github.com/google-research/google-research/tree/master/collocated_irradiance_network/
https://github.com/google-research/google-research/tree/master/collocated_irradiance_network/
https://github.com/google-research/google-research/tree/master/collocated_irradiance_network/
https://github.com/google-research/google-research/tree/master/collocated_irradiance_network/
https://github.com/google-research/google-research/tree/master/collocated_irradiance_network/
https://github.com/google-research/google-research/tree/master/collocated_irradiance_network/
https://github.com/google-research/google-research/tree/master/collocated_irradiance_network/
https://github.com/google-research/google-research/tree/master/collocated_irradiance_network/
https://github.com/google-research/google-research/tree/master/collocated_irradiance_network/
https://github.com/google-research/google-research/tree/master/collocated_irradiance_network/
https://github.com/google-research/google-research/tree/master/collocated_irradiance_network/
https://github.com/google-research/google-research/tree/master/collocated_irradiance_network/
https://github.com/google-research/google-research/tree/master/collocated_irradiance_network/
https://github.com/google-research/google-research/tree/master/collocated_irradiance_network/
https://github.com/google-research/google-research/tree/master/collocated_irradiance_network/
https://github.com/google-research/google-research/tree/master/collocated_irradiance_network/
https://github.com/google-research/google-research/tree/master/collocated_irradiance_network/
https://github.com/google-research/google-research/tree/master/collocated_irradiance_network/
https://github.com/google-research/google-research/tree/master/collocated_irradiance_network/
https://github.com/google-research/google-research/tree/master/collocated_irradiance_network/
https://github.com/google-research/google-research/tree/master/collocated_irradiance_network/
https://github.com/google-research/google-research/tree/master/collocated_irradiance_network/
https://github.com/google-research/google-research/tree/master/collocated_irradiance_network/
https://github.com/google-research/google-research/tree/master/collocated_irradiance_network/
https://github.com/google-research/google-research/tree/master/collocated_irradiance_network/
https://github.com/google-research/google-research/tree/master/collocated_irradiance_network/
https://github.com/google-research/google-research/tree/master/collocated_irradiance_network/
https://github.com/google-research/google-research/tree/master/collocated_irradiance_network/
https://github.com/google-research/google-research/tree/master/collocated_irradiance_network/
https://github.com/google-research/google-research/tree/master/collocated_irradiance_network/
https://github.com/google-research/google-research/tree/master/collocated_irradiance_network/
https://github.com/google-research/google-research/tree/master/collocated_irradiance_network/
https://github.com/google-research/google-research/tree/master/collocated_irradiance_network/
https://github.com/google-research/google-research/tree/master/collocated_irradiance_network/
https://github.com/google-research/google-research/tree/master/collocated_irradiance_network/
https://github.com/google-research/google-research/tree/master/collocated_irradiance_network/
https://github.com/google-research/google-research/tree/master/collocated_irradiance_network/
https://github.com/google-research/google-research/tree/master/collocated_irradiance_network/
https://github.com/google-research/google-research/tree/master/collocated_irradiance_network/
https://github.com/google-research/google-research/tree/master/collocated_irradiance_network/
https://github.com/google-research/google-research/tree/master/collocated_irradiance_network/
https://github.com/google-research/google-research/tree/master/collocated_irradiance_network/
https://github.com/google-research/google-research/tree/master/collocated_irradiance_network/
https://github.com/google-research/google-research/tree/master/collocated_irradiance_network/
https://github.com/google-research/google-research/tree/master/collocated_irradiance_network/
https://github.com/google-research/google-research/tree/master/collocated_irradiance_network/
https://github.com/google-research/google-research/tree/master/collocated_irradiance_network/
https://github.com/google-research/google-research/tree/master/collocated_irradiance_network/
https://github.com/google-research/google-research/tree/master/collocated_irradiance_network/
https://github.com/google-research/google-research/tree/master/collocated_irradiance_network/
https://github.com/google-research/google-research/tree/master/collocated_irradiance_network/
https://github.com/google-research/google-research/tree/master/collocated_irradiance_network/
https://github.com/google-research/google-research/tree/master/collocated_irradiance_network/
https://github.com/google-research/google-research/tree/master/collocated_irradiance_network/
https://github.com/google-research/google-research/tree/master/collocated_irradiance_network/
https://github.com/google-research/google-research/tree/master/collocated_irradiance_network/
https://github.com/google-research/google-research/tree/master/collocated_irradiance_network/
https://github.com/google-research/google-research/tree/master/collocated_irradiance_network/
https://github.com/google-research/google-research/tree/master/collocated_irradiance_network/
https://github.com/google-research/google-research/tree/master/collocated_irradiance_network/
https://github.com/google-research/google-research/tree/master/collocated_irradiance_network/
https://github.com/google-research/google-research/tree/master/collocated_irradiance_network/
https://github.com/google-research/google-research/tree/master/collocated_irradiance_network/
https://github.com/google-research/google-research/tree/master/collocated_irradiance_network/
https://github.com/google-research/google-research/tree/master/collocated_irradiance_network/
https://github.com/google-research/google-research/tree/master/collocated_irradiance_network/
https://github.com/google-research/google-research/tree/master/collocated_irradiance_network/
https://github.com/google-research/google-research/tree/master/collocated_irradiance_network/
https://github.com/google-research/google-research/tree/master/collocated_irradiance_network/
https://github.com/google-research/google-research/tree/master/collocated_irradiance_network/
https://github.com/google-research/google-research/tree/master/collocated_irradiance_network/
https://github.com/google-research/google-research/tree/master/collocated_irradiance_network/
https://github.com/google-research/google-research/tree/master/collocated_irradiance_network/
https://github.com/google-research/google-research/tree/master/collocated_irradiance_network/
https://github.com/google-research/google-research/tree/master/collocated_irradiance_network/
mailto:mccloskey@google.com
https://doi.org/10.1016/j.rse.2022.113376
https://doi.org/10.1016/j.rse.2022.113376
http://crossmark.crossref.org/dialog/?doi=10.1016/j.rse.2022.113376&domain=pdf
http://creativecommons.org/licenses/by/4.0/


Remote Sensing of Environment 285 (2023) 113376K. McCloskey et al.

a

C
s
C
d
c
h
a

v
t
u
r
C
p
i
c
t
L
a

s
r
f

data and sliced along different dimensions to identify opportunities for
future modeling improvements. We also make all the collocation data
used to develop the model and the estimates from applying COIN to
all available GOES-16 ABI data in the four years from 2018 to 2021
available for public use: see Data Availability section.

2. Related work

There is a many-decades long history of estimating
top-of-atmosphere flux from satellite sensors; for a broad review, con-
sider Liang et al. (2019). In this section we largely restrict our overview
to the techniques most similar to COIN, which is designed to estimate
top-of-atmosphere flux using geostationary satellite radiances as input
(in this work specifically GOES-16 ABI Schmit et al., 2017).

As noted, multiple previous works have developed OLR and RSR
regressors based on radiative transfer simulation datasets. The most
similar to COIN are those which have evaluated their TOA flux esti-
mates not just on their respective simulation datasets but also on CERES
data from satellites. The following four works fall into this category,
though they vary considerably in the amount of CERES data used in
validation. For example, while Vázquez-Navarro et al. (2013) simulated
SEVIRI radiances aboard the Meteosat Second Generation satellite using
the radiative transfer model libRadTran (Mayer and Kylling, 2005;
Pinker et al., 2022) simulated measurements by the Advanced Baseline
Imager (ABI) aboard GOES-16 and GOES-17 using MODTRAN (Berk
et al., 1987), both of these works compared their flux estimates to less
than 10 h worth of CERES data which did not span the yearly cycle
of seasons, preventing assessment of seasonal error characteristics. The
OLR estimates by Kim and Lee (2019) (which simulated the Advanced
Himawari Imager (AHI) aboard Himawari using SBDART) were evalu-
ated on CERES data from two days each month in 2017, but because
each day was only evaluated on less than 2 h worth of CERES data,
assessing flux error across the diurnal cycle was not possible. Lee et al.
(2018) which also simulated the Advanced Himawari Imager (AHI)
aboard Himawari using SBDART (Ricchiazzi et al., 1998) reports the
most extensive evaluation we are aware of against CERES data prior
to this work, by reporting error characteristics for its RSR estimates
compared to most of the collocated daytime CERES data from Terra,
Aqua, and Suomi National Polar-orbiting Partnership (S-NPP) on the
15th day of each month for 20 consecutive months — omitting however
any solar/viewing zenith angles greater than 80◦ or determined to be
ffected by sunglint (Kay et al., 2009).

In contrast, here we report evaluations comparing to more extensive
ERES data: our validation dataset is comprised of 20% of the hours
panning 3 years, and we make publicly available the underlying
OIN-estimated full-disk OLR and RSR for every 10–15 min for each
ay across 4 years. Additionally, this is the first report including a
hronological holdout set: our test set is the entire year 2021 which was
eld out from all model development, as a way to assess COIN being
pplied to future GOES-16 ABI data without any further adjustments.

We note also that all four of the OLR and RSR regressors re-
iewed above make comparisons to CERES data that has been spatio-
emporally averaged/regridded, and consequently it is possible they
nder-report their models’ error. In this work comparisons are made di-
ectly to individual CERES L2 Single Scanner Footprints, by aggregating
OIN’s 2 km-nominal flux estimations as weighted by each footprint’s
oint spread function (PSF) (Green and Wielicki, 1997). The CERES PSF
s an ovaloid shape with exponential decay towards its edges, and we
ontribute as part of this work an open source efficient calculation of
he CERES PSF for future works to use to directly compare to CERES
2 SSF flux labels without the need for regridding or spatio-temporal
veraging.

Most of the regressors reviewed above contain explicitly separate
teps for estimating the broadband radiance from observed narrowband
adiances, followed by the flux inversion to estimate the irradiance
2

or all outgoing angles. The modeling approach taken in this work
however, is most similar to the RSR regressor introduced by Vázquez-
Navarro et al. (2013) where a neural network learns to approximate
the sequential composition of those two functions as a single operation;
while (Vázquez-Navarro et al., 2013) trained on a radiative transfer
simulation dataset, here we train directly on CERES flux labels by
incorporating the CERES PSF as a layer in the neural network, and
back-propagating errors directly through it.

The literature also contains many works of satellite-driven flux
estimates which are designed for slightly different purposes than COIN’s
goal of top-of-atmosphere flux estimates at geostationary
spatio-temporal resolution. For example, Gupta et al. (2016) used
CERES data collocated with measurements from the Ozone Monitor-
ing Instrument on the low-earth-orbiting Aura satellite. The resulting
regression model was used to extend the record of RSR data back to
as early as 1979, by using historical ozone measurements. Another
example are techniques that make estimates of TOA albedo as an
intermediate value to facilitate estimating earth surface fluxes, which
can then be used in estimating snowmelt, flood forecasts, soil moisture,
and assimilation by numerical weather models (Huang et al., 2019).
However, there are substantial challenges in comparing TOA flux
estimates to surface station measurements, due primarily to land cover
heterogeneity (Li et al., 1995; Cescatti et al., 2012) and attenuation
by the intervening atmosphere. Given that the same physical factors
driving TOA irradiance also play a large role in surface irradiance
(primarily scattering/absorption by clouds, aerosols and water vapor)
we do expect COIN can be extended to the purpose of surface solar
irradiance estimation, but leave this effort to future work.

3. Methods

3.1. Regression dataset

We train and validate our model using 3 data sources: CERES Level
2 single scanner footprint (SSF) (Loeb et al., 2016; Minnis et al., 2008,
2011b,a; Su et al., 2015a,b) from the Terra and Aqua satellites; CERES
Level 3 SYN1deg product (Doelling et al., 2013, 2016); and collocated
GOES-16 ABI data (Schmit et al., 2017).

The CERES instrument (Wielicki et al., 1996) is a broadband scan-
ning bolometer with a roughly ovaloid spatial response function (the
‘‘footprint’’) that is nominally 20 km diameter at nadir but at high
viewing angles can stretch to more than 100 km. The OLR and RSR
measured by CERES can thus be viewed as a spatial, weighted average
of the fluxes inside the footprint. The relative contribution of the
locations within the footprint are quantified using the point spread
function (PSF), which is a function of the orbital geometry and viewing
angle (Green and Wielicki, 1997). The CERES L2 SSF data product
provides estimates of the top of atmosphere irradiance at a single
location directly viewed by a CERES instrument. The L3 SYN1deg
product combines data from multiple satellite sensors (including CERES
on Terra and Aqua and ABI on GOES-16) to produce hourly estimates
of top-of-atmosphere flux on a 1 × 1 degree grid of the earth.

We train and validate on a mix of CERES L2 and L3 data because
collectively they provide a more accurate set of flux labels across the
viewing extent/times of the GOES-16 ABI. The CERES L2 SSF data
contain broadband radiance measurements from the CERES instrument,
converted to flux using anisotropic factors determined by empirical an-
gular distribution models (ADMs, in this work we use Edition 4 A) (Su
et al., 2015a). This provides an unprecedented empirical measurement
record of the earth’s radiation budget, however, operational CERES in-
struments are only present on sun-synchronous polar-orbiting satellites;
the L3 SYN1deg product provides flux estimates throughout the day
and night at all locations (e.g., including mid-latitude sunrise/sunset)
as well as ensuring sun glint (Kay et al., 2009) is not under-represented.

The GOES-16 ABI (Schmit et al., 2017) is a 16-band imaging ra-
diometer, with spectral bands covering the visible, near-infrared, and
infrared. In this work we use the full disk L1b radiance product, which
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Table 1
Searched ranges and selected values of model hyperparameters.

Parameter Range searched Selected value

Learning rate 1e-5 to 1e−1 0.00067
Learning rate drop patience 10 to 500 115
Learning rate drop factor 0.1 to 1.0 0.72
Dropout 0.0 to 0.5 0.0
First layer size 100 to 1000 525
Layer size scale factor 0.1 to 0.5 0.34
Number of layers 3, 4, or 5 4
Activation sigmoid, relu, swish or leaky_relu leaky_relu
Loss function MSE or MAE MAE
Example weight clip 1 to 1e5 90

Table 2
Prediction bias and error of broadband flux estimates from narrowband imagers aboard
geostationary satellites, which were validated against the CERES L2 SSF product. All
values are W∕m2.

Satellite OLR bias RMSE RSR bias RMSE Validation set

GOES-16a 0.08 6.64 −0.88 24.64 2018, 2019, 2020
GOES-16/17b – – 19.14 85.15 7 h in 2019
Himawari-8c 2.28 11.03 – – 2017
Himawari-8d – – −2.34 52.12 1 day/mo, 2015–2017
Meteosat-9e −0.945 9.065 −17.79 37.42 8 swaths in 2004

aCOIN (this work).
bPinker et al. (2022).
cKim and Lee (2019).
dLee et al. (2018).
eVázquez-Navarro et al. (2013).

has a refresh rate of 10 min (15 min before April 2, 2019), with a nadir
pixel size of 2 km for its infrared bands.

COIN is developed using a fraction of the collocation dataset (‘‘the
raining data’’). We monitor the progress of COIN as we optimize its
arameters using the training data by setting aside a random 20% of
he hours in the three years 2018–2020 to use as validation data. The
erformance of COIN on this validation dataset is used as a proxy for
he model’s performance on unseen data. Finally, all data for the year
021 is used as the test dataset: COIN’s performance on this data is the
est estimate of its ability to be used in future years without retraining
t. CERES L2 footprints and L3 1 × 1 degree gridboxes are randomly
ampled from within each hour box keeping 25% and 6% respectively
o generate roughly equal numbers of L2 and L3 training examples. The
ootprints/gridboxes were then filtered by three criteria. First, to limit
imb-darkening and parallax effects (Joyce et al., 2001), the location
f an L2 footprint/L3 gridbox centroid must be within 7258 km from
he GOES-16 sub-satellite point at −75.2◦ longitude, and the CERES
iewing zenith angle for an L2 footprint must be less than or equal to
0 degrees. Second, no GOES-16 ABI pixels inside the footprint/gridbox
an have an invalid value, within any of the 16 bands. Third, to limit
ow much the atmospheric state can evolve between the collocated
easurements, the L2 footprint acquisition time must be less than 120 s

rom the GOES-16 ABI scan time at that location. To implement this
ast filter, we created a pixel-wise map of ABI scan times for modes 3
nd 6 A following (Kalluri et al., 2018). This procedure yielded train,
alidation and test set sizes of 48,759,836; 12,196,071; and 22,982,710
ERES footprints/gridboxes.

The GOES-16 ABI full-disk refresh rate changed from 15 min to
0 min on Apr 2, 2019 at 00:00 UTC; All training data are split into
efore and after that time, and two (otherwise-identical) models are
rained — one for before that time and one for after. The figures, tables
nd metrics reported in this paper are from these two models applied
o the validation data in their respective date ranges.

.2. Model architecture

The neural network model takes as input the radiances measured
n all 16 bands of the GOES-16 ABI for a single pixel as well as 5
3

auxiliary inputs: the latitude, the longitude, the solar zenith angle, the
solar azimuth angle, and the day of the year. Higher resolution ABI
radiances were downscaled (by averaging) to the 2 km nadir resolution
of the ABI infrared channels. The neural network processes the inputs
through a series of fully-connected layers with non-linear activation
functions, and outputs both 𝑂𝐿𝑅𝑛 and 𝑅𝑆𝑅𝑛 for each GOES-16 ABI
pixel 𝑛 within a CERES footprint/gridbox having a total of 𝑁 ABI pixels
in it. Because the fully-connected layers are applied to each GOES-
16 ABI pixel separately, it is equally valid to call these layers 1 × 1
convolutional layers over a 2D image of GOES-16 ABI pixels. During
training, all of the 𝑅𝑆𝑅𝑛 and 𝑂𝐿𝑅𝑛 are aggregated in a weighted sum
before being compared with the CERES fluxes. The L2 footprints use
the CERES PSF weights, while L3 gridboxes use normalized uniform
weights, both denoted as 𝑃𝑛

𝑅𝑆𝑅 =
𝑁
∑

𝑛=1
𝑃𝑛 ⋅ 𝑅𝑆𝑅𝑛

𝑂𝐿𝑅 =
𝑁
∑

𝑛=1
𝑃𝑛 ⋅ 𝑂𝐿𝑅𝑛

(1)

The loss function  then penalizes errors compared to the CERES data
product as follows

 = |

|

|

𝑅𝑆𝑅 − 𝑅𝑆𝑅CERES
|

|

|

+ |

|

|

𝑂𝐿𝑅 − 𝑂𝐿𝑅CERES
|

|

|

(2)

here 𝑅𝑆𝑅CERES and 𝑂𝐿𝑅CERES are the irradiance values reported by
he CERES L2 SSF or L3 SYN1deg data product. The network weights
re iteratively adjusted to minimize this loss function by using back-
ropagation (Rumelhart et al., 1985). After training is complete, the
eighted aggregation is no longer applied to the network output, and

he ABI pixel-by-pixel predictions 𝑂𝐿𝑅𝑛 and 𝑅𝑆𝑅𝑛 are used directly as
he model outputs.

While the COIN model published here predicts both OLR and RSR
imultaneously from the same network (‘‘dual-task’’), single-task mod-
ls were also trained which predicted just OLR and just RSR. However,
he improvement in average single-task RMSE or bias was marginal
ompared to dual-task models (not shown). Therefore we selected the
ual-task mode for operational convenience.

.3. Data preprocessing

The GOES-16 radiances, CERES fluxes, and 5 auxiliary inputs de-
ailed above are all preprocessed to standard ranges before being passed
o the model, as follows. During training data generation, the GOES-
6 radiances, CERES fluxes, and latitude and longitude were sampled
nd their mean and standard deviation recorded, so that they can be
lipped at 5.5 standard deviations and normalized to the range [0.0,
.0]. The normalization is done by subtracting the mean, dividing by 11
imes the standard deviation, adding 0.5, and clipping the result to the
ange [0, 1]. The solar zenith angle is passed through a cosine function
efore being presented to the network. Similarly, the day of the year
s multiplied by 2𝜋∕365 and also passed through the cosine function.
he solar azimuth angle is calculated as radians/2𝜋 and presented to
he model with the convention that it is in the range [0, 0.5] when
he hour angle is negative and in [0.5, 1.0] when the hour angle is
ositive. The model outputs are mapped to units of irradiance (W∕m2)
y inverting the scaling procedure used to normalize the CERES flux
abels (i.e., subtracting 0.5, multiplying by 11 times the flux standard
eviation, and adding back the flux mean). This predicted flux is then
lipped to a minimum of 0.0 W∕m2. For any GOES-16 ABI pixel with an
nput solar zenith angle larger than 90 degrees, the model was forced
o return 0.0 W∕m2 RSR.
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Fig. 1. (a) GOES-16 true color product for 2021-02-10 17:00:00 UTC, with a region including southern Florida outlined in red shown below. (b) The CERES Level 3 1 × 1 degree
OLR product for the same scene. (c) COIN-predicted OLR for the same scene. (For interpretation of the references to color in this figure legend, the reader is referred to the web
version of this article.)

Fig. 2. A scene in GOES-16 perspective for the hourbox centered at 2018-01-01 19:30:00 UTC, with obvious sunglint in the Pacific ocean, which we have highlighted by adding
a thin yellow circle in each panel. (a) The CERES Level 2 RSR swath observed from Aqua in the hourbox, averaged on a 1 × 1 degree grid. (b) COIN-estimated RSR from the
GOES-16 19:30:00 UTC scan. (c) The GOES-16 true color product (hourbox-averaged) where sunglint is clearly visible. (d) Bias resulting from averaging the COIN estimates to a
1 × 1degree grid and subtracting the CERES Level 2 RSR product. GOES-16 true color and CERES product have been trimmed to show only points within 7258 km of the GOES-16
sub-satellite point to match the COIN estimation extent. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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Fig. 3. Comparison between COIN and CERES L2. The pale green line is a linear fit to the data. The black dotted line corresponds to the 1:1 line. Units are W∕m2. (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 4. Comparison of COIN to CERES L2 broken out by month for the (a) Northern hemisphere and (b) Southern hemisphere.
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Fig. 5. Comparison between COIN and CERES L2 for bins of OLR and RSR magnitude. The validation set frequency for OLR and RSR magnitudes are shown as upside-down
histograms at the bottom. Footprints with solar zenith angle > 90 degrees are not included in the RSR data. The validation set frequency by magnitude is shown as an upside-down
histogram at the bottom.

Fig. 6. CERES L2 TOA flux broken out by month for the (a) Northern hemisphere and (b) Southern hemisphere.
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Fig. 7. Top row: mean absolute deviation between spatio-temporally averaged COIN outputs and CERES L2 data product for each 1 × 1 latitude and longitude gridbox, across
3 years. Bottom row: mean bias of same.
Fig. 8. Comparison between COIN and CERES L2 SSF for the most common surface type of the SSF. (a) A plot of CERES earth surface types, color-coded to match the error plots
showing (b) OLR differences and (c) RSR differences.
3.4. Weighting scheme

We applied a loss weighting scheme during training, where each
training example (footprint/gridbox) has its loss up- or down-weighted
according to its inverse frequency in the training set. The solar zenith
angle, OLR magnitude, and RSR magnitude for examples were each
discretized into buckets of 10 (degrees), 25 (W∕m2), and 50 (W∕m2)
respectively to determine the example’s frequency.

Each training example has one OLR flux label and one RSR flux label
from CERES L2 or L3 and up to 1700 collocated GOES-16 ABI input
pixels. A sizeable portion of the generated dataset’s CERES L3 training
examples are in the Meteosat −11 longitude domain (≥ −37.5 degrees)
and so the CERES L3 SYN1deg product uses (CERES-normalized) Me-
teosat −11 SEVIRI radiances to determine the flux in hours without
CERES measurements from low earth orbit (Doelling et al., 2013).
7

In this domain SEVIRI radiances can differ substantially from ABI
radiances due to scan time differences alone: SEVIRI scans south to
north (Aminou et al., 1997) while ABI scans north to south (Kalluri
et al., 2018), so the mean scan time of the 4–6 scans within the hour
box can be 10–15 min different for a given location. We mitigated this
issue by applying a time-weighted random sampling of the ABI input
pixels so that the mean ABI scan time matches the mean SEVIRI scan
time within the hour box.

3.5. Hyperparameters

We applied the black box optimization method known as Batched
Gaussian Process Bandits (Golovin et al., 2017) to tune the hyperpa-
rameters of the neural network (such as number of layers and which
non-linear activation function to use). The full list of parameters,
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Fig. 9. Comparison between COIN and CERES L2 SSF for different levels of (GOES-16 ABI Level 2 Binary Cloud Mask) cloud cover within the CERES footprint. OLR is in red,
RSR is in blue; the shaded areas contain one standard deviation of prediction error on both sides of the (solid line) mean. (For interpretation of the references to color in this
figure legend, the reader is referred to the web version of this article.)
ranges searched, and selected values are in Table 1. The mini-batch
size (number of footprints/gridboxes per training step) is 64. After
every 100 training steps, the model’s mean absolute error (MAE) is
evaluated on 100 mini-batches from the validation set. The learning
rate is decreased automatically as training progresses by multiplying it
with the ‘‘learning rate drop factor’’ whenever the performance on the
validation sample does not improve for a set number of training steps
(the ‘‘learning rate drop patience’’). The size of hidden layers of the
neural network are set by two hyperparameters: the ‘‘first layer size’’
and the ‘‘layer size scale factor’’. For example, a 4-layer network with
first layer size equal to 525 and layer size scale factor of 0.34, has latent
layer sizes of 525, 178, 60, and 20.

Dropout (Srivastava et al., 2014) was considered but not found to be
used in any of the best performing models, in alignment with the model
not showing any evidence of overfitting. Several activation functions
were considered (Ramachandran et al., 2017) as well as two possible
loss functions: the mean squared error (MSE) and mean absolute error
(MAE). The ‘‘example weight clip’’ parameter is the maximum value
8

allowed to be used as an example weight (i.e., multiplied against the
training loss for a given example prior to back-propagation). Each
example’s (unclipped) weight is based on its inverse frequency of
occurrence in the training set as described in Section 3.4.

Training COIN in the selected configuration takes about 9 h on a
single Nvidia P100 GPU.

4. Results

4.1. Qualitative

Fig. 1 provides a comparison between a CERES Level 3 SYN1deg
data product and the corresponding output of COIN. Qualitative agree-
ment in OLR magnitude between CERES Level 3 and COIN can be
seen across cloud structures and various surface types, while relatively
small-scale features such as contrails and coastlines are only resolved
in the output of COIN.
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Fig. 10. Comparison of COIN to CERES L2 Reflectance percentage (outgoing flux divided by TOA incoming solar flux), broken out by month for the (a) Northern hemisphere and
(b) Southern hemisphere.
RSR flux estimates which do not observe multiple viewing angles of
the same location near the same time must generally account for sun
glint, where the sun reflects strongly off of water at certain angles (Kay
et al., 2009). COIN does not explicitly model sun glint, instead learning
to correct for it based on the CERES flux labels provided when it
occurs (Su et al., 2015a; Doelling et al., 2013). Without sufficient
training examples having sun glint and correct flux labels, one might
expect the model to over-estimate the RSR flux (because the apparent
radiances are large for that viewing angle but not isotropically for all
angles), but we see no evidence of that error in Fig. 2.

4.2. Comparison to literature models

To provide a more quantitative comparison, we begin with the
prediction error mean (bias) and root mean square error (RMSE) on
the CERES Level 2 SSF data product for the validation set. Bias in this
work is always reported as COIN minus CERES. The results are shown,
amongst the existing works in the literature, in Table 2.

While COIN reports the least error, it is worth noting that in general
the numbers are not necessarily directly comparable across geosta-
tionary satellites because they observe different parts of the Earth,
which have different difficulty (e.g. different proportions of land, water
and clouds). However, we have compared the COIN-estimated RSR
in our dataset to CERES Level 2 footprints in the same Continental
9

United States (CONUS) region over the same 7 hourboxes which were
reported on by Pinker et al. (2022), and find the bias and RMSE to be
2.99 and 22.46 W∕m2, which is a substantial and directly comparable
improvement over the (Pinker et al., 2022) bias and RMSE of 19.14 and
85.15 W∕m2.

4.3. Seasonality

For assessing radiative effects of climate-relevant phenomena with
seasonal covariance, it is important to characterize how COIN’s perfor-
mance varies across the seasons. While the general correlation between
COIN and CERES is quite good as seen in Fig. 3, and Fig. 4 shows no
strong evidence of COIN bias being covariant with season, we do see a
pattern of COIN RSR RMSE being clearly higher in the summer months
of each hemisphere.

The seasonality in the RMSE is understandable by inspecting the
error characteristics of COIN as a function of OLR and RSR magnitude.
Fig. 5 plots this comparison, and shows the clear trend in COIN RSR
prediction error standard deviation being higher for larger RSR magni-
tudes. As can be seen in Fig. 6, the summer months in each hemisphere
have mean RSR magnitudes approximately 60–100 W∕m2 higher than
the winter months. For example, in the Southern hemisphere in July
the mean CERES L2 RSR is 168 W∕m2 but in November it is 271 (an
increase of 62%). Returning to Fig. 5, we can see for the 150–200
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Fig. 11. Comparison between COIN and CERES L2 SSF Reflectance percentage (outgoing flux divided by TOA incoming solar flux), for different levels of cloud cover (GOES-16
ABI Level 2 Binary Cloud Mask) within the CERES footprint. the shaded areas contain one standard deviation of prediction error percentage on both sides of the (solid line) mean.
W∕m2 bucket that COIN’s prediction error standard deviation is about
19 W∕m2 while it is about 28 W∕m2 in the 250–300 W∕m2 bucket
(an increase of 67%). The trend (in these RSR magnitude ranges) of
proportionate increase in COIN RSR uncertainty per increase in RSR
magnitude lead us to believe that the seasonal RSR RMSE swings can
be addressed by improving COIN certainty on higher-magnitude RSR
scenes.

Fig. 5 also shows an almost monotonic trend in prediction bias of
COIN compared to CERES L2 flux, for both OLR and RSR. That is, when
the CERES measured OLR or RSR is below its respective average in the
validation set, COIN over-estimates these fluxes; but when the CERES
OLR or RSR is above average, COIN under-estimates these fluxes. While
the trend is clear, only the most infrequently-occurring magnitudes are
strongly affected: 97.4% of the validation set has an OLR magnitude
with less than 2.25 W∕m2 of absolute bias, and 94.1% of the validation
set has an RSR magnitude with less than 5.0 W∕m2 of absolute bias.
10
4.4. Scene types

Our investigation into the performance of COIN on different scene
types begins with Fig. 7, where the mean absolute deviations and
biases between COIN outputs and CERES L2 footprints are plotted
in the latitude/longitude gridbox in which they were observed. We
observe similar patterns for both OLR and RSR in this analysis. The
lowest deviations and biases for both OLR and RSR occur above ocean
surfaces, in areas that less frequently experience clouds (King et al.,
2013).

There is a noticeable ‘striping’ artifact visible in the RSR deviations
(upper right panel of Fig. 7). These higher-error regions correlate with
areas where our validation dataset contains relatively few closely-
raymatched CERES L2 footprints. This phenomena is analyzed in more
detail in Figs. 14 and 16 and discussed in Section 5.

Land surfaces generally have higher deviations than water, with
continental coastlines clearly visible. This characterization is reinforced
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Fig. 12. Comparison between COIN and CERES L2 for discretized bins of solar zenith angle. Daytime violin plots are in yellow, nighttime violin plots are in gray, with the median
marked as a dashed line and first and third quartiles as dotted lines. The validation set frequency for solar zenith angles is shown as an upside-down histogram at the bottom.
(For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
Fig. 13. Comparison between COIN and CERES L2 for discretized bins of aerosol optical depth, on the test set. OLR is in red, RSR is in blue; the shaded areas contain one standard
deviation of prediction error on both sides of the (solid line) mean. The test set frequency (in log-scale) for the aerosol optical depths is shown in an upside-down histogram at
the bottom. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
by Fig. 8 which shows the breakdown of COIN compared to CERES
L2 by earth surface type. This can again be interpreted as a flux
magnitude-driven modeling issue as described in Section 4.3 because
land surfaces generally have higher OLR and RSR flux than water.
Consistent with Fig. 5 this also affects the bias in COIN; for example
CERES L2 footprints with a primarily desert surface type (Barren or
Open-Shrubland) are under-predicted by COIN by an average of 0.3055
W∕m2.

We should note that we do not provide COIN with an explicit surface
type as a model input, a decision that was made for the operational
convenience of not needing to incorporate a separate surface-type
dataset to run model inference on future GOES-16 ABI inputs. However,
this choice likely has contributed to infrequent surface types (such as
Wetlands and Permanent snow) having high absolute biases and RMSE.
11
Locations which more frequently experience optically thick clouds
(including the Atlantic region most strongly influenced by Saharan
dust/aerosol outbreaks (Li et al., 2004)) are associated with higher
RMSE, as is typical in the other models from the literature which es-
timate broadband flux from narrowband geostationary measurements.
Fig. 9 confirms this unambiguously: COIN has mean RMSE for OLR
and RSR (respectively) of only 2.02 and 7.46 W∕m2 in clear-sky L2
footprints but 8.41 and 30.62 W∕m2 in fully overcast footprints. We
also see here the same magnitude-driven trend that was visible in
Fig. 5, because clear-sky RSR is generally lower than fully overcast
scenes: in clear-sky scenes COIN over-estimates CERES L2 RSR by 0.33
W∕m2 and for most partially cloudy footprints COIN under-estimates
CERES L2 by about 0.8 W∕m2. However, in fully overcast footprints
(despite having higher RSR flux) COIN bias has decreased to −0.12
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Fig. 14. Comparison between COIN and CERES L2 for discretized bins of cosine similarity of viewing angle between GOES-16 ABI and CERES aboard Terra/Aqua, on the test set.
Cosine similarity of 1.0 indicates identical vectors, 0.0 are orthogonal vectors, and −1.0 are opposite vectors. OLR is in red, RSR is in blue; the shaded areas contain one standard
deviation of prediction error on both sides of the (solid line) mean. (For interpretation of the references to color in this figure legend, the reader is referred to the web version
of this article.)
W∕m2, perhaps because it is mitigated by the relative abundance of
fully-overcast footprints available in the training data.

There are a number of factors contributing to the challenge of
estimating flux in scenes containing clouds, including surface radiance
coming through semi-transparent clouds, movement of clouds in be-
tween the imager times of collocated imagery, and parallax issues due
to non-raymatched viewing angles. See Section 5 for a more extensive
discussion of the modeling trade-offs made in this work and worthy of
future investigation.

Given we have now seen higher COIN RSR RMSE in summer months
as well as overcast footprints, we use Figs. 10 and 11 to clarify whether
this increased RMSE is driven by larger solar insolation or by reflective
clouds. In these figures we have normalized the COIN-estimated and
CERES L2 RSR by dividing by the CERES-provided TOA incoming solar
flux, to yield unitless reflectance we report as a percentage. We see
that the seasonal trends of Fig. 4 are disrupted, but the higher RMSE
in overcast footprints remains, and conclude the RMSE is primarily
cloud-driven. Further, this analysis argues that COIN may benefit from
12
insolation being provided as a model input; we had hoped the neu-
ral network could implicitly estimate insolation from the provided
day-of-year and solar angles if it was beneficial, but perhaps not.

COIN’s performance as a function of solar zenith angle (SZA) in
Fig. 12 shows no substantial trends except for biases in the most
infrequently occurring SZAs in the CERES L2 data due to its sun-
synchronous orbit, those less than 10 degrees. Adding in the CERES L3
SYN1deg data to the analysis, in Fig. B.1 we can see that COIN in fact
learns these ‘‘sun directly overhead’’ scenes reasonably well. It should
be noted that the CERES L3 SYN1deg flux labels are based in part on
geostationary radiance inputs including GOES-16 ABI, so it is expected
COIN should perform better in general in comparisons to CERES L3
data.

We also note that some CERES footprints having SZA between 90
and 95 degrees do not have zero variance, despite the COIN output
being forced to return 0.0 RSR for any solar zenith angle greater
than 90 degrees. The reason for this is because Fig. 12 groups foot-
prints/gridboxes by the SZA of their centroid latitude/longitude. The
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Fig. 15. Mean COIN bias with respect to CERES L2 SSF, as a function of number of footprints with the same CERES ‘‘Cloud Classification’’ code (which also incorporates surface
type), in the test set for (a) OLR and (b) RSR. Note the 𝑥-axis is log-scale.
Fig. 16. Spatial distribution (in GOES-16 perspective) of CERES L2 footprints which are ray-matched with > 0.9 cosine similarity to GOES-16 ABI.
COIN model operates on GOES-16 ABI pixels, and a CERES foot-
print/gridbox contains many ABI pixels: at sunrise or sunset, some may
have SZA > 90 while the centroid has SZA ≤ 90.

A comparison between COIN and CERES L2 as a function of aerosol
optical depth (CERES PSF-weighted MODIS retrieval at 550 nm) is
given in Fig. 13. We see here again the pattern that infrequently-
occurring scene types (in this case higher aerosol optical depths) can
13
lead to bias in COIN. Similar to land-surface type not being explicitly
passed as a model input, we had hoped that COIN could implicitly
learn the effect of aerosols on flux directly from the radiance data
without an explicit aerosol retrieval being supplied as an input. We see
here that hope is only partially manifest, as footprints over land with
aerosol optical depths 𝜏 > 1 and over ocean 𝜏 > 0.5 are consistently
under-estimated by COIN.
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Fig. A.1. Comparison of COIN to CERES L2 on the test set broken out by month for the (a) Northern hemisphere and (b) Southern hemisphere.
Fig. A.2. Test set comparison between COIN and CERES L2 and L3. The pale green line is a linear fit to the data. The black dotted line corresponds to the 1:1 line. Units are
W∕m2. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
Analysis of COIN estimates as a function of viewing geometry are
available in Fig. 14. To collapse the varying viewing geometries to a
14
single dimension, we calculate the cosine similarity between the vector
from each satellite (GOES-16 and Terra or GOES-16 and Aqua) to the
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Fig. A.3. Test set comparison between COIN and CERES L2 for bins of OLR and RSR magnitude. The validation set frequency for OLR and RSR magnitudes are shown as
upside-down histograms at the bottom. Footprints with solar zenith angle > 90 degrees are not included in the RSR data. The validation set frequency by magnitude is shown as
an upside-down histogram at the bottom. In the 2021 test set there were 14 total L2 SSF footprints with OLR in the 50–75 W∕m2 bin, while there were 0 such footprints in the
validation set hour boxes across 2018, 2019 and 2020. The validation set frequency by magnitude is shown as an upside-down histogram at the bottom.
Fig. A.4. Top row: mean absolute deviation between spatio-temporally averaged COIN outputs and CERES L2 data product on the test set for each 1 × 1 latitude and longitude
gridbox, across 3 years. Bottom row: mean bias of same.
CERES footprint centroid on the earth’s surface that both satellites’
sensors are observing. Footprints where the GOES-16 ABI data are well
ray-matched (cosine similarity of the observation vectors > 0.9) with
the CERES observations report approximately half the RMSE for both
OLR and RSR compared to the most poorly ray-matched footprints. This
could be caused by a few factors. First, collocated footprints that have
15
clouds would not suffer from parallax effect if they are ray-matched.
Second, even in clearsky footprints not subject to parallax effect, when
viewed from a different angle than CERES, COIN’s estimate of the
flux will be subject to compounded uncertainty in cases where the
CERES ADM itself has uncertainty, which can be on the order of a few
percent (Su et al., 2015a). Finally, the trend is also aligned with pattern
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Fig. A.5. Test set comparison between COIN and CERES L2 SSF for the most common surface type of the SSF. (a) A plot of CERES earth surface types, color-coded to match the
error plots showing (b) OLR differences and (c) RSR differences.
seen elsewhere that the most frequently-occurring data has the lowest
RMSE.

Finally, to further confirm the effect of scene-type frequency on
COIN’s performance, we render in Fig. 15 COIN’s mean bias for each
CERES footprint type — according to the CERES ‘‘Cloud Classification’’
code. The Cloud Classification code succinctly represents MODIS cloud
retrieval data and also incorporates 10 earth-surface types. It encodes
up to two cloud layers of varying coverage fraction, optical thickness
and overlap at up to 3 altitude ranges, as described in Ham et al.
(2014). The trend in the figure is clear: under-represented scene types
are more likely to be subject to bias in COIN flux estimates.

4.5. Test set evaluation

See Appendix A for copies of the tables and figures above applied
to the held out year 2021, as a means of assessing the accuracy of
COIN when applied to future years of GOES-16 ABI data without being
retrained. Based on these tables and figures we do not observe any
substantial differences in the performance of COIN on the validation
set (years 2018, 2019, and 2020) compared with the test set (2021).

5. Discussion

We have introduced a collocation dataset between GOES-16 ABI and
CERES SSF/SYN1deg data products, which we believe to be more accu-
rate than previously reported geostationary/CERES collocation datasets
because it is restricted to 120 s of time difference between the satellite
sensors (previous works have allowed 300 s) and we utilize a precise
calculation of the CERES point spread function: previous works have
downsampled and regridded their validation data (Vázquez-Navarro
et al., 2013; Lee et al., 2018; Kim and Lee, 2019; Pinker et al., 2022). It
is also more complete because we report our analysis on several million
collocated footprints that span all seasons, include the full diurnal
cycle, and do not omit sunglint.

While comparing COIN to previous works in the literature comes
with the caveat that they are mostly evaluated on different fields of
view of the Earth, it is promising to see COIN report aggregate RMSE
values drop by factors of 1.37 to 1.66 for OLR and 1.52 to 3.32 for
16
RSR (See Table 2). Compared to the sole previous work where we
can provide a direct comparison on the same satellite sensors and
times (Pinker et al., 2022), COIN estimates of RSR have bias decreased
by a factor of 6.4 and RMSE decreased by a factor of 3.8. We believe
the improvement shown by COIN is due primarily to it being trained
on real satellite observations, so it is less affected by covariate shift
and sample selection bias (Shimodaira, 2000; Huang et al., 2006). This
design choice is a trade-off we take in exchange for losing some ability
to interpret the model and run controlled sensitivity studies on it, which
are easier with models trained directly on radiative transfer simulation
datasets.

COIN does in fact sometimes learn from radiative transfer simula-
tions indirectly through the CERES data product labels, which depend
on angular distribution models (ADMs) that utilize simulations in at
least two instances in Edition4 A (Su et al., 2015a): (1) non-glint clear-
sky ocean scenes use aerosol optical properties from Hess et al. (1998)
to fill un-observed angular bins, and (2) cloudy land scenes have their
top of atmosphere RSR distinguished from surface contributions using
an analytical ADM with cloud albedo and transmittance coefficients
calculated by Fu and Liou (1993). Additionally, researchers studying
TOA outgoing irradiance in scenes which may have significant amounts
of high-altitude horizontal-path transmission through the atmosphere
should be aware that COIN may pass along the < 0.35 W∕m2 flux
error due to the fixed global 20 km TOA reference level adopted by
CERES rather than scene-specific reference levels (Loeb et al., 2002).
These nuances highlight an additional strength of COIN’s design: by
learning from the CERES data products, we expect to take advantage of
improvements in future editions of the CERES data products by simply
retraining COIN with the labels from the new edition.

Besides the improvement that CERES editions may bring, there are
many avenues to making improvements to COIN that are suggested
by the results in Section 4. The highest RMSE is repeatedly seen
in the least frequently-occurring atmosphere/surface scene types and
OLR/RSR flux magnitudes: this is a classic symptom of machine learn-
ing on ‘‘imbalanced data’’. Potential remedies may be found in recent
training techniques from the literature such as ‘‘label and feature dis-
tribution smoothing’’ (Yang et al., 2021), and post-training calibration
methods (Guo et al., 2017). If under-represented scene types still report
higher error, one could consider augmenting our collocation dataset
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Fig. A.6. Test set comparison between COIN and CERES L2 SSF for different levels of (GOES-16 ABI Level 2 Binary Cloud Mask) cloud cover within the CERES footprint. OLR is
in red, RSR is in blue; the shaded areas contain one standard deviation of prediction error on both sides of the (solid line) mean. (For interpretation of the references to color in
this figure legend, the reader is referred to the web version of this article.)
with radiative transfer simulations, while still carefully monitoring our
extensive validation set for signs of covariate shift.

There are a number of cases which seem likely to be improved by
the addition of auxiliary loss terms while training COIN. Given that
the CERES L2 SSF flux labels are calculated as observed broadband
radiance divided by a scene-specific anisotropic factor (Equation 2
from Su et al. (2015a)), we suspect COIN can also be improved by reg-
ularizing it with an auxiliary loss term that would penalize it for being
unable to identify the footprint’s ADM scene type from its geostationary
narrowband radiances; an auxiliary loss term for broadband radiance
observed by CERES (for ray-matched footprints) also seems likely to
improve the model RMSE. For improved performance on higher aerosol
optical depths and for infrequently observed earth-surface types, we
are optimistic that an auxiliary loss term teaching COIN to predict the
MODIS-retrieved aerosol optical depth as well as the earth-surface type
can benefit under-represented scene types.

Another class of possible improvements are suggested by Fig. 14
which shows COIN has substantially lower RMSE on footprints where
17
the GOES-16 ABI and Terra/Aqua CERES viewing rays are similar to
each other. We conjecture this is due at least in part to poorly ray-
matched footprints having higher effective CERES flux ‘‘label noise’’
due to parallax effect: for example in partially cloudy conditions GOES-
16’s viewing ray to the footprint’s surface location could observe
ground-reflected radiances while CERES’ different viewing ray observes
cloud-reflected radiances, making it challenging to estimate the CERES
flux. It is tempting to consider restricting the dataset to only ray-
matched footprints, however this idea is in tension with the dataset’s
spatial coverage and would likely incur covariate shift — for example
Fig. 16 shows the heatmap of valid collocated footprints if they are
required to have > 0.9 cosine similarity of viewing angles and still less
than 120 s of collocation time difference. We are more optimistic about
two other possible ways to address the issue. First, parallax correction
could be a mitigation by using a cloud height estimate such as the ABI
cloud height product (Heidinger et al., 2020). Second, given we still
allow up to 120 s of collocation time difference during which clouds
can enter/leave the footprint, even raymatched footprints would suffer
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Fig. A.7. Test set comparison between COIN and CERES L2 and L3 for bins of solar zenith angle. Daytime violin plots are in yellow, nighttime violin plots are in gray, with the
median marked as a dashed line and first and third quartiles as dotted lines. The validation set frequency for solar zenith angles is shown as an upside-down histogram at the
bottom. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
Table A.3
Prediction bias and error of broadband flux estimates from narrowband imagers aboard
geostationary satellites, which were validated against the CERES L2 SSF product in a
separate test set that was not used for training or validation. All values are W∕m2.

Satellite OLR bias RMSE RSR bias RMSE Test set

GOES-16a −0.05 6.26 −0.48 23.86 2021

aCOIN (this work).

label noise, so techniques from the label noise literature such as early
stopping (Li et al., 2020) seem prudent to apply.

The 120 s of collocation time difference we allow here was chosen
because it is as low as we can go without damaging spatial coverage
— there are covariances in the orbit/scanning pattern of CERES on
Terra/Aqua and the scan timing of GOES-16 ABI. It may be infor-
mative to determine how low RMSE can be pushed for any given
neural network architecture in the absence of viewing-ray and temporal
mismatch: using MODIS radiances as input to such a neural network
and CERES flux as output labels, footprints are trivially collocated with
perfect ray-matching and zero collocation time difference given the
instruments operate in tandem on Terra/Aqua.

In future works we also look forward to applying COIN to other
geostationary satellite sensors such as the Advanced Himawari Imager
(AHI) aboard the Himawari 8, and the Spinning Enhanced Visible
and InfraRed Imager (SEVIRI) aboard Meteosat Second Generation
satellites, because they have similar spectral bands and their data can
be collocated with CERES measurements.

6. Conclusion

We have published alongside this paper a collocation dataset be-
tween GOES-16 ABI and CERES SSF/SYN1deg data products, which can
be used for broadband flux estimation from narrowband radiances. We
believe it is the most accurate and complete that has been reported
to date because it has the shortest collocation time difference, spans
all seasons, includes the full diurnal cycle, and does not omit sunglint
regions.

On this dataset, we have developed a neural network that directly
back-propagates error gradients through the CERES point spread func-
tion. This avoids the need for a bespoke radiative transfer simulation
18
dataset and mitigates covariate shift, achieving substantially lower
bias and RMSE than previous broadband flux estimates made from
geostationary narrowband radiances.

Through extensive analysis presented here, we have identified some
remaining weaknesses in our modeling approach, and have highlighted
several techniques to further improve the flux estimates.

With the model inference outputs we provide for the years 2018,
2019, 2020 and 2021, climate researchers can analyze important cli-
mate forcers visible to GOES-16 with new levels of precision and
accuracy.
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Fig. B.1. Comparison between COIN and CERES L2 and L3 for discretized bins of solar zenith angle. Daytime violin plots are in yellow, nighttime violin plots are in gray, with
the median marked as a dashed line and first and third quartiles as dotted lines. The validation set frequency for solar zenith angles is shown as an upside-down histogram at the
bottom. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
Fig. B.2. Top row: mean absolute deviation between spatio-temporally averaged COIN outputs and CERES L2 and L3 data product for each 1 × 1 latitude and longitude gridbox,
across 3 years. Bottom row: mean bias of same.
Acknowledgments

Contributions from V.R.M. were partially supported by NASA, USA
research grant 80NSSC19K0943. CERES data were obtained from the
NASA Langley Research Center Atmospheric Science Data Center.
19
Appendix A. Test set evaluation, the year 2021

See Table A.3 and Figs. A.1–A.7.

Appendix B. Selected CERES L3 comparisons

See Figs. B.1–B.3.
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Fig. B.3. Comparison between COIN and CERES L3 SYN1Deg for different levels of (GOES-16 ABI Level 2 Binary Cloud Mask) cloud cover within the CERES gridbox. OLR is in
red, RSR is in blue; the shaded areas contain one standard deviation of prediction error on both sides of the (solid line) mean. (For interpretation of the references to color in
this figure legend, the reader is referred to the web version of this article.)
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