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Abstract

One desired capability for machines is the ability to transfer their knowledge of one domain to another

where data is (usually) scarce. Despite ample adaptation of transfer learning in various deep learning

applications, we yet do not understand what enables a successful transfer and which part of the network is

responsible for that. In this paper, we provide new tools and analyses to address these fundamental questions.

Through a series of analyses on transferring to block-shuffled images, we separate the effect of feature reuse

from learning low-level statistics of data and show that some benefit of transfer learning comes from the

latter. We present that when training from pre-trained weights, the model stays in the same basin in the loss

landscape and different instances of such model are similar in feature space and close in parameter space.

1 Introduction

One desired capability of machines is to transfer their knowledge of a domain it is trained on (the source domain)

to another domain (the target domain) where data is (usually) scarce or a fast training is needed. There has

been a plethora of works on using this framework in different applications such as object detection [13, 38],

image classification [40, 29, 24] and segmentation [5, 17], and various medical imaging tasks [42, 37, 6], to name

a few. In some cases there is nontrivial difference in visual forms between the source and the target domain

[42, 37]. However, we yet do not understand what enables a successful transfer and which parts of the network

are responsible for that. In this paper we address these fundamental questions.

To ensure that we are capturing a general phenomena, we look into target domains that are intrinsically

different and diverse. We use CheXpert [21] which is a medical imaging dataset of chest x-rays considering

different diseases. We also consider DomainNet [33] datasets that are specifically designed to probe transfer

learning in diverse domains. The domains range from real images to sketches, clipart and painting samples. See

Figure 1 for sample images of the transfer learning tasks studied in this paper.

We use a series of analysis to answer the question of what is being transferred. First, we investigate feature-

reuse by shuffling the data. In particular, we partition the image of the downstream tasks into equal sized blocks

and shuffle the blocks randomly. The shuffling of blocks disrupts visual features in the images, especially with

small block sizes (see Figure 1 for examples of shuffled images). We note the importance of feature re-use and we
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chexpert

Figure 1: Sample images of dataset used for transfer learning downstream tasks. Left most: an example from CheXpert.

The next three: an example from the DomainNet real dataset, the same image with random shuffling of 8× 8 blocks

and 1 × 1 blocks, respectively. The last three: examples from DomainNet clipart and quickdraw, and a 32 × 32
block-shuffled version of the quickdraw example.

also see that it is not the only role player in successful transfer. This experiment shows that low-level statistics

of the data that is not disturbed by shuffling the pixels also play a role in successful transfer (Section 3.1).

Next, we compare the detailed behaviors of trained models. In particular, we investigate the agreements/dis-

agreements between models that are trained from pre-training versus scratch. We note that two instances of

models that are trained from pre-trained weights make similar mistakes. However, if we compare these two

classes of models, they have fewer common mistakes. This suggests that two instances of models trained from

pre-trained weights are more similar in feature space compared to ones trained from random initialization.

To investigate this further, we look into feature similarity, measured by centered kernel alignment (CKA) [26], at
different modules

1
of the two model instances and observe that this is in fact the case. we also look into the

`2 distance between parameters of the models and note that two instances of models that are trained from

pre-trained weights are much closer in `2 distance compared to the ones trained from random initialization

(Section 3.2).

We then investigate the loss landscape of models trained from pre-training and random initialization

weights and observe that there is no performance barrier between the two instances of models trained from

pre-trained weights, which suggests that the pre-trained weights guide the optimization to a flat basin of the loss

landscape. On the other hand, barriers are clearly observed between the solutions from two instances trained

from randomly initialized weights, even when the same random weights are used for initialization (Section 3.3).

The next question is, can we pinpoint where feature reuse is happening? As shown in [45] different modules

of the network have different robustness to parameter perturbation. Chatterji et al. [4] analyzed this phenomena

and captured it under a module criticality measure. We extend this investigation to transfer learning with an

improved definition of module criticality. Using this extended notion, we analyze criticality of different modules

and observe that higher layers in the network have tighter valleys which confirms previous observations [44, 36]

on features becoming more specialized as we go through the network and feature-reuse is happening in layers

that are closer to the input. In addition, we observe that models that are trained from random initialization

have a transition point in their valleys, which may be due to changing basins through training.

Finally, inspired by our findings about the basin of loss landscape, we look into different checkpoint in the

training of the pre-trained model and show that one can start fine-tuning from the earlier checkpoints without

losing accuracy in the target domain (see Section 3.5).

Our main contributions and takeaways are summarized below:

1. For a successful transfer both feature-reuse and low-level statistics of the data are important.

1

A module is a node in the computation graph that has incoming edges from other modules and outgoing edges to other nodes and

performs a linear transformation on its inputs. For layered architectures such as VGG, each layer is a module. For ResNets, a module

can be a residual block, containing multiple layers and a skip connection.
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Figure 2: Learning curves comparing random initialization (RI-T) and finetuning from ImageNet pre-trained

weights(P-T). For CheXpert, finetune with base learning rate 0.1 is not shown as it failed to converge.

2. Models trained from pre-trained weights make similar mistakes on target domain, have similar features and

are surprisingly close in `2 distance in the parameter space. They are in the same basins of the loss landscape;

while models trained from random initialization do not live in the same basin, make different mistakes, have

different features and are farther away in `2 distance in the parameter space.

3. Modules in the lower layers are in charge of general features and modules in higher layers are more sensitive

to perturbation of their parameters.

4. One can start from earlier checkpoints of pre-trained model without losing accuracy of the fine-tuned model.

The starting point of such phenomena depends on when the pre-train model enters its final basin.

2 Problem Formulation and Setup

In transfer learning, we train a model on the source domain and then try to modify it to give us good predictions

on the target domain. In order to investigate transfer learning, we analyze networks in four different cases: the

pre-trained network, the network at random initialization, the network that is fine-tuned on target domain after

pre-training on source domain and the model that is trained on target domain from random initialization. Since

we will be referring to these four cases frequently, we use the following notations. T: trained, P: Pre-trained,
RI: random initialization. Therefore we use the following abbreviations for the four models throughout the

paper: RI (random initialization), P (pre-trained model), RI-T (model trained on target domain from random

initialization), P-T (model trained/fine-tuned on target domain starting from pre-trained weights). We use

ImageNet [7] pre-training for its prevalence in the community and consider CheXpert [21] and three sets from

DomainNet [33] as downstream transfer learning tasks. See Appendix A for details about the experiment setup.

3 What is being transferred?

3.1 Role of feature reuse

Human visual system is compositional and hierarchical: neurons in the primary visual cortex (V1) respond

to low level features like edges, while upper level neurons (e.g. the grandmother cell [15]) respond to complex

semantic inputs. Modern convolutional neural networks trained on large scale visual data are shown to form

similar feature hierarchies [2, 14]. The benefits of transfer learning are generally believed to come from reusing

the pre-trained feature hierarchy. This is especially useful when the downstream tasks are too small or not

diverse enough to learn good feature representations. However, this intuition cannot explain why in many

successful applications of transfer learning, the target domain could be visually very dissimilar to the source

domain. To characterize the role of feature reuse, we use a source (pre-train) domain containing natural images

(ImageNet), and a few target (downstream) domains with decreasing visual similarities from natural images:
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Figure 3: Effects on final performance (left: test accuracy) and optimization speed (right: average training accuracy over

100 finetune epochs) when the input images of the downstream tasks are block-shuffled. The x-axis shows the block sizes

for shuffling. Block size ‘*’ is similar to block size ‘1’ except that pixel shuffling operates across all RGB channels. For each

bar in the plots, the semi-transparent and solid bar correspond to initializing with pre-trained weights and randomweights,

respectively. The numbers on the top of the left pane show the relative accuracy drop: 100(AP-T−ARI-T)/AP-T%, where

AP-T and ARI-T are test accuracy of models trained from pre-trained and random weights, respectively.

DomainNet real, DomainNet clipart, CheXpert and DomainNet quickdraw (see Figure 1). Comparing

RI-T to P-T in Figure 2, we observe largest performance boost on the real domain, which contains natural

images that share similar visual features with ImageNet. This confirms the intuition that feature reuse plays

an important role in transfer learning. On the other hand, even for the most distant target domains such as

CheXpert and quickdraw, we still observe performance boosts from transfer learning. Moreover, apart from

the final performance, the optimization for P-T also converges much faster than RI-T in all cases. This suggests

additional benefits of pre-trained weights that are not directly coming from feature reuse.

To further verify the hypothesis, we create a series of modified downstream tasks which are increasingly

distant from normal visual domains. In particular, we partition the image of the downstream tasks into equal

sized blocks and shuffle the blocks randomly. The shuffling disrupts high level visual features in those images

but keeps the low level statistics about the pixel values intact. The extreme case of block size 224× 224 means

no shuffling; in the other extreme case, all the pixels in the image are shuffled, making any of the learned visual

features in pre-training completely useless. See Figure 1 for examples of block-shuffled images. Note that even

for 1× 1 blocks, all the RGB channels are moved around together. So we created a special case where pixels
in each channel move independently and could move to other channels. We then compare RI-T with P-T on

those tasks
2
. The impacts on final performance and optimization speed with different block sizes are shown in

Figure 3.

We observe that 1) The final performance drops for both RI-T and P-T as the block size decreases, indicating

the increasing difficulty of the tasks. 2) The relative accuracy difference, measured as (AP-T −ARI-T)/AP-T%,

decreases with decreasing block size on both real and clipart, showing consistency with the intuition that

decreasing feature reuse leads to diminishing benefits. 3) On the other hand, on quickdraw, the relative accuracy

difference does not show a decreasing pattern as in the other two domains. This indicates that for quickdraw,

where the input images are visually dissimilar to natural images, some other factors from the pre-trained weights

are helping the downstream tasks. 4) The optimization speed on P-T is relatively stable, while on RI-T drops

drastically with smaller block sizes. This suggests that benefits of transferred weights on optimization speed is

independent from feature reuse.

We conclude that feature reuse plays a very important role in transfer learning, especially when the down-

2

We disable data augmentation (random crop and left-right flip) during finetuning because they no longer make sense for block-

shuffled images and make optimization very unstable.
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stream task shares similar visual features with the pre-training domain. But there are other factors at play: in

these experiments we change the size of the shuffled blocks all the way to 1 and even try shuffling the channels

of the input, therefore, the only object that is preserved here is the set of all pixel values which can be treated as

a histogram/distribution. We refer to those information as low-level statistics, to suggest that they are void of
visual/semantic structural information. The low-level statistics lead to significant benefits of transfer learning,

especially on optimization speed.

3.2 Opening up the model

Investigating mistakes In order to understand the difference between different models, we go beyond

the accuracy values and look into the mistakes the models make on different samples of the data. We look

into the common mistakes where both models classify the data point incorrectly and the uncommon mistakes
(disagreements between models) where only one of them classifies the data point incorrectly and the other one

does it correctly. We first compare the ratio of common and uncommon mistakes between two P-Ts, a P-T and

a RI-T and two RI-Ts. We note a considerable number of uncommon mistakes between P-T and RI-T models

while two P-Ts have strictly fewer uncommon mistakes. This trend is true for both CheXpert and DomainNet

target domains.

We visualize the common and uncommon mistakes of each model on DomainNet, and observe that the

data samples where P-T is incorrect and RI-T is correct mostly include ambiguous examples; whereas the

data samples where P-T is correct, RI-T is incorrect include a lot of easy samples too. This complies with the

intuition that since P-T has stronger prior, it harder to adapt to the target domain. Moreover, when we repeat

the experiment for another instance of P-T, the mistaken examples between two instances of P-T are very

similar, see Appendix B.2 for visualizations of such data points. This may suggest that two P-T’s are more

similar in the feature space compared to two RI-T’s and P-T vs RI-T. We investigate this idea further by looking

into similarity of the two networks in the feature space.

Feature Similarity We use the centered kernel alignment (CKA) [27] as a measure of similarity between two

output features in a layer of a network architecture given two instances of such network. CKA [27] is the latest

work on estimating feature similarity with superior performance over earlier works. The results are shown in

Table 1. We observe that two instances of P-T are highly similar across different layers. This is also the case

when we look into similarity of P-T and P. However, between P-T and RI-T instance or two RI-T instances,

the similarity is very low. Note that the feature similarity is much stronger in the penultimate layer than any

earlier layers both between P-T and RI-T instance and two RI-T instances, however, still an order of magnitude

smaller than similarity between two P-T layers.

These experiments show that the initialization point, whether pre-trained or random, drastically impacts

feature similarity, and although both networks are showing high accuracy, they are not that similar in the feature

space. This emphasizes on role of feature reuse and that two P-T are reusing the same features.

Table 1: Feature similarity for different layers of ResNet-50, target domain CheXpert

models/layer conv1 layer 1 layer 2 layer 3 layer 4

P-T & P 0.6225 0.4592 0.2896 0.1877 0.0453

P-T & P-T 0.6710 0.8230 0.6052 0.4089 0.1628

P-T & RI-T 0.0036 0.0011 0.0022 0.0003 0.0808

RI-T & RI-T 0.0016 0.0088 0.0004 0.0004 0.0424
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Table 2: Features `2 distance between two P-T and two RI-T for different target domains

domain/model 2 P-T 2 RI-T P-T & P RI-T & P

CheXpert 200.12 255.34 237.31 598.19

clipart 178.07 822.43 157.19 811.87

quickdraw 218.52 776.76 195.44 785.22

real 193.45 815.08 164.83 796.80
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Figure 4: Performance barrier between different solutions. The left and middle panes show performance barrier measured

by test accuracy on DomainNet real and quickdraw, respectively. The right pane shows the performance barrier

measured by test AUC on CheXpert. In the legend, ‘randinit*’ and ‘randinitT’ means the best and final checkpoint in a

RI-T training trajectory. Similarly, ‘finetune*’ and ‘finetuneT’ are for P-T. Since there is no overfitting from overtraining

on DomainNet, we only show results for final checkpoints.

Distance in parameter space In addition to feature similarity, we look into the distance between twomodels

in the parameter space. More specifically, we measure the `2 distance between 2 P-Ts and 2 RI-Ts, both per
module and for the entire network. Interestingly, RI-Ts are farther from each other compared to two P-Ts,
(see Table 2) and this trend can be seen in individual modules too (see Figure 10, 11, Table 8 in the Appendix for

more comparisons). Moreover the distance between modules increases as we move towards higher layers in the

network.

3.3 Performance barriers and basins in the loss landscape

A commonly used criterion for better generalization performance is the flatness of the basin of the loss landscape

near the final solution. In a flat basin, the weights could be locally perturbed without hurting the performance,

while in a narrow basin, moving away from the minimizer would quickly hit a barrier, indicated by a sudden
increase in the loss.

To explore the loss landscape of P-T and RI-T, we use the following procedure to identify potential

performance barriers. Let Θ and Θ̃ be all the weights from two different checkpoints. We evaluate a series of

models along the linear interpolation of the two weights: {Θλ = (1 − λ)Θ + λΘ̃ : λ ∈ [0, 1]}. It has been
observed in the literature that any two minimizers of a deep network can be connected via a non-linear low-loss
path [11, 9, 10]. In contrast, due to the non-linear and compositional structure of neural networks, the linear

6



combination of the weights of two good performing models does not necessarily define a well behaved model,

thus performance barriers are generally expected along the linear interpolation path. However, in the case when

the two solutions belong to the same flat basin of the loss landscape, the linear interpolation remains in the

basin. As a result, a performance barrier is absent. Moreover, interpolating two random solutions from the

same basin could generally produce solutions closer to the center of the basin, which potentially have better

generalization performance than the end points.

The word “basin” is often used loosely in the literature to refer to areas in the parameter space where the

loss function has relatively low values. Since prior work showed that non-linear low-loss path could be found

to connect any pair of solutions, we focus on convex hull and linear interpolation in order to avoid trivial

connectivity results. In particular, we require that for most points on the basin, their convex combination is on

the basin as well. This extra constraint would allow us to have multiple basins that may or may not be connected

though a low-loss (nonlinear) path. We formalize this notion as follows:

Definition 3.1. Given a loss function ` : Rn → R+ and a closed convex set S ⊂ Rn, we say that S is a (ε, δ)-basin
for ` if and only if S has all following properties:

1. Let US be the uniform distribution over set S and µS,` be the expected value of the loss ` on samples generated
from US . Then,

Ew∼US [|`(w)− µS,`|] ≤ ε (1)

2. For any two pointsw1, w2 ∈ S, let f(w1, w2) = w1+α̃(w2−w1), where α̃ = max{α|w1+α(w2−w1) ∈
S}. Then,

Ew1,w2∼US ,ν∼N (0,(δ2/n)In)[`(f(w1,w2) + ν)− µS,`] ≥ 2ε (2)

3. Let κ(w1,w2, ν) = f(w1,w2) + ν
‖f(w1,w2)−w1‖2

(f(w1,w2)−w1). Then,

Ew1,w2∼US ,ν∼N (0,δ2)[`(κ(w1,w2, |ν|))− µS,`] ≥ 2ε (3)

Based on the above definition, there are three requirements for a convex set to be a basin. The first

requirement is that for most points on the basin, their loss should be close to the expected value of the loss in

the basin. This notion is very similar to requiring the loss to have low variance for points on the basin
3
. The last

two requirements ensure that the loss of points in the vicinity of the basin is higher than the expected loss on

the basin. In particular, the second requirement does that by adding Gaussian noise to the points in the basin

and requiring the loss to be higher than the expected loss in the basin. The third requirement does something

similar along the subspaces spanned by extrapolating the points in the basin. That is, if one exits the basin by

extrapolating two points on the basin, the loss should increase.

In Figure 4 we show interpolation results on DomainNet real, quickdraw, and CheXpert. Generally, we

observe no performance barrier between the P-T solutions from two random runs, which suggests that the

pre-trained weights guide the optimization to a flat basin of the loss landscape. Moreover, there are models

along the linear interpolation that performs slightly better than the two end points, which is again consistent

with our intuition. On the other hand, barriers are clearly observed between the solutions from two RI-T
runs (even if we use the same random initialization values). On CheXpert, because the models start to overfit

after certain training epochs (see Figure 2), we examine both the best and final checkpoints along the training

trajectory, and both show similar phenomena. Interestingly, the interpolation between the best and the final

checkpoints (from the same training trajectory) also shows a (small) barrier for RI-T (but not for P-T).
3

Here the term that captures the difference has power one as opposed to variance where the power is two.
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Starting with the two P-T solutions, we extrapolated beyond their connecting intervals to find the basin

boundary, and calculated the parameters according to Definition 3.1. We found that each pair of P-T solu-

tions live in a (0.0038, 49.14)-basin, (0.0054, 98.28)-basin and (0.0034, 49.14)-basin for real, clipart and

quickdraw, respectively. Their µS,` values are 0.2111, 0.2152 and 0.3294, respectively, where `measures the

test error rate. On the other hand, pairs of RI-T solutions do not live in the same (ε, δ)-basin for reasonable ε
thresholds.

We have done a variety of additional experiments on analysing the performance barriers for different

domains, cross-domains, extrapolation and training on combined domains that can be found in the Appendix.

3.4 Module Criticality
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Figure 5: Module criticality measured on CheX-

pert.

It has been observed that different layers of the network show

different robustness to perturbation of their weight values [45].

Zhang et al. [45] did the following experiment: consider a

trained network, take one of the modules and rewind its value

back to its initial value while keeping the weight value of all

other modules fixed at trained values. They noted that for

some modules, which they called critical, the performance of

the model drops significantly after rewinding, while for others

the performance is not impacted. Chatterji et al. [4] investigated

this further and formulated it by a notion of module criticality.

Module criticality is a measure that can be calculated for each

module and captures how critical each module is. It is defined

in [4] by looking at width of the valleys that connect the final and initial value of weight matrix of a module,

while keeping all the other modules at their final trained value.

Definition 3.2 (Module Criticality [4]). Given an ε > 0 and network fΘ, we define the module criticality for
module i as follows:

µi,ε(fΘ) = min
0≤αi,σi≤1

{
α2
i

∥∥θFi − θ0
i

∥∥2

Fr

σ2
i

: Eu∼N (0,σ2
i )[LS(fθαi +u,ΘF−i

)] ≤ ε

}
, (4)

where θαi = (1− α)θ0
i + αθFi , α ∈ [0, 1] is a point on convex combination path between the final and initial value

of the weight matrix θi and we add Gaussian perturbation u ∼ N (0, σ2
i ) to each point.

Chatterji et al. [4] showed that module criticality captures the role of the module in the generalization

performance of the whole architecture and can be used as a measure of capacity of the module and predict the

generalization performance. In this paper, we extend the definition of module criticality by looking at both

direct path that linearly connect the initial and final value of the module and the optimization path generated
by an optimizer from initialization to the final solution (checkpoints during training). We also look into the

final value of a weight matrix in addition to its optimal value during training as the start point of the path for

investigating criticality, i.e., instead of θFi , we investigate θ
opt

i which is the checkpoint where the network has the

best validation accuracy during training. Moreover, we ensure that the noise is proportional to the Frobenius

norm of weight matrix. Similar to [4], we define the network criticality as the sum of the module criticality

over modules of the network. Note that we can readily prove the same relationship between this definition to

generalization performance of the network as the one in [4] since the proof does not depend on the start point

of the path.

8



a P-T, direct path b RI-T, direct path

c P-T, optimization path d RI-T, optimization path

Figure 6: Module Criticality plots for Conv1 module. x-axis shows the distance between initial and optimal θ, where
x = 0 maps to initial value of θ. y-axis shows the variance of Gaussian noise added to θ. The four subplots refer to the
four paths one can use to measure criticality. All of which provide good insight into this phenomenon. Heat map is used

so that the colors reflect the value of the measure under consideration.

In Figure 5 we analyze criticality of different modules in the same way as [45]. We note a similar pattern

as observed in the supervised case. The only difference is that the ‘FC’ layer becomes critical for P-T model,

which is expected. Next, we investigate crititcality of different modules with our extended definition along

with original definition. We note that both optimization and direct paths provide interesting insights into the

criticality of the modules. We find that the optimal value of weight is a better starting point for this analysis

compared to its final value. Figure 6 shows this analysis for ‘Conv1’ module, which as shown in Figure 5 is a

critical module. In this Figure we only look at the plots whenmeasuring performance on training data. As shown

in Figure 30 (Appendix B.9), we can see the same trend when looking at the test performance or generalization

gap.

As we move from the input towards the output, we see tighter valleys, i.e., modules become more critical.

This is in agreement with observation of [44, 36] that lower layers are in charge of more general features while

higher layers have features that are more specialized for the target domain. Moreover, For modules of the RI-T
model, we notice more sensitivity and a transition point in the path between optimal and initial point, where

the valley becomes tighter and wider as we move away from this point. Whether this is related to the module

moving to another basin is unclear.

3.5 Which pre-trained checkpoint is most useful for transfer learning?

We compare the benefits of transfer learning by initializing the pre-trained weights from different checkpoints

on the pre-training optimization path. Figure 7 shows the final performance and optimization speed when

finetuning from different pre-training checkpoints. Overall, the benefits from pre-training increase as the check-

point index increases. Closer inspection reveals the following observations: 1) in pre-training, big performance

boosts are observed at epoch 30 and 60 where the learning rate decays. However, initializing from checkpoints

29, 30, 30 (and similarly 59, 60, 61) does not show significantly different impact. On the other hand, especially

for final performance of real and clipart, significant improvements are observed when we start from the

checkpoints where the pre-training performance has been plateauing (i.e. checkpoint 29 and 59). This shows that

the pre-training performance is not always a faithful indicator of the effectiveness of the pre-trained weights for

transfer learning. 2) quickdraw sees much smaller benefit on final performance from pre-training and quickly

plateaus at checkpoint 10, while real and clipart continuously see noticeable performance improvements until

checkpoint 60. On the other hand, all three tasks get significant benefits on optimization speed improvements

as the checkpoint index increases. 3) The optimization speedups start to plateau at checkpoint 10, while (for
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Figure 7: Comparing the final performance (left: test accuracy after finetuning) and optimization speed (right: average

training accuracy over 100 finetune epochs) of transfer learning from different pre-training checkpoints. The purple

shaded area indicates the top-1 accuracy of the ImageNet pre-training task at each of the checkpoints.

real and clipart) the final performance boosts continue to increase.

In summary, we observe independence between the improvements on optimization speed and final per-

formance. Moreover, this is in line with the loss landscape observations in Section 3.3. Earlier checkpoints

in pre-training are out of basin of the converged model and at some point during training we enter the basin.

This also explains the plateau of performance after some checkpoints. Therefore, we can start from earlier

checkpoints in pre-training.

4 Related work

Recent work has looked into whether transfer learning is always successful [18, 25, 31, 20, 12]. For example, Ko-

rnblith et al. [25] illustrates that pretrained features may be less general than previously thought and He et al.

[18] show that transfer (even between similar tasks) does not necessarily result in performance improvements.

Kolesnikov et al. [24] propose a heuristic for setting the hyperparameters for transfer. Yosinski et al. [44] show

that in visual domain features from lower layers are more general and as we move more towards higher layers

the features become more specific. Raghu et al. [35] evaluated the role of feature reusing in meta-learning.

Directly related to our work is [36], where they investigate transfer learning from pre-trained ImageNetmodel

to medical domain and note the role of model size on transfer performance, as well as the role of feature

independent aspects such as weight scaling. In this paper, we go beyond their angles and propose an extensively

complementary analysis. We dissect the role of different modules from various angles. Moreover, we provide

insights into what is being transferred. We also extend the understanding of role of feature reuse and other

parameters at play for successful transfer.

Transfer learning is also a key components in recent breakthroughs in natural language processing, as

pre-trained representations from task-agnostic transformer language models turned out to work extremely

well on various downstream tasks [8, 34, 43, 28, 3], therefore extensively analyzed [19, 41]. Transfer learning in

text domains is charasteristically different from transfer learning in visual domains due to the nature of the

data, utility of untrained representations, pre-training techniques and the amount of distribution shifts between

pre-training and downstream tasks. In this paper, we focus on studying transfer learning in visual domain.

The flatness of the basin of the loss landscape near the final solution is studied as an indicator of the

generalization performance of neural network models [23, 22]. It is found that a nonlinear connecting path could
be found between any pair of basins corresponding to different solutions [11, 9, 10]. In this paper, we study linear
path connectivity between solutions to investigate the connectivity in the parameter space.

10



5 Conclusion and future work

In this paper we shed some light on what is being transferred in transfer learning and which parts of the network

are at play. We investigated the role of feature reuse through shuffling the blocks of input and showed that when

trained from pre-trained weights initialization, the network stays in the same basin of the solution, features

are similar and models are close in the `2 distance in parameter space. We also confirmed that lower layers

are in charge of more general features. Our findings on basin in the loss landscape can be used to improve

ensemble methods. Our observation of low-level data statistics improving training speed could lead to better

network initialization methods. Using these findings to improve transfer learning is of interest for future work.

More specifically, we plan to look into initialization with minimum information from pre-trained model while

staying in the same basin and whether this improves performance. For example, one can use top singular values

and directions for each module for initialization and investigate if this suffices for good transfer, or ensure

initialization at the same basin but adding randomization to enhance diversity and improve generalization.

Another interesting direction is the implications of these findings for parallel training and optimization. Since

we are staying in the same basin, we can take model average without disturbing the performance.
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Appendix A: Experiment Setup

We use ImageNet [7] pre-training for its prevalence in the community and consider CheXpert [21] and three

sets fromDomainNet [33] as downstream transfer learning tasks. CheXpert is a medical imaging dataset which

consists of chest x-ray images. We resized the x-ray images to to 224 × 224, and set up the learning task to

diagnose 5 different thoracic pathologies: atelectasis, cardiomegaly, consolidation, edema and pleural effusion.

DomainNet [33] is a dataset of common objects in six different domain. All domains include 345 categories

(classes) of objects such as Bracelet, plane, bird and cello . The domains include clipart: collection of clipart

images; real: photos and real world images; sketch: sketches of specific objects; infograph: infographic

images with specific object; painting artistic depictions of objects in the form of paintings and quickdraw:

drawings of the worldwide players of game “Quick Draw!”
4
. In our experiments we use three domains: real,

clipart and quickdraw.

The CheXpert dataset default split contains a training set of 200k images and a tiny validation set that

contains only 200 studies. The drastic size difference is because the training set is constructed using an

algorithmic labeler based on the free text radiology reports while the validation set is manually labeled by

board-certified radiologists. To avoid high variance in the studies due to tiny dataset size and label distribution

shift, we do not use the default partition. Instead, we sample two separate sets of 50k examples from the full

4https://quickdraw.withgoogle.com/data
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training set and use them as the train and test set, respectively. Different domains in DomainNet contain

different number of training examples, ranging from 50k to 170k. To keep the setting consistent with CheXpert,

We sample 50k subsets from training and test sets for each of the domains.

For all our training and transfer experiments we use ResNet-50 [16] with fixup initialization [46] which

eliminate batch normalization layers from the ResNet architecture. We initialize the final linear classifier layer

with uniform random values instead of using zeros from the fixup initialization.

We run each CheXpert training jobs with two NVidia V100 GPUs, using batch size 256. We use the SGD

optimizer with momentum 0.9, weight decay 0.0001, and constant learning rate scheduling. We also tried

piece-wise constant learning rate scheduling. However, we found that RI-T struggles to continue learning as

learning rate decays. We train P-T for 200 epochs and RI-T for 400 epochs, long enough for both training

scenarios to converge to the final (overfitted) solutions. It takes∼ 90 seconds to train one epoch. We also run

full evaluation on both the training and test sets each epoch, which takes∼ 40 seconds each.

We run each DomainNet training jobs with single NVidia V100 GPU, using batch size 32. We use the SGD

optimizer with momentum 0.9, weight decay 0.0001, and piecewise constant learning rate scheduling that

decays the learning rate by a factor of 10 at epoch 30, 60, and 90, respectively. We run the training for 100
epochs. In each epoch, training takes around 2 minutes and 45 seconds, and evaluating on both the training and

test set takes around 70 seconds each.

Appendix B: Additional Figures and Tables

B.1 Discussions of learning curves

Figure 2 shows the learning curves for P-T, RI-T models with different learning rates. In particular, we show

base learning rate 0.1 and 0.02 for both cases on CheXpert, DomainNet real, clipart and quickdraw,

respectively.

We observe that P-T generally prefer smaller learning rate, while RI-T generally benefit more from larger

learning rate. With large learning rate, P-T failed to converge on CheXpert, and significantly under-performed

the smaller learning rate counterpart on DomainNet quickdraw. On DomainNet real and clipart, the

gap is smaller but smaller learning rate training is still better. On the other hand, with larger learning rate,

RI-T significantly outperform the smaller learning rate counterpart on all the three DomainNet datasets. On

CheXpert, although the optimal and final performance are similar for both small and large learning rate, the

large learning version converges faster.

On all the four datasets, P-T outperforms RI-T, in both optimization speed and test performance. Note

that we subsample all the four dataset to 50, 000 training examples of 224× 224 images, yet severe overfitting

is observed only on CheXpert. This suggests that the issue of overfitting is not only governed by the problem

size, but also by other more complicated factors such as the nature of input images. Intuitively, the chest X-ray

images from CheXpert are less diverse than the images from DomainNet.

B.2 Common and uncommonmistakes

In order to look into common and uncommon mistakes, we compare two models at a time. We look into all

combinations, i.e., compare RI-T, P-T, two instances of RI-T and two instances of P-T. Tables 3, 4, 5 show this

analysis forCheXpert and Table 6 shows the analysis for clipart. ForCheXpertwe do a per class analysis first.

Since CheXpert looks into five different diseases, we have five binary classification tasks. In each classification

setting, we look into accuracy of each model. g1, g2 refer to the number of data samples where only the first

model is classifying correctly and only the second model is classifying correctly, respectively. We also look into
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Table 3: Common and uncommon mistakes between RI-T, P-T, CheXpert

P-T acc RI-T acc g1 g2 Common mistakes r1 r2

Class 1 0.8830 0.8734 645 832 3597 0.1878 0.1520

Class 2 0.7490 0.7296 2361 2318 4047 0.3641 0.3684

Class 3 0.9256 0.9095 71 207 3009 0.0643 0.02305

Class 4 0.6811 0.6678 2250 2460 8835 0.2177 0.2029

Class 5 0.7634 0.7374 3446 2160 4200 0.3396 0.4506

Table 4: Common and uncommon mistakes between two instances of RI-T, CheXpert

P-T acc RI-T acc g1 g2 Common mistakes r1 r2

Class 1 0.8734 0.8654 704 773 3469 0.1822 0.1687

Class 2 0.7292 0.7399 3139 1499 4909 0.2339 0.3900

Class 3 0.9095 0.9170 195 102 2978 0.0331 0.0614

Class 4 0.6678 0.6574 2070 2588 8497 0.2334 0.1958

Class 5 0.7374 0.7326 2001 3136 4510 0.4101 0.3073

the number of common mistakes. r1, r2 refer to ratio of uncommon to all mistakes for the first and second

model respectively.

Another interesting point about DomainNet is that classes are not balanced. Therefore, we investigate the

correlation of P-T and RI-T accuracy with class size. The results are shown in Figure 8 for clipart. Other

target domains from DomainNet show similar trends. We also compute the Pearson correlation coefficient [32]

between per class accuracy’s and class sizes for these models and they are P-T (0.36983, 1.26e − 12), RI-T
(0.32880, 3.84e− 10). Note that overall top-1 accuracy of P-T, RI-T is 74.32, 57.91 respectively. In summary,

P-T has higher accuracy overall, higher accuracy per class and it’s per-class accuracy is more correlated with

class size compared to RI-T.

B.3 Feature similarity and different distances

Table 7 shows feature similarity using CKA [26] for output of different layers of ResNet-50 when the target

domain is clipart. In Section 3.2 in the main text we showed a similar table for target domain CheXpert. We

observe a similar trend when we calculate these numbers for quickdraw and real target domain as well.

Figure 10 depicts `2 distance between modules of two instances of P-T and two instances of RI-T for both

Table 5: Common and uncommon mistakes between two instances of P-T, CheXpert

P-T acc RI-T acc g1 g2 Common mistakes r1 r2

Class 1 0.8830 0.8828 456 697 3732 0.1573 0.1088

Class 2 0.7490 0.7611 2375 1369 4996 0.2150 0.3222

Class 3 0.9256 0.9208 63 139 3077 0.0432 0.0200

Class 4 0.6811 0.6825 2030 1879 9416 0.1663 0.1773

Class 5 0.76344 0.76088 1687 2398 3962 0.3770 0.2986
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Table 6: Common and uncommon mistakes between P-T, RI-T, clipart

g1 g2 Common mistakes r1 r2

P-T, RI-T 521 2940 3263 0.1376 0.4739

RI-T, RI-T 787 844 5359 0.1280 0.1360

P-T, P-T 619 584 3165 0.1635 0.1558

0 20 40 60 80 100
0.0

0.2

0.4

0.6

0.8

1.0

P-T
RI-T

Figure 8: Accuracy of P-T and RI-T vs class size for clipart

Table 7: Feature similarity for different layers of ResNet-50, target domain clipart

models/layer conv1 layer 1 layer 2 layer 3 layer 4

P-T & P 0.3328 0.2456 0.1877 0.1504 0.5011

P-T & P-T 0.4333 0.1943 0.4297 0.2578 0.1167

P-T & RI-T 0.0151 0.0028 0.0013 0.008 0.0014

RI-T & RI-T 0.0033 0.0032 0.0088 0.0033 0.0012
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Figure 9: Uncommon Mistakes RI-T and P-T, top row shows samples of the images RI-T classifies incorrectly

while P-T classifies them correctly. bottom row shows samples of the images P-T classifies incorrectly while

RI-T classifies them correctly. Classes from left to right are: barn, apple, backpack, angel.
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Figure 10: Feature `2 distance per module

Table 8: Distance to initialization between P-T and RI-T for different target domains

domain/model P-T RI-T

CheXpert 4984 4174

clipart 5668 23249

quickdraw 7501 24713

real 5796 24394

CheXpert and clipart target domain. Table 2 shows the overall distance between the two networks. We note

that P-T’s are closer in `2 parameter domain compared to RI-Ts. Drawing this plot for real, quickdraw leads
to the same conclusion.

We also looked into distance to initialization per module, and overall distance to initialization for P-T, RI-T
for different target domains in Figure 11 and Table 8.

B.4 Additional plots for performance barriers

Figure 12 shows the performance barrier plots measured with on all the three DomainNet datasets. Figure 13

show results measured with the cross entropy loss. On both plots, we observe performance barrier between

two RI-T solutions, but not between two P-T solutions.

Figure 14 and Figure 15 show the performance barrier plots of CheXpert measured by AUC and loss,

respectively. The two panes in each of the figures show the two cases where RI-T is trained with learning rate

0.1 and 0.02, respectively. Note that on CheXpert the models overfit afer a certain number of training epochs

and the final performances are worse than the optimal performances along the training trajectory. So we show

more interpolation pairs than in the case of DomainNet. Those plots are largely consistent with our previous
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Figure 11: Distance to Initialization per module

observations. One interesting observation is that while the final performance of P-T is better than RI-T when

measured with (test) AUC, the former also has higher (test) loss than the latter.

B.5 Performance barrier experiments with identical initialization for RI-T

In the experiments of comparing the performance barrier interpolating the weights of two RI-T models vs.

interpolating the weights of two P-T models, the two P-T models are initialized from the same pre-trained
weights, while the two RI-T models are initialized from independently sampled (therefore different) random
weights. In this section, we consider interpolating two RI-T models that are trained from identical (random)

initial weights. The results are shown in Figure 16 and Figure 17. Comparing with their counterparts in Figure 12

and Figure 13, respectively, we found that the barriers between two RI-T models become slightly smaller when

the initial weights are the same. However, significant barriers still exist when comparing with the interpolation

between two P-T models.

B.6 Performance barrier plots with extrapolation

In order to estimate the boundary of the basin according to Definition 3.1, we extend the interpolation coefficients

from [0, 1] to extrapolation in [−1, 2]. The results are shown in Figure 18. We can see that in this 1D subspace,

the two P-T solutions are close to the boundary of the basin, while RI-T solutions do not live in the same basin

due to the barriers on the interpolating linear paths.

B.7 Cross-domain weight interpolation onDomainNet

Because all the domains inDomainNet have the same target classes, we are able to directly apply a model trained

on one domain to a different domain and compute the test performance. Moreover, we can also interpolate the

weights between models that are trained on different domains. In particular, we tested the following scenarios:
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Figure 12: Performance barrier of real, clipart, quickdraw, respectively, measured by test accuracy.
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Figure 13: Loss barrier of real, clipart, quickdraw, respectively, measured by the cross entropy loss.
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Figure 14: Performance barrier on CheXpert. Left: RI-T is using base learning rate 0.1; Right: RI-T is using

base learning rate 0.02.
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Figure 15: Loss barrier on CheXpert. Left: RI-T is using base learning rate 0.1; Right: RI-T is using base

learning rate 0.02.
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Figure 16: Performance barrier of real, clipart, quickdraw, respectively, measured by test accuracy. Like P-T,
the two RI-Tmodels are initialized from the same (random) weights. This figure can be compared with Figure 12.

0.00 0.20 0.40 0.60 0.80 1.00
linear interpolation coefficient

1

2

3

4

5

6

te
st

 lo
ss randinitT-randinitT

randinitT-finetuneT
finetuneT-finetuneT

0.00 0.20 0.40 0.60 0.80 1.00
linear interpolation coefficient

1

2

3

4

5

6

7

te
st

 lo
ss

randinitT-randinitT
randinitT-finetuneT
finetuneT-finetuneT

0.00 0.20 0.40 0.60 0.80 1.00
linear interpolation coefficient

2

3

4

5

6

te
st

 lo
ss

randinitT-randinitT
randinitT-finetuneT
finetuneT-finetuneT

Figure 17: Performance barrier of real, clipart, quickdraw, respectively, measured by cross entropy loss. Like

P-T, the two RI-T models are initialized from the same (random) weights. This figure can be compared with

Figure 13.
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Figure 18: Performance barrier of real, clipart, quickdraw, respectively, measured by test accuracy. The

linear combination of weights are extrapolated beyond [0, 1] (to [−1, 2]).

Results Evaluated on Training data for Model 1 Training data for Model 2

Figure 19 clipart clipart real

Figure 20 clipart quickdraw real

Figure 21 real quickdraw clipart

Figure 22 real real clipart

Figure 23 real real quickdraw

It is interesting to observe that when directly evaluated on a different domain that the models are trained

from, we could still get non-trivial test performance. Moreover, P-T consistently outperforms RI-T even in the

cross-domain cases. A more surprising observation is that when interpolating between P-T models, (instead of

performance barrier) we observe performance boost in the middle of the interpolation. This suggests that all

the trained P-T models on all domains are in one shared basin.

B.8 Cross-domain weight interpolation with training on combined domains

In this section, we investigate interpolation with models that are trained on combined domains. In particular,

somemodels are trained on a dataset formed by the union of the training set frommultipleDomainNet domains.

We tested the following scenarios:

Results Evaluated on Training data for Model 1 Training data for Model 2

Figure 24 real real+clipart clipart

Figure 25 real real+quickdraw quickdraw

Figure 26 real real+quickdraw real

Figure 27 real clipart+quickdraw clipart

Figure 28 clipart real+clipart real

Figure 29 clipart real+quickdraw quickdraw
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Figure 19: Performance barrier of cross-domain interpolation. The test accuracy (left) and the cross entropy loss

(right) are evaluated on the clipart domain. The interpolation are between models trained on clipart and

models trained on real.
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Figure 20: Performance barrier of cross-domain interpolation. The test accuracy (left) and the cross entropy

loss (right) are evaluated on the clipart domain. The interpolation are between models trained on quickdraw

and models trained on real.
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Figure 21: Performance barrier of cross-domain interpolation. The test accuracy (left) and the cross entropy loss

(right) are evaluated on the real domain. The interpolation are between models trained on quickdraw and

models trained on clipart.
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Figure 22: Performance barrier of cross-domain interpolation. The test accuracy (left) and the cross entropy loss

(right) are evaluated on the real domain. The interpolation are between models trained on real and models

trained on clipart.
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Figure 23: Performance barrier of cross-domain interpolation. The test accuracy (left) and the cross entropy loss

(right) are evaluated on the real domain. The interpolation are between models trained on real and models

trained on quickdraw.
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Figure 24: Performance barrier of cross-domain interpolation with training on combined domains. The test

accuracy (left) and the cross entropy loss (right) are evaluated on the real domain. The interpolation are between

models trained on real+clipart and models trained on clipart.
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Figure 25: Performance barrier of cross-domain interpolation with training on combined domains. The test

accuracy (left) and the cross entropy loss (right) are evaluated on the real domain. The interpolation are between

models trained on real+quickdraw and models trained on quickdraw.
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Figure 26: Performance barrier of cross-domain interpolation with training on combined domains. The test

accuracy (left) and the cross entropy loss (right) are evaluated on the real domain. The interpolation are between

models trained on real+quickdraw and models trained on real.
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Figure 27: Performance barrier of cross-domain interpolation with training on combined domains. The test

accuracy (left) and the cross entropy loss (right) are evaluated on the real domain. The interpolation are between

models trained on clipart+quickdraw and models trained on clipart.
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Figure 28: Performance barrier of cross-domain interpolation with training on combined domains. The test

accuracy (left) and the cross entropy loss (right) are evaluated on the clipart domain. The interpolation are

between models trained on real+clipart and models trained on real.
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Figure 29: Performance barrier of cross-domain interpolation with training on combined domains. The test

accuracy (left) and the cross entropy loss (right) are evaluated on the clipart domain. The interpolation are

between models trained on real+quickdraw and models trained on quickdraw.

B.9 Additional criticality plots

Figure 30 in shows the criticality analysis for Conv1 module of the ResNet-50 using training data or test data or

generalization gap. As we see, all of them can be used interchangeably for the analysis. The accompanying file

‘criticality-plots-chexpert.pdf’ includes the figures from main text along with many more such plots for different

layers of ResNet-50.

Appendix C: Spectrum of weight matrices

We recover the spectrum of every module using the algorithm derived in [39] and we also look at the spectrum

for the whole network in different cases of training.Sedghi et al. [39] proposes an exact and efficient method for

finding all singular values corresponidng to the convolution layers with a simple two-lines of NumPy which

essentially first takes 2D-FFT of the kernel and then takes the union of singular values for different blocks of the

result to find all singular values. Figure 31a shows the spectrum of the whole network for different models for

CheXpert domain. The plots for other domains and for individual modules are shown in the Supplementary

material. We note that for individual modules as well as the whole network, RI-T is more concentrated towards

zero. In other words, it has a higher density in smaller singular values. This can be seen in Figure 31a, 31b. In

order to depict this easier, we sketch the number of singular values smaller than some threshold vs the value of

the threshold in Figure 33. Intuitively, among two models that can classify with certain margin, which translates

to having low cross-entropy loss, then we can look at concentration of spectrum and concentration towards

low values shows less confidence. More mathematically speaking, the confident model requires a lower-rank to

get ε-approximation of the function and therefore, has lower capacity. Intuitively, distribution around small
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Figure 30: Module Criticality plots for Conv1 module. x-axis shows the distance between initial and optimal θ, where
x = 0 maps to initial value of θ. y-axis shows the variance of Gaussian noise added to θ. The four subplots refer to the
four paths one can use to measure criticality. All of which provide good insight into this phenomenon. Each subplot has 3

rows corresponding to train error, test error and generalization error. Heat map is used so that the colors reflect the value

of the measure under consideration.
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Figure 31: Spectrum of the whole network, CheXpert.
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Figure 32: Spectrum of the whole model for target domain Clipart

singular values is a hint of model uncertainty. When starting from pre-trained network, the model is pointing

strongly into directions that have signals about the data. Given that RI-T does not start with strong signals about

the data, it finds other explanations compared to P-T and hence ends up in a different basin of loss landscape,

which from a probabilistic perspective is more concentrated towards smaller singular values.

Figure 32 shows the spectrum of the whole network for target domain clipart. The accompanying files

‘spectrum-plots-chexpert.pdf’, ‘spectrum-plots-clipart.pdf’ in the Supplementary material folder include the

spectrum for each module of ResNet-50 as well as the whole spectrum for target domain CheXpert, clipart

respectively.

There is a vast literature in analyzing generalization performance of DNNs by considering the ratio of

Frobenius norm to spectral norm for different layers [1, 30]. They prove an upper bound on generalization

error in the form of O
(

1/γ,B, d,Πi∈l‖θi‖2
∑

i∈l
‖θi‖F
‖θi‖2

)
where γ,B, d, l refer to margin, norm of input,

dimension of the input, depth of the network and Θis refer to module weights and Frobenius and spectral

norm are shown with ‖ · ‖F , ‖ · ‖2. For details, see [30]. The product of spectral norm can be considered as a

constant times the margin, B,d are the same in the two networks. Therefore, we compare the term

∑
i∈d
‖Wi‖F
‖Wi‖2

for two networks. Calculating this value shows bigger generalization bound for RI-T and hence predicts worse

generalization performance.
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Figure 33: Count of singular values smaller than a threshold
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