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We describe quantum circuits with only 6(N ) Toffoli complexity that block encode the spectra of quan-
tum chemistry Hamiltonians in a basis of N arbitrary (e.g., molecular) orbitals. With O ()1 /¢) repetitions of
these circuits one can use phase estimation to sample in the molecular eigenbasis, where A is the 1-norm
of Hamiltonian coefficients and € is the target precision. This is the lowest complexity shown for quantum
computations of chemistry within an arbitrary basis. Furthermore, up to logarithmic factors, this matches
the scaling of the most efficient prior block encodings that can work only with orthogonal-basis functions
diagonalizing the Coloumb operator (e.g., the plane-wave dual basis). Our key insight is to factorize the
Hamiltonian using a method known as tensor hypercontraction (THC) and then to transform the Coulomb
operator into an isospectral diagonal form with a nonorthogonal basis defined by the THC factors. We
then use qubitization to simulate the nonorthogonal THC Hamiltonian, in a fashion that avoids most com-
plications of the nonorthogonal basis. We also reanalyze and reduce the cost of several of the best prior
algorithms for these simulations in order to facilitate a clear comparison to the present work. In addition to
having lower asymptotic scaling space-time volume, compilation of our algorithm for challenging finite-
sized molecules such as FeMoCo reveals that our method requires the least fault-tolerant resources of any
known approach. By laying out and optimizing the surface-code resources required of our approach we
show that FeMoCo can be simulated using about four million physical qubits and under 4 days of runtime,

assuming 1-us cycle times and physical gate-error rates no worse than 0.1%.

DOI: 10.1103/PRXQuantum.2.030305

I. INTRODUCTION
A. Background

The quantum computation of quantum chemistry is
commonly regarded as one of the most promising appli-
cations of quantum computers [1-3]. This is because there
are many applications of quantum chemistry that pertain to
the development of practical technologies and, for at least
some of these applications, quantum algorithms appear to
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provide an exponential scaling advantage relative to the
best known classical approaches [4]. Specifically, most
algorithmic work in this area focuses on the construction
of quantum circuits that precisely sample in the eigenbasis
of the electronic Hamiltonian. This enables the very pre-
cise preparation of any electronic eigenstate that can be
reasonably approximated with a classically tractable the-
ory, such as the ground states of many molecules. The
ability to arbitrarily refine the accuracy of an approxi-
mation to molecular eigenstates is valuable because high
precision is often required to predict important properties
of these systems, such as the rates of chemical reac-
tions, excitation energies, barrier heights, and noncova-
lent molecular interaction energies [5]. The “holy grail”
of quantum chemistry is to have a generally applicable
electronic structure method that yields relative energies
with errors less than 1.6 millihartrees (so-called “chemical
accuracy”’[6]), which is still a long-standing challenge in
the field.
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The most efficient rigorous approaches to this problem
in quantum computing use the quantum phase estimation
algorithm [7,8] to sample in the eigenbasis of the molec-
ular Hamiltonian by measuring the phase accumulated on
an initial state under the application of a unitary operator
with eigenvalues that are related to those of the electronic
Hamiltonian. The electronic Hamiltonian in an arbitrary
second-quantized basis can be expressed as

N/2
H=T+V, T= Y > Tya ,a.,
oe{t.l}pg=1

N2

1 .
V= 2 Z Z Vﬁqfsa;,aaq,aa;,ﬁas,ﬂa (D)
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where N is the number of spin-orbital basis functions used
to discretize the Hamiltonian, 7},, represents a matrix ele-
ment of the effective one-body operator, V), is a matrix

element of the two-body Coulomb operator, and a;,g and
a, . are fermionic raising and lowering operators for the
p™ single-particle orbital with spin o. Note that unlike
the convention in Ref. [9], we do not absorb the factor of
“1/2” into the V), (this is consistent with conventions of
Ref. [10] to avoid confusion). V), is the central tensor in
this work, which is defined as

Vs = / / ey ey VBB

[ri —ry|

where {¢,~}§V/ 12 is a set of real-valued single-particle spatial-
orbital basis functions. We note that the matrix element 7,,,

is defined as

L
qu = hpq - E Z Vprrs; (3)

r=1

with 4, being a matrix element of the one-body operator
that includes the kinetic energy operator and electron-
nuclear Coulomb operator.

While most work has focused on encoding the eigen-
spectra of this Hamiltonian in a unitary for phase esti-
mation by synthesizing the time-evolution operator e~
[11], several recent papers (including this one) have
demonstrated increased efficiency by instead synthesizing
a qubitized quantum walk [12] with eigenvalues propor-
tional to e*accost/A) \where A is a parameter related to
the norm of the Hamiltonian. By repeating this quantum
walk a number of times scaling as (A /¢€) one is able to
prepare eigenstates of H and estimate the associated eigen-
value such that the error in the estimated eigenvalue is no
greater than € [13,14].

Throughout this paper, all discussion of an error € in the
eigenspectra refers to error relative to the finite-sized basis

of N spin orbitals that we use to discretize our system. The
finite-sized basis we choose also introduces a discretiza-
tion error with respect to the representation of the system
in the continuum limit. While this basis set discretiza-
tion error can be asymptotically refined as € = O(1/N)
for common choices of the single-particle basis such as
plane waves or molecular orbitals, the precise constant fac-
tors in this scaling depend on the particular basis functions
used [which also determine the coefficients T, and V), in
Eq. (1)]. In the last few years, several papers have demon-
strated quantum algorithms for chemistry with reduced
complexity [10,15—19]. Some algorithms achieved a lower
scaling by performing simulation in a basis [15,19,20] that
diagonalizes the Coulomb operator V" such that V)., = 0
unless p = ¢ and r = 5. However, those representations
typically require a significantly larger N in order to model
molecular systems within target accuracy of the continuum
limit. While such representations might prove practical for
molecules when used in first quantization [21,22], in sec-
ond quantization the requirement of a significantly larger
basis translates into needing significantly more qubits
and thus those approaches seem impractical for simulat-
ing molecular systems (as opposed to, e.g., crystalline
solid-state systems).

Given this, there is a need for efficient quantum algo-
rithms that are compatible with arbitrary basis functions
and not limited to those that diagonalize the Coulomb oper-
ator. Such quantum algorithms can exploit the molecular-
orbital basis directly and thereby significantly reduce the
required number of basis functions for a target accuracy
towards the continuum limit. There are only three prior
papers that have fully determined the cost of perform-
ing such a quantum algorithm for chemistry within an
error-correcting code [9,10,23].

The first of these papers by Reiher et al. [23] deployed a
Trotter-based approach to study the quantum simulation of
the FeMo cofactor of the nitrogenase enzyme, also known
as “FeMoCo” (Fe;Mo0SyC), a molecule that is important
for understanding the mechanism of biological nitrogen
fixation [24]. The algorithm used for that work had T-gate
complexity scaling as approximately O(N2S/e*/?), where
S is the Hamiltonian sparsity [S = O(N*) in an arbitrary
basis but with a sufficiently large, localized basis some-
times S = O(N?) [25]]. The work of Reiher et al. required
more than 10'* T gates to simulate an active-space model
of FeMoCo. These papers focus on counting (and reduc-
ing) the required number of T gates (or Toffoli gates)
because within practical error-correcting codes such as the
surface code [26], these gates require significantly more
time to implement than any other gate and also require a
very large number of physical qubits for their implementa-
tion. If implemented in the surface code using gates with
1073 error rates, the most efficient protocols for imple-
menting T gates require roughly 15 qubitseconds [27,28]
of space-time volume. At those rates, just distilling the
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magic states needed for the Reiher et al. FeMoCo calcu-
lation would require four million qubitdecades (e.g., one
million qubits running for 4 decades or one billion qubits
running for 2 weeks).

This work and the two papers [9,10] employ a
qubitization-based approach [12], and improve consider-
ably over the Trotter-based methods of Ref. [23]. The
primary difference between these more recent algorithms
is that each adapts qubitization to a different type of ten-
sor factorization of the Coulomb operator. One of these
papers, which suggested combining qubitization with ten-
sor factorizations of the Coulomb operator, was by Berry
et al. [9]. That work presents two approaches (one with
lower asymptotic complexity, and one with lower gate
counts for molecules such as the FeMoCo active space).
The approach with the lower finite-sized gate counts is
based on using qubitization to exploit sparsity structures
in the electronic Hamiltonian. We discuss that method
(referred to throughout as the “sparse” method) and its cost
in Appendix A and show that in Ref. [9], an error led us to
overestimate the complexity. We also recalculate the num-
ber of nonzero entries that must be retained in the Hamilto-
nian, as well as making a number of minor improvements
to the algorithm, leading to the sparse approach improving
over the Toffoli complexity of the Reiher ef al. result by
roughly a factor of 1100x rather than the factor of 700 x
reported in Refs. [9,10]. In terms of asymptotic complex—
ity this approach has Toffoli complexity O[(N + VS /€]
[29] and space complexity (’)(N +4/S), where A is a
parameter related to the Hamiltonian norm (we discuss A
further towards the end of the Introduction).

The lower scaling method (but with slightly higher
constant factors) presented by Berry ef al. [9] combines
qubitization with the first step of a tensor factorization
originally discussed for quantum computing in Ref. [30].
Here we refer to that representation as the “single low
rank” factorization or simply “SF.” The SF uses an eigen-
decomposition of the two-electron integral tensor, similar
to the Cholesky decomposition [31] or density fitting [32—
34] as commonly used in electronic structure literature.
The single low rank factorization algorithm obtains Tof-
foli and space complexities of O(N3/?1/€) and O(N3/?),
respectively. We discuss that method and its cost in
Appendix B.

The most recent paper by von Burg et al. [10] adapts
qubitization to a second tensor factorization that occurs
on top of the SF used by Berry ef al. This second tensor
factorization was also described for quantum computing
in Ref. [30] and corresponds to a diagonalization of the
squared one-body operators, which dates back to Ref. [35]
in the electronic structure literature. We refer to this as
the “double low rank” factorization or simply “DF.” We
review the method and its cost in Appendix C. Von Burg
et al. claim that their DF algorithm gives more than an
order of magnitude complexity improvement relative to the

SF algorithm of Berry et al.; however, the numbers they
compare to are actually those for the sparse algorithm of
Berry et al. (which is more efficient than the SF method for
the molecules they consider). Furthermore, for the more
accurate FeMoCo Hamiltonian introduced by Li et al.
[36], the sparse algorithm requires half as many logical
qubits and 2/3 the number of Toffoli gates as the DF
algorithm (so in that case, the sparse algorithm is consider-
ably cheaper). The Toffoli complexity of the DF approach
is (’)(N Av/E/€) with space complexity (’)(N V'E), where
E is the average rank of the second tensor factorization dis-
cussed in Ref. [30]. In most cases (including the regimes
that are usually of interest for small quantum computers)
& will scale around O(N), giving similar scaling as the
SF method. There is some evidence that when N is grow-
ing towards the thermodynamic limit (the number of atoms
is very large and increasing while fixing the ratio of spin
orbitals to atoms) E can scale as O(1) [35,37]; however,
this is not the case in our numerics on hydrogen systems
just up to 100 hydrogen atoms, which reveal scaling of
OW).

There are several other commonalities between the algo-
rithms of Refs. [9,10] and the ones developed here, which
are worth discussing before introducing the main tech-
niques of this paper. In addition to combining qubitization
[12] and tensor factorizations, all three works involve the
use of unary iteration, QROM, coherent alias sampling,
and qubitized phase estimation bounds from Ref. [16] as
well as a more advanced version of QROM with fanout
developed in Ref. [38] and then optimized for use in our
context [9] (where it is referred to as “QROAM”—a port-
manteau of QROM and QRAM). Using these tools one
can often construct algorithms to realize qubitized quan-
tum walks with gate complexity that scales as O(+/T)
where one requires O(JT) ancilla, and T is the amount of
information required to specify the Hamiltonian within a
particular tensor factorization. Then, by performing phase
estimation on the resultant qubitized quantum walks, one is
able to sample in the Hamiltonian eigenbasis with Toffoli
complexity O(J/TA /€).

For the sparse algorithm of Ref. [9], no tensor factor-
ization is employed and thus the Hamiltonian [the same
as in Eq. (1)] contains a number of integrals scaling as
' = O(S). Thus, accounting for a complexity propor-
tional to N required to perform controlled operations,
we end up with an algorithm having Toffoli complexity

O[(N + VS /€] and space complexity (’)(N + +/S). For
the SF algorithm of Ref. [9] we rely on the single-low-
rank factorized Hamiltonian shown in Appendix B, which
is specified with an amount of information scaling as I' =
O(Nj). This leads to an algorithm with Toffoli complex-
ity O(N*?)/€) and space complexity O(N3/?). Finally,
the DF algorithm of Ref. [10] relies on the factorization
shown in Appendix C, which compresses the Hamiltonian
to' = (’)(N 2E) pieces of information. Accordingly, this
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approach yields gate complexity OWIME /€) and space
complexity O(N+/E).

The last element of the complexity of these algorithms
that we should discuss is the scaling of A. The quantity A
is a type of norm of the Hamiltonian that is being simu-
lated, and depends on how it is expressed. For example,
for the “sparse” algorithm of Ref. [9] the value of A is
simply the sum of the absolute value of Hamiltonian coef-
ficients (i.e., the 1-norm) appearing in Eq. (1). Numerical
studies reveal that A usually scales somewhere in between
O(N) and O(N?) depending on details of the particular
system as well as the algorithm and how one is increas-
ing N (e.g., the scaling is lower if N is growing because
the number of basis functions per atom is fixed but the
number of atoms is increasing and the scaling is higher
if N is growing because the number of atoms is fixed but
the basis size is growing). The largest A tends to be that
associated with the SF used in Ref. [9], followed by the
sparse representation used in Ref. [9], with the smallest A
of three approaches discussed so far being the A associated
with the DF used in Ref. [10]. In most contexts the main
advantage of the DF algorithm relative to the SF algorithm
is not a substantially smaller I' (or less complex quantum
walk) but rather, a smaller A. Thus, it is critical to consider
how the algorithmic choices that one makes will affect the
value of A.

B. Overview of results

We now discuss the main results of this paper. We
present a qubitization-based algorithm that results from
exploiting structure in the molecular Hamiltonian that
emerges from a tensor factorization of the Coulomb oper-
ator known as tensor hypercontraction (THC) [39—41].
THC is a very compact representation for the Hamiltonian,
which gives I' = (’~)(N 2) regardless of how one increases
N. It is relatively straightforward to apply qubitization
directly to the THC representation and a method for that is
presented in Appendix E. This results in an approach with
Toffoli complexity O(NX/e) and space complexity O(N).
However, it turns out that directly applying qubitization to
the THC representation is not particularly efficient because
this causes A to become even larger than the single low
rank A of Ref. [9] (which was already orders of magni-
tude larger than the double low rank A of Ref. [10] for
systems like FeMoCo). To remedy this, we discuss a dif-
ferent approach to utilizing the THC representation of the
Hamiltonian.

We show that one can use the THC tensors to define
a larger orbital basis with exactly the same resolution as
the original basis while diagonalizing the Coulomb opera-
tor. This form of the Hamiltonian would then be amenable
to simulation using the efficient strategies of Refs. [16—
18] except for the fact that the orbitals are nonorthogonal.
However, by separately rotating into this nonorthogonal

basis before operating on each tensor factor of the Hamil-
tonian we are able to avoid many of the complications
that would usually arise from simulating a nonorthogo-
nal operator. To achieve this, we use a strategy for storing
and implementing nonorthogonal Givens rotation-based
orbital-basis transformations [42] with rotation angles
loaded from QROM that is similar to techniques developed
for qubitizing orthogonal-basis rotations in Ref. [10]. As
these rotations add significant cost to the method, we also
introduce a strategy for coarse graining the angles of the
basis transformation that allows us to precisely control a
trade-off between the complexity of these rotations and the
accuracy of the Hamiltonian (a similar technique would
also reduce the cost of the algorithm by von Burg et al.).
Ultimately, our method does not require additional system
qubits (beyond those for QROM and other minor ancil-
lary functions) and results in asymptotic Toffoli complexity
O(NA/e) and space complexity O(N), while essentially
matching the small A values obtained in the double low
rank algorithm.

As can be seen in Table I our algorithm improves over
the space-time volume of the approaches in Refs. [9,10]
by a factor of about O(NV) in most contexts. In fact, the
scaling is often even better than that due to the lower scal-
ing of A associated with our representation, as can be seen
from numerics on hydrogen systems in Table II. Surpris-
ingly, the A value associated with our algorithm sometimes
scales even less than (O(N?), which is the scaling of the
A for the lowest scaling qubitization approach requiring
orthogonal-basis functions that diagonalize the Coulomb
operator [16].

In addition to having the best asymptotic scaling com-
pared to prior approaches, our algorithm also outperforms
the finite space-time volume for all molecules studied
here including hydrogen chains and FeMoCo. We study
active-space models of FeMoCo proposed by Reiher et al.
[23] as well as by Li et al. [36]. The Reiher Hamilto-
nian was found to be qualitatively incorrect in describing
the ground state of FeMoCo as it does not capture the
open-shell nature of the system [36]. The Li Hamilto-
nian was then proposed and shown to capture the open-
shell nature of the ground state properly [36]. We focus
on the FeMoCo Hamiltonians primarily because they are
regarded as a standard benchmark for quantum computing.
For the FeMoCo Hamiltonians of Reiher et al. and Li ef al.
we find a reduction in space-time volume of about 3 x and
6x (respectively) compared to Ref. [10]. The results for
FeMoCo are summarized in Table III.

We also carefully analyze the surface-code resources
required to simulate the FeMoCo Hamiltonian of Li ef al.
[36] using our THC approach. Rather than just focus
on the cost of distillation, we fully lay out the surface-
code computation in space time and optimize resource
usage. We determine that the computation could execute
using approximately four million physical qubits and run
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TABLE 1. History of the lowest asymptotic scaling quantum algorithms for simulating quantum chemistry in an arbitrary (e.g.,
molecular orbital) basis. N is the number of arbitrary orbital basis functions, 1 is the number of electrons (relevant only in first-
quantized simulations), and € is the target precision to which we estimate the Hamiltonian eigenvalues using phase estimation. S is the
sparsity of the electronic Hamiltonian; usually S = O(N*) when using an arbitrary basis but sometimes the scaling can be lower. The
A parameters (discussed extensively in this paper) are roughly the 1-norm of the Coulomb operator associated with the representation
in which we simulate the system. In general, we expect that O(A;) < O(pr) < O(Ay) < O(Agsr) but the precise scaling is difficult
to report since it depends on the specific molecule and how N is growing. Roughly, the A values have scaling that is typically between
O(N) and O(N?). Here, B is the average rank of the second-tensor factorization discussed in Motta ez al. [30], which is also important
for the complexity of the work of von Burg ef al. [10]. In general (for example, when scaling towards the continuum limit) we would
expect that 2 = O(N). But for large systems that are growing because we are adding more atoms while keeping the basis to atom ratio
fixed, E can be smaller; for the hydrogen chains studied in this work we observe & = O(N) up to 100 hydrogen atoms. See Table II
for a better sense of how algorithms that depend on S, A, and E parameters scale for hydrogen benchmarks. The work of Motta
et al. [30] does not determine the scaling of the Trotter error for the Trotter steps compiled therein and so this table assumes (rather
speculatively) that the Trotter-error scaling for those Trotter steps is the same as the Trotter-error scaling for the Trotter steps of Reiher
et al. [23]. This table omits methods that require special basis functions or non-Galerkin representations. All such representations are
less compact for molecules compared to molecular orbitals and thus require more qubits to reach the same level of accuracy. Notable
examples include the grid bases used in Ref. [21,43], the discontinuous Galerkin techniques of Ref. [19], the plane waves required by
Refs. [10,17,22] and the basis sets diagonalizing the Coulomb operator required by Refs. [15,18,42].

Year Reference Primary algorithmic innovation Space complexity  Toffoli or T complexity
2005  Aspuru-Guzik ef al. [4]  First algorithm (no compilation or bounds) Oow) Olpoly(N/e)]
2010  Whitfield ef al. [11] First compilation (no Trotter bounds) O(N) Olpoly(N/e)]
2012 Seeley et al. [44] Use of Bravyi-Kitaev transformation OWN) Olpoly(N/€)]
2013 Wecker et al. [45] First chemistry-specific Trotter bounds OWN) O(N"/e?)
2013  Toloui et al. [46] Use of first quantization O(nlogN) O*N8/e3?)
2014  Hastings et al. [47] Better compilation and multiresolution Trotter ~ O(N) (5(N 8/€3/2)
2014  Poulin et al. [48] Tighter Trotter bounds and ordering ow) (5(N 6/e3/2)
2014  McClean et al. [25] Exploiting Hamiltonian sparsity with Trotter O(N) (5(N 15/e3%)
2014  Babbush et al. [49] Tighter system-specific Trotter bounds O(N) ON2S/e3/?)
2015  Babbush et al. [50] Use of Taylor series (database method) O(N) (’3(N )
2015  Babbush et al. [50] Use of Taylor series (on-the-fly method) OWN) 5(N 3/€)

2015  Babbush et al. [51] Use of Taylor series with first quantization O(nlogN) @(n2N3/e)
2016  Reiher et al. [23] First T count and tighter Trotter bounds OWN) O(N>S/e¥/?)
2018  Motta et al. [30] Use of low-rank factorization with Trotter O(N) oW 48 /e3?)
2018  Campbell [52] Use of randomized compiling with Trotter OW) OM3 /e

2019  Berry et al. [9] Use of qubitization (sparse method) OW + /) (5[(N +VS)Ar/e]
2019  Berry et al. [9] Use of qubitization (single factorization) OWN3?) ON3rgp/e€)
2019  Kivlichan et al. [53] Better randomized compiled phase estimation OWN) @(A%,/ €?)

2020  von Burgetal. [10] Use of qubitization (double factorization) @ (NVE) Q(N ApEV E /€)
2020  Present work Use of tensor hypercontraction OWN) OWAe/€)

in under 4 days, assuming surface-code cycle times of
1 us and gate-error rates of about 0.1%. We find that if
error rates are reduced to 0.01% that the computation can
complete using about one million physical qubits in under
2 days.

Finally, in Appendix D we also provide a detailed anal-
ysis of the error in phase estimation when combined with
stochastic approximations such as qDRIFT [52]. We find
that while existing analyses naturally lead to reasonable
region estimates for the estimated phase, the distribution
of errors for the phase estimation procedure can have
fat tails. These tails manifest in Table III in the form of
impractically large numbers of Toffoli gates needed to per-
form phase estimation on both benchmark examples for
FeMoCo. Specifically, we find that the cost of performing

gDRIFT unmodified is nearly 18 orders of magnitude
greater than the cost of performing the optimized form
of qubitization that we consider for these benchmark
molecules. If we require only that an estimate within an «-
confidence region is reported, then the costs can be reduced
by 12 orders of magnitude. Alternatively, quantifying the
performance according to the Hodges-Lehmann estimator
provides a further order of magnitude improvement. This
illustrates a poorly appreciated fact in the quantum sim-
ulation literature: for simulation techniques like qDRIFT
that have high failure probability, we need to carefully
specify the error metric used for the eigenphase yielded
by the algorithm because some error metrics (such as the
mean square error) can be much harder to minimize than
others.
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TABLE II. Empirical complexity of algorithms that have scalings obscured by A values in Table I for two benchmark chemical
series. N is the number of spin-orbital basis functions and € is the target precision to which we aim to realize phase estimation. This
table summarizes the findings of numerics discussed in Sec. IV, which reveal the scaling with N that one might observe in practice
for these algorithms when the system size is growing towards either the continuum or thermodynamic limits. For the continuum limit
we focus on H4 Hamiltonians with each hydrogen placed on the corners of a square plaquette with side length of 2.0 Bohr radii. We
then increase the number of molecular orbitals used to represent the system and determine the scaling of the associated algorithms.
For scalings towards the thermodynamic limit we fix the ratio of basis functions to atoms and increase the number of hydrogens in a
one-dimensional hydrogen chain, with atom spacings again at 1.4 Bohr radii. For more information on these calculations, see Sec. IV.
The justification for the above scalings for qDRIFT in the case where € is the root-mean-square error is given in Appendix D.

H4 continuum limit Hydrogen chain thermodynamic limit

Algorithm Space complexity Toffoli complexity = Space complexity  Toffoli complexity
Babbush et al. [50] (Taylor series database) OW) (? (N71/e) OW) @ (N33 /€)
Campbell and Kivlichan et al. [52,53] (QDRIFT) ow) Q(NG'Z/GZ) ~ OW) ON*/e?)
Berry et al. [9] (single factorization) O(N') OWN**/e) ON'?) & O(N**/e) N

Berry et al. [9] (sparse) Q(N]'9) Q(NS'O/E) oW Q(N2'3/e)
von Burg et al. [10] (double factorization) ON') OW*3/e) ON') OWN**/e)
This work (tensor hypercontraction) ON) O3 /e) O\) ONN*/e)

C. Paper organization Then, we introduce an elegant use of the THC Hamiltonian

that corresponds to a diagonal Coulomb operator in a larger
nonorthogonal basis.

In Sec. IIl we give a complete description of how
) ) o ) qubitization can be combined with our (diagonal and
obtained, and Fhscuss how it is .shovs{n to scale. We outllpe nonorthogonal) THC representation to give the most
how one can directly apply qubitization to the THC Hamil-  oficient known quantum algorithm for simulating elec-
tonian, although with large constant factors in the scaling.  tronjc structure in an arbitrary basis. We compile our

Our paper is organized as follows. In Sec. 11 we describe
the THC factorization of the electronic Hamiltonian. We
give some background on how the factorization can be

TABLE III. Here we report the finite resources required for various recent algorithms to quantum phase estimate two FeMoCo active
spaces to within chemical accuracy. The reason for focusing on two different active spaces is that several papers benchmarked their
methods for the FeMoCo Hamiltonian of Reiher et al. [23], but the work of Li et al. [36] later showed that there is almost no open-
shell character in the ground state of the active-space model by Reiher er al. and proposed a slightly larger active space with important
open-shell character. We report the lowest known Toffoli and logical qubit counts of prior algorithms, consistent with our accounting
of these costs in Appendices A, B, C, and D. Note that Appendices A and B show how to reduce the Toffoli counts reported for the
algorithms of Berry et al. by factors of roughly 13x for the Reiher Hamiltonian and 8 x for the Li Hamiltonian (single factorization)
and 3 x for the Reiher Hamiltonian and 2 x for the Li Hamiltonian (sparse), respectively, and we use these more optimized resource
estimates here. Likewise, the resource estimates reported for von Burg et al. [10] are slightly different from what is reported in their
paper because we use a different criterion for determining the truncation thresholds (which, as we discuss in this paper, is a justified,
but a tighter criterion than what is used in their work). There were some errors with the algorithm of von Burg et al. as presented in
their work, which we correct here in Appendix C. Finally, because the Trotter-based methods from Reiher et al. are more naturally
bottlenecked by T gates than by Toffoli gates, we report half the number of T gates that would be required since a Toffoli gate is
roughly twice the cost of a T gate within the surface code [54]. We use 10 bits for state preparation in the methods of Berry et al., von
Burg et al., and tensor hypercontraction. A total of 16 bits for the Reiher Hamiltonian and 20 bits for the Li Hamiltonian are used for
rotations in tensor hypercontraction and double factorization.

Reiher et al. FeMoCo [23] Li et al. FeMoCo [36]
Algorithm Logical qubits  Toffoli count  Logical qubits  Toffoli count
Reiher et al. [23] (Trotter) 111 5.0 x 1013 — —
Campbell and Kivlichan et al. [52,53] (qDRIFT) (D16), (D17) 288 5.2 x 10%7 328 1.8 x 1038
gDRIFT with 95% confidence interval (D34) 270 1.9 x 106 310 1.0 x 106
Berry et al. [9] (single factorization) (B16), (B17) 3,320 9.5 x 1010 3,628 1.2 x 10!
Berry et al. [9] (sparse) (A17), (A18) 2,190 8.8 x 1010 2,489 4.4 % 10"
von Burg et al. [10] (double factorization) (C39), (C40) 3,725 1.0 x 10'° 6,404 6.4 x 10'0
This work (tensor hypercontraction) (44), (46) 2,142 5.3 x 10° 2,196 3.2 x 10'0
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approach all the way to Clifford + Toffoli gates and
report the constant factors in the leading-order scaling
for both the total Toffoli complexity and total ancilla
required.

In Sec. IV we analyze the finite resources required to
perform the algorithm of Sec. III for the simulation of
several real systems: FeMoCo and hydrogen chains of
various sizes. These numerics demonstrate the effective-
ness of the THC representation, help to elucidate certain
aspects of the scaling of our approach, and allow us to
compare the cost of our approach to prior methods. The
second part of this section discusses the layout of the Li
FeMoCo Hamiltonian simulation in the surface code. Our
analysis considers the cost of routing, distillation, and ana-
lyzes how many physical qubits are required at all points
in the computation. Finally, we reflect on the significance
of these results and suggest future directions for research
in Sec. V.

Appendices A, B, and C contain extensive and self-
contained descriptions of the prior methods from Ref. [9]
and Ref. [10], adapted to the notation and conventions of
this paper, and in some cases with improved bounds on
the complexity of those methods. Furthermore, they also
contain numerical details associated with each method that
are not presented in the main text. Appendix D covers
the randomized compiled methods of Ref. [52], which are
not particularly related to the other methods here but also
have scaling that depends on A so we are able to analyze
the exact resources required by that approach with numer-
ics that are already available to us. Then, in Appendix E
we perform a detailed analysis of how one can directly
use the THC representation without projecting into the
nonorthgonal basis. This leads to an exceptionally simple-
to-understand algorithm (more straightforward than the
other approach of this paper or those of Refs. [9,10]) but
with worse constant factors in the scaling compared to the
primary approach of this paper due to a larger value of
A. The remaining two appendices discuss technical details
pertaining to the implementation of important circuit prim-
itives used throughout this work. In Appendix F we discuss
a technique and costings for computing contiguous regis-
ters. Finally, in Appendix G we describe and analyze the
cost of modifying the QROM procedure [9,38] to output
two registers at a time.

II. TENSOR HYPERCONTRACTION
REPRESENTATIONS FOR QUANTUM
SIMULATION

A. The standard tensor hypercontraction
representation

The THC representation [39—41] of the electronic
Hamiltonian factorizes the Coulomb operator ' from
Eq. (1) as

N/2

1 +
V~G= 5 Z Z qursa;,aaqﬂar,ﬂasaﬂ
a,ﬂe{T,“p,q,r,s:l

M
qurs = Z X‘p(p’)Xq(p’){p.er(V)Xs(U): (4)

=1

where X;EM ) and Cuv = &y, are real scalars obtained via

existing algorithms (vide infra) and empirical studies
[39—41,55—74] suggest that the approximation G encodes
low-energy eigenvalues of V' to within error etgc so
long as

M = O[N polylog (1/€Tnc)]. 6]

The eTpc inside of Eq. (5) is an error in the energy
per atom. Thus, if we instead intend eTyc to represent
a fixed additive error in the total energy then when N is
growing towards the thermodynamic limit (i.e., if we are
fixing the ratio of basis functions to atoms and adding
more atoms) M = O[N polylog(N/etuc)], but when N
is growing towards the continuum limit (i.e., we are fix-
ing the number of atoms and adding more basis functions)
M = O[N polylog(1/etnc)].

While the behavior that the THC rank M should scale
near linearly in N has been observed in many contexts
[39—41,55—74], the most rigorous result establishing
the poly-logarithmic dependence on etpgc comes from
Ref. [74]. Specifically, the work of Ref. [74] employs
perturbation theory to empirically evaluate the scaling
of the scaling of M in Eq. (4), ultimately conclud-
ing that (within second-order perturbation theory) M =
OIN polylog(1/etc)]. The leading order constant for this
scaling is both system and basis dependent. Nevertheless,
generally speaking, to achieve 50 phartree per atom (a
widely accepted accuracy threshold for approximating V
to within chemical accuracy for molecular simulations),
one needs at least as many THC basis functions as density-
fitting basis functions when using O(N*) algorithms [69]
or slightly more with efficient O(N?3) algorithms [73].
With the O(N*) algorithm in Ref. [69], one needs M
equal to between 2N and 3N for a broad class of chemical
problems to achieve chemical accuracy.

The structure of the tensor factorization in Eq. (4) is
rather different from either the SF or the DF used in
Refs. [9,10]. For instance, unlike with the low-rank decom-
positions, it is unclear how one might combine the THC
factorization with reduced scaling product formulas for
time evolution [30] or better methods of performing energy
measurements for variational algorithms [75]. Similar to
how the work of Refs. [9,10] combines qubitization with
the tensor factorizations described in Appendices B and
C, here we discuss how the THC factorization leads to an
advantage when combined with qubitization; however, our
approach will require different qubitization oracles (and
thus different algorithms) from those in Refs. [9,10].
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B. Numerical computation of the tensor
hypercontraction factorization

The problem of obtaining the factorization of Eq. (4) is
often numerically ill conditioned and has been the subject
of research for many years in quantum chemistry [39—41,
55-74]. We write the THC factorization problem as an L,
norm minimization problem where we seek minimizers, x
and ¢, for

L=1V=Gly=>|Vogrs — Gogrs|’ (6)

pars

This objective function £ is quartic in x and linear in ¢.
This generally exhibits multiple minima as well as a flat
optimization landscape, which makes finding global min-
imizers challenging. We develop a strategy to cope with
numerical difficulties, which is effective for the systems
considered in this work. We provide details of the strat-
egy below. All numerical results in this paper are obtained
from the following protocol. The resulting THC tensors are
available in Ref. [76].

1. Initial guess

Due to the nonlinear nature of Eq. (6), good initial
guesses are often critical in obtaining accurate THC fac-
torizations. We generate random guesses for x and ¢ when
the real-space molecular orbital representation is unavail-
able. This is the case for the FeMoCo Hamiltonians since
only Hamiltonian matrix elements ¥, are reported in the
literature. In this work, we tried 20 random guesses and
picked the best performing one in the end.

On the other hand, when we have real-space molecu-
lar orbital representation available (which is the case for
hydrogen systems and other chemical systems in general)
we utilize the interpolative separable density fitting (ISDF)
technique to generate an accurate initial guess for y and
¢. The ISDF approach was originally proposed by Lu
and Ying [63]. In terms of the classical precomputation
required, this approach is more efficient than the direct
gradient-descent approach. It is based on the intuition that
the THC factorization is an interpolative decomposition of
the electronic pair density in real space:

M
=Y Em¢ () (rn)., (D

pn=1

bp (1) ¢ (1)

where ¢, (r) is the p™ single-particle orbital represented on
a grid {r}, r,, denotes the interpolation points and &, (r) is
called an interpolation vector, which can be obtained via a
simple least-squares fit. Once r, and &, (r) are found, the

THC factorization is then obtained via

X,ﬁ'” _¢p ru Sy = /dl‘ /

ISDF involves no nonlinear optimization and thereby it
is numerically robust and provides straightforward ini-
tial guess for subsequent direct minimizations. Finding
interpolation points can be also performed with a lin-
ear complexity [73] via the centroid Voronoi tessellation
(CVT) approach [70]. Determining &, (r) scales as O(N?)
and is ultimately the bottleneck of this algorithm. While
this is more economical than also performing further opti-
mization (see the next subsection), the resulting THC fac-
torization is not as compact for given accuracy. Therefore,
in this work, we use the ISDF-CVT approach to gener-
ate a good initial guess from which we perform further
optimization.

§u(ré, (r2)

[r1 — 1|

®)

2. Optimization

While ISDF initial guesses are quite accurate, ran-
dom guesses are sometimes very far away from any
local minima. This is problematic when an ISDF ini-
tial guess is unavailable, which is the case for FeMoCo.
When starting from random initial guesses, we find that
a quasi-Newton method such as the limited memory
Broyden-Fletcher-Goldfarb-Shanno algorithm with box
constraints (L-BFGS-B) algorithm [77] is quite robust in
the warm-up stage. We note that quasi-Newton methods
were previously studied for use in obtaining THC factor-
izations in Ref. [69]. The necessary gradient of Eq. (6) for
BFGS is obtained via the automatic differentiation method
in JAX [78]. Unfortunately, L-BFGS-B alone could not
produce accurate factorization for all of the systems con-
sidered in this work. Therefore, in some cases we also have
to perform another optimization with a different solver.

After an L-BFGS-B run, we employ a popular machine
learning optimizer called AdaGrad [79] as implemented
in JAX to finalize the factorization [78]. We find that
L-BFGS-B tends to get easily stuck in unwanted local min-
ima and subsequent optimization via AdaGrad helped to
escape from a local minimum and improved the accuracy
of our optimization by more than an order of magnitude.

C. Diagonal Coulomb operators from projecting into
the auxillary tensor hypercontraction basis

One can attempt to apply qubitization directly to the
Hamiltonian representation of Eq. (4). In fact, doing this is
relatively straightforward and in Appendix E we describe
an algorithm based on exactly that approach. We show
that this results in an algorithm with Toffoli complex-
ity O(NAtHC/€), which prima facie, is relatively low
complexity. The method of Appendix E is also exception-
ally simple as far as arbitrary basis quantum chemistry

030305-8



EVEN MORE EFFICIENT QUANTUM COMPUTATIONS...

PRX QUANTUM 2, 030305 (2021)

qubitizations go; thus, that approach might be valuable for
pedagogical purposes. However, the problem with directly
applying qubitization to this form of the THC Hamiltonian
is that we end up with a Atyc defined as

N/2
MHC= Y Z ‘X;“)Xq“)é“ﬂ xx©)
p.q.rs=1 p,v=1

Because the sum over u and v appears outside of the abso-
lute value in this expression, Aty is much larger than even
Ay, the 1-norm of the original Hamiltonian. Note that Ay is
already larger than App (the A value associated with the
von Burg et al. [10] algorithm), and so this larger A value
should be avoided. To avoid this blow up in A, the main
approach of this paper focuses on simulating a different
Hamiltonian that we derive from the THC representation.

As discussed in the Introduction, a number of recent
papers have demonstrated very high-efficiency quantum
algorithms for simulating the electronic Hamiltonian in a
basis that diagonalizes the Coulomb operator [15—18,80].
The downside of these approaches is that the required
orthogonal-basis sets often require many more qubits in
order to reach chemical accuracy for molecules, compared
to arbitrary basis functions such as molecular orbitals,
which lead to the Coulomb operator in Eq. (1). On the con-
trary, the THC representation of the Coulomb operator in
Eq. (4) may be more compact, but it is not diagonal. How-
ever, as we show below, it is possible to use the x tensor
from the THC factorization to define a larger “auxillary”
basis in which the Coulomb operator is diagonal.

We can achieve this diagonal representation by first
defining a nonunitary (and nonorthogonal) basis rotation
corresponding to a projection of the original fermion lad-
der operators into a larger basis:

N/2 N/2

Z () ;o" Cuo = ZXISM)ap,O'a (10)
p=I

where the creation and annihilation operators cL and ¢,
act on a larger space of 2M spin orbitals rather than NV spin
orbitals. Without loss of generality, we are taking x ** to
be a normalized vector for each u (because constant factors
can be absorbed into £,,,). Using this, we rewrite Eq. (4) as

M N/2 N/2
Z > Z 2 Zx(‘”aq,a
aﬁe T} =1 \p=1
N/2 N/2
(wa ) (S o
Z Z (CM 2, a)(cu BEv, ﬁ)é‘uv (11)
ozﬁe T} =1

This provides a diagonal form of the Coulomb operator in
the expanded basis:

M
Z Z ;Mvnu,anv,ﬂ: (12)

a.peit ) wy=1

where n,, , = c;,g ¢ 18 the number operator in the larger
basis. We derive this representation of the Hamiltonian
(it does not seem to appear in any prior literature even
for classical electronic structure). Even though the basis
size (and, thus, the number of qubits) is increased by a
factor that is roughly between 4 and 10 in most con-
texts, the appeal of highly efficient algorithms presented in
Refs. [15-18,80] for diagonal Coulomb operators makes
this representation interesting. Unfortunately, this larger
basis is not orthogonal, which complicates our approach
to directly simulating this Hamiltonian. For example, one
cannot use methods such as those in Refs. [16,18] that were
developed to simulate diagonal electronic Hamiltonians in
orthogonal-basis sets. Instead, we pursue a qubitization-
based approach that involves rotating into the underlying
nonorthogonal basis, one tensor factor at a time, avoiding
complications that arise if the rotations were done glob-
ally. The Hamiltonian in Eq. (12) is referred to as the
nonorthogonal THC Hamiltonian.

D. Deriving the A value associated with the
nonorthogonal THC Hamiltonian representation

We now give a very high-level overview of the main
approach of this paper, which involves qubitizing Eq. (12),
and we derive the X\ value associated with that representa-
tion. In Ref. [10] it was shown that when qubitizing an
operator in a different basis, the basis rotation does not
need to rotate all the bases at once. Instead, because it is
controlled by a register, it is sufficient to perform basis
rotations independently for each number operator con-
trolled by the register. As shown in Eq. (51) of Ref. [10],
only N /2 Givens rotations are needed, instead of O(N?) if
all N basis vectors are being rotated at once. So in our case,
we can control on w to rotate the basis to that described by
n,o using N Givens rotations in the same way as shown
in Eq. (51) of Ref. [10]. Since x ) is taken to be a nor-
malized vector for each w, this is a valid rotation for each
individual u. It does not matter that the basis is not orthog-
onal, because the rotations are done individually for each
w separately, rather than jointly for all u together.

It is also possible to apply other methods from Ref. [10]
associated with implementing these rotations.

1. Use a QROM to output the N/2 rotation angles
controlled on the register u, which takes M values.
2. Since the number operators can be represented by
(1 — Z2)/2, we can take the identity parts out and
combine them with the one-body terms, and the
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remaining two-body terms have a A value that is
divided by 4.

Note also that the procedure to rotate to and from the new
basis must be done twice, once for the operators dependent
on v and again for those dependent on . The net result is
that the complexity for a single step is O(N), and the value
of A has a contribution from two-body terms

1
)‘Z =§Z|§MU|- (13)
1,

To determine the A value more carefully, G can be given as

M
Z Z Uznl,aUMUznl,ﬁUvé‘uv- (14)
a,fe{t ) pnr=1

In actually implementing this, we would use o or 8 to
control swaps between the qubits representing spin-up and
spin-down orbitals, so U, would need only to act on N /2
qubits, but for simplicity this is not shown explicitly here.
Then by taking n;, = (1 — Z;4)/2, we have

M
Y D UL = 21 ) U UL = Z1g) Uny

a.fe{t |} ny=1
1 M
=73 Y 2 UUuUUGw
a.Be{t,l} =1
1 M
+3 Y D UL - 21 ) UL U U,
a,fe{t{} nr=1

M
Z Z ULU UL = Zyp) U
wBelt) =1
M

Z Z ULZW Uy UIZLﬂ UvCuv
a,Be{t} nv=1

1
4=

o]

M M
1
S I ILIRT S D DUALEE R
=1 ag{t,d} pr=1
Z Z Ul Z1oU UL Zy g U G (15)
wﬂe T4 pv=1

The first term corresponds to an overall energy shift that
can be ignored. The third term is the two-body term that
gives the contribution to A given in Eq. (13). The middle

term can be given as

T(Z—)l) — Z Z U nlotU é‘[/.v
ae{t,d} pr=1
N/2 N/2
=y 2 (T ) (. |
ae{t,)} nv=1 \p=1 =1
=y (3 e . a6
ac{t,{} \pv=1

Now note that

N/2 M N/2

> o= 3 6 LA

r=1 =1
= Y A a
n,v=1

For this term we can replace the approximation G, with
the exact V., so the approximation is used only in the
two-body term. Therefore, combining 7~ with T gives
a new one-body operator

N/2

Z Z Y;qa;,gaq,g with

oe{tl}p.g=1

T=T+T(2—>1)=

N/2

I;q = Tpg + Z Vogrr- (18)
r=1

Then 7" can be diagonalized as

N2 N/2

= D Dtme= D Y uUpmgUn
et} t=1 oce{t,l} =1

N2 N2

—Ztgﬂ—— Z ZtZUnglaUTis (19)

oe{t,i} (=1

where #, are eigenvalues of 7/, and Ur,, are individual
rotations for 7 similar to the U, for G. The first term is an
overall energy shift, and the second term is the one-body
term that contributes towards A. The net result of this is

N/2

)»—Z|fz|+ Zlc,wl— (k). 0)

As we discuss later on, A, actually scales even better than
the A values associated with any prior algorithm in the
literature, including the Apr associated with the doubled
factorized algorithm of von Burg et al. [10].
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II1. QUBITIZING THE NONORTHOGONAL
TENSOR HYPERCONTRACTION HAMILTONIAN

A. Approach to qubitization

Our approach to encoding the eigenspectra of the THC
representation of the electronic Hamiltonian in a uni-
tary for phase estimation uses the linear combination of
unitaries (LCU) query model [81]. Specifically, we use
qubitization [12] to block encode [82] the Hamiltonian
eigenspectra as a Szegedy quantum walk [83]. What all
LCU methods have in common is that they involve simu-
lating or block encoding the Hamiltonian from a represen-
tation where it can be accessed as a linear combination of
unitaries:

L
H=> wU, 1)
=1

where U, are unitary operators and the w, are scalars.
LCU methods are defined in terms of queries to two oracle
circuits that are commonly defined as

SELECT |£) [/) = |€) Uy |Yr)

L
PREPARE |0)® o8/ gy -
)21 > D =10 = 1£)
(=1
L
=) lod, (22)
(=1

where |1) is the system register, |£) is an ancilla register,
which usually indexes the terms in Eq. (21) in binary, and
this is the general definition of A.

Currently, the most practical fault-tolerant approaches
for simulating quantum chemistry are based on qubitiza-
tion [9,10,12,16]. Following the analysis and techniques of
Ref. [16], one can use phase estimation based on qubitized
quantum walks to sample in the eigenbasis of a Hamilto-
nian with error in the sampled eigenvalue bounded from
above by € with Toffoli complexity scaling exactly as

Py
[;EJ [Cs+ Cp+ Cor +logL+ O (], (23)

where Cy is the gate complexity of SELECT, Cp is the gate
complexity of PREPARE, Cpt < Cp is the gate complexity
of uncomputing PREPARE, and epgp is the allowable error
in the phase estimation.

The multiplying factor of [wA/(2epga)] corresponds to
the number of repetitions of the LCU step used in the
phase estimation. In Ref. [16] the number of repetitions
was taken to be a power of 2, because that makes the phase
estimation particularly simple, with each qubit of the con-
trol registers controlling a number of repetitions that is a
power of 2. It is also possible to use a number of repe-
titions that is an arbitrary integer. This was assumed by
von Burg et al. [10], although doing this requires a more
sophisticated control which those authors do not show how
to perform. We explain how this can be accomplished. The
general principle is to control each step using the unary
iteration procedure introduced in Ref. [16].

To explain the procedure in more detail, one should
combine the SELECT operation together with a reflection
R =2|LY®|1 — 1 based on the PREPARE operation, to
create a step of a quantum walk YV, which has eigenvalues
proportional to et/ 2¢cos(En/2) \where H |n) = E,, |n) [13,14].
In order for this procedure to work, the SELECT needs to
be self-inverse. It is possible to obtain the same complex-
ity if there is controlled application of SELECT or SELECT',
but we avoid that because it doubles the complexity, and
instead construct SELECT so it is self-inverse.

Simplistically, one could make WV controlled as shown
in Fig. 1, but for the purpose of obtaining the complex-
ity shown in Eq. (23), one needs to control application
of VW and its inverse. Given that SELECT is self-inverse,
one can obtain W' simply by performing the reflection
before SELECT instead of after. That means that one could
control between W and W' by performing a controlled
reflection before SELECT as well as after (and not making
SELECT controlled). But, it is not necessary to perform two
controlled reflections, only one. To see why, consider the
case where the control is selecting four applications of W
with the rest of the operations being WW'. Then we need to
perform the sequence of operations

(RU)(RU)(RU)(RU)(UR)(UR)(UR) . ...

= (RU)(RU)(RU)(RU)L(UR)(UR)(UR) ..., (24)

7]

O T = 10—
14% Select
V) ——_ — V) ——

Prcparet | {Prepare]

FIG. 1.

A circuit realizing the qubitized quantum-walk operator V¥ controlled on an ancilla qubit. Note that the Z gate with the 0

control is actually controlled on the zero state of the entire |£) register and not just a single qubit. Accordingly, implementation of that
controlled Z has gate complexity log L + O(1) where [log L] is the size of the |¢) register.
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FIG. 2. A unary iteration circuit for selecting WW*~1° for ¢ from 0 to 10. Here R indicates the inverse preparation, reflection, and
preparation. As in Fig. 1 only the reflection needs to be made controlled.

where U is being used for SELECT and R is being used
for the reflection (i.e., the combined inverse preparation,
reflection about the zero state, and preparation). We use
only U or R with this meaning in this equation and in Fig. 2.
Here, after the fourth U, we simply perform the identity
rather than a reflection. This means that we always perform
the reflection in between each successive SELECT, except
when the number of times we perform SELECT matches
the number in the control register. That means we need
only one controlled reflection in between each SELECT,
which corresponds to removing the control on SELECT in
Fig. 1.

Next we explain how to address cases where
[t)/(2eppa)] is not a power of 2. To achieve that, one
can simply prepare the optimal control state as described
in Ref. [16] except using a superposition over a number
of basis states that is smaller than a power of 2. Then,
instead of controlling on each successive qubit of this
state, use the unary iteration procedure of Ref. [16] to
control the reflection. The unary iteration procedure intro-
duces a trivial additional cost of one Toffoli per step,
and doubles the ancilla cost of the control register for
the temporary ancillas for the unary iteration. To show
explicitly how this control is done, see the example in
Fig. 2.

In our algorithm there are four sources of error:

1. Error due to measurement in phase estimation €pga,
which first appears in Eq. (23).

2. The approximation of the Hamiltonian coefficients
as part of the coherent alias sampling procedure
from Ref. [16] that is used as part of our PREPARE
strategy.

3. The approximation of the individual Givens rota-
tions needed for the basis rotations.

4. The approximation of tensor hypercontraction eTyc,
which first appears in Eq. (5).

To bound the overall error, one could take these individ-
ual errors and simply add them together. However, the
sources of error 2 to 4 all contribute to error in the approx-
imation of the Hamiltonian. That is, they together give an
approximate Hamiltonian, and one can simply estimate the
error due to using this approximate Hamiltonian.

One approach would be to determine the root-mean-
square sum of the errors of each of the coefficients in the
Hamiltonian as is done in Ref. [10]. Based on classical
simulations we find that this overestimates the error, so we
instead perform classical calculations of the error in the
energy to estimate the allowable truncations. We include
all error from approximation of the Hamiltonian into eTyc,
and require that

€ > €pEA + €THC, (25)

where € is our target accuracy, which we take to be 0.0016
hartree (chemical accuracy) for the resource estimates of
this paper. We take eppa < 0.001 hartree and etpgc <
0.0006 hartree. The allowable error for phase estimation
in Ref. [10] was 0.0009 hartree, but we recalculate the cost
with epga < 0.001 hartree for the DF method of Ref. [10]
for a fair comparison. We also recalculate the costs using
the same parameters for the sparse and SF approaches.
Note that in quantum chemistry it is typical to require
the differences in energy between two configurations to
be determined to chemical accuracy, which naively would
require accuracy of 0.0008 hartree on each estimation of
each energy. That precision is expected to not be neces-
sary, because the approximations made in the Hamiltonian
for the two configurations have correlated errors. For the
phase estimation, the errors would add if the computa-
tion is performed independently for the two configurations,
but it is possible to use the control register to control a
forward evolution for one Hamiltonian on one target sys-
tem, and reverse evolution on a second target system with
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the Hamiltonian for the second configuration. This can be
combined with the improved phase-estimation techniques
of Ref. [14], which help to ensure one is projecting into
the correct states at lower cost than the entire phase esti-
mation. The phase estimation will then provide an estimate
of the energy difference. We therefore continue to assume
that the accuracy required is overall 0.0016 hartree, which
also provides consistency with prior work.

We now discuss how to implement and compile PRE-
PARE and SELECT for our algorithm.

B. State preparation for the nonorthogonal tensor
hypercontraction Hamiltonian

The method to perform the PREPARE step is based on
expressing the Hamiltonian in a nonorthogonal basis as in
Eq. (12). We can rewrite the Hamiltonian in the form

N/2

Z Z ZZU;,gZI,a Ury

oe{t,)} =1

1
H=—-
2

1

M
t t
+3 Y U Z1aU UL ZpU,,  (26)

a,Be{t, i} nr=1

where the first term is from 7" in Eq. (19) and the second
term is from G in Eq. (15). The state we need is

N/2

+) [+) [ZMM M+ 1)
=1

L
N

M
> Vigwl ) v)

w,v=1

1
t 5 27)

Here the first and second registers give the superpositions
over spins, and the third and fourth registers store p and v.

The last register takes the value M + 1 to flag that this is
the first term in the Hamiltonian. For simplicity we adopt
the convention that these registers are labeled starting from
1, though 1 would be stored as binary 0 in the register.
For the state preparation, we have a three-step procedure
where we first prepare an equal superposition over the u
and v registers, then perform coherent alias sampling [16],
then swap the u and v registers controlled by an ancilla in
a |+) state. This means we need only to initially prepare
the range u < v, and the number of coefficients needed in
the state preparation is
d=N/2+MWM+1)/2. (28)
In the first step we need to create an equal superposition
over u < v <M + 1 for registers 3 and 4, with u < N/2
for v = M + 1. The procedure needed is depicted in Fig. 3.
The method is to perform Hadamards on all qubits
for these registers, then perform the inequality tests v <
M4+1, w<v, and uw <N/2 controlled on v =M +
1. These inequality tests have cost 4(my — 1), with
ny = [log(M + 1)7. Rotate an ancilla qubit by adding a
constant into a phase gradient register (as described in
Appendix A of Ref. [84]), to obtain an overall ampli-
tude for success on this qubit and the three inequality tests
approximately 1/2. This needs b, — 3 Toffolis, using b, bits
of precision, which can typically be taken to be about 7.
We can flag failure on an ancilla and perform the iden-
tity (instead of SELECT) in the case of failure. Then we
need to reflect on five registers, which we do using three
Toffolis. Next, we can invert the inequality tests (which
may be done without further Toffoli costs using the out-of-
place adders of Ref. [85]), and invert the rotation with cost
b, — 3. Then inverting the Hadamards and reflecting about
zero has cost 2ny; — 1. Then we perform the Hadamards
and inequality tests again with cost 4n,, — 3. Checking that

0™ ;

II‘I " H H®nMm

H®nMm H III# |:“>
[

|0) R ne In,

In, }—{ H®nMm

He®nm }—{ In, In, [v)

0) —{R, | R],

i

FIG. 3.

)
|0) ®(<M+1) ®(v<M+1) S(w<M+1) - |0)
|0) (<) |0)
|0) ®v=M+1) |v=p+1)
|0) ®(u>N/2) ﬁﬁ [oG>N/2) | |0)
0) (X —d+d b4-— x| 10)
|0) & |succ)

The circuit for creating an equal superposition over the  and v registers, with ny, = ny, = [log(M + 1)], and R, beinga ¥

rotation to b, bits of precision. The state is prepared on the first two registers, the last register flags success of the entire procedure, and
the fourth-last register records whether v is equal to M + 1. We use |) and |v) to label the outputs on the top two registers, though

these are in a superposition state.
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FIG. 4. The state preparation after preparation of the equal
superposition state in Fig. 3. Here n; = [logd], and we use |u)
and |v) to label the input registers that are in a superposition. The
modifications to this state preparation over that in Ref. [16] are
that a contiguous register is calculated in the beginning, and at the
end the u and v registers are swapped controlled on a |+) state
and v not being equal to M + 1, which is contained in a register
output from the procedure for creating the equal superposition.
Since we simply need to perform a Z gate on the sign qubit 6,
instead of explicitly performing a controlled swap with the alt
value, we can perform two controlled phase operations thereby
eliminating one non-Clifford gate. These controlled phase gates
need not be performed when inverting the state preparation.

the inequality tests are satisfied has cost 3, giving a total
cost of 10[log(M + 1)] + 2b, — 9 Toffolis.

Once we prepare the equal superposition over the ¢ and
v registers, we can then prepare the state as shown in Fig. 4.
In more detail, the steps needed are as follows.

1. Use Hadamards to create the |4) states on the first
two registers.

2. Create a new contiguous register from registers 3
and 4. This contiguous register can be given as

s=v(v—1)/24+pu, (29)

where we are using the convention in this equation
that numbering starts from 1. Because we are using
the convention that v = M + 1 flags the first term
where u < N/2, the allowed range of values for
and v gives a contiguous range of values for s. The
complexity of computing s is ”%4 + nyr — 1, which
is shown in Appendix F.

3. Use the new contiguous register to output alternate
values for registers 4 and 5, a sign qubit and an alter-
nate sign qubit (to account for the signs in the linear
combination of unitaries), and keep values. The size

of the output is then
m=2ny +2+R, (30)

where R is the number of bits for the keep register.
The cost of the QROM is then

L{ﬂ ol — 1). 31)

s1

4. Perform an inequality test between the keep register
and a register in an equal superposition, with cost X.

5. Perform a swap controlled on the result of the
inequality test, with cost 2n,,. We can simply per-
form controlled phase gates on the sign qubits
instead of explicitly swapping them, which is why
we simply have the cost of swapping the ¢ and v
registers with the alternate registers.

6. Controlled on a |+) state, and the result of the test
for v =M + 1 from step 2, swap the u and v reg-
isters, with cost ny; + 1. Here the +1 is the Toffoli
needed to perform the AND operation on two qubits
for the control.

In inverting the state preparation, the cost of the inverse
QROM is reduced to

d

[k—j + ko, (32)

but the other costs are unchanged. Adding all these costs
together gives

d
Cp + Cpi = 28ny + 4b, — 18 + 2m3, + 2R + (k—w
s1

d
ks — 1)+ Lﬂ ko, (33)
52

with m = 2ny, + 2 4+ R, nyy = [log(M + 1)].

The number of bits used for the keep register was
R = [2.5 + log(10A/€)] in Ref. [10]. The error in the keep
probability is translated to that in the state in the following
way. The squared amplitudes of the state needed are |¢,]/A
and [¢,,|/A for w # v, but [¢,,|/21 for u =v. These
amplitudes are compared to initial squared amplitudes in
the equal superposition of 1/d. Taking R as the number
of bits for the keep probability is equivalent to discretizing
the squared amplitudes to the nearest 1/(2%d) [see Eq. (35)
of Ref. [16]]. It would at first be expected that this would
lead to an error no larger than A /(2%'d) in |t,| or [£,0| for
W # v, or A/ (2%d) for |, |, with a factor of 2 reduction in
the error because rounding gives error no larger than half
the discretization size. The subtlety is that if we round all
the squared amplitudes, the result will no longer be nor-
malized. To maintain normalization it will be necessary to
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discretize some of the amplitudes in a different way than
rounding, resulting in an error larger than A/(2%*'d), but
still no larger than A/(28d). That is why the factor of 2 is
not included in Ref. [16]. However, it is possible to make
the typical errors smaller than A/(2%"!d) by adjusting the
threshold for rounding from 1,/2 to maintain normalization.
In practice only a very small adjustment is needed.

C. Hamiltonian selection oracle for the nonorthogonal
tensor hypercontraction Hamiltonian

For the SELECT operation, we have two steps. In the first
we need to perform the operation U, or Ur,, for the two-
electron or one-electron terms, respectively. In the second
we need only to perform U,. To perform these operations,
we can use a QROM to generate a sequence of N /2 rota-
tions, then perform the rotations using the method given in
Ref. [10]. The costs are as follows.

1. There is a cost of N/2 to perform the swaps con-
trolled on the spin qubit.

2. The dominant cost is the QROM. The output size is
large, so it is most efficient to perform the QROM
as in Ref. [16]. In the first step (for w) we have
M + N/2 sets of data to output which has com-
plexity M + N /2 — 2. Note that we need to output
one set of rotations if the v register is in the state
IM + 1), or a different set if the v register is not in
that state. The value v = M + 1 is still flagged in an
ancilla. In the second step (for v) we need only to
generate the rotations for the two-electron terms, so
the costis M — 2.

3. We can perform the rotations with cost N(3J — 2)
by adding the rotations into the phase gradient state.
Here 3 is the number of bits of precision used for
the rotation angles.

4. The Z operation has no Toffoli cost. It needs to be
controlled on the qubit, which is the result of testing
whether v = M + 1 for the case where we apply the
operations for v.

5. We invert the rotations with cost N (3 — 2).

6. To erase the QROM, in the case of u we need to
subdivide the bits into the more- and less-significant
bits, where the more-significant bit includes dis-
tinguishing the case v =M + 1. We have a cost
of [M/k,] for the case v <M + 1, and a cost
[N /2k,] for the case v = M + 1, then a cost k,1 for
the remaining %, less-significant bits, for a total of

il L
krl 2krl T

For the case of u, we have to perform only the
QROM on M possible values, giving a cost of

M
— ko
’7/92—‘—’_ 2

7. Perform the swaps controlled by the ancillas (for
spin) again with cost N /2.

(34

(35

This procedure needs to be performed twice, once for u
and once for v. The complete procedure is shown in Fig. 5.

A subtlety is that the operation needs to be controlled
by success of the state preparation, which can be achieved

|succ)
1) i In,, | Ex
v) na \Elﬂ \Elﬂ
|v=n1+1)
0 data : rot In In [ data : rot data : rot, — In In [ data : rot,,
1 I
+)
+)
4y b7 'Rt 2 HR] ‘iz HR ——
L2y N/

FIG. 5.

The circuit for performing the controlled operations (select) for the linear combination of unitaries. The registers from top

to bottom are the success flag register, the i and v control registers, the qubit flagging that v = M + 1, a blank ancilla to put the
database of rotations in, two |+) states to provide the superposition over the operations on the spin-up and -down components of
the state, and the qubits representing the spin-down and -up orbitals. The controlled R is indicating the basis change obtained from
the sequence of rotations with angles provided in the database, equivalent to U; oUy,; in Ref. [10], which is depicted in Eqs. (58) and
(59) of the Supplemental Material of that work. The registers labeled [y ) and |y/4) correspond to the qubits for the spin-down and
spin-up orbitals. The operation Z; acts on only one of the qubits of the |1/) register, similar to the circuit diagram labeled (57) in the

Supplemental Material of Ref. [10].
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simply by making the Z operation controlled, which is
a Clifford gate, so does not add to the Toffoli cost.
Another subtlety is that for v, we perform no operation if
v = M + 1. That can be achieved simply by making the Z
operation controlled by the qubit output by the result of the
equality test as well, requiring just one more Toffoli gate.

A major subtlety is that the SELECT operation needs to
be made self-inverse, and the operation as depicted is not
self-inverse. This problem can be averted by using a NOT
operation on the register controlling the swap of the y and
v registers. To see why this is so, consider the prepared
state (ignoring the one-electron term for simplicity)

D G ) v,

p<v

(36)

where ¢/, are the amplitudes needed for the asymmetric
state. Introduce the ancilla in the |+) state and perform a
controlled swap, giving

1
7 D g (0 ) ) + 1) ) ). (37

p=v

Then, denoting V), = ULZl’a U, and similarly for v, and
performing the controlled operation on the target system
in state |v), we have

1
7 D 4 (10) 1) [v) V1) + 1) v} ) Vi 19)) -

v

(3%

Now performing an X on the ancilla qubit and swapping
the p and v registers, we have

1
7 D 20, (100 1) 0) Vu 19 + 1) [v) [} Vi 19)) -

n=v
(39)
|12) [In] [In]
lv)
+) X |
) V] V]

FIG. 6.

Then, again performing the controlled operation on the
target system, we have

1 /
7 D 4 (10) 1) [v) VW ) + (1) [v) [12) ViV [90)) -
p<v
(40)
Performing the controlled swap again gives
1

7 D4 (10) 1) V) VW ) 4 11) () [0) ViV [9r)) -

p=v
(41)

Finally, projecting onto |+) for the ancilla qubit gives

1
5 2 G I WY (Vi + VoV, 1)

p=v

(42)

Thus, this procedure gives the desired sum of operations
V.V, + V.V, and is self-inverse. As shown in Fig. 6, the
form of the circuit can be simplified so that there are just
controlled swaps performed on the u and v registers at the
beginning and the end. Those controlled swaps correspond
to the controlled swap at the end of Fig. 4, with the con-
trolled swap at the end corresponding to that done when
inverting the state preparation.

To be more specific, for the complete SELECT oper-
ation we can include the controlled swaps, and per-
form the operation as shown in Fig. 7. For that form
of the SELECT operation the controlled swap at the end
of state preparation in Fig. 4 would not be performed,
because it is being bundled into the SELECT operation.
As can be seen from Fig. 7, that form of the opera-
tion is more clearly self-inverse, though there is the sub-
tlety that we have the qubit with v = M + 1 flagging the
one-electron component of the Hamiltonian. In the case
v # M + 1, the circuit simplifies to a completely symmet-
ric form. In the case v = M + 1, only the left half of the
circuit (shown in the dotted box) is performed, which is
itself clearly self-inverse due to symmetry. The swap of
the u and v registers is shown as controlled by the reg-
ister flagging v = M + 1 here, which would require more

|12) [In]
v) (n
+) T X

%)

This shows that the procedure for generating the two-electron terms is self-inverse. The self-inverse controlled operations V'

are equivalent to V,, = ULZW U,, or V,, but we omit the dependence on p and v because it is in a superposition of being dependent
on both. On the left is the form of the circuit as we describe it in Eq. (36) to Eq. (42), which is obviously self-inverse because of the
symmetry of the circuit. On the right is a simplified form of the circuit.
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FIG. 7.

The circuit for performing the controlled operations (SELECT) for the linear combination of unitaries in a form that is more

clearly self-inverse. The registers from top to bottom are the success flag register, the © and v control registers, the qubit in the |[+)
state to control swapping the 1 and v registers, the qubit flagging that v = M + 1, a blank ancilla to put the database of rotations
in, two |+) states to provide the superposition over the operations on the spin-up and -down components of the state, and the qubits
representing the spin-down and -up orbitals. The dotted box shows the only part that is applied when v = M + 1. The controlled R is
the rotation of the Majorana basis, equivalent to U; U;, 1 in Ref. [10]. The registers labeled |1/ ) and |v4) correspond to the qubits for
the spin-down and spin-up orbitals. The operation Z; acts on only one of the qubits of the |y, ) register, similar to the circuit diagram

labeled (57) in the Supplemental Material of Ref. [10].

Toffoli gates. However, this form is just used to illustrate
that the circuit is self-inverse, and that controlled swap can
be moved to the end and combined with the other con-
trolled swap, resulting in no more Toffolis being needed.
There is one more Toffoli needed in order to apply the con-
trolled swap between the two ancilla qubits in the |+) state
which give the spin. As a result, the total complexity for
the SELECT operation is only two Toffolis more (the second
Z operation must be made controlled) than described in the
list above, and can be given as

1IN [ M N
Cs=2M +4NJ— — + | — k,
= 2M + 2+[m}+hm]+l

M
+ ’V_—‘ + kr2 - 2.
kr2

D. Overall costs of the nonorthogonal tensor
hypercontraction Hamiltonian simulation

(43)

In order to construct the entire step of the quantum
walk, we also need a reflection on the ancillas used for the
control state. We need 2n;, + X + 4 qubits, which are as
follows.

1. We need 2n,, for the 1 and v registers.

2. The equal superposition state for the coherent alias
sampling needs X qubits.

3. One qubit that controls the swap of the © and v
registers.

4. One ancilla that is rotated to ensure the ampli-
tude amplification for the equal superposition state
preparation works.

5. Two qubits encoding the superposition over spins.

The complexity needed to perform a reflection on this
many qubits is 2ny; + R + 2. Another cost needed for each
step is to perform a step of the unary iteration on the control
register. This has a cost of another single Toffoli for each
step. The output of that unary iteration needs to be used to
control the reflection about the ancilla as well, which adds
another single Toffoli. Another single Toffoli cost is the
controlled swap of the spin registers in Fig. 7. Altogether
that gives an additional cost of 2n,, + 5 for each step, in
addition to the cost of the PREPARE and SELECT operations.
The total complexity for a single step can then be given as

Cs+Cp+ Cpr +2ny +R+4

d
= 30my + 4b, — 16 + 2my, + 38 + L{—W
s1

d
+mky — 1) + ’7——‘ + kg
ksZ

1IN [ M N
+2M+4NJ—T+[——‘+{ W

krl 2kr1

M
| 2|+ ke (44)

er

with m = 2ny, + 2 + R, nyy = [log(M + 1)7. For the total
cost, this needs to be multiplied by the number of iterations
needed for the phase estimation

T = [7)/(Qepga)l- (45)
Next we consider the costs for the number of logical
qubits.
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1. The control register for the phase estimation needs
[log(Z + 1)] qubits. The unary iteration to con-
trol on this register needs another [log(Z + 1)] — 1
qubits.

2. N qubits used for the system register.

There are 2ny, qubits used for the u and v registers.

4. There is an ancilla with X bits that is placed in an
equal superposition.

5. We need another qubit for the |+) state to control
the swap of the ¢« and v registers.

6. In preparing the equal superposition state we also
need to perform a rotation on a single ancilla.

7. There are two qubits used for the spin registers in
the prepared state.

8. One qubit is used for flagging success of the inequal-
ity tests in the state preparation.

9. One qubit is used to flag if v = M + 1.

10. There are 1 qubits for the phase gradient state.

11. The contiguous register has size [logd].

12. The QROM has qubit cost (including the out-
put) of mks + [logd/ks]. Of these, m(ky — 1) +
[logd/ks] are temporary ancillas, which can be
reused later. That is, [logd/k; ] temporary ancillas
for QROM, and m(ks;; — 1) are extra outputs that
may be erased by measuring in the X basis. If the
costs in the following steps are smaller, then we can
ignore them and use the cost of the QROM here
instead.

13. The size of the data output for the rotations is IN /2,
and there will be [log M| temporary ancillas as well.

14. There are J — 2 temporary qubits when adding into
the phase gradient state for rotations, which will
be larger than [log M in the previous step for the
systems of interest.

15. The ancilla costs for erasing the QROM can be
ignored because they can reuse ancillas that were
previously erased.

W

This costing gives us a total number of logical qubits

2[log(Z + 1)1+ N + 2ny + 3+ [logd] + R +5

+ max (mky; + [logd/kg], m+23IN/2+21-2).
(46)

E. Error metrics for approximate tensors

The evaluation of Hamiltonian approximation errors,
i.e., €THC, 18 critical for precisely estimating the resource
requirements of any quantum simulation method based
on tensor factorizations, including tensor hypercontraction
and the low-rank methods. Moreover, to fairly compare
against other methods such as the single factorization (SF),
double factorization (DF), and the sparse method, one
should use a consistent error metric for all. We take the
perspective that one should estimate the error in the exact

ground-state energy made by approximating the Hamilto-
nian matrix elements since preparing ground states is very
often the goal. Obviously, estimating the error in the exact
ground-state energy is not feasible for problems whose
ground-state computations are not classically tractable. We
list below desired properties, which a good error metric
should satisfy:

1. An error metric should be classically tractable to
evaluate so that computing it for a handful of
medium-sized systems is relatively straightforward.

2. An error metric should be size extensive and size
consistent. Size extensivity and size consistency are
important properties of the exact ground state wave
function and energy [86,87]. Violating these proper-
ties often results in poor approximations of the exact
ground state wave functions and therefore these are
important properties to preserve. Size extensivity
asserts the asymptotic scaling of the energy to be
linear in system size and size consistency asserts the
product separability of wave functions and the addi-
tivity of energies when two subsystems are infinitely
far part. Therefore, any error metrics that attempt to
bound the ground-state energy should satisfy these
two properties.

3. An error metric should provide a reliable bound
on the exact ground state energy error and also be
well correlated with the actual error in the energy.
By well correlated, we mean that improving the
error metric should lead to the improvement in the
ground-state energy error as well. This is gener-
ally very difficult to meet and also verify because,
in general, we do not know the exact ground-state
energy.

We summarize existing error metrics here and discuss
which one is most suitable for our purposes. We refer to
the approximate integral tensor as J and keep the discus-
sion of error metrics as general as possible so that it can be
applied to any form of approximation methods.

In von Burg et al. [10], two error metrics were intro-
duced and advocated: (1) coherent error (€.,) and (2)
incoherent error (€i,). In fact, these are the 1-norm and
2-norm measures of the difference between the exact and
approximate integral tensors; i.e.,

~ ~ 2
€co = E |qurs - qurs > €in = E |qurs - qurs| .
pqrs pqrs

(47)

The incoherent scheme provides a rigorous bound to the
shift in the ground-state energy but we find these bounds to
be too loose. In examples considered here, they are not well
correlated with the error in the ground-state energy despite
bounding that error. For instance, a slight improvement
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in €, can lead to a drastic improvement in the ground-
state energy estimate. More importantly, both €., and €,
scale up to quartically with system size (at the very least
superlinearly in general), which grows far too quickly with
system size and violates the size extensivity criterion. Fur-
thermore, €, is no longer size consistent. We believe that
the violation of size extensivity and size consistency is
what makes these error metrics often not well correlated
with the error in the exact ground-state energy.

Berry et al. [9] advocated error metrics based on clas-
sical quantum chemistry methods called the second-order
Moller-Plesset perturbation theory (MP2) and configura-
tion interaction with singles and doubles (CISD). The MP2
correlation energy error metric can be thought of as a
weighted signed difference between two tensors:

€EMP2 = Z Wpars (qurs - T}pqrs) 5 (48)

pqrs

where w,, is a positive weight that is defined as the orbital
energy differences defined for each quartet (p,q,r,s). It
can be rigorously shown that Eq. (48) satisfies size con-
sistency and size extensivity since the MP2 correlation
energy satisfies these [87]. We note that the correlation
energy in a finite basis is defined as the energy differ-
ence between an approximate method and a mean-field
approach (Hartree-Fock) in the same basis [86]. Unfor-
tunately, the MP2 correlation energy behaves quite errat-
ically in many cases [88] so the error bound based on the
MP2 correlation energy may not be well correlated with
the actual error in the exact ground-state energy. Since
there are other classical approaches that go beyond MP2,
one may consider other options as well. The CISD corre-
lation energy error metric is the option that Berry et al. [9]
chose. Unfortunately, the CISD correlation energy is nei-
ther size extensive nor size consistent. Consequently, in the
limit of infinite system size, the CISD correlation energy
approaches zero.

In this work, we advocate the use of an error metric
based on the correlation energy error in the coupled cluster
with singles, doubles, and perturbative triples [CCSD(T)]
approach [89]. CCSD(T) is so-called the “gold standard”
method in classical simulations of quantum chemistry.
While its quantitative accuracy on strongly correlated sys-
tems is often doubtful, it is still the best classical method
that satisfies criteria (1) and (2) above. Whether it meets
criterion (3) is again difficult to assess, but for some Hamil-
tonians for which CCSD(T) is qualitatively accurate, it
is reasonable to expect that (3) is satisfied. Furthermore,
CCSD(T) contains the MP2 wave-function contribution in
it in the sense that some diagrams contained in CCSD(T)
exactly correspond to those of MP2. Therefore, we think
that measuring the errors made by approximating the
Hamiltonian elements based on CCSD(T) would be rep-
resentative of classical simulation methods. Ultimately,

it is possible that the errors in the CCSD(T) correlation
energy are not well correlated with the errors in the exact
ground-state energy. We leave more precise understanding
of these error metrics for future study and focus on compar-
ing different approaches based on the CCSD(T) correlation
energy error. For strongly correlated Hamiltonians, one
can consider high-spin states where single determinant
wave functions provide a good description. In this case,
the CCSD(T) energy must be well correlated with the
exact high-spin eigenstates. As long as the underlying inte-
gral approximation does not assume the underlying spin
state (which is the case for all approximations considered
here), this should facilitate a fair comparison between the
methods discussed in this work.

In addition to the inherent factorization error, it is useful
to further account for the error made by the approximation
of the Hamiltonian coefficients (¢) as part of coherent alias
sampling and the individual qubit rotations via x. This is
achieved by first making approximate representations for
x and ¢ for fixed numbers of bits to represent these ten-
sors, J and R, respectively. That is, yx is represented by a
sequence of rotations with angles {9,5“ )} and these angles
are approximated by the limited precision given by .
More specifically, a rotation vector, x ) is parametrized by
a set of angles {915“ )}, which are defined recursively [10] as

x> [50*)] — cos(26Y)1T,-, sin6).  (49)

Next, we define units for 6 and ¢,

21 Az d

_ = o _
=N ”C_dzx’ Ug

(50)

Az
“ pirIE

where uy is the unit for 6, ug is the unit for off-diagonal
elements of ¢, and u? is the unit for diagonal elements

of ¢. Finally, write approximate x and ¢ as x and Z,
respectively, by

)Z,EM) = x,™ [ue x round(é(u)/ue)]
, (5D

£, = ug x round(gy,, /uf +x) for w#v
w u? X round(;“w/u? +x) for u=v

where x is a small constant to ensure the normalization of
|Z|. We employ a sextic polynomial fit for x € [—1,1] to
find the optimal x that normalizes | |. The resulting A of 1|
is normalized to 1 with a small error on the order of 107.
These can be used to build an approximate representation
G for G. In addition to evaluating the CCSD(T) correlation
energy error using G, we also evaluate the error using G to
provide more precise resource estimates.
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IV. RESOURCE ESTIMATES FOR REAL SYSTEMS

A. Resource estimates for simulating active-space
models of FeMoCo molecule

Keeping with the tradition of the work by Reiher et al.
[23], Berry et al. [9], and von Burg et al. [10], here we
benchmark our methods on the problem of simulating the
ground state of active-space models of FeMoCo. While
this is not the only quantum chemistry problem worth
studying on a quantum computer, it is easier to compare
to prior methods if we study the same molecule. We look
forward to also deploying our method to some of the catal-
ysis Hamiltonians studied by von Burg ef al. [10] as soon
as they are made available by those authors. Unfortunately,
the first of these papers by Reiher ef al. used an active
space for FeMoCo that was later found to be problem-
atic for the ground-state simulation by Li ef al. [36]. The
ground state of the active space proposed by Reiher et al.
does not capture the open-shell nature (i.e., strong correla-
tion) of the FeMoCo model cluster and therefore the gold
standard CCSD(T) calculation was found to be off by only
5 millihartree from the near-exact density matrix renor-
malization group (DMRG) energy [36]. Therefore, in their
work, Li et al. propose an alternative active space. Whereas
the original Reiher Hamiltonian involved 108 qubits, the
integrals by Li ef al. involve 152 qubits and is thus a more
challenging problem. The work by Berry et al. estimates
the cost for both Hamiltonians but here we focus on assess-
ing the resources that would be required to simulate the Li
et al. Hamiltonian, as the more accurate active space.

In Fig. 8 we analyze the dependence of the shift in the
ground-state energy on the THC rank M. For the Reiher

2.0
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£
©
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E
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_80_
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FIG. 8. Errorin the CCSD(T) correlation energy (millihartree)

for the Reiher et al. [23] and the Li ef al. [36] Hamiltonian as a
function of the THC rank M. Black dotted lines indicate chem-
ical accuracy of 1.6 millihartree. Chemical accuracy for both
Hamiltonians is achieved for M > 350. Note that the energy
improvement is not monotonic in M in part due to difficulties
associated with the nonlinear optimization of THC factors.

et al. Hamiltonian, as mentioned above, the gold standard
CCSD(T) is quantitatively accurate so it is quite sensi-
ble to assess the error of approximate integral tensors
based on the error in the CCSD(T) correlation energy.
The ground-state computation involves N = 108 qubits
and 54 electrons and the target spin state is S = 0 (sin-
glet). We employ spin-restricted Hartree-Fock orbitals for
this Hamiltonian. As we can see, we achieve chemical
accuracy for M > 250.

For the Li Hamiltonian, there are 152 spin orbitals and
113 electrons in this active-space model. For this Hamil-
tonian, CCSD(T) is no longer quantitatively accurate for
low-spin states (such as the ground state S = 3/2) due to
its inability to capture the antiferromagnetically coupled
open-shell nature. However, if we consider a high-spin
state such as S =35/2, CCSD(T) with spin-unrestricted
Hartree-Fock orbitals should be quantitatively accurate
compared to the exact energy of the S = 35/2 state. Fur-
thermore, there is no aspect in the THC factorization (or
other methods compared in this work) specialized for a
specific spin state. Therefore, we believe that the CCSD(T)
error metric for the S = 35/2 is well correlated with the
actual error made by integral approximations in the exact
S = 3/2 ground-state energy. As shown in Fig. 8§, THC
achieves chemical accuracy for M > 350.

For both Hamiltonians, we assess the CCSD(T) correla-
tion energy error with approximate rotation angles and ¢.
We find that 10 bits for state preparation and 16 bits for
rotations are enough for the Reiher Hamiltonian, whereas
10 bits for state preparation and 20 bits for rotations are
needed for the Li Hamiltonian. The resulting CCSD(T)
correlation energy error, A, Toffoli count, and logical qubit
count are available in Table IV for the Reiher Hamilto-
nian and Table V for the Li Hamiltonian. Given these data,

TABLE IV. THC costing for the Reiher Hamiltonian with 10
bits for state preparation and 16 bits for rotations. For our
analysis of this Hamiltonian, we use M = 350, which is the
highlighted entry.

CCSD(T) Error Logical
M (mEp) A Toffoli count qubits
250 —1.31 294.1 4.4 x 10° 1115
300 —1.12 302.8 4.9 x 10° 1183
350 —0.29 306.3 5.3 x 10° 2142
400 —0.18 315.1 5.6 x 10° 2144
450 0.13 327.9 6.1 x 10° 2144
500 0.03 339.2 6.6 x 10° 2146
550 —0.07 343.0 7.1 x 10° 2278
600 —0.10 347.8 7.6 x 10° 2278
650 —0.29 361.4 8.2 x 10° 2278
700 —0.10 365.1 8.7 x 10° 2278
750 —0.09 373.6 9.3 x 10° 4327
800 —0.04 380.2 9.7 x 10° 4327
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TABLE V. THC costing for the Li Hamiltonian with 10 bits for
state preparation and 20 bits for rotations. For our analysis of this
Hamiltonian, we use M = 450, which is the highlighted entry.

CCSD(T) Logical
M Error (mE}) A Toffoli count qubits
350 0.39 1279.0 3.2 x 1010 2194
400 —1.14 1258.4 3.2 x 1010 2196
450 —0.18 1201.5 3.2 x 1010 2196
500 —0.49 1214.9 3.3 x 1010 2196
550 —0.08 1161.2 3.3 x 1010 2328
600 —0.16 1140.8 3.4 x 1010 2328
650 —0.09 1132.2 3.5 x 1010 2328
700 —0.39 1119.8 3.6 x 1010 2328
750 —0.23 1114.4 3.6 x 100 4377
800 —0.32 1123.7 3.8 x 100 4377

we recommend M = 350 for the Reiher Hamiltonian and
M = 450 for the Li Hamiltonian.

B. Resource estimates and scaling analysis for
hydrogen chain and H4 benchmarks

In order to study the scaling of these methods in this
section we analyze a chemical series consisting of hydro-
gen chains. We use the same chemical series as the one
studied in Ref. [9] in order to facilitate a direct compari-
son with that work: one-dimensional hydrogen chains with
a spacing of 1.4 Bohr. For the finite-size scaling, we use
the STO-6G minimal basis set and grow the system by
adding more hydrogens. Denoting the number of hydro-
gens in a chain by Ny, we study the chemical series from
Ny = 10 to Ny = 100. When estimating thermodynamic
asymptotes, it is often convenient to fix the error per parti-
cle as opposed to the total error for every system size [90].
Indeed, the most widely used integral factorization, the
resolution-of-the-identity approximation, typically yields
an error per atom to be 5060 phartrees [90]. We follow
a similar standard in this section.

For the hydrogen-chain calculations, we use a thresh-
old of 5x 1073 for the sparse method, 0.0015 for the
single factorization method using the modified Cholesky
factorization [91] in the atomic orbital basis (which yields
roughly two Cholesky vectors per H atom), and 0.01 for
the double factorization method [see Eq. (C41)]. For THC,
we fix the THC rank to be 7 xNg. These thresholds are
enough to obtain the CCSD(T) correlation energy error per
atom to be less than 50 phartrees as shown in Table VI.

For Hy, we use the cc-pVTZ basis set [92] to obtain
V' and considered truncated Hamiltonians in the molecu-
lar orbital basis with a varying number of orbitals from
N/2 = 10 to 56. The number of Cholesky vectors used
in the SF method is fixed to be 300 and the THC rank is
held at 576. This is enough to maintain the accuracy of
1-10 phartrees for N /2 greater than 35 in all methods.
With respect to the basis set size, the data size for state

TABLE VI. CCSD(T) correlation energy error per hydrogen in
hartree of each hydrogen-chain system for various methods. We
aim to reach 1050 phartrees for all methods but SF. For the SF
method, the largest error below 50 phartrees/H atom that we find
is about 9 phartrees.

Ny Sparse SF DF THC

10 39x10% 74x10° 35x107° 44x10°°
20 12x107° 83x10° 34x10° 1.7x107°
30 53x107% 86x10° 46x107° -29x 1077
40 12x1075 88x10° 47x10° 12x10°°
50 17x 1075 89x10° 36x107° 54x10°°
60 21x105 9.0x10° 38x10° 51x107°
70 25x107° 9.0x10° 41x107° 19x107°
80 27x107° 90x10° 35x10° 49x107°
90 22x107° 91x10% 35x107° 22x107°
100 34x10% 91x10° 41x10° -1.6x1073

preparation scales cubically with basis set size in the case
of the SF method and quadratically with basis set size for
THC [73]. Therefore, we focus on the scaling of A for SF
and THC methods. We use a threshold of 5 x 107 for the
sparse method and 1 x 10™* for the DF method. On the
other hand, the data size of sparse and DF methods varies
with system so we obtain representation for each instance
of the truncated Hamiltonian. This gives us the scaling of
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FIG. 9. (a) The number of H atoms (Ny) versus total A val-

ues and (b) the number of orbitals (N /2) versus two-body A
values for different approaches. Note that these A values in (a)
include both one-body and two-body A values relevant to each
approach and the two-body A, values in (b) are also approach-
specific values. The vertical black dotted line in (b) is drawn
at N/2 =36 beyond which all lines behave linearly and asso-
ciated CCSD(T) correlation energy errors are roughly constant.
Red dotted lines represent the linear fits on a log scale for each
data whose slopes are listed in Tables VII and VIIIL. Those slopes
are used to compute scalings listed in Table II.
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TABLE VII.  Slopes of linear fits on a log scale to the hydrogen-
chain data in Fig. 9(a).

Approach Slope Data range R?
Sparse 1.27 the last five points 0.9998
SF 2.98 all 1.0000
DF 1.88 all 0.9998
THC 1.11 exclude the first two and 0.9991

the last two points

data size with respect to the basis set size. In all systems,
the sparse method XA values are evaluated with localized
orbitals using the Edmiston-Ruedenberg method [93] to
exploit spatial locality. All other methods used canonical
Hartree-Fock orbitals.

Values of A for each method are presented in Fig. 9.
In (a), we have the hydrogen-chain data from which
we can infer the thermodynamic size scaling of different
approaches. In (b), we have the Hs two-body A data from
which we can find the continuum limit scaling of different
approaches. Since Hy is a very small system, the one-body
contribution is comparable to the two-body contribution to
M. However, as we are interested only in asymptotes, we
focus just on the two-body contribution because asymptot-
ically the two-body term dominates A. These scalings of A
are used to generate the Toffoli complexity scaling data in
Table II. For the space complexity scaling, we need addi-
tional information for the sparse method (i.e., the number
of nonzero elements) and the DF method (i.e., the average
number of eigenvectors in the second factorization). These
are provided in Appendices A and C, respectively. We per-
form linear fits to obtain the asymptotic scaling of each
method appropriately. The results of these linear fits are
summarized in Tables VII and VIII along with data range
and R? values.

C. Surface-code compilation for the active-space
model of FeMoCo by Li et al.

We now come to the problem of determining how much
physical space and time is used by our computations if we
plan to realize them assisted by quantum error correction
within the surface code. Producing these estimates requires
making assumptions about the performance characteristics
of physical qubits and the classical control system making

TABLE VIII. Slopes of linear fits on a log scale to the Hy data
in Fig. 9(b). All data points above N /2 = 35 are used in the linear
fit.

Approach Slope R?

Sparse 3.10 0.9993
SF 2.29 0.9998
DF 2.28 0.9999
THC 2.09 0.9991

up the quantum computer. We assume a physical gate-error
rate of 0.1%, a control system reaction time of 10 us, and
a surface-code cycle time of 1 us. We also consider the
more optimistic gate-error rate of 0.01% to give a point of
comparison.

1. Space and time constraints

In surface-code quantum computations, space-time
trade-offs are ubiquitous, meaning one can often shorten
the length of a computation at the expense of a higher phys-
ical qubit overhead and vice versa. A good first approx-
imation is that a quantum computation is like a liquid
that can be poured into any desired space-time volume.
For example, often one can (roughly) halve the amount of
time taken by a computation by doubling the number of
magic state factories. Of course, the “uncompressible lig-
uid computation volume” approximation does break down
when pushed enough. For example, as the space available
is reduced, the contortions needed to fit the computa-
tion become more and more challenging. The time has to
increase by proportionally more, to accommodate the con-
tortions. There is also a minimum number of qubits needed
to store the system being simulated, which no amount
of contortion will get below. Additionally, there are con-
straints that prevent the time of a quantum computation
from being reduced arbitrarily far, such as the code dis-
tance d, the reaction time ¢, and details of the algorithm
being run. To give the reader a better understanding of the
layout decisions we made, we discuss these two constraints
in more detail.

The code distance d determines the level of protection
against errors one has, and is chosen based on a combina-
tion of the physical error rate and number of operations in
the computation. For most practical code implementations,
protection against timelike errors up to that distance d dic-
tates a local physical stabilizer has to be measured O(d)
times before it is possible to error correct those measure-
ments to a desired level of reliability. We call the amount
of time it takes to run d rounds of the surface-code cycle a
“beat.” Any surface-code construction that involves chang-
ing which stabilizers are being measured will (usually)
take at least one beat to complete, since that is how long
it takes to become confident about the values of the new
stabilizers.

The reaction time ¢ measures how long it takes for
the classical control system to receive the raw physical
measurements corresponding to a logical measurement,
error correct them to recover the logical measurement, and
trigger a following logical measurement that is either in
the X or Z basis depending on the value of the previ-
ous logical measurement. This quantity becomes relevant
when performing non-Clifford operations via magic state
distillation and gate teleportation. The gate teleportation
will apply the desired operation, but will also randomly
apply other Clifford operations that need to be undone
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by corrective Clifford operations. If the corrective Clifford
operations needed to finish a gate teleportation are applied
“in place,” by waiting for the correction to be known
and then applying operations to the target qubits, then the
correction process would have a time measured in beats.
This is a strategy we have used in the past when laying
out surface-code computations [16]. However, when using
this strategy, it is difficult for the computation consuming
magic states to keep pace with even a single magic state
factory. A more time-efficient strategy is to precompute
multiple world lines, one for each possible Clifford cor-
rection, and selectively teleport the affected qubits through
the appropriate world line [27,94,95]. The selective tele-
portation can be controlled by measuring certain qubits in
either the X or Z basis. Because logical X and Z measure-
ments are implemented transversally, the time they take
does not depend on the code distance, and so they are not
beat limited. Instead, the limiting time is how quickly the
control system can process the deluge of data coming at it
and iteratively figure out what the next basis to measure
in is.

It is not always feasible to execute one non-Clifford
operation per reaction time. For example, there might not
be enough magic state factories to produce one magic state
per reaction time. To account for this, we introduce another
time unit: the “tick.” A tick is either the reaction time
of the control system or the average period between the
production of magic states; whichever is slower.

Optimally packing a quantum computation often
involves balancing tick-based constraints and beat-based
constraints. For example, the driving force of a QROM
read is unary iteration sequentially preparing qubits flag-
ging whether or not the address register is equal to each
possible address value [16]. Unary iteration is made up
of a series of interdependent Toffolis; it is primarily tick
constrained. On the other hand, the flag qubits prepared
by unary iteration are used as controls for huge multitar-
get CNOTs reaching into the target data registers. These
CNOTs are done via lattice surgery, which involves chang-
ing which stabilizers are being measured, and so the
CNOTs are primarily beat constrained. Optimally packing
a QROM computation into space time requires balancing
the beat-based constraints from the multitarget CNOTs and
the tick-based constraints from the unary iteration.

2. OROM trade-offs

The performance in the surface code depends not only
on the raw operations, but also on the layout design of the
qubits. Suppose we lay out data qubits into columns with
every third column left empty as an access hallway. In this
layout, each data qubit has a single side exposed to a hall-
way. We call this layout “single-side storage.” When using
single-side storage, a multitarget CNOT will monopolize the
single side of its target qubits for one beat. A basic QROM

read performs one multitarget CNOT per possible address
value, and therefore when using single-side storage a basic
QROM read with n addresses will take at least »n beats to
complete.

If n beats is too slow (e.g., if it is significantly slower
than the tick-limited unary iteration), we could instead use
a storage layout where every second column is left empty
as an access hallway. In this “double-side storage” layout,
every qubit has two exposed sides. This allows a second
CNOT to start before the first has finished, by targeting the
second side, lowering the minimum time required for an
n-address QROM read from n beats to n/2 beats. If
n/2 beats is still too slow, alternative QROM circuits
can reduce the number of multitarget CNOTs by an “out-
put expansion factor” k < /n by using k times more
workspace qubits [9,38]. These alternative circuits also
lower the number of Toffoli gates required, reducing the
tick-based lower bound from the unary iteration.

There are other possibilities for optimizing the packing
of'a QROM read, but for the physical parameter regime we
are interested in there are three relevant design choices. (1)
Should we use single- or double-sided storage? (2) How
many magic state factories should there be? (3) What
should the expansion factor k be, for each QROM read?
After some experimentation and iteration we settled on
using single-side storage, four magic state factories, and
an expansion factor of 16 for the QROM read during the
PREPARE subroutine and 1 for the QROM reads during the
SELECT subroutine. These decisions are based on looking
at the algorithm’s resource utilization at a global level,
for various possible choices. We now describe how that
is analyzed.

3. Diagram-driven decisions

When laying out a quantum algorithm in the surface
code, there are two diagrams we recommend making. The
first diagram is a floorplan, or footprint, of where the var-
ious parts of the computation will live. Our final floorplan
diagram is in Fig. 10. The goal of the floorplan diagram is
not to find a perfectly optimal layout, but rather to get a
rough idea of how things will fit together and how much
space will be needed to ensure it is possible to route data
and magic states into operating areas quickly enough to
keep the computation going.

The second useful diagram to make is an inventory of
allocated qubits over time, which shows how many qubits
are allocated as the algorithm progresses and also what
they are being used for. Our final diagram of this type is
in Fig. 11. This diagram can reveal spikes where too many
qubits are being used, and holes where a lot of qubits are
available for use (e.g., as additional magic state factories).

The reason these diagrams are useful to make is that
understanding resource utilization allows one to make
optimizations. For example, elsewhere in this paper we
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FIG. 10. Floorplan for the THC-
based FeMoCo qubitized phase-
| estimation computation using the

Li et al. Hamiltonian [36]. Cov-

ers 53 x 36 = 1908 logical qubits.
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note that the phasing operations during the SELECT sub-
routine will use angles loaded from QROM. Originally,
we intended for all the angles to be loaded simultaneously
from one QROM read. This avoids redundant QROM
reads from the same address register and correspondingly
minimizes the number of Toffolis. However, when plotting
allocated qubits over time as in Fig. 12, it became obvious
that loading the angles is much faster than using them, and
so loading half of the angles at a time would not cost much
more overall. The benefit of loading half of the angles at a
time is that half as many output qubits are needed. This is
a substantial space savings for an acceptable time loss.

Because of the lower number of qubits available, we
also have to adjust the output expansion factor of the
QROM read during the prepare subroutine. We reduce it
from 32 to 16, which again increases the Toffoli count
slightly but substantially reduces the workspace needed.
We also change the reflections to be directly controlled
by the control qubits used for phase estimation, instead
of using the unary iteration circuit shown in Fig. 2, which
needs extra ancillas. Contrast the original allocation plan
in Fig. 12 with the more space-efficient allocation plan in
Fig. 11. In short, because we made a diagram showing
allocated qubits over time, giving us a global view of our
resource usage, we spotted a reasonably simple optimiza-
tion that reduced the number of data qubits by 40%. This
is why we recommend making these diagrams.

4. Routing and distilling

We now consider the routing of data during the phasing
operations within the SELECT subroutine. These phasing

operations are implemented by adding qubits output from a
QROM read into a phase-gradient register, controlled by a
target qubit. This process creates an amount of phase kick-
back proportional to the amount read from QROM, and
this phase kickback acts on the target qubit due to it being
used as a control. Because the phase-gradient register is
used for every single phasing operation, the phase-gradient
register should be moved out of the storage area and kept
in the operating area. The data being added into the phase-
gradient register then needs to be gradually streamed out of
the storage area as the phasing operations are applied. The
majority of this data is the data that was produced by the
QROM read. In order to avoid traffic jams, it is important
that data that will be needed at the same time be placed
down separate hallways. The QROM circuit construction
gives us full control over where the target data lives, so
this is not a difficult constraint to meet.

In the past, we have had trouble laying out quantum
computations in a way that could consume incoming magic
states quickly enough [16]. This is because the layout strat-
egy we were using involved performing the probabilistic
Clifford operations resulting from this process directly on
the qubits being acted on by the magic states. We are now
using a different strategy, based on using AutoCCZ states,
which attach the corrections to the magic state instead of
to the target qubits [27,94,95]. When using AutoCCZs, the
corrective operations can be packed into space time far
away from the data qubits being operated on, allowing the
computation to progress at a reaction-limited rate instead
of a beat-limited rate. This removes a significant constraint
we were previously operating under. Instead of struggling
to keep pace with one magic state factory, we could now,
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in principle, keep pace with ten or more (if we are willing
to pay the qubit cost of operating so many factories).

The magic state factory we use is the CCZ factory from
Ref. [95]. Note that results from Ref. [96] suggest the fac-
tory can be reduced in size, due to the distillation process
heralding topological errors. We do not incorporate these
results into our factory designs, but intend to do so in the
future.

After exploring several cases using the estimation
spreadsheet from the ancillary files of Ref. [54], tweaked
slightly to account for the improvements to the factory
made in Ref. [95] and for the presence of multiple facto-
ries, we decided to use four factories with a level-1 code
distance of 19 and a level-2 code distance of 31. Accord-
ing to the “logical_factory_dimensions” method from the
“estimate_costs.py” script in the ancillary files of Ref. [97],
the large level-1 code distance results in the factory having
a footprint of 15d x 8d and a depth of 5d where d = 31 is

FIG. 11. An improved strategy
for the inner loop of the compu-
tation, where half of the phasing
angles are loaded at a time. The
output expansion factor during
the first QROM read has corre-
spondingly been decreased from
32 to 16.

10000 12000

the level-2 code distance. This choice gives a roughly 0.1%
chance of any distillation failure occurring when execut-
ing ten billion Toffolis, allocates nearly a million physical
qubits for use as factories, and results in a Toffoli produc-
tion rate of 25 kHz. We give each factory a row of routing
space to move the produced CCZ states to where they are
needed, and two 3 x 4 AutoCCZ fixup areas for correcting
the teleportation of the magic states being produced.

As shown in Fig. 11, the number of data qubits we store
when running FeMoCo is less than 700. The number of
Toffoli operations is less than ten billion, and we perform
Toffolis at a rate of 25 kHz. According to the spreadsheet
from Ref. [54], a data-code distance of 31 is sufficient for
this regime while maintaining a 1% total error budget. We
summarize this information in Fig. 10, which shows one
potential way to lay out the factories and the data qubits.
With this layout the FeMoCo computation would span four
million physical qubits.
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The total Toffoli count of the algorithm is approximately

FIG. 12. The original strategy we intended to use
for the inner loop of the computation. The angles
loaded from QROM in order to perform phasing oper-
ations are all loaded at the same time, to minimize the
number of angle-loading QROM reads (in orange). It
is clear from the diagram that the QROM reads are not
the dominant cost; the diagram suggests performing
redundant reads while storing fewer angles.

5. Estimate at optimistic error rates

483 000 inner loops times 13 880 Toffolis per inner loop, So far in this section, our estimates are based on con-
which equals 6.7 billion Toffolis. It would take 3 days to servatively assuming a physical error rate of 0.1% and a
perform these Toffolis with four CCZ factories distilling at corresponding error suppression factor A of 10 (meaning
a total rate of 25 kHz. we assume the logical error rate per round goes down by a
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factor of 10 each time we increase the code distance by 2).
If we optimistically assume physical error rates of 0.01%,
and a corresponding A of 100, all of the code distances can
be cut in half while achieving the same reliability.

We again refer to the spreadsheet from Ref. [54]. We
find that, under a total error budget of 1% and a physical
error rate of 0.01%, ten billion Toffolis can be executed
using a level-1 distillation code distance of 9, a level-2 dis-
tillation code distance of 15, and a data-code distance of
15. The resulting CCZ factory has a footprint of 14d x 8d,
proportionally slightly better than the 15d x 8d we had
with a physical error rate of 0.1%. Therefore we can sim-
ply use the floorplan from Fig. 10 unchanged, but using
d = 15 instead of d = 31. Since the physical qubit count
per logical qubit is 2(d + 1), reducing the code distance
from 31 to 15 reduces the physical qubit count by a fac-
tor of 322/16% = 4. The physical qubit count shrinks from
four million to one million.

Because the computation is still beat limited at distance
15 when using four factories (as opposed to being reaction
limited) the execution time at distance 15 is the execution
time at distance 31 multiplied by 15/31. The execution
time shrinks from 3.5 days to 1.5 days.

V. CONCLUSIONS

The primary contribution of this paper is to introduce a
method for simulating electronic Hamiltonians in arbitrary
basis on a quantum computer. In terms of both the asymp-
totic scaling and the finite resources required for complex
benchmark molecules, our method appears to have lower
cost for realization on a fault-tolerant quantum computer
than any prior algorithm in the literature. We then compile
these circuits and perform an analysis of error-correction
overheads to arrive at the most accurate estimates yet of
what would be required to realize an important and classi-
cally intractable quantum computation of chemistry within
the surface code.

The method we introduce uses a number of now stan-
dard techniques for quantum simulation, including phase
estimation of quantum walks, qubitization, QROM, coher-
ent alias sampling, and unary iteration. Our key innovation
is to adapt this set of tools to the tensor hypercontraction
representation of quantum chemistry, which had previ-
ously gone unexplored in the context of quantum comput-
ing. While the standard THC representation compresses
the Hamiltonian considerably, enabling highly efficient
quantum walks, using that representation directly leads
to very large A values, requiring many repetitions of the
quantum walk. To avoid this, we use tensors obtained
from THC to transform the standard electronic Hamilto-
nian into a representation that has a diagonal Coulomb
operator but in a larger and nonorthogonal auxiliary basis.
We then develop algorithms for realizing the associated
qubitization oracles, which work by rotating into the

correct basis one tensor factor at a time, thus avoiding
the need for a global nonorthogonal-basis rotation, and
allowing us to apply our algorithm without using any
more system qubits than what is required by the original
Hamiltonian.

The most efficient prior algorithms for simulating arbi-
trary basis quantum chemistry were the “sparse” method
of Berry et al. [9] and the “double low rank” method of
von Burg et al. [10]. In both cases we correct errors in the
original work (leading to reduced Toffoli complexity of the
former approach). The sparse algorithm has Toffoli com-
plexity O[(N + +/S)Ay/€] and space complexity O(N +
VS) where S is the Hamiltonian sparsity. The double
low rank algorithm has Toffoli complexity O (N Apg VE/e)
and space complexity O(NApg+/E) where Z is the rank
of the second tensor factorization discussed for quantum
computing in Ref. [30]. By contrast, the tensor hypercon-
traction approach introduced here has Toffoli complexity
O(N X, /e€) and space complexity O(N). To contextualize
the scaling of these A values as well as S and E we ana-
lyze the asymptotic scaling of these methods applied to
hydrogen systems growing towards both continuum and
thermodynamic limits. Of the two prior algorithms, the
double low rank method scales better towards the contin-
uum limit with Toffoli complexity O(N 39/¢) and space
complexity O(N'). The THC algorithm has a favorable
scaling with Toffoli complexity of O(N?*!/¢) and space
complexity of O(N). When scaling towards the thermody-
namic limit the sparse algorithm scales considerably better
than the double low rank algorithm, having Toffoli com-
plexity O(N?3/¢) and space complexity O(N). Again,
our THC algorithm still has even lower scaling with the
same asymptotic space complexity but Toffoli complexity
of O(N*!/e). See Table II for details.

Next, we compare the finite resources required to imple-
ment these methods for popular FeMoCo benchmarks. As
can be seen in Table III, the THC algorithm has both
fewer logical qubits and less Toffoli complexity than any
of the other competitive methods. We note that there might
be more compact and accurate THC factors than those
we find, which could improve our results even further.
Due to the difficulties associated with nonlinear optimiza-
tion, we expect that our solutions are suboptimal. In this
sense, the estimates we report for the cost of the THC
approach should be regarded as upper bounds on the cost
of the most efficient possible implementations. We dis-
cuss a very detailed scheme for efficiently laying out the
Li Hamiltonian FeMoCo computation within the surface
code. Ultimately, we show that the computation could be
realized with about four million physical qubits and under
4 days of runtime, assuming physical gate-error rates of
about 0.1%. With the more optimistic assumption of 0.01%
per gate-error rates we could realize the same computation
with about one million physical qubits and under 2 days of
runtime.
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It is interesting to note that, in our physical cost esti-
mates, most qubits are used for routing and distillation.
Quantum circuits describing a quantum algorithm typi-
cally omit these qubits, which make up the majority of the
cost. For example, consider modifying a random-access
algorithm to use sequential access to save space by reduc-
ing routing overheads. If avoiding random access forced
a trade-off versus the number of data qubits, the abstract
circuit model would classify this improvement as a down-
grade. Because of this, we caution the reader that compar-
isons derived purely from quantum circuit metrics (such as
counting Toffolis and data qubits) can be misleading. They
are good approximations, but these approximations can fail
in known ways.

Despite the rapid progress detailed in Table I, we expect
that we are nearing the end of a series of asymptotic
speedups for arbitrary basis quantum chemistry algo-
rithms. At least for second quantized approaches based
on linear combinations of unitaries, it would be difficult
to imagine an algorithm that improves more than loga-
rithmically on the O(NX/¢) Toffoli complexity achieved
by our approach (although it is possible that one could
reduce 1). This is because it would seem that 2 () com-
plexity should be required for any nontrivial quantum
walk on N qubits and phase estimation of LCU meth-
ods generically requires (X /¢€) repetitions. Indeed, we
suspect that the near O(N?/€) complexity obtained when
scaling towards the thermodynamic limit for hydrogen
chains would be the lowest possible scaling for simulation
of the Coulomb operator as a consequence of its pairwise
nature; also, this roughly matches the lowest scaling that
has been achieved for simulating the Coulomb operator in
special basis sets [98]. However, perhaps there is room to
improve over the O(N?/¢) scaling we observe when scal-
ing hydrogen systems towards their continuum limit. Still,
there are several ways that we might hope to extend these
methods and reduce constant factors. We emphasize that
these asymptotic scalings should be further investigated
in a more general setup than hydrogenic systems in the
future, though we expect that the same asymptotes will be
observed in a much larger system.

While the THC results presented in this work show
remarkable improvements over previous qubitization
approaches, the nonlinear optimization associated in
obtaining the THC factorization is challenging for broad
applications. Future research and some ongoing effort in
quantum chemistry may help to resolve this issue [73,74].
One natural question to ask is whether the THC rep-
resentation [and in particular, our nonorthogonal THC
Hamiltonian in Eq. (12)] has utility for quantum computing
beyond qubitization-based methods; e.g., can one combine
the THC representation with Trotter methods? Another
question is whether one can leverage hierarchical matrix
representations of the Coulomb operator [99] to compress
the Hamiltonian in a way that is useful for qubitization

either within the THC framework or within the sparse
method. Another area to consider would be developing
strategies of choosing active-space orbitals with an aim
towards reducing the value of A associated with qubitizing
the resultant Hamiltonian.

Similar to other prior papers on quantum computing for
chemistry, the current work focuses on eigenstate prepara-
tion with the assumption of a sufficiently good initial guess
state. The usual justification for this is that: (1) for most
small molecules near their equilibrium geometry, simple
initial states such as the Hartree-Fock state have reason-
ably good overlap with the ground state, (2) more complex
state-preparation procedures such as adiabatic state prepa-
ration may have a negligible additive cost to the cost of
phase estimation, which could produce a better overlap-
ping initial state, and (3) as long as the overlap is not too
small and especially when one has further knowledge of
the gap there are methods for improving the O(1/a) scal-
ing with the initial state overlap a [14,100]. In Ref. [101],
the authors argued that this state-preparation cost should
often increase exponentially as one grows systems towards
a thermodynamic limit, and this might also be expected
(at least in the worst case) from the QMA hardness of the
electronic structure problem [102]. However, in practice
this asymptotic scaling may not matter because correla-
tion lengths are finite and we tend to need only to perform
very accurate correlated calculations on finite-sized sys-
tems. Nevertheless, for very challenging systems such as
FeMoCo, better methods of state preparation might be
required. Future work should place more emphasis on
analyzing and account for those costs.

Finally, we should continue to identify more concrete
molecular benchmarks beyond the capabilities of classi-
cal electronic structure methods that could be solved on
a quantum computer to provide insights about chemistry.
Noting that by combining qubitization with quantum signal
processing [103] one can adapt our approach to perform
highly efficient time evolutions rather than phase estima-
tion, it is also worth exploring applications of quantum
chemistry that would benefit from time evolution of the
electronic Hamiltonian.

A. Data and code availability

To maximize reproducibility, we share data and code
used in this work on a public Zenodo repository [76]. The
repository includes all of the integral tensors (i.e., both
exact and approximate) for systems studied in this work,
python codes for generating the DF factors, and computing
A values as well as Mathematica notebooks for evaluating
the cost of the SF, DF, sparse, and THC methods. Since
THC factorization done in this work involves challeng-
ing nonlinear optimization, it may be difficult for others
to reproduce our numerical THC data (although it is easily
verified). Thus, we recommend that interested readers use
the available THC factors on Ref. [76] for future study.
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APPENDIX A: THE “SPARSE” ALGORITHM OF
BERRY ET AL.

1. Representing the sparse Hamiltonian as a linear
combination of unitaries

Here we review the method of Ref. [9], with some
further optimizations of the method. The first step in sim-
ulating a Hamiltonian using qubitization is to represent
it as a linear combination of unitaries. How one chooses
this linear combination of unitaries has significant ramifi-
cations for the A factor, which will scale the cost of the
qubitized simulation. We start by expressing the electronic

Hamiltonian in an arbitrary second-quantized basis as in
Eq. (1). We can map these operators to qubits as

N/2

Z Z P‘I<paa11<7+aqaal)0)

ae {14} pg=1
NJ2

Z Z TP‘I pgo

aeN}pq 1

(AT)

and

N/2

Z Z pqrs ( a@q.0 + a;aap,a>

a,Be{t ) p.grs=1

X (alﬂas,ﬂ + Clj’ﬂar,ﬁ)

N/2

Z Z Vl"l” qua Qrw? >

aﬂéw}pqm 1

(A2)

where the Jordan-Wigner transform that is used is
expressed as

Xpo’quU’ p <q3
Q[/)qg: Y[JO’ZYqﬁa p>q9

1-%,,, p=gq
Xy oZXpo + Yy oZY o
a;’aaq,(, + a;(,ap,(, > kL > L L R
1-27
a;’aap,(, = Tp’a, (A3)

where X, Y, and Z are the Pauli operators, the subscripts
indicate the qubits these operators act on, and 4,24, is
shorthand for 4,2, - - - Z,_1A4,. Note that we get a factor
of 1/8 in front of Eq. (A2) from multiplying the original
factor of 1/2 by a factor of 1/4 that comes from expanding
the pg and rs terms as the sum of their Hermitian conjugate
for each index. Note that we have made a correction of a
factor of 2 from 0,4, as defined in Ref. [9].

An improvement we can make is to remove the iden-
tity from the case where p = ¢, so that O,,, has the same
weightings with on-diagonal and off-diagonal terms, as

Xp,aZXq,a, P <gq,

quU = Yp,(TZYq,(I) P > q: (A4)
~Zpos p =q.
Then the expansion of 7' can be written as
N/2 N2
PPN AT
06 {14} pg=1
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and the expansion of V' can then be written as

N/2
1
V= § Z Z qurstquVSﬂ
a,Be{t i} \p.g.rs=1
N/2 N/2 N/2
+ Z Vppr‘\‘Qrsﬂ + Z querpqa + Z Vpprr]]-

pirys=l1 pgr=1 pr=1

(A6)

Here the middle two terms correspond to one-body terms
that can be combined with 7, and the fourth is a con-
stant offset that can be omitted. We can therefore write the
Hamiltonian in terms of a new 7" and V7, given by

N/2
Z Z quPqU’ (A7)
UE T i, P q_
N/2
Z Z vars Opga Orsp (A8)
a,Be{t ) p.gr.s=1
with
N/2
T;’q = TP‘I + Z qurr~ (A9)
r=1

Then H = T' + V' plus a term proportional to the identity,
which can be omitted because it gives a constant shift to
the eigenvalues.

Because the operator O, as well as products Oy Oysp
are all unitary operators we now see that H = 7'+ V' is a
linear combination of unitaries. In this representation the
associated A values are

N/2 N/2
h=dothr Ar= ) Tyt D Voan|s
p.q=1 r=1
| e
hy=3 D Voars] - (A10)
P.q.rs=1

For T’ the multiplying the factor of 1/2 cancels with a fac-
tor of 2 for summing the spin degree of freedom. The factor
of 1/2 in front of the V' term comes from multiplying the
factor of 1/8 by 4 for summing the spin degrees of freedom.

Note that these A definitions differ from those given in
Ref. [9]. At first glance A, appears to be a factor of 8
smaller. The first reason for this is because we deviate from
the convention of absorbing the factor of 1/2 into V' (since
this is just a difference in convention, it is consistent with
prior work). However, there is roughly another factor of 4
difference that comes in because the work of Ref. [9] acci-
dentally left out a factor of 1/2 in Eq. (A3). This leads to a

Ay that is reduced by a factor of 4. For the Reiher Hamil-
tonian [23], we previously reported Ay = 1,490 a.u., Ay =
8,373 a.u. so A = 9,863 a.u. with a truncation threshold of
2 x 1074, This should be updated to A7 = 90 a.u., Ay =
2,045 a.u. so A = 2,135 a.u. with a truncation threshold
of 7.5 x 107>, For the Li Hamiltonian [36] we previously
gave Ay = 3,446 a.u., Ay = 4,168 a.u. so L = 7,614 a.u.
with a truncation threshold of 1 x 10~%. This should be
updated to A7 = 561 a.u., Ay = 986 a.u. so A = 1,547 a.u.
with a truncation threshold of 3.5 x 107>, The truncation
threshold became tighter in this work because the metric
we choose [i.e., CCSD(T) correlation energy error] is more
conservative than what was used in our previous work [9].

2. The cost of qubitization of the sparse chemistry
Hamiltonian
The state to be prepared is similar to that in Eq. (48)
of Ref. [9], except Tp, is replaced with 7, and Vg

is replaced with V),,./2 (due to the factor of 2 in the
definition of /), so the state to be prepared is

10) [+ 10) |0)
&Il
® Y. D\ 10k) 1p.4,)10,0,0)
oe{t ) p.g=1
+ID ) 1+ +)
N/2

| quis

® ) )

a,Be{tl} p.grs=1

100.3) 1.4, ) Ir. 5, B)
(A1)

This state can be prepared as described in Ref. [9], using
controlled swaps to generate the symmetries of the state.

Because we are here not including the identity in Oy,
the controlled unitaries can be performed in a simpler way
than shown in Fig. 1 of Ref. [9]. In that work there are
inequality tests between the p and ¢ registers, which are
needed to produce the sum of the identity and Z opera-
tions. When the identity is not included, then the circuit
needed simplifies to just two applications of the circuit
for Majorana operators shown in Fig. 9 of Ref. [16] and
Fig. 1 of [104]. The simplified circuit is shown in Fig. 13.
When the SELECT is controlled as shown, then the com-
plexity is 2(N — 1). If it does not need to be controlled,
then the complexity is only 2(N — 2). We require only one
of these two SELECT operations to be controlled, because
for the case of the one-body term in the Hamiltonian only
one SELECT should be applied, so one of the SELECT needs
to be controlled on the qubit flagging one- and two-body
terms in the Hamiltonian. The total complexity of these
SELECT operations is therefore 4N — 6.

In the sparse simulation method, the relevant parameters
are the number of orbitals N, the A value, and the number
of unique nonzero entries d. If we are allowing error in the
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FIG. 13. The circuit needed to perform a controlled SELECT
operation. This is similar to that in Ref. [9], except it is not nec-
essary to perform the equality test p = g. The unitaries labeled
as 7Aj apply the operation Zy - - - Z; _14; to the target register,
depending on the value from the input register, using the tech-
nique shown in Fig. 9 of Ref. [16]. The sign is shown as being
obtained via a Z gate on the sign qubit, but in practice this would
be obtained as part of the state preparation.

energy due to the state preparation of eprgp, the output size
for the keep probabilities for the QROM is

"= Pog (2@);@” '

There are eight registers of size ny = [log(N/2)], because
the sparse preparation scheme needs to output ind values
and alt values of p, g, r,s. There are also 2 qubits needed
for the two output values of 6 (one for the ind and one for
the alt values of p,q,r,s), as well as two qubits used for
ind and alt values of the first register, which distinguishes
between T and V. As a result the QROM output size is

(A12)

m=RN+8ny + 4. (A13)
The cost of the preparation is then
[d/la]l+m(k — 1) (Al14)
and of the inverse preparation is
[d/ka] + k. (A15)

To begin the state preparation, we need to prepare an
equal superposition state over d basis states. Given that
2" is a factor of d, the procedure and its costs are as
follows.

1. Perform an inequality test on [logd| — n bits with
[logd] — n — 1 Toffolis.

2. Rotate an ancilla qubit to obtain overall amplitude
for success of 1/2 using b, bits of precision. This
has cost b, — 3 Toffolis (since the rotation angle is
given classically).

3. Reflect on success for both, which may be per-
formed via a controlled phase gate (no Toffolis).

4. Invert the rotation with cost b, — 3.

5. Invert the inequality test, which may be performed
with Cliffords provided the first inequality test was
performed using the out-of-place adder.

6. Perform a reflection on [logd] — 1 + 1 qubits with
cost [logd] —n — 1.

7. Perform the inequality test again, with cost
[logd] —n — 1.

The total cost is then 3[logd]| — 3n + 2b, — 9. This is
a cost paid both for the preparation and for the inverse
preparation.

Other minor Toffoli costs are as follows. In the following
we can use extra ancillas to save cost, because a large num-
ber of ancillas are used for the QROM, and can be reused
here without increasing the maximum number of ancillas
used.

1. Perform SELECT as shown in Fig. 13 twice, with only
one being controlled. As discussed above, this has
complexity 4N — 6.

2. The state preparation needs an inequality test on R
qubits, as well as controlled swaps. The cost of the
inequality test on R qubits is R, and by performing
an inequality test with the out-of-place adder we can
invert it in the inverse preparation with no additional
Toffoli cost. The controlled swaps are on 4ny + 1
qubits. Here the 4[log(N/2)] are for the values of
p, q, 1, and s, and the +1 is for the qubit, which
distinguished between the one- and two-electron
terms. It is not necessary to perform a controlled
swap on the sign qubits output, because the correct
phase can be applied with Clifford gates. It is pos-
sible to invert the controlled swaps in the inverse
preparation with Cliffords. The method is to copy
all values being swapped before they are swapped.
Then to invert the controlled swap, perform mea-
surements on the swapped values in the X basis.
We can perform phase fixups using controlled-phase
operations, where the control is the control qubit for
the controlled swaps, and the targets are the copies
of the registers. That means we can eliminate the
non-Clifford cost of the inverse preparation, giving
a Toffoli cost of 8 + 4ny + 1.

3. The controlled swaps used to generate the symme-
tries have a cost of 4ny. Again these controlled
swaps can be inverted for the inverse preparation
with measurements and Clifford gates.

4. A reflection on the ancilla is needed as well. The
qubits that need to be reflected on are the [logd]
qubits needed for preparing the state, the N qubits
used for the equal superposition state in the coherent
alias sampling, the three qubits that are used for con-
trolled swaps to generate the symmetries of the state,
and the ancilla qubit that is rotated to produce the
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equal superposition state. That gives a Toffoli cost
of [logd] + X + 2.

5. For each step one more Toffoli is needed for the
unary iteration used for the phase estimation, and
one more Toffoli is needed to make the reflection
controlled.

Adding all these minor costs together gives

2(3[logd] —3n +2b, —9) + 4N — 6) + (R + dny + 1)
+4ny + [logd] + 8 + 4 = 4N + 8ny + 28

+ 7[logd] — 6n + 4b, — 19. (A16)

The total cost for a single step is then

d d
lrk——‘+m(k1—1)+’7k——‘+k2+4N+8nN+2§’¢
1 2

+ 7logd] — 6n + 4b, — 19, (A17)
with m = R + 8ny + 4, ny = [log(N/2)], and n an inte-
ger such that 27 is a factor of d.

The logical qubits used are as follows.

1. The control register for the phase estimation uses
[log(Z + 1)] qubits, and there are [log(Z + 1)] — 1
qubits for the unary iteration.

2. The system uses N qubits.

3. The QROM uses a state with [log d] qubits.

4. A qubit is needed to flag success of the equal
superposition state preparation.

5. An ancilla qubit is rotated in the preparation of the
equal superposition state.

6. The phase-gradient state uses b, qubits.

7. The equal superposition state used for the coherent
alias sampling, which has R qubits.

8. The QROM uses qubits (including the output)
mhy + Tog(d/ki)1.

That gives a total number of logical qubits

2Mlog(Z + )] + N + [logd] + b, + N + mky

+ [log(d/kD)1 + 1, (A18)

withm = R + 8ny + 4.

3. Counting the number of permutation-unique
elements

The two-electron integral tensor Vs exhibits an eight-
fold permutational symmetry:

qurs = qusr == qurs = qusr = Vrqu = Vrsqp

= Vsrpq = Vsrqp' (A19)

To evaluate the cost of the sparse method presented above,
we need to count the number of permutation-unique ele-
ments above a given truncation threshold. We provide
more details about how this counting is performed so that
others can easily reproduce the numerical data presented
here. We note that the number of permutation-unique
elements in V), is given as [86]

GG ]

This expression can be obtained by considering the follow-
ing four different classes of V,,,:

1. p, q, r, and s are all unique indices. We loop over
N/2
4
tets (p, g, 7, ) and count V., Vg5, and Vg, in this

category.

2. Two indices are redundant (i.e., only three unique
N/2
3

combination of triplets (p,q,r) and count V),
Vogprs Vagprs Varpgs Virpgs and Vipg, in this category.
3. Three indices are redundant (i.e., only two unique
N/2
2
combination of doublets (p,q) and count V)4,
Voapg> Veppg> and Vgqp here.
4. All four indices are redundant. We loop over p and
count V), in this category.

a total of unique combination of quar-

indices). We loop over a total of unique

indices). We loop over a total of unique

In order to obtain d, we enumerate each category and
count the number of elements above a threshold. Adding
(1/2)(N/2)(N /2 4 1) to account for the symmetry-unique

TABLE IX. Sparse method data for the Reiher Hamiltonian.
Here d is the number of permutation-unique nonzero elements
above a given threshold, and A7 is 90.4 hartree. The entry in blue
corresponds to the threshold used in our resource estimates.

Threshold d A CCSD(T) Error (mE},)
0.001 122980 1445.0 —190.61
0.0005 233787 1736.8 —16.76
0.00025 391732 1954.4 0.84
0.0002 449699 2005.4 2.04
1.00 x 107# 633943 2110.5 0.73
8.75 x 1073 668079 2123.2 0.63
7.50 x 1073 705831 21353 0.33
5.00 x 1073 796197 2157.6 0.22
2.50 x 1073 916649 2175.2 0.05
1.00 x 1073 1014792  2181.9 0.0027
5.00 x 107 1055829  2183.2 0.0003
250 x 10™® 1078952  2183.5 0.0011
1.00 x 107% 1094260  2183.6 0.0004
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TABLE X. Sparse method data for the Li Hamiltonian. Here
d is the number of permutation-unique nonzero elements above
a given threshold, and A7 is 561.5 hartree. The entry in blue
corresponds to the threshold used in our resource estimates.

Threshold d A CCSD(T) Error (mEj,)
0.001 45201 1345.9 —637.18
0.0005 78643 1403.5 —239.20
0.00025 131232 1452.8 —64.44
0.0001 239085 1504.9 —8.05
5.0 x 1073 359942 1534.7 —1.49
45x%x10° 382082 1538.6 —1.18
4.0 x 1073 408391 1542.7 —0.88
3.5x 1073 440501 1547.3 —0.47
3.0 x 1073 480468 1552.2 —0.26
2.5 % 1073 532212 1557.6 —0.16
1.0 x 1073 881193 1579.2 0.03
5.0 x 107° 1259007  1589.8 0.01
2.5 % 1070 1722770  1596.4 0.01
1.0 x 107® 2410637  1600.9 0.005

part of the one-body operator to this directly gives us the
numerical data in Tables IX and X.

4. Numerical data for hydrogen chains and Hy

In Fig. 14, we present the number of nonzero values of
with a truncation threshold, 5 x 10~>, for hydrogen chains
and Hy.
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FIG. 14. (a) The number of H atom (Ny) versus the number
of nonzero elements in ¥ and (b) the number of orbitals (N /2)
versus the number of nonzero elements in V. The last five points
in (a) are used in the linear fit on a log scale where the slope
is given as 1.78 with R? = 0.9985 (where R is the correlation
coefficient). In (b), every point beyond N /2 = 35 is used for the
linear fit on a log scale, which yields a slope of 3.83 with R? =
0.9993.

APPENDIX B: THE “SINGLE LOW RANK
FACTORIZATION” ALGORITHM OF
BERRY ET AL.

1. Representing the single low rank factorized
Hamiltonian as a linear combination of unitaries

In Berry et al. the approach focuses on simulating a trun-
cated low-rank decomposition of the Coulomb operator,
which expresses the two-body terms in Eq. (1) as a sum
of squared one-body terms in a form that was described
for quantum computation in Ref. [48]. One work to sug-
gest exploiting the low-rank properties of this decompo-
sition was Ref. [30]. Specifically the factorization of the
Coulomb operator used in that work is

2
N2

L
=3 X3 el

=1 \o€e{t,l}p,q=1
N/2

L
(5 E )

=1 \oe{tl}p.g=1

2

(B

where the WY are scalars obtained by performing a
Cholesky decomposition on a flattened version of the V4,
tensor and L = O(N). Note that the factor of 1/2 becomes
a factor of 1/8 because there is a factor of 1/2 that is then
squared for adding the Hermitian conjugates. Using the
Jordan-Wigner transform as in Eq. (A3) our Hamiltonian
can be represented as the linear combination of unitaries:

L N/2 2

1 /
W= §Z Z Z W;?qud

=1 \oe{t,l}lpg=1

(B2)

As before, when we separate out the identity for p = ¢, we
can express this in terms of 0}, from Eq. (A4) as

1 L N/2 N/2
N (DI STy S
=1 \oe{tl}pg=1 r=1
1L N/2 2
12X Yo
=1 \o€e{t.l}p.g=1
1 L N/2
FIY XY mmo.,
(=1 oe{t,l} p.gr=1
AL 2
2 (xm)
=1 \r=1
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N/2

1 L
=§Z > 2 WO

=1 \oe(t.l)p.g=1

N/2 L /N2 2
S Dl DESTEED o Dol 2 B

06 {14} pg.r=1

(B3)

In the last line we use that )y, W(l) W = V4, Which

is exact when L is taken to be sufﬁc1ently large. In this
expression, the second term can be combined with T to
give a one-body operator 7" that is identical to that in
Appendix A,

N/2 N/2
Z Z (qu + Z qurr) qurf : (B4)

GG{T I pg=1

The third term in Eq. (B3) is proportional to the identity,
and can be omitted. The fundamental two-body term in W
is then just the first term of Eq. (B3),

2
L N2

1
W:§Z 2 2 W) O

=1 \o€{t.l}pg=1

(B3)

The Hamiltonian to be simulated is 77 + W

We can now give the expression for A = Ay 4+ Agf.
Because 7" is the same as in Appendix A, Ay is as in
Eq. (A10). For Agr we take the sum of the weightings in
W to give

1 E NJ2
EREPD Z}M (B6)
==

There is a factor of 4 due to summing over the spins,
which would give a factor out the front of 1/2. How-
ever, then this A can be effectively divided by 2 if we
choose to realize the squared operator by performing obliv-
ious amplitude amplification as they do in Ref. [10]. After
oblivious amplitude amplification of the operator 4 we
effectively implement 24> — 1 where we can ignore the
identity. Since this gives us a factor of 2 we can divide the
A by 2, giving Agr as in Eq. (B6).

2. The cost of qubitization of the single low rank
factorized Hamiltonian

Next we describe the costing of the implementation
of the single low rank factorized Hamiltonian as in
Ref. [9], except taking into account the amplitude amplifi-
cation approach for reducing A. The complete Hamiltonian

written as a linear combination of unitaries is (ignoring an
additive term proportional to the identity)

2

N/2 N/2
Z Z qua+ Z Z Z qua 5

e{tdtp.g=1 f 1 \oe{t.dlp.g=1
(B7)

where T, is as in Eq. (A9). The procedure as given in
Ref. [9] corresponds to preparing a state, performing con-
trolled operations, then inverting the preparation. Now, we
need to perform the state preparation separately on two
registers. First, prepare a superposition over the first reg-
ister, which selects between the terms in the factorization,
as well as the one-body term. Next, prepare a superposi-
tion on the second register with weights corresponding to
the square roots of () and 7),,. Perform the SELECT oper-
ation by using the circuit shown in Fig. 1 of Ref. [9]. Then
invert the state preparation on the second register, reflect
on that register, then perform the preparation, SELECT, and
inverse preparation again.

The steps are shown in Fig. 15, and in detail are as
follows.

succ ¢
o ol
h mak
#£0
suce pq Jﬁ

|¥)

FIG. 15. The circuit for performing the state preparation and
controlled operations for the single factorization approach. The
register labeled £ is the first control register containing ¢, and

P,q labels the second and third control registers. The registers

labeled succ £ and succ pqg are the registers that flag success of
the preparation of the equal superposition state for the £ and p, ¢
registers. The register labeled £ # 0 is a temporary register used
to keep the result of an inequality test checking that £ % 0, which
is used to ensure that the second half of the circuit has no effect
for that value of £, which is used to label the one-electron term.
The register labelled |0) is used to control swaps of p and gq.
The register labeled « is used to select the spin (and is initialized
as |0)). The bottom register labeled |/) is the target system. The
operation labeled SEL is the SELECT as shown in Fig. 1 of Ref. [9].
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1. We first prepare a state on the first register as

— 1) 2> T, |+Z|z > ]
P=q P=q

This has complexity as follows.

(B8)

(a) Preparing an equal superposition on L + 1
basis states has complexity 3n;, — 3n 4+ 2b, — 9,
where b, is the number of bits used for the
rotation on the ancilla,

np = flog(L + D], (B9)

and 7 is a number such that L + 1 is divisible
by 2".

(b) A QROM is applied with output size b, =
ngp + R; + 2, where the extra two qubits are
for outputting the qubit showing if £ = 0. The
complexity is

(L+1

] tbuk—1).  (BLO)
L

(c) An inequality test is performed with complexity
Ni.

(d) A controlled swap is performed with complex-
ity np + 1.

. Next, we prepare a state on the second register as

L
(|0 > 2T 18D gy + 10

P=q =1
< YLD VI8 paa) | 1) 14
rss P=q

(B11)

where 09 are used to obtain the correct signs on the
terms, and the |+) states at the end are used to select
the spin and control the swap between the p and ¢
registers. The complexity of this state preparation is
as follows.

(a) First, an equal superposition over p and g
is prepared with p < g < N/2. Letting ny =
[log(N/2)] be the numbers of bits used for the
p and q registers, the cost of preparing this equal
superposition is as follows.

i. For testing the two inequalities the cost is
ny — 1 forqg < N/2andny forp <gq.

030305-35

ii. An ancilla is rotated with cost b, — 3 for b,
bits of accuracy.

iii. A reflection is performed controlled on the
result of the two inequality tests and the
ancilla qubit, with cost 1.

iv. The inequality tests are inverted with Clif-
fords, and there is a cost of b, —3 for
another qubit rotation.

v. There is a reflection on the p and g registers
and the ancilla with cost 2ny — 1.

vi. The inequality tests are performed again
with cost 2ny — 1.

vii. Another Toffoli is used to give a single qubit
flagging success for both inequality tests.

That gives a cost of 6ny + 2b, — 7.
(b) Next, a contiguous register is computed from p,
and g as

s=pp—1/2+q. (B12)

In Appendix F we show that the complexity of
computing p(p — 1)/2 + g is n3, + ny — 1. We
are making an improvement over the method in
Ref. [9] by not computing a contiguous register
including ¢ as well. This is because it is possible
to apply the QROM to two registers (provided
there are not restrictions like £ < s), as we show
in Appendix G.

(c) Perform the QROM on the two registers as
described in Appendix G with output of size
b, = 2ny + R, + 2, with complexity

"L—i— 1“ {N2/8+N/2

1 + by (y1hepy — 1).
et

(B13)

kp2

(d) Perform the inequality test with cost R,.

(e) Perform the controlled swap with the alt val-
ues with cost 2ny. The sign required for the
sign qubits can be implemented with Cliffords
as before.

. Perform a controlled swap between the p and ¢

registers, with cost ny.

. Perform SELECT as shown in Fig. 1 of Ref. [9].

As discussed in Appendix A the cost is 2(N — 2)
Toffolis when it does not need to be controlled.

. Reverse steps 2 and 3, where the complexities are

the same except the QROM complexity, which is
changed to

L+1]||N?/8+N/2 L,
[k —H % +kyiky.  (Bl4)
'p2

'pl
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6. Reflect on the qubits that were prepared in step 2. 9. To complete the step of the quantum walk, perform
The qubits we need to reflect on are as follows. areflection on the ancillas used for the state prepara-
tion. There are n; 4+ 2ny + R; + R, + 4, where the

(@) The 2ny qubits for the p and ¢ registers. qubits we need to reflect on are as follows.

(b) We need to reflect on the R, registers that are

used for the equal superposition state for the (a) The n; qubits for the ¢ register.
state preparation. _ _ (b) The 2ny qubits for the p and q registers.
(c) One that is rotated for the amplitude amplifica- (c) The R; qubits for the equal superposition state
tion. ' used for preparing the state on the £ register
(d) One for the spin. using the coherent alias sampling.
(¢) One for controlling the swap between the p and (d) The R, qubits for the equal superposition state
q registers. for preparing the state on the p, g registers.
T bits rotated for th litud lifica-
That gives a total of 2ny +Ns +3 qubits. The (e) ti(\;\;lo qubits rotated for the amplitude amplifica

reflection needs to be controlled on the success of
the preparation on the £ register, and ¢ # 0, making
the total cost 2ny + N, + 3 Toffolis.

7. Perform steps 2 to 5 again, but this time L + 1 is

(f) One qubit for the spin.
(g) One qubit for controlling the swap of the p and
q registers.

replaced with L in Egs. (B13) and (B14). Also, This reflection has cost n; + 2ny + N1 + 8, + 2.

the SELECT operation needs to be controlled on 10. The steps of the walk are made controlled by using

¢ # 0, which flags the one-body term. That requires unary iteration on an ancilla used for the phase

another Toffoli. estimation. Each step requires another two Toffo-
8. Invert the state preparation on the £ register, where lis for the unary iteration and making the reflection

the complexity of the QROM is reduced to controlled.

"L ;,_ 1 —‘ FE (B15) Adding all these complexities together gives
L

L+1 L+1 )
2(3nL—3n+2b,—9)+{ —‘+bL(kL—1)+{ 7 —‘+kL+2bL—2+4(6nN+2b,—7)+4(n]2V+nN—1)
L L
L+1 N2/8—|—N/2 L+1 N2/8—|—N/2 [L‘H'Nz/SvLN/Z—‘
+ + b, (ky1kyy — 1) + +k kL, + | — || —————
’V kpl —‘{ kp2 P k;:l kpz 2 kpl kp2

k| k

L N2/84+N/2 )
+ by (kpikyy — 1) + [——‘ {¥-‘ +kyky + 4Ry + 8ny +4ny + 4N —2) + 14+ 2ny + 8 +3
pl p2

+np+2ny + R+ 8 +4

L+1 L+17
:7nL—|—4n§,+40nN—617+12b,+’7 . —‘+bL(kL+1)+{ —‘+kL

L K
L+17[N?/8+N/2 L+1 || N?*/8+N/2 S L [N?*/8+N/2
+ / / + 2bpkplkp2 + ; / / + 2kp1 P2 + | — g
kpl kpZ kpl kzl72 kpl kp2
L N?2/8+N/2
f| L[ MEAENZ L g oan, + 4N — s6, (B16)
K,y ki
[
with by =n; + Ry +2, n;, = [log(L + 1)1, b, = 2ny + Next we consider the total number of logical qubits
Ry + 2, and ny = [log(N/2)]. needed for the simulation via this method.
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1. The control register for the phase estimation, and
the ancillas for the unary iteration, together need
2[logZ] — 1 qubits.

2. There are N qubits for the target system.

3. There are n;, + 2 qubits for the £ register, the qubit
rotated in preparing the equal superposition, and
the qubit flagging success of preparing the equal
superposition.

4. The state preparation on the £ register uses n; +
2R + 3 qubits. Here n; is for the alt values, 8| are
for keep values, R, are for the equal superposition
state, 1 is for the output of the inequality test, and
2 are for the qubit flagging ¢ # 0 and its alternate
value.

5. There are 2ny + 2 qubits needed for the p and ¢
registers, a qubit that is rotated for the equal super-
position, and a qubit flagging success of preparing
the equal superposition.

6. The contiguous register needs [log(N?/8 + N/4)]
qubits.

7. The equal superposition state used for the second

preparation uses 8, qubits.

The phase-gradient register uses b, qubits.

9. The QROM needs a number of qubits b,k,k,> +
[og[(L + 1)/ky1]1 + [og[(N?/8 + N/2)/ky2]].

*®

The QROM for the state preparation on the second register
uses a large number of temporary ancillas, which can be
reused by later parts of the algorithm, so those later parts
of the algorithm do not need the number of qubits counted.
The total number of qubits used is then

TABLE XI. Single low rank factorization data for the Reiher
Hamiltonian [23]. Here A7 is 90.4 hartree. The entry in blue is
the one used for our resource estimates.

L A CCSD(T) Error (mEj,)
50 3367.6 4.79
75 3657.9 0.21
100 3854.3 1.55
125 3997.4 3.08
150 4112.7 2.07
175 4199.2 1.63
200 4258.0 0.10
225 4300.7 0.38
250 4331.9 0.16
275 4354.9 0.29
300 4372.0 0.18
325 43853 0.13
350 4395.6 0.06
375 4403 4 0.03
400 4409.3 0.02

TABLE XII. Single low rank factorization data for the Li
Hamiltonian [36]. Here Ay is 561.5 hartree. The entry in blue
is the one used for our resource estimates.

L A CCSD(T) Error (mE},)
50 2233.7 —93.07
75 2484.5 —57.08
100 2664.5 —23.77
125 2743.5 -9.37
150 2786.9 —11.55
175 2835.5 —-8.17
200 2906.9 0.69
225 2986.9 1.52
250 30359 0.90
275 3071.8 0.48
300 3099.2 —0.07
325 3119.3 —0.18
350 3134.2 —0.11
375 3146.0 —0.08
400 3154.8 —0.10

2[logZ1 + N + 2n; 4+ 28, + 8y + b, + 2ny + 6
+ [log(N?/8 + N /4)1 + byky1kyz + [Mog[(L + 1) /K111
+ [log[(N?/8 + N /2) /ky]] (B17)

with b, =2ny + Ry +2, ny = [log(N/2)], n, = [log
(L+ 1)]. This completes the costing of the low-rank
factorization method.

APPENDIX C: THE “DOUBLE LOW RANK
FACTORIZATION” ALGORITHM OF
VON BURG ET AL.

1. Representing the double low rank factorized
Hamiltonian as a linear combination of unitaries

The approach of Ref. [10] is a modification of the
approach of Ref. [9]. It is also based on applying qubiti-
zation to the representations discussed in Ref. [30], but
the difference is that it uses a second factorization of the
Coulomb operator. The idea to combine this second fac-
torization with qubitization was suggested but not imple-
mented in Ref. [9]. The idea is to further factorize the
low-rank operator as

where 1, , = a;,gap,g, Wl(f]) are scalars obtained by per-
forming a Cholesky decomposition on a flattened version
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of the V), tensor, /;“) are scalars obtained from the diag-
onalization of the squared one-body operator, and U, are
the eigenvector matrices of that diagonalization. The sum
over p can be truncated at “_to a good approximation.
Generally, we have that L = O(N) and E® < N but in
some rather special cases E® can be asymptotically less
than this (e.g., for very large systems scaling towards the
thermodynamic limit). For the moment we keep the sum
at N /2 to show how part of this two-body operator can be
combined with the one-body operator. We also assume for
the moment that L = N?/4 so there is no approximation
involved in summing to L.

Using the Jordan-Wigner transformation of Eq. (A3) one
can map the operator F' to qubits as

2

1< L 1-2,
=;Zw > yae (R v
=1 | o(t.d) p=1
L N/2 2
gz YN0 M-2,)| UL 2
(=1 oe{t,l} p=1

The factor of 1/2 becomes a factor of 1/8 because a
factor of 1/2 comes from the Jordan-Wigner transforma-
tion, which is then squared. This operator may then be
expressed as

—Z)2 U}

0| —
-

F= Ue (Z,

o~
I

1

Ui [2Z (T — 20 - T2 + 22 U}

I
oo | =—
]~

o~
Il

1

L
1
== (cruNU - T +U2),  (©3)
=1
where we use the definitions
N/2 N/2
Lr=2> £01, Z= > > Y2,
r=I1 oe(td) p=1
N/2
Ne=Ti=Z=Y Y fOn,. (C4)

oe{t,J}tp=1

The authors of Ref. [10] add the one-body part of this
expression into the one-body operator to provide a new

one-body operator

N2
5 Z ZTM%U“WJF ZI‘ZUZNZ
aeN}pq 1
N2
PO oI (IS = 7) PRS
GEN}M 1

where we use the relation that

N/2

2 25 ma | UL

oe{tl}p=1
N2

2, 2 W ot

oe{t )} pg=1

UN U, = Uy

(Co)

The expression for the one-body term can be simplified by
noting that the trace is unchanged under Uy, so

N/2 N/2
I, =2) f,O1=2% Wil (C7)
p=1 r=1
Thus, the additional term becomes
1L L N2 N2 L
0 _ O — O O
EZIKW;q ZZMFW%_ZZW;FW%
=1 =1 r=1 r=1 t=1
N/2
(C8)

- E qurr'
r=1

The last equality is exact when L is large enough that
there is no truncation of the rank. Then the one-body term
becomes, with no approximation due to truncation of the
rank,

- T, g0, (C9)

where 7}, is as in Eq. (A9). Thus the one-body operator
can be taken to be 77, the same as for the sparse case in
Appendix A and the single factorization in Appendix B.

For the two-body operator F, we can omit —Z7, which
gives only a uniform shift in the energy, so in F’ only
U 2} UJr is retained. Moreover, in this two-body operator
one can now truncate the sum over p at £, so

2

L z®
1
=g U| 2 2 4% ) U (€10
=1 oe{t,{} p=1

In this expression one can also take a truncation with L <
N?/4, so there is a truncation of the rank for the two-body
operator but not the one-body operator.
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The key insight of Ref. [10] is a method for imple-
menting the U, such that one obtains a A scaling as A =
A7 + Apr Where

) 2

L
=3 2 (2]

The factor of 1/8 becomes a factor of 1/4 because we must
multiply by 2% = 4 due to the sum over the spin degree
of freedom but we can then divide by 2 by using the
oblivious amplitude amplification, Chebyshev polynomial
technique. The contribution to A from 7' can be deter-
mined as follows. One can perform a rotation of the basis
to diagonalize 7" as well, so the value of Ay is the Schat-
ten 1-norm (sum of the absolute values of the eigenvalues,

or trace norm) of the matrix 7, = T),; + Zf\i/j 1 Vpgrr- The

main reason that this double-factorization method is more
efficient than the one in Ref. [9] is because it has reduced
A. While the authors of Ref. [10] write that their method
is more efficient by more than an order of magnitude for
various systems studied, this turns out not to be the case
comparing to the most efficient method in Ref. [9] and
correcting the estimate of A.

(C11)

2. Cost of qubitization of the double low rank
factorized Hamiltonian

The primary cost of the double-factorization method
from Ref. [10] comes from the circuit shown in Eq. (78)
of their Supplemental Material. The costs there are given
by the following parts.

1. A state preparation as shown in their Eq. (79). This
needs to be performed and inverted twice.

2. A QROM to output the angles needed in their
Lemma 8. This QROM needs to be called and erased
twice.

3. The Z rotations as per their Eq. (68) need to be
performed 4N times. Those have complexity 3 — 2
each, with

3 =1T15.652 4 log(AN /)] (C12)
the bits of precision of the rotation.

4. There are N /2 controlled swaps performed before
and after the rotations as shown in Eq. (62) of
Ref. [10]. Since that is repeated, the cost is 2N.

5. The reflection in Eq. (78) of Ref. [10] has a com-
plexity depending on how the reflection is per-
formed.

First note that there seems to be a problem in using the cir-
cuit exactly as shown in Eq. (79) of [10]. It is using a joint
state preparation on two registers, but the qubits before the
preparation cannot be cleanly divided into those for the

first register and those for the second register. That would
be needed in order to reflect on only one, as is needed in the
procedure in Eq. (79) of Ref. [10]. We first discuss the cost-
ing for the procedure as shown in Eq. (79), then describe
how to perform the separate state preparations on the two
registers.

In comparing the complexity as presented here to that
in Ref. [10], it must be taken into account that they are
defining N in a different way. In that work A is the number
of orbitals, whereas here it is the number of spin orbitals,
which is twice as large, because it is multiplied by the spin
degree of freedom. Therefore, Ref. [10] takes N = 54 for
the FeMoCo orbitals of Ref. [23], whereas here we take
N = 108. Also, in the expression for J, € is the error in
synthesizing a single step, which is taken to be 0.0001
hartree in Ref. [10].

The dominant costs are from the QROM and the rota-
tions. In using our THC representation we are able to
reduce the QROM costs below those in Ref. [10], though
the rotation costs are unchanged. To understand the QROM
costs, we first list the main variables used.

(a) The main rank L.

(b) EW® is the rank of each term.

(c) (1/L)E = Y5_, E® is the average rank of the sec-
ond factorization; thus, the total number of coeffi-
cients is LE.

Before you perform the state preparation, you need to pre-
pare an equal superposition over LE basis states. That has
cost3[log LE] — 3n + 2b, — 9 Toffolis, as per the analysis
in Appendix A, where LE is divisible by 27. The QROM
used for the state preparation has an output size

b=2ng +2n, +R+2, (C13)
where
ns = [log(max 81, n = [log(L + 1),
R =[2.5+log(A/e)T, (C14)

are the bits for the two registers and the bits of precision R
used for the keep values. We take ny = [log(L + 1)] rather
than n; = [log L] in order to use an additional value of ¢
to account for the one-electron term. There is also a size
for the contiguous register

nrg = [log(LE 4+ N/2)]. (C15)
Here the N /2 will be to account for the one-electron term
in the simulation. In the expression for b the factor of 2 on
ng and ny accounts for the ind and alt values in sparse state
preparation, and the 42 is for the sign bit and its alternate
value. (In [10] only one bit is assumed for the sign.) The
complexity for the state preparation is that of the QROM,
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plus R for the inequality test and ng + n;, for the controlled
swaps.

For the state preparation, since the number of items of
data is LE, and each has size b, the complexity of the
QROM computation is

P—:W + bk, — 1), (C16)
kp

where k, must be chosen as a power of 2. The uncomputa-

tion cost is then
LE
— |+ £
P
{ k W

There is cost ng + ny for the controlled swaps and N
for the inequality test, which are inverted as well for the
inverse preparation, giving cost 2ng + 2np +28 = b +
R — 2. Taking account of the need to perform the state
preparation and inverse state preparation twice, we give
the cost of the state preparation for the two-body term as

(C17)

LE LE
2[ —‘+2bkp +2|Vk_’-‘ +2k, +28 — 4. (C18)

k, 2

Before performing the QROM for the rotations, it is nec-
essary to use QROM to generate a register with the offsets
in order to produce a contiguous register. This procedure
is described in Eq. (39) and Lemma 7 of Ref. [10]. The
complexity of the QROM for the offsets is

L
{—W st — 1), (C19)
ky
In uncomputing the complexity is
L
’7—,—‘ + k. (C20)
ky

We also need to perform addition of registers twice
and invert addition of registers twice, which has cost
4(ny g — 1). That gives a total cost of

L L
2| =+ 2mstk + D) +2 | — | +2K —4. (C21)
ki : K,

Once the contiguous register is produced, one can apply
the QROM to output the rotation angles. Because there are
LE sets of NJ/2 bits for the rotation angles, the cost of the

QROM used for the rotation angles can be given as

LE
[7] NI — D)2, (€22)
and the cost of the inverse QROM as
LE ,
’7 —‘ + k. (C23)
K
In Ref. [10], 3 is taken to be
J=[5.652 + log(N1/2€)]. (C24)

Note that we are using our convention for NV, which is dou-
ble that used in Ref. [10]. Accounting for two steps with
preparation and inverse preparation the cost is

LE
K

Z[Lk—a—‘ + NJ(k, — 1)+2’7

—‘ +2k. (C25)
For the total cost of the two-body term in the double-
factorization method of Ref. [10], we add the QROM costs
in Egs. (C18), (C21), and (C25), plus the 4N (3 — 2) cost
for the controlled rotations, plus the 2N cost for the con-
trolled swaps (for the spin), plus twice the 3n;,z — 3n +
2b, — 9 cost for preparing the equal superposition state,
nrz — 1 for reflection and 2 for the unary iteration for
the phase estimation and making the reflection controlled.
There is also a cost of ng — 1 for the reflection on the sec-
ond register, if this were possible as claimed in Ref. [10].
The total cost is, therefore,

2 Le + 2bk, +2 Le + 2k, +28 42 L
ky ? K, ? ki

L ®
+2ns(k+ 1) +2 {—W + 2K, 42 {—W
ki 3

N — 1) +2 ﬁc—ﬂ 42K+ 4N — 6N
r

+ 7l’lL,5 - 67’] + 4br + ng — 26, (C26)

where b = 2ng + 2n; + 8 4 2 with the numbers of qubits

as given in Eq. (C14). The values of & should be chosen as

powers of 2 that minimize the cost.

As mentioned above, the procedure needs to be made
more complicated, because the state preparation should
be performed separately on the two registers, rather than
jointly on both registers at once, because a reflection needs
to be made on one register. An alternative approach is to
prepare the state on the first register, then prepare the state
on the second register controlled on the first register, rather
than preparing the state on both registers together.
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It is also necessary to account for the one-electron term. (b) Use a QROM for state preparation on the first
It is possible to add that in an explicit way as proposed register outputting an alt value of size n; and a
in Ref. [10], but that significantly increases the complex- keep value of size R;. The output size is
ity because of the need to perform high-accuracy rotations
again. Instead, one can combine it with the two-electron by1 = np + Ry, (C27)
term in a similar way as we have described above for the
single low rank factorization. The principle is to use an so the QROM cost is
additional basis state on the first register to flag the one-
electron term. Then the second register will have a state L+1
preparation corresponding to the one-electron term for this { —‘ + b1k, — 1. (C28)

pl

basis state on the first register, but only for the first part,
not the second, because we are not applying the obliv-
ious amplitude amplification within a single step for the
one-electron term.
The detailed procedure is shown in Fig. 16. The steps
are as follows. 5

(c) Perform an inequality test with cost R.
(d) Perform the controlled swap with cost n;, com-
pleting the state preparation on the first register.

. Before we prepare the state on the p register, we
need to output data from the ¢ register. This is
indicated by the “In,” and “data,” in Fig. 16. For
each value on the first register we need to output
E2® (with nz bits), and b, bits for a rotation on an
ancilla qubit. It is also convenient to output the offset

(a) Prepare an equal superposition over L + 1 basis (with n; g bits) at this stage, and determine if £ = 0,

states, with cost 3n; — 3n + 2b, — 9 Toffolis, giving output size
as per the analysis in Appendix A, where L is
divisible by 2". bo=ng+n,.z+b+1, (C29)

1. First we need to prepare the appropriate superposi-
tion state on the £ register, which is indicated as the
box labeled “prep” in Fig. 16. The steps to perform
that are as follows.

prep
prep

datay
datay

offset In

rot

succ p

pred

p

Rotations

|0)

1)
1)

T
.
=]

FIG. 16. The circuit for performing the state preparation and controlled operations (SELECT) for the double factorization approach.
The register labeled £ is the first control register containing ¢, and p labels the second control register. The registers labeled succ ¢
and succ p are the registers that flag success of the preparation of the equal superposition state for the £ and p registers. The register
labeled ¢ # 0 is a temporary register used to keep the result of an inequality test checking that £ £ 0, which is used to ensure that
the second half of the circuit has no effect for that value of ¢, which is used to label the one-electron term. The registers labeled 2O,
“offset,” and “rot” are the outputs of the QROM on the £ register that are mainly used for the controlled preparation of the state on the
p register. The register labeled “rotations” is the data needed for the basis rotations for implementing Z, ,. The register labeled |0) is

used to select the spin, and |/ ) and |y4) are the spin-down and -up components of the target system.
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and QROM cost

[L: ﬂ + bylky — 1). (C30)

0

3. Next we need to prepare the state on the p register
controlled on the ¢ register. This step is indicated by
the “In” and “prep,” in Fig. 16, and uses the data
output by the QROM in the previous step. The steps
needed for the preparation are as follows.

(a) The controlled preparation of an equal superpo-
sition state may be performed in the following
way with complexity 7ng + 2b, — 6. The steps
are as follows.

i. Use a string of ng — 1 Toffolis (and Clif-
ford gates) to produce a new ng-qubit regis-
ter that has zeros matching the leading zeros
in the binary representation of £, and ones
after that. These qubits are used to control the
Hadamards in the next step.

ii. Perform ng controlled Hadamards with cost ng.
A controlled Hadamard can be performed with a
single Toffoli by catalytically using a T state, as
shown in Fig. 17. Therefore, we count the cost
of each controlled Hadamard as 1.

iii. Perform an inequality test with the register con-
taining E with cost ngz.

iv. Rotate the ancilla qubit with cost b, — 2 based
on the rotation angle given by the output of the
QROM.

v. The reflection on the result of the inequality test
and ancilla qubit is a controlled phase, which is
a Clifford gate.

vi. Invert the rotation with cost b, — 2 and the
inequality test with Cliffords.

vii. Perform the ng controlled Hadamards again.

viii. Reflect about the zero state on ng + 1 qubits
(the qubits where the state preparation is being
performed and the rotated ancilla) with cost
ng — 1.

ix. Perform the ng controlled Hadamards again.
Now the binary-to-unary conversion can be
inverted with Cliffords.

l0) Elgs A
IT) O % IT)
\T_l

A} {SHH) —@-e{HsTHH]

<

FIG. 17. A quantum circuit for catalytically implementing a
controlled Hadamard using a single Toffoli gate, Clifford gates,
and a catalytic state |7) = T'|+). The bottom qubit is the control,
and the third qubit (second from the bottom) is the target.
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x. Perform an inequality test again with cost ng.
Now, flagged on the success of the inequality
test, we prepared an equal superposition state
on the second register that can be used for state
preparation on the second register.

(b) We now need to add the offset to the second reg-
ister to provide a contiguous register to apply
QROM to for state preparation. This addition
has cost ny z — 1.

(c) Next, apply the QROM to output the alt and
keep values with size

bps = nz + 8y +2, (C31)

where the +2 is for the sign bit and its alt value.
In this part there are LE + N /2 outputs to give,
because the rotations for the one-electron term
are needed as well, then in the next part there
are only LE. Therefore, the two QROMs have

cost
LE+N/2
[k—/w H bk — 1), (C32)
2

(d) The remainder of the state preparation uses an
inequality test with cost R;, and a controlled
swap with cost ng.

4. Apply the number operators via rotations and

QROM with the following steps.

(a) To apply the QROM for the rotation angles, we
need to again add an offset to the second register
to provide a contiguous register, with cost again
nrz — 1. This operation is indicated by the con-
trolled box with + in it in Fig. 16, and a box
with — in it for its inversion.

(b) Use QROM to output the rotation angles, which
is shown as “In,” and “data,” in Fig. 16. The
QROM cost is

"LE +N/2

' —‘+N3(kr—1)/2- (C33)

(c) Perform controlled swaps with the spin qubit as
control, with cost N /2.

(d) Apply the controlled rotations to rotate the basis
with cost N(3 — 2).

(e) Apply the Z; operation, controlled on success
of the preparation of the £ and p registers. This
control gives a cost of 1.

(f) Reverse the controlled rotations and controlled
swaps, with cost N(3 — 2) and N /2.

(g) Reverse the QROM with cost

LE+N)2
[;—/W K. (C34)
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(h) Reverse the addition onto the contiguous regis-
ter, with cost again n; z — 1.

. Invert the state preparation on the p register, which
is shown as “In” and “prep;” in Fig. 16. The cost is
the same as given in step 2, except the cost of the

QROM is reduced to

LE+N/2|
[_k }kﬁ.

'p2

(C35)

. The reflection on the second register only (which is
what caused the procedure to be this complicated) is
performed. The qubits that need to be reflected on
are as follows.

(a) The ng qubits that the state is prepared on.

(b) The R, that are used for the superposition state
for the coherent alias sampling.

(c) One that is rotated for the amplitude amplifica-
tion.

(d) One for the spin.

That gives a total of ng + R, + 2. This reflection
also needs to be controlled on success for prepara-
tion of the ¢ register, and £ # 0, so the complexity
of the reflection is ng + N, + 2.

. Repeat steps 2 to 5. This time, because we do not
need to output values for the one-electron terms, the
costs of the QROM and inverse QROM for state
preparation are reduced to

LE LE ,
’75—‘ + bpz(kpz —1), |Vk/——‘ + kpZ' (C306)

'p2

10.

The costs for the QROM for the rotations are
reduced to

LE LE ,
[71 + NIk, — 1)/2, [ - W + K. (C37)

This time Z; must be controlled by the qubit flagging
£ # 0, which introduces a cost of another Toffoli.

. Invert the QROM in step 2 and the preparation in

step 1, where the costs of the QROMs are reduced

to
L+1 , L+1 ,
|Vk——‘ +kp1, ’7 v —‘ + k. (C38)

Pl 0

There is also a cost for the reflection needed for con-
structing the quantum walk. The qubits that need to
be reflected on are as follows.

(a) The ny qubits for the £ register.

(b) The nz qubits for the p register.

(c) The R qubits for the equal superposition state
for the alias sampling for the ¢ register.

(d) The K, qubits for the equal superposition state
for the p register.

(e) The two qubits that are rotated.

(f) One qubit for the spin.

That gives a total of n; + ng + 8y + R, + 3 so the
costisny +ng + Ny + 8 + 1.

The steps of the quantum walk are made controlled
using unary iteration on an ancilla. This introduces
a cost of another two Toffolis for the unary iteration
and making the reflection controlled.

Adding together all these costs, then gives

L+1 L+1 L+1
2(3nL—3n+2br—9>+{ . ]+b,,1<kp1—1>+zm+2m+[ W+bo(ko—1)+{ . WH;,I
pl 0 1
L+1 LE+N/2 LE LE+N/2] TLE
)l _ Nk — 1 _ 2K
4&;%“4 e [ K %(k;% r
LE+N/2 LE LE+N/2
- 4(Tnz +2b, — 6) +8(n,z — 1) + [—/W + [—W T 2yl — 1)+ | N2
kpZ kpZ kpZ

+L/_d—‘+2léz+4xz+4ng+4N(:—2)+2N+2+na+Nz+2+"L+”E+N1+N2+3
p2
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=9nL—6n+12br+’7

”LE—FN/Z—‘ [
+ | ==+
k2

~

<

1

LE+N/27 [LE LE+N/2
+{+—N/—‘+{ —‘+N3k,,+(+—/—‘+

3

T

K

™~

=
o/

Ean

2

with bpl =n; + N[, bo =ng + nr= +p, and bpz =ng +
R, + 2, and the numbers of qubits as defined in Eq. (C14).

Next consider the logical qubit count. The qubits used
are as follows.

10.
11.
12.

. The [log(Z + 1)] qubits for the control register for

the state preparation and [log(Z + 1)] — 1 for the
unary iteration on this register.

There are N qubits used for the system.

The first register that is prepared needs n; qubits,
plus one to flag success of the state preparation and
one that is rotated as part of the state preparation.

. The output of the QROM needs n; + 8|, another X

are used for the equal superposition state to take the
inequality with, and another qubit is needed as the
output of the inequality test. We can ignore tempo-
rary ancillas used as more will be needed at a later
step.

The second QROM on the first register used to out-
put the data needed for the equal superposition state
on the second register uses b, output bits.

. The second register needs ng bits, plus another bit

for flagging success of preparing the equal superpo-
sition and another that is rotated.

A register with size n; g for outputting the contigu-
ous register for the state preparation on the second
register. This is a temporary ancilla that can be
erased after the QROM with Cliffords by using the
out-of-place adder. It then is computed again for
the QROM for the rotation angles. There it can be
computed in place, so does not add to the qubit
count.

The QROM used for preparing the state on the sec-
ond register uses b,> qubits output, as well as a
number of temporary qubits that are less than those
needed for the rotation angles output later.

. The state preparation needs another R, qubits in

a superposition, as well as another qubit flagging
success of the inequality test.

The angles for the rotations need k.N3/2.

The phase-gradient state, which needs 3 qubits.
Another control qubit is needed for the spin.

LE+N/2
W + 2By (hpy — 1) + [;—/

+1 L+1 L+1 L+1
—‘+bpl(kpl _1)+’7 I —‘_"bo(ko_l)'i‘ |7——‘ +k‘;1+’7——‘+kz)

0

ko k,

LE
’77—‘ + Zk}/, + 347’15 + 8I1L’E

LE
—‘ + |Vk,——‘ +2k;2 + 38, 4+ 68, +3NJ — 6N — 43,
2

P2 14

(C39)

13. A T state on a single qubit is used to perform the
controlled Hadamards with Toffoli gates.

Adding together these ancilla costs gives

N +2n; +ng + 281 + Ry + I+ b, + by
+ kN3/2 + 2[log(Z + 1)1 + 7. (C40)

3. Numerical determination of double low rank
factorization

The numerical determination of double low rank factor-
ization can be ambiguous without further details. In this
subsection, we aim to provide full details of how the fac-
torization is obtained in this work. The original approach
proposed by Peng and Kowalski [35] worked with sepa-
rate thresholds for the first and the second factorizations.
Instead, von Burg et al. [10] proposed a truncation scheme
just based on a single threshold, which we further elaborate
here.

1. First, we perform either the eigendecomposition
or the Cholesky decomposition of V, Vs =
S W)W and sort € in the ascending order of
the corresponding eigenvalues such that the magni-
tude of W) for small £s are larger than that of large
L’s.

2. The second factorization was originally proposed to
be done with the singular value decomposition of
w® [35], but following von Burg et al. [10] we use
eigendecomposition: () = SN2 @ uous.

3. For a given threshold and looping over the first fac-
torization index £ from 1 to L, we discard the mth
eigenvector in the second factorization that satisfies

N2
Z If, O 1£,9) < threshold . (C41)

p=1

We note that if no eigenvectors are kept at £, then
we discard the rest of the vectors for £ > £, without
going through them.
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TABLE XIII. Double low rank factorization data for the Reiher
Hamiltonian [23]. Here Ay is 38.6 hartree, which is the Schatten-
norm of 7'. A threshold is used to truncate eigenvectors based
on the truncation strategy described in Ref. [10] Eq. (C41). The

entry in blue is the one used for our resource estimates.

CCSD(T)

Threshold L Eigenvectors A Error (mE))
0.1 53 765 253.6 —87.91
0.05 95 1274 262.1 —12.39
0.025 135 2319 272.0 —-2.78
0.0125 182 3983 280.8 —1.10
0.01 195 4700 283.4 —0.18
0.0075 216 5678 286.3 1.33
0.005 242 7181 289.5 2.27
0.0025 300 9930 292.9 1.02
0.00125 360 13031 294.8 0.44
0.001 384 14062 295.2 0.25
0.00075 414 15419 295.6 0.20
0.0005 444 17346 296.1 0.09
0.000125 567 24005 296.7 —0.01
0.0001 581 25054 296.7 —0.02
0.00005 645 28469 296.8 0.00

This scheme is used to generate the numerical data pre-
sented in Tables XIII and XIV.

4. Numerical data for hydrogen chains and Hy

The average rank of the second factorization for hydro-

gen chain and Hy is shown in Fig. 18. Theoretically,
E cannot scale worse than O(N). However, we obtain
O(N'?) in Fig. 18(b). Therefore, in Table I we assume
that E scales as O(V) for the Hy case.

TABLE XIV. Double low rank factorization data for the Li
Hamiltonian [36]. Here A is 478.1 hartree, which is the Schatten
norm of 7". A threshold is used to truncate eigenvectors based on
the truncation strategy described in Ref. [10] and Eq. (C41). The

entry in blue is the one used for our resource estimates.

CCSD(T)
threshold L Eigenvectors A error (mEj)
0.1 94 1998 1076.5 —287.44
0.05 184 3765 1108.9 —-91.76
0.025 205 5992 1136.0 -20.52
0.0125 247 8450 1152.1 —12.74
0.01 261 9302 1155.5 —6.73
0.0075 278 10493 1159.1 —5.77
0.005 312 12508 1163.4 -2.30
0.0025 344 16355 1168.6 1.53
0.00125 394 20115 1171.2 0.07
0.001 413 21407 1171.7 0.42
0.00075 434 23145 1172.2 0.40
0.0005 470 25751 1172.8 0.42
0.000125 589 35006 1173.7 —0.04
0.0001 614 36557 1173.7 —0.02
0.00005 679 41563 1173.9 —0.01
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FIG. 18. (a) The number of H atoms (N ) versus E and (b) the
number of orbitals (N /2) versus E. All data points in (a) are used
in the linear fit on a log scale where the slope is given as 1.00 with
R? = 0.9999 (where R is the correlation coefficient). In (b), every
point beyond N /2 = 35 except the last six points is used for the
linear fit, which yields a slope of 1.29 with R> = 0.9917. The DF
threshold that is used is 0.01 for (a) and 1 x 10~* for (b).

APPENDIX D: THE RANDOMIZED
TROTTER-SIMULATION ALGORITHMS OF
CAMPBELL AND KIVLICHAN ET AL.

Here we discuss in more detail a recent randomized
approach, often called qDRIFT [52], that approximates
time evolution using a randomized evolution. The ran-
domized nature of qDRIFT leads to a subtle point arising
between the cases considered here and the analysis pro-
vided in Refs. [52,53] in that the results in both cases
discuss the probability of failure for the algorithm rather
than the mean-square error. The analysis below focuses on
the mean-square error in phase estimation that arises from
gDRIFT and we see that because of the possibility of large
deviations, the worst case scaling of the complexity can be
substantially worse than the O(A?/€?) scaling anticipated
from such results.

Before jumping into the analysis, we review the fun-
damentals of the qDRIFT algorithm. The idea behind the
evolution is to implement a channel, for the Hamiltonian

H=3,H,
U(t,0): p — ije_if[f'r/pjpeif[f'r/pj, (D1)
J

where p; = [|[H;ll/ Y, 1H;|l where |- || is the Schatten
infinity norm (spectral norm). In our case we assume that
each H; is proportional to a unitary so then p; = ||H; ||/A.
This channel can be implemented by randomly selecting a
term from the Hamiltonian, simulating the evolution of just
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that term for a duration that scales inversely with the prob-
ability of drawing the Hamiltonian term. From Ref. [52]

we have that if we define £(z,0) : p = e AT pellT

1U(z,0) = E(z,0)[ls < 24772, (D2)

Note that this exact same bound holds if we consider a
controlled evolution using gDRIFT, which can be thought
of as simulating the Hamiltonian H.y = |1X1| ® H =
Zj [1X1] ® H;. As discussed in Ref. [52], the value of
A 1s unchanged so the bound on the error in the con-
trolled Hamiltonian is the same as for the Hamiltonian
without control. For improved performance of the phase
estimation, one can also use control between positive and
negative Hamiltonian evolution [16]. That corresponds to
Hy = —Z ® H, and again the analysis of the error for
the controlled Hamiltonian is the same as without control,
because the value of A is unchanged. This implies that the
same bound holds in the controlled and the uncontrolled
case. When used in conjunction with qDRIFT, the variance
in the estimate is not the only source of error.

1. qDRIFT mean-square error

First, let us examine the scaling if we were to try to
apply phase estimation using qDRIFT in order to achieve
a fixed root-mean-square error in the energy (for example
1.6 mHa). Existing work in Ref. [52] discusses this case;
however, the failure probability scaling of O[1/(8%€)],
where § is the failure probability and e is the uncertainty in
the phase upon success, in that work seemingly precludes
that analysis from yielding an inexpensive simulation that
guarantees a fixed root-mean-square error. Here we pro-
vide a tighter analysis and demonstrate that the scaling is
worse than one would naively expect.

We begin by using the fact that the diamond norm
bounds the worst-case trace norm between outputs that can
be attained over all inputs to the channels. Further, it can
be seen using the arguments from Ref. [52,105] that for
any positive integer R

1U*(z,0) = EX(z, 0l < 2RA*?, (D3)
Thus by the von Neumann trace inequality it follows that
for any bounded observable O:

max ITHOU" (2, 0)(p)] — TH{OER (z,0) (0)]|

< 2||O||RA*>. (D4)

Let ¢ be the exact phase for the exact evolution, (;3 be the
observable for the phase, and take O = (¢ — ¢)? to be the
observable for the squared error in the phase. The quantity

we wish to bound is then for initial state p

((d — %) = Tr(¢ — )*ER(x,0)(po)]
< [T - 92U" (2. 0)(p0)]

+ | Tr[OU* (z,0)(0)] — TH{OE (z, 0)(p)]] ,
(D3)

where the expectation value on the left is defined to be that
for the qDRIFT evolution.
Then ||O]| < max |7 £ ¢|?, and so

ITi[OUR (7, 0)] — Tr[OER (1, 0)]] < 2 max |7 + ¢|*RA>T2.

(Do)

That gives the maximum increase in the mean-square error
in the phase. Now consider the case that there is a differ-
ent time interval for the qDRIFT t versus the time interval
for the phase estimation ¢, with t = #/k for some integer
k. Then the total number of intervals for the qDRIFT R
is related to the total number for phase estimation r as
R = kr. Then the mean-square error in the phase for the
exact evolution is 772 /72, and so

. oo m?  2max|m £ ¢PrAtA
((p—9)) < =+ . :

D7)

This expression corresponds to the uncertainty in the phase
that we would achieve through the use of traditional phase
estimation; however, we can improve the phase achieved
per unit time by controlling the direction of the phase
evolution as discussed in Refs. [45,105]. Usmg this obser-
vation we can define an energy operator E= ¢ /2t so
that

7% max|m £ ¢|*rA?

E—E D8
(E~EP) < 25 o (D8)
Then writing this in terms of Ny, = A,
(- B < w2k? |, max 7 £ > NexpA? (D9)
~ 4N2 72 2k2 '

exp

We aim to find the smallest Ney, such that the right-hand
side is bounded above by €2, where € is as before the bound
on the allowable root-mean square error in the energy
estimate. Minimizing N, for constant € is the same as
minimizing € for constant Ney,. To minimize over £, take
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the derivative of the right-hand side to give

o [ m%k? | max |7 £ > NexpAr?
ok \ 4N2 _£2 2k2

exp

T 2N P2 K

exp

w2k max |7 + ¢|2Nexpk2. (DI10)

The turning point is for

K = [2N3_max |l £ ¢/ |At.

oxp (D11)
Putting that into Eq. (D9) gives
7T max | £ @A

/2Newt

Setting the right-hand side equal to €2 then gives

(E-E)%) < (D12)

N w2 max | + @222
P 2e47?

(D13)

Because £ = ¢ /2t and E can, in principle, be as large as
A, ¢ = 7 should correspond to £ > A in order to resolve
all possible values of E. That implies that the maximum
allowable value of 7 is 7w /2, which gives

4max | + ¢|*A* 872t
Nexp = 2e4 = et

(D14)

This scaling is as O(A*/e*) and will therefore yield large
gate counts for the problems that we focus on. The rea-
son for the large scaling, is that the diamond norm bounds
the difference in the probabilities of measurement results,
which can allow an increase in probability concentrated at
the maximum error leading to large mean-square error.

The gate complexity for the unamplified gDRIFT sub-
routine can be found by multiplying the number of expo-
nentials by the number of Toffoli gates needed per expo-
nential. The Hamiltonian can be expressed such that each
H; is a weighted Pauli operator. In this case e~™/%/ can
be implemented using at most O(N) one and two qubit
Clifford operations and a single R, gate [11]. We imple-
ment these rotations using a state that is constructed using
a g + 1 qubit phase-gradient state:

29t

|¢fq+1>=m Z iy

Jj=0

(D15)

We can then use this as a resource state to implement a
single qubit rotation using incrementer gates as described
in Appendix A of Ref. [84], which requires ¢ — 1 Toffoli
gates to implement e~"#7/2* using the ¢ + 1 qubit resource
state in Eq. (D15).

Next note that for any value of At/k we can round
the desired rotation angle to At/k > 7 /2108 /201 Thys
we can choose the evolution time ¢ such that we, at
worst, need to halve the evolution time to ensure that
the rotation angle coincides with the angle returned by
the phase-gradient state. This will necessitate choosing
t € [ /4), /2], which corresponds in the best case sce-
nario to taking g = log(2k) ~ (1/2)log(32w*A%/€%) + 1.
The number of Toffoli gates needed is

_ 4m?a* log(327*A°8/€©)

Nrot = Nexp(q -1 pr

(D16)

The total number of ancillae needed by the algorithm
is given by the sum of the ancillae needed to store the
resource state |Y,41), the ancillae needed for the phase-
estimation step using the method of Ref. [16] and any
ancillae needed to implement the carry logic incrementer
circuit [85] and finally the N target qubits. These spatial
overheads sum to

Ngwits =N + (g + 1) +2[logr + 1)1 — 1 +¢
SN + 210g(Nexpr) + 2

<N +2log <%) +2 (D17)
The scaling of this algorithm is quartically worse than
the cost of applying qubitized phase estimation. These
comparisons suggest at first glance that randomized sim-
ulations are not a competitive technique for simulating
such dynamical systems. However, the results in Ref. [18]
suggest that incorporating randomness to simulate low-
importance terms and using conventional methods to simu-
late high-importance terms may be a much more profitable
approach to using randomized simulation methods for
challenge problems in chemistry.

The specific numbers for the Reiher ef al. and Li et al.
Hamiltonians can be found using Egs. (D16) and (D17)
together with the A values from the sparse Hamiltonian
simulation method. Since qDRIFT does not have quan-
tum costs that depend at all on the number of terms in
the Hamiltonian we take the smallest thresholds consid-
ered in Tables IX and X (5 x 107°) for the Reiher et al.
and Li et al. Hamiltonians, respectively. This corresponds
to A = 2183.6 and A = 1600.9, respectively. Taking chem-
ical accuracy of 0.0016 hartree as our target accuracy
then yields Ntoy = 1.8 x 10?® for the Reiher Hamiltonian
and Nror = 5.2 x 10%7 for the Li Hamiltonian. Further, the
Reiher Hamiltonian requires 168 logical qubits to simulate
within this accuracy whereas the Li Hamiltonian would
require approximately 211 logical qubits.

2. Confidence intervals for the eigenphases

Although the presence of (possibly) fat tails for the
phase-estimation distribution using qDRIFT prevents our
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analysis from yielding low-cost estimates for achieving a
fixed mean squared error in the estimate of the ground-
state energy for FeMoCo, such an estimate may not strictly
speaking be necessary. The reason is that one may instead
aim to obtain a confidence interval of small size, rather
than a small mean-square error. Alternatively one may
wish to consider repeated application of the quantum
algorithm with sampling of the measurement results. In
that case the root-mean square error is only important if
one is taking the average of the measurement results, but
one can instead use the Hodges-Lehmann estimator [106],
which can have small root-mean square error despite a
large root-mean square error in the individual samples.
One could also use classically obtained prior knowledge
about the ground-state energy to reject values that are out-
side the range of possible values, thereby reducing the
impact of the fat tails.

In the following we consider the complexity when aim-
ing to obtain a confidence interval of small size, then the
Hodges-Lehmann estimator. An innovation we introduce
here is a form of phase estimation that uses a Kaiser win-
dow to optimally yield a sample that is with 95% probabil-
ity within chemical accuracy of the ground state (although
other levels of confidence can also be found numerically
using the same strategy). To explain this method, we first
review the formalism of phase estimation.

In canonical phase estimation (as opposed to iterative
phase estimation) we have a state of the form

r—1
(@) =Y ey ). (D18)
j=0
The inner product with the phase state
A 1 ié
|¢>>—7rj2_;e- ) (D19)

where qAS is the estimator for ¢ (rather than an operator)
gives

. =L
@Gy (@) = Y ey, (D20)
Jj=0

Let us put

X =2/r—1+1/r (D21)

soxo=—1+1/randx,_; = 1 — 1/r, which gives

r—1

@IV (o)) = ! Zei@ﬁlfl/r)w—é)r/zwj‘

= D22
Vi & (D22)

Putting w = (¢ — ¢A>)r/2, we have
. : 1=t
—i(l-1/nw __ Xjw,
(Bly (@) e == j}zoje joy, . (D23)

Now you can define

Y =D Ydlx+1— (2 + /7], (D24)
J

which gives

(Bly (@) e =100 = % / dedy(x).  (D25)

Because 1/ (x) can be obtained by multiplying by a comb
function with spacing 2/r, |(q§|1/f(¢))| as a function of
o must repeat with spacing w7 (that is, it is effectively
convolved with a comb).

To consider the scaling in the limit of large 7, it is con-
venient to consider a continuous i that is nonzero in the
interval [—1, 1], which would give |(q3|w(q>))| that is non-
repeating in w, and consider the variance of w when using
|(¢3|1//(¢)) |> as a probability distribution. The quantity
((,ZEWI((ﬁ)) is equivalent to a Fourier transform of v (x), and
the standard function on the interval [—1, 1] that minimizes
the variance of its Fourier transform is

cos(mx/2) |x| <1,
) = / (D26)
0 |x] > 1.
The Fourier transform is
V8
T COS a)‘ (D27)
n? — 4o?
The variance of w can be found as
87 cos? w 72
do @ ————— = —. D28
f CO T 4 T 4 (D28)

In the case of finite » we note that w = (¢ — qAS)r/ 2, so the
variance in the phase estimate is divided by 7%/4, giving
T? /.

If we want to find the 95% confidence interval, we need
to solve

/g do? STEOS® o oe

—_— D29
a (% — 4w?)? (D29)
Numerically solving gives a = 2.863325, so the ratio of
the size of the 95% confidence interval to the standard
deviation is 1.822849, which is a bit less than the ratio for
Gaussians of 1.959964.
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If we want to do better, then we can use the Kaiser win-
dow. The square of the Fourier transform of the Kaiser
window on [—1, 1] is proportional to

sinh? va? — @?
e (D30)

where we can adjust « to optimize the size of the con-
fidence interval. Numerically solving gives the narrow-
est 95% confidence interval as a = 2.542853 with o =
2.179411.

Now, what we are interested in is the minimum cost
when we perform qDRIFT, and allow some probability
of error from the qDRIFT and some probability from the
phase estimation. With » the number of repetitions, the
error from qDRIFT is

2r2P. (D31)
Note that this is equivalent to taking £ = 1 in the nota-
tion of the previous subsection, which means that the
gDRIFT interval is the same as that used for phase esti-
mation. Therefore, for smaller 7, the error due to qDRIFT
is smaller, but the error in estimating the energy is scaled
by ¢, so smaller ¢ leads to larger error in the energy. The
total confidence interval of 95% can be obtained with

€ ginh? Va2 — »?
dp—————
0

a2 — w?

sinh? va? — @?
e (D32)

= (0,95 +rA2t2) /00 dp————.
0

o

The reason for the upper limit on the integral of e#r is that
the allowable error in the energy is €. Since E = ¢ /2¢, that
means the allowable error in the phase is 2¢z. Since w =
(¢ — (ﬁ)r/2, the allowable error in w is e€fr. The integral
on the right-hand side is for normalization. The expression
0.95 + rA%£ indicates that the confidence interval due to
the phase estimation needs an additional 7A?#> to account
for the additional probability of error from qDRIFT. The
probability of error outside the interval due to qDRIFT can
increase only by half of 2rA?#?, because increasing proba-
bility outside the interval by 7A?#* means that the probabil-
ity elsewhere needs to be increased by rA%#, resulting in
the total error in the probability distribution of 2rA%#>.

We then aim to solve for 7 = Ny, for any given f and «,
and minimize it. We set @ = efr and 8§ = rA%#, and find

e)%r = %2 (D33)
S0
A\a?
Nexp = 5 (D34)

Note that this shows Ny, is proportional to A*/€?, which
gives the scaling of the complexity up to logarithmic fac-
tors (from synthesizing rotations). Minimizing, we get the
minimum value of a?/8 as 304.744, with a = 3.05961,
a = 3.37625, and § = 0.0374053. We take ¢ = 0.0016, so
for Reiher with A = 2183.6 we get Ny, = 5.67598 x 10'4,
and for Li with A = 1600.9 we get Ny, = 3.05087 x 104,

Next, note that the rotations for the exponentials are by
an angle A, which can be performed more efficiently if At
is equal to 7 divided by a power of 2. From the above
At = €8/)a, so for the two cases we get AT equal to /28
times 0.693643 and 0.946117. We can round the first to
11/16, and the second to 7/8. That means the first would
need 31 Toffolis per step, and the second would need 30
Toffolis per step for the exponential. There will also be a
single Toffoli per step for the unary iteration on the control
register for the phase estimation, and another Toffoli for
using that control register to control between forward and
reverse evolution. Then we can minimize » over « for the
constant product At to give the following.

1. For Reiher, the minimum N, is 5.67874 x 10
for @ = 3.03125 with At = (11/16)7/2%¢, giving
a number of Toffolis 1.9 x 10'® and a number of
logical qubits at most equal to 270.

2. For Li, the minimum Ny, is 3.12299 x 10" fora =
2.8794 with At = (7/8)7 /228, giving a number of
Toffolis 1.0 x 10'® and a number of logical qubits
at most equal to 310.

These results are substantially better than those predicted
using the bounds in Campbell’s work. Assuming a 95%
confidence interval, the number of exponentials is given
for a probability of failure Py = 0.05 [see Eq. (45) in the
Supplemental Material of Ref. [52]]

27722

< -
Newp = 2e2P}

(D35)

which yields 4.0 x 10'8 exponentials for the Reiher Hamil-
tonian and 2.1 x 10'® exponentials for the Li Hamiltonian.
An alternative approach is to consider the case that
the Hodges-Lehmann estimator [106] is used instead of
the mean when combining results of multiple runs of the
quantum algorithm. The Hodges-Lehmann estimator is
based on taking all pairwise means of the samples, and
finding the median of those pairwise means. For M sam-
ples, M times the mean-square error of the estimate is
asymptotically given by (see p. 245 of Ref. [107])

1
12 [f a’a)pz(a))]2

(D36)

for symmetric probability distribution p (w). A reasonable
goal in the case of qDRIFT is for this quantity to be
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equal to €2, rather than the variance, because this quantity
will correspond to the asymptotic variance under multiple
samples. For the case of the probability distribution

87 cos? w

242 (B3

plw) =

the asymptotic value for the Hodges-Lehmann mean-
square error is 2.38991, which is about 3% below the
mean-square error for an individual sample of 72 /4.

In order to bound the effect of gDRIFT error on the
Hodges-Lehmann estimator, when modifying the proba-
bility distribution the maximum reduction in f dw p*(w)
will be reducing the maximum probability, while increas-
ing the probability for large values of w by very small
amounts over a wide region. It should be noted that this
assumes that the error is symmetric. Calling the modified
probability distribution ¢, we therefore need

! s <€, (D38)
1222 [ [ dow g*(w) ]

while
/ do |p (@) — g(w)| < 2rA°7. (D39)
The choice for r is then
)\'2
r (D40)

" 6e2[[ dog2(@)] [ dolp(@) - q(@)]

The optimal choice of ¢ is to truncate the probability distri-
bution at 0.648057 times the maximum of p, which gives
the multiplying factor on A?/e? as 35.5192; that is,

2

s
Nexp = 35.5192=.. (D41)
€

Therefore, with this estimate, we have the same A% /€2 scal-
ing as for a confidence interval, but a considerably smaller
constant factor. In a similar way as for the confidence inter-
val, we can adjust the parameters so that Az is a convenient
number for the rotations.

1. For the Reiher case we find the truncation can be
adjusted to 0.683740, giving At = 7/2?® and r =
6.7 x 10'3. The rotations take 25 Toffolis, so there
are 1.8 x 10" Toffolis for the simulation and 250
qubits.

2. For the Li orbitals, choosing a truncation 0.645979
gives At = 37/2%7 and r = 3.6 x 10'3. The rotation
takes 26 Toffolis, so the total cost is 1.0 x 10!
Toffolis for the simulation and 296 qubits.

In this approach there is about a further order of magnitude
improvement over the resource estimate based on the con-
fidence interval. This is because it is allowing considerably
larger error due to the qDRIFT, on the assumption that it
can be eliminated by sampling. This estimate of the com-
plexity does assume that the qDRIFT error is symmetric,
so is not completely rigorous.

APPENDIX E: DIRECT QUBITIZATION OF THE
STANDARD TENSOR HYPERCONTRACTION
REPRESENTATION

In this Appendix we discuss the cost of quantum sim-
ulation when qubitization is applied directly to the tensor
hypercontraction representation of Eq. (4). While the result
is also an algorithm with gate complexity O(NA/¢), the
associated A is much larger than the A for the method
described in the main body of the paper. We include this
Appendix for completeness. Our algorithm uses qubitiza-
tion as described in Sec. III A of the main paper. Here, we
describe how one would implement SELECT and PREPARE
oracles. As we show, each of these primitives has complex-
ity no more than O(N); thus, consistent with Eq. (23), the
overall complexity is no more than O(NA/€).

1. Specification of oracles for qubitization and
implementation of Hamiltonian selection oracle

To specify the requirements for the qubitization ora-
cles that we query to block encode the THC Hamiltonian,
we can use a similar application of the Jordan-Wigner
transformation as in Appendix A to give

| NJ2
= D) Z Z TqOpao
oe{tl}p.g=1

N/2

+ % Z Z qu”quaQrsﬂ s (El)

a,Be{t ) p.g.rs=1

where 0,4 is as defined in Eq. (A4). For THC, we then
replace V), with the approximation

M
Gpars = D XX G A
nv=1

(E2)

That gives a A value of

N/2 N/2

A= Z qu"’Zqurr
p.q=1 r=1
N2 M

1
()., (w) ), )
T ID DD DR A Pl B

psg.rs=1 p,v=1
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The state to be prepared is of the form This is a preparation on two registers, but this time there is
not symmetry.
N/2 For the first preparation, the steps to be performed are as
0y Ll 67) 1p) Ig) 10} 10) [0) [0) [0) |0) |0} [0) follows.
pa=1
1. Rotate the first qubit to give the appropriate relative
N2 M (u) (u) W, weighting between the one- and two-body terms.
S Xs 2. For 1 on the first qubit, prepare an equal super
1 . , -
IO 7

position over u and v for 1 < u <v <M, or for
0 on the first qubit prepare an equal superposition

psgsrs=1 p,v=1

X |9f;u> L) [v) |9;§M)> lp) |9<§M)> lg) |9r(v)> |7) |9;U)> |s) . with the restrictions 1 < u < v < N/2. That can

(E4) be performed using inequality tests and amplitude

amplification in a similar way to that explained in

Here GPZ gives the sign of 7" as before, 0}5“ ) gives the sign Appendix B. The difference is that instead of just

using the inequality test v < M, you use a controlled
inequality test of v < N /2 for 0 on the first qubit, or
v < M for 1 on the first qubit. The extra inequality
tests increase the Toffoli cost to 8ny, + 26, + O(1),

N2 where b, are the bits of precision for rotation on an

/ 1, 0 )y ancilla and ny, = [log M.

Mg:l s |0W e v} Z %11 3. Compute u(u — 1)/2 + v, which can be performed
with complexity n3, + ny; — 1. In the case of 0 on

%2: N w0y the first qubit (for the one-body term), add M (M +
Ixq 116, 19)

of X,ﬁ”), and Qﬁv gives the sign of £,,. The key thing to
note is that the second part of this state, corresponding to
the two-body terms, can be factorized as

1)/2 to yield a contiguous register. That addition has
complexity 2ny, + O(1).
4. Perform a QROM using this contiguous register to

N/2 N/2
/|Xr(v)| 100 |r) /|XS(V)| |0(v) ) |s) alt values of u and v, keep probabilities, and two
values (one is the alt value) of the sign Qﬁv. The

(E5) output size for the QROM is

The key feature of this state that makes it easier to prepare
is that it factorizes. One may therefore start by preparing
a state on u and v, then controlled on w and v prepare the

states in brackets. where R are the bits of precision for ¢,,. The
complexity of the QROM is

by =2ny + 8 +2, (E8)

2. Using the structure of tensor hypercontraction to
implement the qubitization state preparation

In preparing the overall state in Eq. (E4), one can first ’7]4_4“—‘ + b (ke — 1), (E9)
prepare the state on the first four registers, with amplitudes k¢

proportional to /|7 g for the one-body term and /||
for the two-body term. That is, we first prepare the state

where
N/2 |§'
0y "" 65 1p) 1g) + 11) Z Al 165 1) V). Le=M(M+1)/2+N*/8+N/4  (E10)
Pg=1 =1
(E6)
) . and k; must be a power of 2.
After this preparation, for the two-body term ﬂggge'd by 1 5. Perform an inequality test between the keep value
on the first qubit, we need to perform four applications of and another register in an equal superposition, with
the mapping cost .
N2 6. Perform a swap between u, v and the alt values con-
trolled on the result of the inequality test, with cost
log(N/2) [ 16 >
PREPARE, |0)"¢ ) = Z 1%p 116, ey - 2nys. The signs can be applied with Clifford gates.
(ET) 7. Apply a swap between the n and v registers con-

trolled by a qubit in a [+) state, with cost n;,.
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The total complexity is then

L
Cp, = {k—ﬂ + beke +nyy + 12ny + by + Ollog(1 /€],
(E11)

where €, is the accuracy required for the rotation on the
first qubit. In inverting the state preparation, all costs are
the same except the QROM cost, which is reduced to give
a total cost

ky

+ O[log(l/erot)]~

L§ ’
Cpp = {——‘ + Kk, +ny, + 14ny + b, + R
(E12)

For the preparation given in Eq. (E7), the considerations
are similar, except we do not take advantage of symmetry,
so L, = MN /2. There the preparation needs a QROM to
run through all values of p and w, and it is convenient to
use the QROM for two registers as in Appendix G. The
total Toffoli costs are as follows.

1. Prepare an equal superposition over N /2 basis states
in the p register, with cost 3ny — 3n +2b, — 9,
where 7 is the largest number such that 27 is a factor
of N/2, and b, is bit of precision for rotation on an
ancilla.

2. Because we need only to output alternate values of
p (and not p), the output size for the QROM is

by =ny +R. (E13)

Therefore, we can apply the QROM with cost (using
the method for separate registers in Appendix G)

ﬂ i b, (k, 1k 1 El4
le 2kX2 + X( x1hx2 — ) ( )

. Perform the inequality test with cost R.

4. The controlled swap does not need to touch the
register with wu, because we are just preparing a
superposition over p for a given u. Therefore, the
controlled swap has cost ny.

W

The total costs are then

Cp, = M N + b,k 1k, +3 3
Py = le 2k)(2 xMx17x2 ny n
+2b, +O(1) (E15)

for preparation and

M N ;o
CP; = |Va—‘ |7FX2—‘ +kX1kX2 +bX + 3ny — 377
+2b, 4+ O(1) (E16)

for inverse preparation. It is also possible to combine
the preparation of some of the equal superposition states
together, which would give slightly different costs. We do
not analyse that here, because the method that is best tends
to depend on the particular example.

We can now combine all of the Toffoli costs. Clearly, we
need to prepare and unprepare the y state four times and
prepare and unprepare the ¢ state once. Thus the overall
cost of preparation and unpreparation is

Cp+ Cpt = Cp, + Cpt +4Cp, +4C1. (E17)
¢ X

For the total cost, there will also be 4N for the cost
of implementing the SELECT operation, and 2n), + 4ny +
58 + O(1) for reflections on the control registers to con-
struct the overall step of the quantum walk. There are
2ny + 4ny + O(1) qubits that the state is prepared on,
and we need to reflect on the 58 qubits used for equal
superposition states as well.

The logical qubit costs are as follows, where we omit a
number of single ancillas (about 20) for simplicity.

1. The 2[log(Z + 1)] — 1 qubits for the control regis-
ter for state preparation and unary iteration on that
register.

2. The N system registers.

3. For storing u, v, p, g, r, s there are 2ny, + 4ny qubits
needed.

4. The 5R from registers that are used as comparison
registers for the inequality tests in the coherent alias
sampling.

5. The phase-gradient state has b, bits.

6. The contiguous register for the ¢ state preparation,
which has [log L, qubits.

7. The output of the QROM in the ¢ state preparation
uses b, bits.

8. The QROM in the ¢ state preparation uses another
by (k; — 1) + [log(L; /k;)] temporary qubits. At
this point the number of qubits used would normally
be at a maximum, and one can find the number of
qubits needed by adding this number of qubits to the
numbers in the other items listed above. Otherwise,
one would ignore this cost, and add the costs given
below.

9. There are 4b, qubits needed for the outputs of the
four QROMs for the four y-state preparations.

10. There are another b, (k, 1k, — 1) 4 [log(M /ky1)]
[log(N/2k,2)] temporary qubits used in the final
QROM for x-state preparation.
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Adding these numbers of qubits gives us

2log(Z + )1+ N +2ny + 4ny + 58 + b, + [log L, ]
+ by + O(1) + max b, (k; — 1) + [log(L; /k:)1, 3b,
+ bykyikya + [log(M /ky1)1Tlog(N /2ky2)1]- (E18)

For realistic parameters, the first expression in the max
should be taken, corresponding to the largest number of
qubits being used in the ¢-state preparation.

3. Comparison of A associated with direct qubitization
and nonorthogonal qubitization

Here we present numerical data for the two FeMoCo
Hamiltonians, which compare our proposed use of THC
[Eq. (13)] against the naive use of THC as defined in
Eq. (9) and described in this Appendix. As mentioned in
the main text, the use of Eq. (9) results in the two-body
A, 1.e., Ay, that is a few orders of magnitude greater than
that of Eq. (13). In particular, we compare the values of
Egs. (13) and (9) as a function of M. As shown in Fig. 19,
significant reduction in A, is observed going from Eq. (9)
to Eq. (13). Furthermore, in Fig. 20, we illustrate the same
point for hydrogen chain and H4. Compared to the naive
approach, we not only achieve more than an order of mag-
nitude reduction in A, but also achieve a reduced scaling
of X, with respect to system size and the number of basis
functions. Specifically, we note that the empirical scal-
ing based on the linear fits on a log scale suggests that
we achieve N3¢ to N/;'¢ size scaling reduction in hydro-
gen chain and N*% to N> basis scaling reduction in Hy.
We argue that the use of THC in qubitization is only suc-
cessful when utilizing its nonorthogonal form as proposed

o ¢ oo o ¢ 0 —0—0—°
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FIG. 19. Plots of A, versus M for two FeMoCo Hamiltoni-
ans (Reiher and Li) where A, is computed by Eq. (9) (labeled
“Naive”) and Eq. (13) (labeled “Our work™). These numerical
values are based on the THC factors that produced the numerical
data in Tables IV and V.
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FIG. 20. Plot of A, versus Ny for hydrogen chain and versus
N /2 for Hy, where 1, is computed by Eq. (9) (labeled “Naive”)
and Eq. (13) (labeled “Our work™). These numerical values are
based on the THC factors that produce the numerical data in
Fig. 9. R? is greater than 0.99 in all fits. Note that the slope of
“Our work” in (a) is slightly different from what is reported in
Table VII because (a) uses only A, whereas Table VII is based
on total A.

in this work. This is one of the key observations in our
work.

APPENDIX F: COMPUTING CONTIGUOUS
REGISTERS

In this Appendix we show the formula for computing
contiguous registers. This step is used in state preparations
for both the main algorithm of this paper as well as a mod-
ification we introduce to the double factorization of von
Burg et al. [10], which is not discussed in their paper but
which we believe is required for their algorithm to execute
correctly. The need for this is first discussed in Eq. (29) of
this paper. For contiguous registers we need to compute

pip+1)/2+q, (F1)

where p and g have the same number of bits, which we
denote n. We show that this formula can be computed using
n? + n — 1 Toffolis, considerably simplifying the analysis
of the complexity. In this Appendix we take p and ¢q to
start from O rather than 1 as is used in the discussion of the
Hamiltonians. That is why the formula is p(p + 1)/2 + ¢
rather thanp(p — 1)/2 4 q.
Writing p and ¢ in terms of their bits

n—1 n—1
p=Yp2.  q=> ¢2,
Jj=0 Jj=0

(F2)
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we have
n—1 n—1
p’= pip2 ™
j=0 k=0
n—1 n—1j—1
= 221 +2 Z Dj i TF
j=0 j=0 k=0
2n—3 L(e-1)/2]
pi2¥ + Z 240 peps (F3)
Jj=max(0,{—n+1)

where | (¢ — 1)/2] is to ensure that £ —j > j. Breaking this up into odd and even gives

n—2 1 n—1 -1
pP=po+ Z 22+ Z Pa—jpj + ZZH pet Z Pa-1-pj | - (F4)
=1 j=max(0,2¢—n+1) =1 j=max(0,2¢—n)
That gives
n—1 n—2 -1 n—1 £—1
pP+p =2p0+ Z 2°py + Z 22 Z DP2—jpj + Z 2| pe+ Z D2—1-pj | - (F5)
=1 =1 Jj=max(0,2¢—n+1) =1 Jj=max(0,2¢—n)
Dividing by 2 then gives
-1 n—1 e—1
pp+1)/2=po+ sz 'pe + Zz” S i+ Y 2 pe+ Y. pucip | (F6)
=1 Jj=max(0,2¢—n+1) =1 J=max(0,2¢—n)
Adding g gives
n—2 -1
P(P+1)/2+CI—22 qe +Po+22€ e+ 2 " pun +22M "o+ Z D2e-1-jP;
=0 £=1  j=max(0,2¢—n+1) j=max(0,2¢—n)
n—2
=qo+po+pi+ Y24 +per) +2"gu
=1
n—2 -1 n—1 e—1
+22% X pup ) 2 pet ) P (F7)
(=1 Jj=max(0,2¢—n-+1) (=1 Jj=max(0,2¢—n)

The next steps depend on whether # is odd or even. First, for n even, n — 1 = 2¢ — 1 for £ = n/2. Then we can write

n—2 n/2—1 -1
pP@+D/2+qg=qo+po+p1+ Y 2 +pe) +2" g+ Y 2D pups
o=1 =1 j=0
n/2—1
+ Z 2% Z PP + Z 27 pe +sze 1-Pj
t=n/2  j=2t—n+1

n/2—1 n—1 -1

+2" 1 pup + Z Pn-1-0; | + Z 22 pe + Z DP2e-1-Dj | - (F8)
j=0 t=n/2+1 j=2t—n
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This can be written as

pp+1D/2+q=q0+po+p (F9a)
n/2—1 -1
+ Z 22 qoemt + pae + pe + ZPzz-l—ij (F9b)
=1 j=0
n/2—1 -1
+ Z 2| g2 + pres1 + Z P2u—iPj (F9¢)
=1 j=0
n/2—1
+ 2" qur Ao+ Y Puc1ip) (F9d)
j=0
n—2 £—1
+ 2 Y pup (F9¢)
{=n/2 j=20—n+1
n—2 -1
+ Z 224 pegr + Z P2e—jDj+1 (F9f)

t=n/2

The last line has shifted £ to simplify the following discus-
sion. This expression has split into lines as follows.

1. In Eq. (F9a) three bits, which are added together.

2. In Eq. (F9b) bits, which are added together and mul-
tiplied by odd powers 22¢~! below 2"~!. There are
£ + 3 of these bits to be added together.

3. In Eq. (F9c¢) bits, which are added together and mul-
tiplied by even powers of 22¢ below 2"~!. There are
£ + 2 of these bits to be added together.

4. In Eq. (F9d) there are n/2 + 2 bits to be added
together and multiplied by 2"~!.

5. In Eq. (F9¢) there are n — £ — 1 bits to be added
together and multiplied by even powers 22¢ above
271 yp to 224,

6. In Eq. (F9f) there are n — £ bits to be added together
and multiplied by odd powers 2%*! above 2"~ up
to 22773,

Now we can apply the approach used for bit sums in
Appendix A of Ref. [18]. We separate the bits into those
that are multiplied by 1, 2, 4, 8, and so on. We add triples
of bits at each level using the adder in Fig. 4(b) from
Ref. [85]. Adding each triple of bits takes one Toffoli,
reduces the number of bits at that level by 2, and increases
the number of bits at the next level by 1. So, if there are
m bits at one level, then the number of Toffolis needed for
that level is [m/2], and there are an additional [m/2] carry
bits at the next higher level.

Here the first level, those bits multiplied by 1, has only
three bits, meaning one Toffoli is needed, and there is one
more carry bit at level 2. For level 2, £ = 1, and there are

j=20—n+1

(

£ 4+ 3 = 4 bits. Adding the carry bit, there are now 5 bits,
which take 2 Toffolis to sum together, and give another 2
carry bits for the next level, 3, where the bits are multiplied
by 22. For level 3 with £ = 1, there are £ 4 2 = 3 bits, and
including the 2 carry bits gives 5. These 5 bits can again
be added together with 2 Toffolis, giving 2 Toffolis for the
next level.

In general, for the lines in Eq. (F9a) to Eq. (F9f) we have
the following costings.

1. InEq. (F9a) the three bits are added with one Toffoli,
giving one carry bit.

2. In Eq. (F9b), for term £, we have £ carry bits from
the previous level. We can see this for the case £ =
1 because there was one carry bit from adding the
triple of bits from level 1. For £ > 1, we have the
number of carry bits from Eq. (F9¢) with term £ — 1,
which gave ¢ carry bits. The number of bits to be
added together is therefore £ + 3 + £. These bits can
be added together with cost [(2¢ +3)/2] =£+1
Toffolis and the same number of carry bits.

3. In Eq. (F9c¢) for term ¢, we have £ + 1 carry bits
coming from Eq. (F9b) with the same value of £.
The number of bits is £ + 2 plus the £ + 1 carry bits,
giving a total of 2¢ 4 3. These can again be added
with cost £ + 1, giving £ + 1 carry bits.

4. In Eq. (F9d) there are n/2 + 2 bits, plus n/2 carry
bits from Eq. (F9c), since the last term there has
¢ =n/2 — 1. That gives a total of n+ 2 bits to

add, which can be added with n/2 + 1 Toffolis and
giving the same number of carry bits.
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TABLE XV. Here we show how to compute a contiguous register for an even number of bits n = 6. The entries pg, pop1, and so
forth show entries with different bits. The entries with x show bits that are carried from lower levels. The first column shows the level
number, the second column shows the multiplying factor (power of 2), the third column shows which line from Eq. (F9a) to Eq. (F9f)
this corresponds to, the fourth column shows the £ value from that equation, and the last column shows the number of Toffolis. The py
shows identical bits that are added with no cost, and the resulting bit is shown in blue in the next level as py.

Level  Factor  Line of Equation ¢ q p Po 1 2 D3 P4 Ps Toffolis
12 21 x

11 210 X X 1
10 29 (Fo9f) 4 paps  ps X X 2
9 28 (F9e) 4 D3Ds x X X 2
8 27 (F9f) 3 s DP3pa Pa x  x o x 3
7 26 (F%e) 3 PIPs  Dabs X X X X 3
6 2 (F9d) qs pops  Pwpa Pap3s D3 x x X 4
5 2 (F9c) 2 g4 ps  ppa pip3 X x x 3
4 2 (F9b) 2 g3 ps pps PPz P2 x x 3
3 2 (F9c) 1 @ ps pp2 X x 2
2 2 (F9b) 1L ¢ p> popr P X 2
1 1 (F9a) g0 P Po 1
0 NA pé pe

5. In Eq. (F9e) there are n — £ + 1 carry bits to be
included. This can be seen for £ = n/2, because
there were n/2 + 1 carry bits from Eq. (F9d). For
¢ > n/2, it can be seen because there are n — £ + 1
carry bits from the sixth line by using n — ¢ with
¢/ = £ — 1. That gives a total number of bits 2(n —
£), which can be added together with n — £ Toffolis
and giving n — £ carry bits.

6. In Eq. (F9f) there are n — ¢ bits coming from the
fifth line. That gives a total number of bits 2(n — £),
which can be added together with n — £ Toffolis and
giving n — £ carry bits.

7. Note that for the final term from Eq. (F9f) with £ =
n — 2, the number of carry bits is n — (n — 2) = 2.
These two bits can be added together with one more
Toffoli gate.

n—2

Now that we have quantified the number of Toffolis at each
level, we can add them together to give

n/2—1 n/2—1
42 ) @+ D+ > @+ +n/2+1
=1 =1
n—2
+2) m—O+1=nm+3)/2—1  (F10)
l=n/2

Toffolis. There are also n(n — 1)/2 Toffolis needed
to compute all of the products p;p; for j #k.
Adding those Toffolis gives the total n*> +n—1. An
illustration of the case of even n=6 is given in
Table XV.

Now we consider the case for n odd. We can write

PO+D/2+q=qo+po+pi+ Y 2 +per) +2" gui+

=1
(n—3)/2 -1

+ Y 2 pup +
=1 j=0

(n—1)/2

+ Z 22! Pe-i-zpzz 1-Dj

(n=3)/2

Zn ! Z Pn— ljpj + Z 22@ Z P2e jpj

L=(n+1)/2 j=20—n+1

n—1 -1

Z 221 | py Z P2e-1-jDj

{=(n+1)/2 j=2C—n

(F11)
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As before, we rewrite giving

pp+1/24+q9=q0+po+p (F12a)
(n—1)/2 -1
+ Z 22 paect + pae 4+ pe + ZPZZ—I—jpj (F12b)
=1 j=0
(n—3)/2 -1
+ Z 22| 20 + paes1 + szzf;pj (F12¢)
=1 j=0
(n—3)/2
+2 g+ D pucips (F12d)
j=0
n—1 -1
+ Z 2 e+ Z D2e—-1-jDj (F12e)
t=(n+1)/2 j=2t—n
n—2 -1
+ > 2 Y puan (F126)

e=(n+1)/2

Now the lines are as follows.

1

In Eq. (F12a) three bits are added together.

. In Eq. (F12b) bits, which are added together and

multiplied by odd powers 22¢~! below 2"~!. There
are ¢ + 3 of these bits to be added together.

. In Eq. (F12c) bits, which are added together and

multiplied by even powers of 22¢ below 2"~ !. There
are ¢ + 2 of these bits to be added together.

In Eq. (F12d) there are (n + 1)/2 bits to be added
together and multiplied by 2.

In Eq. (F12e) there are n — £ + 1 bits to be added
together and multiplied by odd powers 22¢~! above
21 yp to 22773,

In Eq. (F12f) there are n — £ — 1 bits to be added
together and multiplied by even powers 22 above
21 yp to 224,

The addition works as follows.

1.

2.

In Eq. (F12a) the three bits are added with one
Toffoli, giving one carry bit.

As before, in Eq. (F12b) there are £ carry bits from
the previous level, giving 2¢ + 3 terms, which can
be added together with £ + 1 Toffolis and giving £ +
1 carry bits.

As before, in Eq. (F12c¢) for term £ there are £ +
1 carry bits from the previous level and £ + 2 bits
giving a total of 2¢ 4 3, so the number of Toffolis
and carry bits are £ + 1.

In Eq. (F12d), this time there is carry from
Eq. (F12b) with £ =(m—1)/2, so there are

j=20—n+1

(

(n+ 1)/2 carry bits combined with the (n 4+ 1)/2
bits already in this term, for a total of n 4 1 bits to
sum. the number of Toffolis and carry bits to the next
level is therefore (n + 1) /2.

In Eq. (F12e), this time there are n — £ + 1 bits
carried from the previous level. This can be seen
for the first term with £ = (n 4 1)/2 because there
are (n+ 1)/2 bits carried from Eq. (F12d). For
¢ = (m+1)/2 there are n — ¢ bits carried from
Eq. (F12f) with ¢ = ¢ — 1. Thus the total number
of bits to be summed is 2(n — £ + 1), which can be
done with n — £ + 1 Toffolis and carry bits.

. In Eq. (F12f), there are n — £ 4+ 1 carry bits from

Eq. (F12e), plus n — £ — 1, for a total of 2(n — £).
These may be summed with n — £ Toffolis and carry
bits.

. For the last term on Eq. (F12e) with £ = n — 1, there

are n—{+1=n—(n—1)+1=2 bits to sum,
which takes one more Toffoli.

The total number of Toffolis is therefore
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(n—1)/2 (n—3)/2
I+ Y +D+ Y E+h+n+1)2
=1 =1
n—1 n—2
+ ) =D+ Y -0+
l=(n+1)/2 {=(n+1)/2
=nn+3)/2—1. (F13)
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TABLE XVI.

Here we show how to compute a contiguous register for an odd number of bits » = 7. The entries py, pop1, and so

forth show entries with different bits. The entries with x show bits that are carried from lower levels. The first column shows the
level number, the second column shows the multiplying factor (power of 2), the third column shows which line from Eq. (F12a) to
Eq. (F12f) this corresponds to, the fourth column shows the £ value from that equation, and the last column shows the number of
Toffolis. The pg shows identical bits that are added with no cost, and the resulting bit is shown in blue in the next level as py.

Level Factor Lineofequation ¢ ¢ p Po 2 D3 P4 Ds Do Toffolis
14 213 X

13 212 x X 1

12 211 (F12e) 6 pPsPe  Pe X X 2

11 210 (F12f) 5 DaPs X X % 2

10 29 (F12e) 5 D3P PaDs  Ds X X X 3

9 28 (F12f) 4 DaPs  P3Ds x x X X 3

8 27 (F12e) 4 PiPs  DP2Ds  P3Da P4 X X X X 4

7 26 (F12d) 6 pops  pps paps X x x X 4

6 2° (F12b) 3 g5 ps pops PwPs D3 D3 x x X 4

5 2 (F12¢) 2 g4 ps pwps pips X x x 3

4 2 (F12b) 2 g3 ps pws pip2 P2 x x 3

3 22 (F12c) 1 g ps  pop X X 2

2 2 (F12b) 1 ¢ p» pp1 D X 2

1 1 (F12a) 9 p1 Do 1

0 NA » pe

This is the same formula as before, so adding the n(n — it is done [N;/k; ]| times, the overall cost is

1)/2 Toffolis needed to compute the products p;py forj #

k again gives a total cost of n> +n — 1. Thus we see that, N Ny 1 G1)
regardless of whether the number of bits is odd or even, ky k> ’

the number of Toffolis is n> +n — 1. An example for odd
n = 7 is given in Table XVI.

APPENDIX G: QROM APPLIED TO TWO
REGISTERS

When performing QROM on two registers where one
is iterating through all values of both registers, it is possi-
ble to perform the QROM efficiently without computing a
contiguous register as was done in prior work. Say we have
registers with variables x and y, which take N; and N, dif-
ferent values, and so can be represented on n; = [log V]
and n, = [log N, ] bits. We choose k| and k, to be powers
of 2.

Then for the QROM, we iterate through [N /k;] values
on the most significant n; — log &y bits of x, and [N, /k;]
values on the most significant n, — log k, bits of y. For
each of those values, we give the QROM output for all
combinations of values on the log k| less-significant bits of
x and the log &, less-significant bits of y. Then the last step
is to perform swaps controlled by the less-significant bits
of x and y to move the correct data to the output.

For the complexity of this procedure, the complexity of
the iteration through the [N /k;] values on the most signif-
icant bits of x is [N, /k; ] — 2, 0r [N;/k; | — 1 when it needs
to be controlled by another qubit. For each of those values
on x, it is used as a control for iterating through [N, /k;]
values on the most significant bits of y. Since that iteration
is done in a controlled way, its cost is [N, /k;] — 1. Since

Adding to that the cost of the iteration on x gives a cost of

1)) -+

(G2)

where the —2 is if the overall QROM does not need to be
made controlled. We omit the —2 for simplicity, and con-
sistency with the way these costs for QROM are usually
quoted.

Then the cost of the controlled swaps at the end is iden-
tical to what it usually is for the QROM, so for output size
b it will be b(kiky — 1). That gives a total cost (omitting

the —2) of
N Ny
— || = b(kiky — 1).
lrkl—Hrkz—‘-F(lz )

The cost here should be compared to a cost for the case of
a contiguous register

(G3)

{N‘ N2 (G4)

—‘ + bk —1),

with k = kik,. The cost using a contiguous register will
be slightly less, but the difference will often be less than
the cost of computing a contiguous register. For exam-
ple, say N; = 350, N, = 72, and b = 20. Then with k; = 8
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and k, = 4, the cost of the QROM is decreased by only 4
using a contiguous register, but the cost of computing the
contiguous register is 17.

The number of ancillas is increased to

[og(N1/kD)1 + [log(N2/k2) T + bkiky.  (G5)

That is because there are [log(N;/k;)] required for iter-
ation on the first register and [log(N,/k;)] for iteration
on the second register, as well as bk k, for the outputs.
In practice this usually only needs one more ancilla than
using a contiguous register, which is less than would be
needed to store the contiguous register itself.

In the same way, in uncomputing the QROM where it
is necessary to perform a phase fixup, there is the same
change to the cost for outputting the data, so the cost

becomes
N N>
— || = kiky. G6
Lﬂ—sz—‘—i_ g (Go)

In the example with N; = 350, N, = 72, but taking k| =
16, k, = 8, the cost is increased only by one Toffoli over
the cost for a contiguous register. The number of ancillas
needed is

[log(N1/k1)1 + [log(N2/k2)1 + kik,. (G7)
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