
Snowboard: Finding Kernel Concurrency Bugs
through Systematic Inter-thread Communication

Analysis
Sishuai Gong
Purdue University

USA

Deniz Altınbüken
Google Research

USA

Pedro Fonseca
Purdue University

USA

Petros Maniatis
Google Research

USA

Abstract
Kernel concurrency bugs are challenging to find because
they depend on very specific thread interleavings and test in-
puts. While separately exploring kernel thread interleavings
or test inputs has been closely examined, jointly exploring
interleavings and test inputs has received little attention, in
part due to the resulting vast search space. Using precious,
limited testing resources to explore this search space and
execute just the right concurrent tests in the proper order is
critical.
This paper proposes Snowboard a testing framework

that generates and executes concurrent tests by intelligently
exploring thread interleavings and test inputs jointly. The
design of Snowboard is based on a concept called poten-
tial memory communication (PMC), a guess about pairs of
tests that, when executed concurrently, are likely to perform
memory accesses to shared addresses, which in turn may
trigger concurrency bugs. To identify PMCs, Snowboard
runs tests sequentially from a fixed initial kernel state, col-
lecting their memory accesses. It then pairs up tests that
write and read the same region into candidate concurrent
tests. It executes those tests using the associated PMC as a
scheduling hint to focus interleaving search only on those
schedules that directly affect the relevant memory accesses.
By clustering candidate tests on various features of their
PMCs, Snowboard avoids testing similar behaviors, which
would be inefficient. Finally, by executing tests from small
clusters first, it prioritizes uncommon suspicious behaviors
that may have received less scrutiny.

Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. Copyrights for third-
party components of this work must be honored. For all other uses, contact
the owner/author(s).
SOSP ’21, October 26–28, 2021, Virtual Event, Germany
© 2021 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-8709-5/21/10.
https://doi.org/10.1145/3477132.3483549

Snowboard discovered 14 new concurrency bugs in Linux
kernels 5.3.10 and 5.12-rc3, of which 12 have been confirmed
by developers. Six of these bugs cause kernel panics and
filesystem errors, and at least two have existed in the kernel
for many years, showing that this approach can uncover
hard-to-find, critical bugs. Furthermore, we show that cover-
ing as many distinct pairs of uncommon read/write instruc-
tions as possible is the test-prioritization strategy with the
highest bug yield for a given test-time budget.

CCS Concepts: • Security and privacy→Operating sys-
tems security; • Software and its engineering → Con-
currency control; Software testing and debugging.

Keywords: Kernel concurrency bug, Operating systems se-
curity, Software testing and debugging, Concurrency pro-
gramming
ACM Reference Format:
Sishuai Gong, Deniz Altınbüken, Pedro Fonseca, and Petros Mani-
atis. 2021. Snowboard: Finding Kernel Concurrency Bugs through
Systematic Inter-thread Communication Analysis. In ACM SIGOPS
28th Symposium on Operating Systems Principles (SOSP ’21), October
26–28, 2021, Virtual Event, Germany. ACM, New York, NY, USA,
18 pages. https://doi.org/10.1145/3477132.3483549

1 Introduction
Kernel developers employ fine-grained concurrency to achieve
high performance in the multi-core era [10, 34, 73]. This in-
cludes implementing parallel algorithms [39, 45, 59, 98], re-
ducing locking granularity [55, 88], and adopting optimistic
concurrency-control schemes (e.g., RCU [46, 48, 68]). How-
ever, these optimizations are notoriously error-prone and
easily lead to hard-to-find concurrency bugs [14, 17, 81].

In practice, kernel concurrency bugs have serious impact
on users [33, 42, 89] by causing kernel panics [36, 37], data
loss [59] and enabling privilege escalation attacks [11, 16, 74].
Furthermore, a recent study [54] shows attackers can reliably
trigger concurrency bugs from user-space—bugs that rarely
happen by accident can happen almost deterministically by
adversarial attacks. Thus, finding concurrency bugs is crucial
for building a reliable and safe kernel.

https://doi.org/10.1145/3477132.3483549
https://doi.org/10.1145/3477132.3483549

Automatically finding kernel concurrency bugs is particu-
larly challenging for several reasons. First, kernels are huge—
the Linux kernel currently approaches 30million source-code
lines [53]—and have complex interfaces with more than 400
system calls [49]. Second, concurrency bugs typically require
the execution of at least two threads with very specific inputs.
Third, concurrency bugs are only triggered on specific thread
interleavings, requiring automated techniques to explore the
vast interleaving space. Hence, the input space is at least
quadratic in the number of sequential tests because at least
two threads must be tested together, and exponential in the
number of instructions that can be interleaved in each test.
Exhaustive search is intractable. Consequently, the problem
warrants a systematic concurrency-testing approach that
navigates the search space intelligently.
These challenges limit fuzzing [31, 44] and stress test-

ing [3] effectiveness at finding inputs that expose hard-to-
find kernel concurrency bugs. In particular, common ker-
nel fuzzers, such as Syzkaller [31], are mostly designed to
generate test inputs for sequential execution. These fuzzers
generally use straightforward approaches, such as providing
the same input to several threads or splitting inputs across
threads, to generate concurrent tests, without control over
thread interleavings. A naïve algorithm extension could ran-
domly pair distinct sequential tests into a concurrent test, but
given the search-space size, such non-targeted approaches
would have a low chance of finding hard-to-hit bugs.

Different approaches have been proposed to test kernels
for concurrency bugs dynamically but have limitations. For
example, tools relying on static data-race analysis are impre-
cise and miss concurrency bugs that are not caused by data
races (e.g., atomicity violations) [43, 62, 92]. Other tools only
focus on exploring the interleaving space, requiring manual
or ad-hoc input generation [27] (see §7). In practice, none of
the existing tools consider all classes of kernel concurrency
bugs while also exploring the input and interleaving search
spaces jointly and interdependently.
This paper proposes Snowboard, a testing framework

that systematically generates and prioritizes concurrent tests
and associated interleavings through heuristics, to find ker-
nel concurrency bugs efficiently. The design of Snowboard
relies on the core insight that individual kernel API opera-
tions (i.e., system-call invocations) tend only to execute a
relatively small amount of kernel code. Hence, we expect
that the potential interactions between different threads can
be predicted offline by analyzing the memory accesses of
each thread when executed independently and sequentially.
In turn, this lets Snowboard determine which concurrent
tests should be executed, and under what interleaving, to
explore suspicious non-deterministic behavior.

Snowboard has to achieve two goals to accomplish its ob-
jective: 1) the generation of tests likely to trigger concurrency
bugs, and 2) the prioritization of generated tests to exercise

uncommon inter-thread communications that are unlikely
to be observed in other testing or production environments.
Snowboard must reduce the search-space size across

combinations of inputs, behaviors, and interleavings to gen-
erate concurrency tests. It starts with a corpus of sequen-
tial (single-threaded) tests (provided by a traditional fuzzing
tool), which it executes sequentially and independently, col-
lecting memory accesses induced by each. It then groups
pairs of tests—a writer and a reader—that access the same
memory location, thereby constituting a potential memory
communication (PMC), that is, a data-flow channel from the
writer to the reader that may be triggered. This channel is
not purely aspirational, as would happen with an imprecise
static analysis; instead, as long as the two tests run concur-
rently with the same memory layout as during profiling, and
with an interleaving that schedules the writer’s write in-
struction before the reader’s read instruction, this data-flow
will occur, subject to any synchronization that (hopefully)
occurs, or (sadly) does not. A PMC, if triggered in otherwise
unsynchronized or incorrectly synchronized code, and under
an unfortunate interleaving that, say, interposes the writer’s
write to invalidate the reader’s state invariants before the
reader reads and uses the shared value, can lead to a concur-
rency bug. Such concurrent tests (i.e., the sequential tests
for the writer and reader and a scheduling hint that triggers
the communication) constitute the concurrency test corpus
generated by Snowboard.

Snowboard must choose tests that will cover as many of
the execution behaviors of the system as possible to prioritize
generated concurrency tests. Traditional fuzzing approaches
systematize exploration using structural-coverage metrics,
such as control-flow edge coverage [31, 50, 70] and def-use
coverage [60, 80, 94], which were also extended to the con-
current case, e.g., with instruction-pair coverage [92]. We
generalize this coverage intuition to not only test selection
but also test execution as guided by PMCs.
We applied Snowboard to mature versions of Linux, in-

cluding stable versions and release candidates. In total, Snow-
board discovered 14 concurrency bugs, of which nine were
found in a stable version of the kernel. Of the bugs found,
four are non-data-race concurrency bugs that have serious
impact. For instance, two of the non-data-race concurrency
bugs cause kernel panics, and one causes filesystem errors.
Some of the bugs found were insidious enough to require
more than lock-guarding a variable access. In addition, our
results revealed that some of these bugs had been present for
several months and, in some cases, more than three years. Af-
ter we reported them, twelve have been confirmed by devel-
opers and six have been fixed already [19, 29, 30, 41, 86, 90].

This paper makes the following contributions:

• Predicting interactions between threads. This pa-
per proposes an approach, scalable to kernels, to pre-
dict possible interactions between sequential tests when
executed in parallel.

• Systematizing concurrency testing. Snowboard
uses a set of PMC-based clustering strategies that se-
lect PMCs with similar properties, thus having a sim-
ilar effect in causing concurrency bugs, and a search
strategy that prioritizes PMCs less likely to be covered
by typical, production testing.

• Finding kernel concurrency bugs. Snowboard
found 14 kernel concurrency bugs so far and continues
to find more. Its artifact is publicly available1.

2 Background and Motivation
2.1 Kernel Concurrency Testing
Although most kernel testing focuses exclusively on sequen-
tial tests, some work has also explored concurrency testing.
However, none has studied concurrent test input generation
that targets all classes of kernel concurrency bugs.

Razzer [43] generates concurrent tests to find kernel data
races, which are responsible for the subset of concurrency
bugs that happen in the absence of appropriate synchroniza-
tion (§2.2). To identify possible data race instruction pairs,
Razzer employs static data race analysis, which is prone to
false positives, and then attempts to pair sequential tests that
execute both instructions of the suspected data races. Com-
pared to Razzer, Snowboard performs a dynamic analysis
on kernel sequential tests to identify all memory-based inter-
thread communication, regardless of whether they represent
data races or not.
Similar to Razzer, Krace [92] is a fuzzing framework that

finds data race-inducing test cases, but Krace focuses on file
systems. It automatically generates concurrent tests using
mutation techniques and specific coverage metrics to guide
test generation based on file system specifications. However,
Krace concurrent tests generated do not include scheduling
hints, i.e., target interleavings that should be tested. Hence,
Krace needs to explore a (very large) interleaving space for
every shared memory access triggered by the test. In con-
trast, Snowboard generates concurrent tests with target
interleavings and tests both data race and non-data races
concurrency bugs.

Furthermore, unlike prior work, Snowboard studies pri-
oritizing concurrent kernel test inputs, which is vital con-
sidering the huge PMC (and data race) space. Snowboard
heuristically prioritizes concurrent tests and associated in-
terleavings, significantly reducing the search space (§5.3).
Another line of work focuses on kernel interleaving ex-

ploration. DataCollider [21] detects data races by sampling
kernel memory accesses and randomly delaying them using

1Snowboard artifact: https://github.com/rssys/snowboard

l2tp_tunnel_register() pppol2tp_connect()

spin_lock_bh(l2tp_tunnel_list_lock);
tunnel=l2tp_tunnel_get(sk, tunnel_id);//tunnel->sock is initialized as 0

null pointer dereference error

Kernel thread 1 Kernel thread 2

list_add_rcu(&tunnel->list, l2tp_tunnel_list);
spin_unlock_bh(l2tp_tunnel_list_lock);

l2tp_xmit_core()
struct sock *sk = tunnel->sock;
bh_lock_sock(sk);

tunnel->sock = sk;

//tunnel becomes accessible

r0 = socket(..., PX_PROTO_OL2TP)
r1 = socket(AF_INET, ...)
connect(r0, ...r1..., ...)

r0 = socket(..., PX_PROTO_OL2TP)
r1 = socket(AF_INET, ...)
connect(r0, ...r1..., ...)
sendmsg(r0, ...)

Concurrent testTest 1 Test 2

Figure 1. A non-data-race concurrency bug in the network
stack found by Snowboard. Bug causes a kernel null pointer
deference error. #12 in Table 2.
hardware watchpoints. SKI [27] focuses on achieving sys-
tematic kernel schedule exploration by generalizing the PCT
algorithm [8] and requires an external source of concurrent
tests that specify kernel input (e.g., fstress [3]). Unlike Snow-
board, these tools do not jointly consider the kernel input
and interleaving spaces, so their testing effectiveness largely
depends on the quality of provided concurrent inputs.

2.2 Potential Memory Communication (PMC)
During concurrent execution of two kernel threads2, thread
A may affect the behavior of another thread B if thread A
updates a shared memory location that is later read by thread
B. For a PMC between threads to occur, 1) thread A has to
make a write memory access, 2) thread B has to make a read
memory access, 3) the memory regions of the two accesses
must overlap, and 4) the write access by thread A has to
update the memory area with a different value from what
the read access by thread Bwould have fetched if thread B ran
sequentially. Note that inter-thread PMCs occur regardless of
synchronization. Hence, the definition of PMC is unrelated to
data races, which occur when a pair of data memory accesses
are not synchronized.
When the write of a PMC interferes with the reader’s

read, the reader’s subsequent execution may change drasti-
cally, potentially unmasking a concurrency bug. However,
pairs of write accesses that update the same memory may
also lead to bugs if the result is eventually read. Since such
situations still require a read after a write to occur, PMCs
are general enough to capture all classes of memory-level
non-determinism induced by instruction schedules.
A Case Study. Figure 1 illustrates a PMC and how it may
lead to a concurrency bug (in fact, it is a bug found by our
system). At the top of the figure, two user-space processes
execute two tests concurrently, involving different system
calls. Note that we are not considering user-space shared
accesses here; the two user processes are isolated in distinct
2Concurrent execution of three or more threads is discussed in §6.

https://github.com/rssys/snowboard

user address spaces but operate on top of the same kernel.
The kernel then services the two processes via two kernel
threads—the writer on the left and the reader on the right—
which execute in the shared kernel address space.

The reader attempts to fetch a previously registered tun-
nel (in pppol2tp_connect()), which it then uses to transmit,
in l2tp_xmit_core(). If, however, the reader’s retrieval of
the tunnel occurs right after the writer has registered a new
tunnel (in l2tp_tunnel_register()) and before the writer
has initialized the socket field of the tunnel (➊→➋→➌), the
reader will retrieve a tunnel with an uninitialized sock field
(➍), which will cause a null pointer dereference when trans-
mitting.
The PMC occurs between inserting the freshly allocated

tunnel into the l2tp_tunnel_list structure on the writer’s
side, and the read from the tunnel list of the partially unini-
tialized tunnel structure on the reader’s side. Note that an
RCU lock protects the tunnel list; however, this lock fails to
guarantee what seems to be the reader’s invariant: that the
tunnel list always contains fully initialized tunnel structures.

This concurrency bug is hard to find through random ex-
ploration. The two particular tests chosen may come from a
large corpus of sequential tests that combine socket commu-
nications and PPP tunnels; not all such tests will happen to
register a new tunnel. Among those tests that do, due to the
sequential corpus generation, some may happen to cause the
same tunnel ID to be retrieved, while others may not.
This concurrency bug is also hard to find even with the

assistance of static analysis. The analysis would have to
determine that the tunnel variable in the writer may alias
(i.e., refer to the same address as) the tunnel variable in the
reader, which is challenging and imprecise when pointers
and lookup structures (i.e., the tunnel list) are involved [5, 67].
In addition, the analysis may deem that the initialization of
the sock field (in l2tp_tunnel_register()) could race with
the read of sock (in l2tp_xmit_core()), which is another
PMC involved in this bug. However, simply generating a
concurrent input that executes both instructions of the data
race (e.g., Razzer) would likely fail to trigger it because the
two memory accesses will only visit the same tunnel when
the writer creates a tunnel and then the reader retrieves
the newly created tunnel. Thus, the key to exposing this
bug is still the PMC (➊→➋) between tunnel registration and
retrieval.
It is also instructive to note that the actual address of

the tunnel structure—or the tunnel ID it corresponds to—
matters little when generating concurrent tests, as long as
the reader and writer “agree” on the structure to jointly ac-
cess. If multiple tests exercise this shared access (e.g., because
other system calls preceded the creation of the tunnel), but at
different tunnel locations or with even different read/write
instruction addresses, they are likely to trigger the same null
pointer dereference. An intelligent strategy to choose con-
current tests could deprioritize tests that exercise the same or

very similar behavior; however, given that a concurrent test
might not in fact exercise a latent PMC, this deprioritization
may need to be balanced with more concurrent tests that do
exercise different, “similar” PMCs.

3 Goals and Approach
3.1 Problem Definition
Snowboard aims to generate concurrency tests likely to
uncover concurrency bugs in software, such as the Linux
kernel (see §6 for a discussion of generality). It assumes the
following capabilities:

• An external tool produces a corpus of sequential tests:
these are self-sufficient snippets of code that set up
and perform several system operations, such as system
calls. This includes code to set up some inputs into
initial buffers and execution of logic.

• An execution framework runs chosen tests—either se-
quential tests from the corpus above or concurrent
tests consisting of two sequential tests and an inter-
leaving schedule.

• A bug detector monitors executions and identifies sys-
tem failures (e.g., kernel panics, data races, deadlocks).

Given the above, the goals of Snowboard are as follows:
• Construct concurrent tests, each including a pair of se-
quential tests.

• Prioritize concurrent tests to increase the efficient use
of the execution framework.

• Execute concurrent tests to exercise and trigger poten-
tially dangerous concurrent behavior.

The design of Snowboard draws inspiration from the
following principles:

• Potential memory communications (PMCs)—dynamic
information flow from memory writes by one thread
into subsequent memory reads by another thread—are
predictive of shared memory accesses.

• Similar PMCs cover similar behaviors and this similarity
can help prune the search space.

• Uncommon memory channels—PMCs that rarely occur
within a corpus of tests are likely to exhibit concur-
rency bugs that are not encountered often or tested
extensively.

• A PMC can be viewed as a scheduling hint and interleav-
ing exploration should focus on instructions involved
in potential shared-memory communication.

Our definition of success is 1) finding concurrency bugs
that existing tools cannot find or have not found in a long
time, and 2) finding those bugs faster.

3.2 Snowboard Design Overview
We now present how Snowboard acts on its goals above.

3.2.1 Identifying Kernel PMCs. Snowboard uses a hy-
brid dynamic analysis on sequential tests. It executes them

and profiles their memory accesses. It then identifies PMCs
between pairs of sequential tests based on their memory-
access profiles. Thus, two sequential tests that are likely to
have shared memory accesses can be identified via PMCs,
and explored with interleavings influenced by their PMCs.

Note that this design choice relies on the ability of Snow-
board to reproduce those same memory accesses when two,
formerly sequential, tests run concurrently. Snowboard
employs checkpoint-based replay to encourage this repro-
ducibility.

3.2.2 Cluster PMCs by Sensitive Behavior Covered.
PMCs that share certain common characteristics—e.g., access
the same memory range, use the same instruction addresses
or read/write the same value—may lead to similar buggy
behavior. Snowboard defines a clustering strategy, which
selects some PMC features to cluster them by. One exemplar
PMC from each cluster is then tested, assuming that the re-
maining PMCs would exhibit similar behavior and uncover
no new bugs. The choice of clustering strategy is critical.

3.2.3 Prioritize Uncommon PMCs. Finding PMCs that
are uncommon (i.e., occur less frequently) is another chal-
lenge because authoritative information could only be ob-
tained via intrusive memory tracing in production use. Ex-
isting approaches [8, 71] that find uncommon interleavings
within a concurrent test are dependent on the process that
generates the corpus (both the paired tests and their inter-
leaving), and may not reflect frequency in a production set-
ting.
Snowboard capitalizes on the insight that PMC rarity

in a test corpus can approximate bug-prone behavior rarity
in production. By not considering an interleaving at all—
and assuming that the execution framework can trigger an
interleaving that will exercise a PMC—we can focus on count-
ing uncommon PMCs types (e.g., clusters, as defined above)
to rank concurrency tests for execution. Although still not
necessarily reflective of rarity in a production setting, this
approximation captures a proxy feature of uncommon but
possible PMCs, which may warrant testing.

3.2.4 Use PMCs as Scheduling Hints. Snowboard ex-
ecutes a test by inducing thread yields at instructions where
a PMC access is about to happen or just happened. This
approach focuses the scheduling exploration only on the
instructions that affect the PMC and thus encourages shared
memory accesses without exhaustively searching all inter-
leavings of the two threads under test.

4 Snowboard Architecture
Snowboard employs a pipelined architecture involving four
major stages, as summarized in Figure 2. Snowboard first
executes a corpus of kernel sequential tests and profiles their
execution, starting from a reproducible and consistent kernel

state (§4.1). Afterward, it gathers all profiled shared mem-
ory accesses from every sequential test and identifies PMCs
in the kernel by selectively examining pairs of write and
read accesses that touch common memory addresses (§4.2).
Snowboard then prunes and prioritizes the testing of un-
common PMCs using a set of heuristic clustering strategies
(§4.3). Finally, Snowboard executes generated concurrent
tests, exploring interleavings that target the associated PMC
(§4.4).

4.1 Sequential Test Generation and Profiling
Snowboard requires an external tool that generates sequen-
tial tests. Any high-quality test generator based on fuzzing,
static analysis, or heuristics would do. Snowboard uses a
coverage metric exported by the generator (e.g., edge cov-
erage) to select a subset of the generated tests that provide
high coverage but low overlap of exercised behaviors.

After generating a comprehensive set of distinct sequential
tests, Snowboard dynamically profiles each test by record-
ing a memory trace of the corresponding sequential kernel
execution, collecting memory accesses—address range ac-
cessed, type of access, value read/written—and correspond-
ing instruction addresses.
If tests were executed from arbitrary kernel states, mem-

ory traces collected in this fashion would be of limited use.
To reduce such non-determinism, Snowboard runs all se-
quential tests from the same, fixed initial kernel state. In
particular, Snowboard profiles sequential tests from a vir-
tual machine snapshot that is taken after the target kernel
boots and launches two test executor processes that run on
two different vCPUs. Any further kernel configuration or
setup specific to a test is considered part of the test itself,
rather than encoded in the initial kernel state; in that sense, a
much broader set of kernel states are reachable before some
sensitive sequence of system calls are executed. However,
given an upper limit on sequential test length, some initial
kernel states may not be reachable in this fashion; in such
cases, Snowboard can grow the number of initial kernel
states it utilizes to increase diversity.

Using a snapshot has two advantages. First, profiling every
sequential test from the same state allows Snowboard to
reason about the PMCs of different tests, identifying poten-
tial memory-access overlap. Second, Snowboard uses the
same starting state to execute generated concurrent tests. In
most cases, this means that the two threads under test will
access overlapping memory areas, exercising the PMC under
an appropriate interleaving.
Note that some PMCs will not be exercised under any

interleaving when the two relevant threads are executed
concurrently. For instance, if the writer properly protects
a buffer from concurrent access before writing into it, the
reader may select a different buffer to read from (e.g., by
retrieving the front of a queue of buffer pointers). However,

PMC
Identification

Concurrent Test Execution

Shared memory
access profiling

reader

VM snapshot

open(file1)
rename(file1, s)

STA
Thread 1

writer

Thread 2Syscalls &
schedule hint

CT = [SIx, SIy]

 Kernel console checker

 Data race detector

 Syscalls
STA Shared

memory
access set

PMC
Identification
(Algorithm 1)

PMC
Exploration

Concurrent
test

generator

PMC
Clustering strategy

S-FULL

...

S-CH
kernel fuzzer

(e.g., Syzkaller)

Sequential Test Generation and Profiling

S-INS

Figure 2. Design overview of Snowboard.

by constructing tests that might exercise the PMC, we en-
courage unsafe concurrent behaviors to arise if they exist.

4.1.1 ImplementationDetails. Our current implementa-
tion generates sequential tests using Syzkaller [31], a state-of-
the-art feedback-based kernel fuzzing tool. Instead of using
every single test produced by the sequential test generator,
which typically yields a very large number of redundant tests
produced through random mutations, Snowboard uses the
edge coverage metric, exported by Syzkaller, to select tests.
Snowboard emulates the guest machine using a cus-

tomized hypervisor. During the sequential test execution,
Snowboard first records every guest memory access and
then uses the CR3 register to filter out accesses made by other
irrelevant threads. To identify potential memory accesses
to shared memory space, Snowboard makes the standard
assumption [21, 57, 95] that only non-stack accesses are po-
tentially shared.

Snowboard leverages the ESP register to prune memory
accesses that are not deemed shared. Snowboard computes
the kernel stack range of the target thread by reading the ESP
register. For example, in Linux kernel x86, each kernel thread
has a fixed size of 8KB (2 physical pages) for the stack region,
and the stack is 8KB aligned. Thus, Snowboard can compute
the kernel stack range [ESP ∧ ¬(STACK_SIZE − 1), (ESP ∧
¬(STACK_SIZE − 1) + STACK_SIZE]. A similar approach is
used by the Linux kernel function current_thread_info() to
identify the stack region. Excluding these memory accesses
from the analysis avoids predicting PMCs that are destined
not to happen across kernel stack memory accesses and
increases the overall scalability of the PMC analysis (§4.2).
We implemented a user-space test suite running in the

guest machine that executes sequential tests generated by
Syzkaller, and communicates with the Snowboard hypervi-
sor for testing actions via hypercalls: starting sequential or
concurrent tests and transferring test data and test results
between the host and the guest. Furthermore, we implement
a memory-access analyzer inside the hypervisor to profile
the target kernel thread.

4.2 PMC Identification
Snowboard identifies PMCs by analyzing the memory ac-
cesses of sequential tests. Snowboard first gathers all shared

Algorithm 1 PMC identification.
Input: T: Profiled sequential tests.
Output: C: All PMCs along with the tests exhibiting them.
1: ⊲ Index all sequential tests.
2: A = ∅ ⊲ Tests indexed by memory range.
3: for t ∈ T do
4: for a ∈ t.accesses do
5: A.insert(amem, aaccess_type, aval, ainstr, t)
6: ⊲ Scan memory-range overlaps and identify PMCs.
7: C = ∅ ⊲ PMCs indexed by access features.
8: for o ∈ A.read_write_overlaps() do
9: read_value = project_value(o.readmem, o.readval, o.range)
10: write_value = project_value(o.writemem, o.writeval, o.range)
11: if read_value ≠ write_value then
12: read_key = (o.readmem, o.readinstr, o.readval)
13: write_key = (o.writemem, o.writeinstr, o.writeval)
14: PMC = (read_key,write_key)
15: C[PMC] .append(o.readtest, o.writetest)

memory accesses profiled from every sequential test and in-
dexes them by the memory range they access. Then, for all
pairs of reads and writes with overlapping memory ranges,
it designates a pair as a PMC if the values written to and
read from the shared memory range differ.
Algorithm 1 describes this process in pseudocode. Lines

1–5 index the memory accesses of all sequential tests and
then lines 6–15 find and filter overlaps. Indexing iterates
over all tests and all accesses in each test and puts each test
in an index structure, recording the test itself, the memory
range accessed, the access type (read/write), the value read
or written, and the instruction address. Note that a single test
may appear in multiple entries in this structure, if it incurs
multiplememory accesses. This index is then queried for read
and write access pairs with overlapping memory ranges—we
capture this lookup with the read_write_overlaps method
on line 8. Every overlap returned contains a read test and its
relevant read access, and a write test and its relevant write
access. The corresponding value read/written is projected to
the overlapping memory range (o.range) on Lines 9 and 10.
If the projected read/write values differ, we classify this as a
PMC, and store it indexed by the memory ranges, instruction
addresses, and values of both the read and write accesses.
Multiple pairs of read/write tests may map to the same PMC
key.

4.2.1 Implementation Details. Locating overlapped ac-
cess pairs requires a nested scan over all possible pairs in the
naïve case, which scales quadratically with our sequential
test corpus size.
Snowboard uses an ordered nested index to implement

the A structure in Algorithm 1. The outer index is ordered
by start address. Given a start address, a nested index or-
ders accesses by range length. Finally, given a specific range,
accesses are indexed by the operation instruction address.

Although more sophisticated structures exist for efficient
interval searches, given the size of our corpus and the target
usage—scanning and locating all pairs with overlap—this
approach is efficient in space and computation.

4.3 PMC Selection
Due to the high kernel complexity, PMC identification typi-
cally generates a large number3 of PMCs. As testing all of
them is not feasible—each test needs to set up a VM, load the
fixed kernel snapshot, execute with various interleavings,
store findings, repeat—a systematic and efficient search algo-
rithm that selects PMCs for testing is needed. Our approach
is based on our two guiding insights (§3.2): a) cluster approx-
imately equivalent PMCs by some clustering criterion and b)
choose an exemplar PMC from each cluster, from the least
to the most common cluster. Intuitively, this strategy avoids
running multiple tests that are likely to lead to the same kind
of buggy or benign behavior—hence the clustering—and fa-
vors tests from smaller clusters. PMCs from smaller clusters
could be regarded as uncommon among all predicted PMCs,
so exercising them is likely to trigger behaviors not often
seen in production, or not well tested.
Clustering of PMCs is done using a clustering strategy,

which consists of a clustering key, and a filter. PMCs with
the same clustering key belong in the same cluster under the
strategy, but some clusters may be altogether discarded by
the filter. Both keys and filters are expressed in terms of PMC
features; the features we collect (Algorithm 1) are the read-
ing/writing instruction addresses (insr/w), the read/written
values (valuer/w), the read/written memory-range start ad-
dresses (addrr/w), and the read/writtenmemory-range lengths
in bytes (byter/w); recall that memory ranges overlap by PMC
construction, but may not be identical.
We define 8 heuristic clustering strategies, supported by

intuition gleaned from our inspection of many concurrency
bugs. While a clustering key that constructs large clusters
reduces the size of the search space, it may misrepresent two
PMCs as equivalent, dismissing one of them, even though
it might uncover distinct misbehaviors. Note also that some
clustering strategies throw PMCs away, so they might best
be combined with others that partition the search space. We
evaluate the effectiveness of each in §5.3.2. We describe them
in detail next and define them formally in Table 1.

3We identified over 169 billion PMCs in Linux kernel 5.12-rc3.

Clustering
strategy

Clustering Key /
[Filter Predicate]

S-FULL
(insw, addrw, bytew, valuew, insr, addrr, byter, valuer) /
[True]

S-CH
(insw, addrw, bytew, insr, addrr, byter) /
[True]

S-CH
NULL

(insw, addrw, bytew, insr, addrr, byter) /
[valuew=0]

S-CH
UNALIGNED

(insw, addrw, bytew, insr, addrr, byter) /
[(addrr != addrw or byter != bytew)]

S-CH
DOUBLE

(insw, addrw, bytew, insr, addrr, byter) /
[df_leader]

S-INS
(insw/r) /
[True]

S-INS-PAIR
(insw, insr) /
[True]

S-MEM
(addrw, bytew, addrr, byter) /
[True]

Table 1. The PMC clustering strategies we consider. Each is
expressed in terms of a clustering key, and a filter. Both
keys and filters refer to PMC features: instruction ins,
memory-range start address addr, memory-range length
byte, read/written value, and the special df_leader boolean
indicating the first of a double-fetch read access (§4.3).

S-FULL: Full Communication. S-FULL considers all PMC
features to cluster PMCs, which means only identical PMCs
will be assigned to the same cluster. This predicate is a base-
line since it yields the largest number of clusters and PMCs
to test, and is thus the costliest.
S-CH: Channel. During the development of Snowboard,
we observed that many PMCs share the same instructions
and memory ranges, but have different read/written values.
This situation is common when shared objects are pointers
or counters that are accessed frequently with different values.
Often these PMCs only cause (atmost) one bug. Therefore the
Channel strategy uses all features except the access values.
S-CH-NULL: Object Nullification Channel. A limitation
of S-CH is that it considers all values equivalent. However,
some values have special meanings. For example, bugs often
arise when a writer zeroes out a shared object and the reader
dereferences this value as an address. Thus, we treat the all-
zero write value as a special case in the S-CH-NULL strategy.
S-CH-UNALIGNED: Unaligned Channel. This is another
special case of S-CH , where the write and read access ranges
differ (start from different addresses or have different lengths).
Bugs of this kind occur because the reader fetches partially
updated data, breaking object invariants.
S-CH-DOUBLE: Double Fetch Channel. Double-fetch vul-
nerabilities often cause kernel concurrency bugs [87, 93].
They lead to a time-of-check-to-time-of-use bug that occurs,

for instance, when the kernel reads a given user-space data
location first to verify access, and then again to use the user-
space object, assuming that the two values read are identical.
A concurrent update between the two reads leads to severe
bugs such as privilege escalation.

Snowboard introduces df_leader, a special boolean PMC
feature, to capture double fetches. During sequential test
analysis, it sets this feature when it finds that two read ac-
cesses by different instructions occur sequentially with no
intervening write access of the same memory region, and
the values read are identical. The feature is set on the first
of the two read accesses.
S-INS: Instruction. An unsynchronized access, whether a
write or read, can cause a bug regardless of its counterpart
instruction. For example, an unsynchronized write may clob-
ber the reads of multiple read instructions. This strategy
pair (one for reads and one for writes) clusters solely on the
instruction address.
S-INS-PAIR: Instruction Pair. Extending on the intuition
above, in some cases, a specific write-read instruction pair
is the sole bug cause. For example, a lock-protected writer
may communicate with several lock-protected readers, but
only a single unprotected reader helps it cause a bug.
S-MEM: Memory region. Shared memory objects are stored
at varying memory addresses. PMCs that communicate over
the same memory area may have the same effect on the
kernel, benign or buggy. For example, performance coun-
ters in the kernel are often not synchronized, as developers
chose performance over strong semantics [21]. This strategy
assumes each overlapped memory region holds a unique
kernel shared object, which is reasonable since Snowboard
always uses the same fixed kernel state.

Given a clustering strategy choice, Snowboard clusters
all PMCs, counts the cardinality of each cluster, and then
selects the exemplar to test from each cluster, from the least
populous—less common—to the most populous cluster. Note
that this approach can be applied iteratively: Choose predi-
cate 𝐴, test one exemplar from each 𝐴-cluster, then choose
predicate 𝐵, test one exemplar from each 𝐵-cluster excluding
those tested before, etc. Furthermore, it is possible to use one
strategy to subdivide large clusters produced by another.

4.4 Concurrent Test Execution
During test execution, one PMC is chosen from each cluster
in uncommon-to-common cluster order. A PMC may corre-
spond to multiple test pairs (recall Line 15 in Algorithm 1);
one pair is chosen among them at random, to construct a
concurrent test.
A Snowboard concurrent test differs from traditional

ones in that it includes a scheduling hint: a PMC designating a
write and read memory access in the respective writer/reader
threads that should be explored. The execution framework

Algorithm 2 Execution exploration.
Input: C: PMCs identified in Algorithm 1.
Output: R: Tests that triggered the bug detectors.
1: for cluster ∈ ordered_pmc_clusters(C, STRATEGY) do
2: pmc = draw_from_cluster(cluster, random)
3: flags = ∅
4: for trial ∈ NUMBER_OF_TRIALS do
5: random.seed(SEED + trial) ⊲ Always same randomness in trial.
6: current_pmcs.add(pmc)
7: last_access[reader] = last_access[writer] = None
8: resume_snapshot()
9: while !test_end() do ⊲ Execution loop for single trial.
10: if !is_live(current_thread) then
11: switch = True
12: if switch then
13: yield()
14: switch = False
15: for access ∈ execute(next_ins) do ⊲ Monitor memory accesses.
16: if pmc_access_coming(access, flags) then
17: switch = random()
18: if performed_pmc_access(access) then
19: previous_access = last_access[current_thread]
20: flags.add(previous_access)
21: switch = random()
22: last_access[current_thread] = access
23: accesses.add(access) ⊲ Instruction finished.
24: if is_bug() then
25: R .record(scheduling_decisions, accesses, pmc)
26: incidental_pmcs = find_new_pmc(accesses.write, accesses.read) ⊲ Trial done.
27: current_pmcs.add(random_choice(incidental_pmcs))

performs multiple actual executions of the pair of tests ex-
ploring interleavings relevant to the PMC.
The scheduling component of the execution framework

attempts to satisfy multiple goals: 1) trigger the PMC, 2) also
do not trigger the PMC!, 3) obtain meaningful executions
(e.g., avoid deadlocks or livelocks), 4) opportunistically ex-
plore other co-incident PMCs that may be observed during
execution of the test pair, to amortize the execution cost to-
wards covering more PMCs (similarly to other work [27, 92]).
We present pseudocode for the testing loop in Algorithm 2,
which we describe below.

To achieve its goals, Snowboard uses some execution
primitives: yield switches execution from the reader to the
writer or vice versa (ignoring other kernel threads that may
be running at the time), is_live heuristically detects if a
thread is making progress, rather than being blocked, say
due to a deadlock, performed_pmc_access is an alert from the
execution framework indicating that the current instruction
made a PMC memory access (read or write by the corre-
sponding thread), pmc_access_coming is a similar execution
alert indicating that the current instruction is likely to make
a PMCmemory access (see below), and is_bug detects if a bug
has been triggered. Some randomness is also involved, so a
pseudo-random number generator makes non-deterministic
decisions.

pmc_access_coming bears some explanation: Snowboard
observes the last access right before a PMC access and re-
members it for future trials of the concurrent test as flags,
markers that tell us that the PMC access is about to be per-
formed by the current thread. Snowboard uses flags to infer
whether a PMCmemory access is to be executed. Once Snow-
board observes the execution of any memory accesses from

ID Summary Kernel version Subsystem Type Status Input

#1 BUG: unable to handle page fault for address 5.3.10 include/linux/ DR Fixed [90] Distinct
#2 EXT4-fs error: swap_inode_boot_loader: ... checksum invalid 5.3.10/5.12-rc3 fs/ext4/ AV Harmful Duplicate
#3 EXT4-fs error: ext4_ext_check_inode: ... invalid magic 5.3.10 fs/ext4/ AV Reported Duplicate
#4 Blk_update_request: IO error 5.3.10/ fs/ AV Harmful Distinct
#5 Data race: blkdev_ioctl() / generic_fadvise() 5.3.10 block/, mm/ DR Harmful Distinct
#6 Data race: do_mpage_readpage() / set_blocksize() 5.3.10 fs/ DR Reported Distinct
#7 Data race: rawv6_send_hdrinc() / __dev_set_mtu() 5.3.10 net/ DR Harmful Distinct
#8 Data race: packet_getname() / e1000_set_mac() 5.3.10 net/ DR Harmful Distinct
#9 Data race: dev_ifsioc_locked() / eth_commit_mac_addr_change() 5.3.10 net/ DR Fixed [86] Distinct
#10 Data race: fib6_get_cookie_safe() / fib6_clean_node() 5.3.10 net/ DR Benign Distinct
#11 BUG: Kernel NULL pointer dereference 5.12-rc3 fs/configfs DR Fixed [29] Distinct
#12 BUG: kernel NULL pointer dereference 5.12-rc3 net/l2tp OV Fixed [30] Distinct
#13 Data race: cache_alloc_refill() / free_block() 5.12-rc3 mm/ DR Benign Duplicate
#14 Data race: tty_port_open() / uart_do_autoconfig() 5.12-rc3 driver/tty/ DR Harmful Distinct
#15 Data race: snd_ctl_elem_add() 5.12-rc3 sound/core DR Fixed [41] Distinct
#16 Data race: tcp_set_default_congestion_control / tcp_set_congestion_control() 5.12-rc3 net/ipv4 DR Benign Distinct
#17 Data race: fanout_demux_rollover() / __fanout_unlink() 5.12-rc3 net/packet DR Fixed [19] Distinct

Table 2. Testing results by Snowboard, which include 14 concurrency bugs and 3 benign data races. DR denotes "data race",
OV denotes "order violation", and AV denotes "atomicity violation" [62]. Concurrent tests may comprise 2 distinct sequential
tests (“distinct”) or 2 identical sequential tests (“duplicate”). Bugs confirmed as harmful are in bold type.

the flags set, Snowboard may choose to switch thread exe-
cution. Such a switch, from a thread that is going to execute
a PMC memory access (e.g., a write) to another thread, can
help explore various meaningful interleavings. It is possible
that the future execution changes (e.g., a PMC access did
not happen right after a memory access from flags). How-
ever, Snowboard can still notice that a PMC access is just
made using performed_pmc_access and non-deterministically
reschedule thread execution after that PMC access happens.

Also, Snowboard utilizes fine-grained execution control
of the kernel threads under test, and ensures only one exe-
cutes at all times, to enforce a controlled sequential schedule
between them.
To start a trial execution, Snowboard restores a check-

point with the same fixed initial kernel state used during pro-
filing (§4.1). It executes the two tests as separate user-space
processes—recall we do not allow the user-space portions of
tests to share memory. Right before every instruction, the
scheduler may switch to the other test thread, depending
on the previous instruction. This switch decision always
happens after a memory access.
A non-deterministic decision to switch threads occurs 1)

after performed_pmc_access is triggered, 2) after pmc_access_
coming is triggered, and 3) after is_live indicates a liveness
issue. Snowboard applies non-deterministic interleaving
exploration to the target PMC because some PMC accesses
are executed several times in one execution. However, it is
possible that only one of them will expose the bug (e.g., only
an access unprotected by a lock causes the bug, and not all
locking primitives or conventions are known ahead of time).
Non-deterministically exploring such PMC accesses would

hopefully reach the inconsistency-inducing PMC and expose
the concurrency bug.
During each trial, Snowboard collects all memory ac-

cesses. At the end of the trial, Snowboard checks if there is
a different PMCwhose read and write appears in the accesses
of the just-concluded trial. If so, that PMC is added into the
set of PMCs under test, and in subsequent trials, performed_
pmc_access will trigger for the new PMC’s accesses as well.
Note that our current design does not perform feedback-

based exploration; this is an area for future work (§6).

4.4.1 Implementation Details. We implemented the ex-
ecution primitives in a customized QEMU emulator [6] based
on SKI, as it already provides the yield primitive. It segre-
gates reader/writer threads in separate vCPUs, and only exe-
cutes one vCPU at a time, enforcing the desired interleaving
schedule among them.
Motivated by SKI, is_live is implemented by observing

the thread execution with some common low-liveness char-
acteristics, including constantly fetching the same memory
area, executing HALT/PAUSE instructions and having executed
a threshold amount of instructions.
The hypervisor performs tracing of every kernel mem-

ory access instruction, to enable performed_pmc_access and
pmc_access_coming implementations. In both cases, the fea-
tures of the current memory access (access type, memory
range, value, instruction address) are compared to a set of
interesting features. For the former primitive, each access
is checked for membership to the accesses in current_PMCs,
while for the latter, checked against the accesses in flags.
To reduce false positives, we exclude from memory tracking
those accesses that touch kernel stacks (as in §4.1.1).

We implement is_bug by capturing guest-kernel console
output, as well as the output of the runtime race detector
provided by SKI. Furthermore, to improve the diagnosis, we
built post-mortem analysis tools that verify that a data race
is caused by an identified PMC and its kernel source code
information.
We integrate the execution platform with a lightweight

distributed queue [18] so that concurrent tests can be dis-
tributed in a cloud platform.

5 Evaluation
We evaluate Snowboard on two recent kernel releases. In
the process, Snowboard was able to find new concurrency
bugs. In addition, this section analyzes the effectiveness of
PMC identification in predicting actual memory communica-
tions, evaluates PMC selection, and measures Snowboard
performance.

5.1 Experimental Setup
We conduct real-world tests by applying Snowboard to
a recent stable Linux kernel version (5.3.10) and a release-
candidate version (5.12-rc3). We use the former for a focused
search, while we use the latter—assumed to be perhaps more
buggy—for a wider search with more clustering strategies.
We use machines of three types. Machine A is an AMD

EPYC 7302P with 256GB of memory; machine B is a Google
Cloud Platform (GCP) VM with 30 E2 vCPUs [32]; and ma-
chine C is a 64-E2-vCPU VM with 512GB of memory.
For version 5.3.10, we profile and generate tests on ma-

chine A, but run concurrent tests on 10 machine Bs. All
clustering strategies combined are used. For version 5.12-rc3,
we deploy 11 separate Snowboard instances, one per clus-
tering strategy, doing profiling and test generation on one
machine C (for all instances), and testing on 10 machine Bs
each §5.3.1.
We measured the performance of profiling, PMC identi-

fication, and test generation on machine C and 10 machine
Bs, and concurrent test execution on machine B. Every PMC
was explored with at most 64 trials.

The new code for Snowboard consists of about 4500 LoC
of Python, C, C++, and Bash scripts.

5.2 Finding New Concurrency Bugs
After testing, Snowboard returned tests that had triggered
one of the stock bug detectors (e.g., the DataCollider data
race bug detector). Data race detectors report data races
regardless of whether they are harmful or benign to the
kernel. In contrast, Snowboard should only report issues
that are likely to be harmful. To prune benign detected data
races, we ranked those by frequency, and manually inspected
over 100 of the highest-ranked ones. We spent roughly 80
person-hours total on manual inspection and reproduction.

Corrupted MAC address

Kernel thread 1 Kernel thread 2

Concurrent testTest 1 Test 2

eth_commit_mac_addr_change()

memcpy(dev->dev_addr, addr->sa_data,
ETH_ALEN);

//Inside rtnl_lock()
dev_ifsioc_locked()

memcpy(ifr->ifr_hwaddr.sa_data, dev-
>dev_addr,...);

//Inside rcu_read_lock()

r0 = socket(...)
sendmsg(r0, ...)

r0 = socket(...)
ioctl(r0, sock_SIOCETHTOOL, ...)

Figure 3. A harmful data race in net/ subsystem found by
Snowboard. Due to this bug, the kernel can send a partially
updated MAC address to the user. #9 in Table 2.

We arrived at 17 cases that we deemed real bugs (Table 2).
Of those 12 were confirmed to be new kernel concurrency
bugs and 3 benign data races. Some bugs found could have
serious impact on the system by causing kernel panics and
filesystem errors. We reported these bugs to kernel develop-
ers; they confirmed 12 of those as new, real bugs, and they
have fixed 6 of those, as of this writing. During our interac-
tion with developers, we noticed that many bugs were fixed
very quickly; they were on average patched within 1.8 days,
even when the bug required a lot of code to fix, which, we
speculate, is because these bugs were serious. For example,
bug #1 in Table 2, which likely affects all kernel code that
uses the rhashtable data structure, was fixed within 2 days
with 2 patches that changed around 100 LoC kernel code.

Considering the intensive level of continuous scrutiny
that the Linux kernel receives [66], we believe these results
demonstrate high effectiveness at finding hard kernel con-
currency bugs.
Next, we analyze three bugs found by Snowboard and

discuss why Snowboard is able to discover them.
Case 1: A data race Concurrency Bug (#9). As shown in
Figure 3, a harmful data race found by Snowboard arises be-
tween kernel functions eth_commit_mac_addr_change() and
dev_ifsioc_locked(). The former (writer), changes the MAC
address stored in dev->dev_addr while the latter (reader)
reads the address from dev->dev_addr and later sends it back
to the user as requested. When their accesses to the shared
kernel object interleave, the reader may read a partially-
updated MAC address. This corrupted MAC address is then
sent to the user without further check.

Our analysis reveals that the eth_commit_mac_addr_change()
and dev_ifsioc_locked() functions both execute while hold-
ing locks. However, mutual exclusion is not guaranteed be-
cause the functions use different locks. Interestingly, the
patch submitted by the developers to fix our reported bug
changed the locking scheme on the reader side, which had
not been changed for over 10 years until we reported this bug,
showing that Snowboard uncovers bugs even in mature
components.

The challenge in exposing this data race was finding the
right user-space code snippets that execute these two func-
tions concurrently. Snowboard composed two sequential
tests chosen by Syzkaller because it detected that, individ-
ually, the two tests used memcpy() to read/write different
values to the same address (the dev->dev_addr object).
Case 2: A Non-data Race Network Concurrency Bug
(#12). This bug leads to a null-pointer dereference in the
network stack, and causes a kernel panic (it was the bug
illustrated in Figure 1). This bug was exposed under a rela-
tively small subset of interleavings, where the reader side
executes both pppol2tp_connect() and l2tp_xmit_core() af-
ter tunnel is registered by l2tp_tunnel_register() but the
tunnel socket (tunnel->sock) is not yet initialized.
Our analysis shows that the tunnel ID being looked up

in pppol2tp_connect() is determined by an argument in the
connect() syscall, which is supplied by the user process. This
finding indicates that this bug could be an easy-to-exploit
vulnerability. Attacks could trigger this bug as a denial-of-
service attack by creating amassive number of user processes
requesting the same tunnel ID, adding an instance to the
ways the kernel can be attacked by a denial-of-service attack.
One process, which is running ahead of the rest, will cause
the kernel to create a tunnel object, and then the others
would fetch the newly allocated tunnel object and some of
them might dereference the sock field of the object before it
is initialized in l2tp_tunnel_register().

Although concurrency bugs often arise due to data races,
they also occur when there are no data races involved (i.e.,
memory accesses are synchronized), as this bug confirms.
Finding non-data-race concurrency bugs is typically more
challenging because we cannot rely on data race detectors
to identify potentially brittle code regions.
In this case, l2tp_tunnel_register() and l2tp_tunnel_

get() both implement the tunnel registration and application
using the standard RCU synchronization protocol, where the
writer acquires a lock for updating shared objects and the
reader reads optimistically, but safely with an RCU reader
lock [14]. An analysis of the kernel commit history reveals
that this bug was introduced into the kernel 3 years before
this writing, in a patch that fixed another concurrency bug.
Case 3: Conditionals with Omitted Operands (#1). This
bug is caused by incorrect assumptions made by kernel
developers about a GCC extension to the C conditional
(ternary) operator [28]: GCC allows the omission of the sec-
ond operand (“x?:y” has generally the same semantics as
“x?x:y”). However, if x has side effects, the terse form has the
benefit of not causing side effects twice, when x is true.
In this case, developers wrongly assumed that the read

access in the ternary conditional would be performed only
once. However, depending on optimization, the compiler can
emit instructions that perform the read twice, since memory
reads are not generally considered side effects in C.

Kernel thread 1 Kernel thread 2

msgget(...)
msgctl(0, IPC_RMID)

Concurrent testTest 1 Test 2

return (*bkt & ~BIT(0)? : bkt);

rht_ptr()

mov $0, %eax

rht_assign_unlock()

testl $0xfffffffe,(%eax)
je <ipcget+A>

mov (%eax),%eax

BUG: unable to handle page fault for address

memcmp(ptr + ht->p.key_offset, arg->key, ...);

mov (%eax), %eax
testl $0xfffffffe,%eax
je <ipcget+A>

Compiler option 2Compiler option 1

//No double fetch

msgget(...)

Figure 4. A harmful data race in the rhashtable data struc-
ture found by Snowboard. Compiler option 1 is "gcc -O1

-fno-tree-dominator-opts -fno-tree-fre" and option 2 is
"gcc -O2". System-call pairs that share rhashtable-type data
can run into kernel panics. #1 in Table 2.

Figure 4 shows the bug occurs when a write zeroes the
value of the shared object (obj, referenced by bkt), between
the two duplicate reads in the ternary operator. In this case,
the interleaving vulnerability window is extremely narrow—
a single assembly instruction—hence hard for a tool to find at
random. When the writer successfully zeroes out the shared
memory between duplicate reads, the reader dereferences
a null address, causing a kernel panic. Since this is a bug in
the rhashtable library, any system-call pair that uses it to
communicate is affected. For example, this bug can cause
kernel panics when system calls msgctl() and msgget() or
socket() and sendmsg() are executed concurrently.
This bug is particularly insidious because, in its source

code, only one read access is explicit, and bug effects can be
masked by the default compiler optimizations.

5.3 PMC Identification and Clustering Strategies
Snowboard relies on PMC clustering to prioritize concur-
rent test generation. Thus, its efficiency of test exploration
hinges on the clustering strategies. This section analyzes the
effectiveness of each strategy individually.

5.3.1 Clustering Strategy Comparison. To gain a sys-
tematic view on the effectiveness of each PMC clustering
strategy, we apply each strategy individually on Linux 5.10-
rc3 for a period of a week. As §5.1 mentions, we launch 11
instances of Snowboard and configure each to use a unique
strategy. Every instance runs from scratch independently to
test Linux 5.10-rc3 with the same computing resources for
the same amount of time (one week).

In total, 11 unique strategies are evaluated. First, we eval-
uate the 8 clustering strategies in §4.4. Second, to analyze
the impact of ordering the cluster by cardinality, we evalu-
ate Random S-INS-PAIR. Compared with S-INS-PAIR, which

Clustering strategy Exemplar
PMCs

Tested PMCs Issues found (days taken to find)

S-FULL 169130631.4K 737.1K #13 (0.1)
S-CH 36131.8K 146.5K #13 (4.75)
S-CH-NULL 7457.9K 234.9K #13 (1.1)
S-CH-UNALIGNED 13681.7K 147.4K #13 (0.5)
S-CH-DOUBLE 2676.0K 105.5K #13 (0.3)
S-INS 15.9K 15.9K #2 (0.2), #13 (0.3), #15 (0.1), #16 (0.1)
S-INS-PAIR 738.5K 286.0K #11 (4.3), #12 (6.8), #13 (0.2), #14 (2.5), #15 (6.1), #16 (3.2), #17 (1.2)
S-MEM 2708.1K 235.5K #13 (0.4)

Random S-INS-PAIR 738.5K 249.5K #2 (5.1), #13 (0.1), #14 (1.1), #15 (6.5), #16 (2.1), #17 (3.2)
Random pairing NA 779.2K (tests) #2 (2), #13 (0.4)
Duplicate pairing NA 831.9K (tests) #13 (0.2)

Table 3. Testing results on Linux kernel 5.12-rc3 by each concurrent test generation method. "Exemplar PMCs " shows the
number of exemplar PMCs as well as the number of clusters according to each strategy ("NA" indicates that no exemplar PMCs
are selected by the generation method). "Tested PMCs " shows the number of tested PMCs under each strategy. For Random
pairing and Duplicate pairing, it shows the number of concurrent tests tested. #XX in "Issues found" refers to the bugs listed in
Table 2. Bugs confirmed as harmful are shown in bold type.

selects exemplar PMCs in order from the smallest to the
largest cluster, Random S-INS-PAIR randomizes cluster or-
der, but still executes a random exemplar from each. Third,
two baseline approaches to generating concurrent tests are
evaluated [27, 31]: Random pairing randomly selects two
kernel sequential tests and combines them as a concurrent
test. Duplicate pairing randomly generates a concurrent test
that consists of two identical kernel sequential tests.

Table 3 presents testing statistics for these strategies. Dif-
ferent PMC strategies affect the number of clusters and, there-
fore, exemplar PMCs. First, the number of PMCs in S-FULL
is clearly astronomical; after the test periods, even though
the strategy performed the second-highest number of tests,
it still was unfocused and found just the most commonly
found bug. Thus, more aggressive clustering seems crucial.

Next, we notice that certain strategies (e.g., S-CH-DOUBLE)
have fewer tested PMCs than others. By inspecting and com-
paring concurrent tests chosen by each strategy, we find that
some (e.g., S-CH-DOUBLE) usually consist of 1 or 2 heavy
sequential tests, e.g., those contain the mount() system call.
This may be because the memory accesses selected by such
strategies tend to be profiled from heavy sequential tests,
reducing the testing throughput.

Interestingly, strategies that tested the most PMCs did not
find the most bugs. First, the benign data race #13 is found
by all strategies, even the two baseline ones. We believe this
is because this data race exists in the memory subsystem,
so it can be unmasked by any concurrent tests that request
kernel memory. Random pairing is also able to find bug #2,
which many of the Snowboard strategies did not find, but
we chalk that up to the randomness of aimless search.

Second, we find that S-INS-PAIR, S-INS and Random S-INS-
PAIR found more bugs than the rest, which indicates that
clustering by instruction collects similar behaviors that can

be covered with a single PMC, leading to broader exploration,
and more bugs found.
Third, although Random instruction pair and instruction

pair are both able to expose several kernel concurrency bugs,
instruction pair discovered more bugs and in general found
bugs more quickly. We conclude that prioritizing the test
of uncommon instruction-pair clusters leads to higher be-
havior coverage per test, than the alternative. Although ap-
plied differently, this finding is consistent with the use of
instruction-pair coverage to guide search in Krace [92], and
composes powerfully with our other techniques.

5.3.2 PMC Identification. Since identified PMCs are only
a hint that actual memory channels will be exercised by a
concurrent combination of sequential tests, we evaluate here
how often the hint was borne out by the test, which we
measure as the PMC accuracy: the number of PMC tests that
actually exercised the memory channel between the writer
and the reader (in at least one of the trials), divided by the
total number of PMC tests.

After profiling the Syzkaller sequential tests for Linux 5.12-
rc3, Snowboard identified 169.1B PMCs. After testing the
kernel for a week, 3743.1K concurrent inputs were tested (in
several trials each), of which 784.9K (22%) actually exercised
predicted PMCs. Among all tested concurrent inputs, 2153.5K
were generated based on predicted PMCs (prioritized by
different strategies) while the rest were generated by Random
pairing or Duplicate pairing, which do not involve any PMC
analysis. Thus, the precision (i.e., true positive rate) of the
PMC identification is about 36% (784.9K out of 2153.5K).

We identify two reasons for mispredictions, i.e., PMCs that
could not lead to actual data flow over the channel: the two
threads allocated and accessed a buffer, and each ended up
with its own private buffer when running concurrently (be-
cause the allocator gave each a separate buffer, as intended);

the concurrent execution led a thread to a different control
flow, perhaps due to an earlier, different exercised PMC.

Although mispredictions may happen, Snowboard does
not produce any false positive bug reports because Snow-
board tests PMCs dynamically using generated concurrent
inputs and it only raises an alarm when it observes issues in
concurrent execution.
The ability of Snowboard to find hard bugs even with

a 36% precision when inducing memory channels suggests
that further improvements in preparing a kernel state with
more pre-allocated objects and thus, less runtime allocation,
PMC filtering, andmore targeted exploration of interleavings
to force the PMC channel, could further boost its success at
uncovering hard-to-find bugs, given a fixed time/test budget.

5.4 Performance
Profiling the execution of 129,876 sequential tests generated
by Syzkaller takes around 40 hours on machine C (§5.1).
After profiling the tests, Snowboard collects all shared ac-
cesses, identifies PMCs, and clusters PMCs in under 80 hours
on 10 machine Bs. The major computation in this stage in-
volves clustering PMCs according to S-FULL, which requires
storing all unique PMCs on disk and sorting them by fre-
quency. The effectiveness of S-FULL suggests that this is
not time well-spent. Removing S-FULL from the battery of
strategies completes all clustering in under 5 hours on ma-
chine C. Finally, Snowboard generates concurrent tests at
a throughput higher than 1000 tests per second, which is
significantly higher than the test execution throughput.
We study the execution throughput and compare it with

SKI’s, by randomly selecting 10,000 concurrent tests gener-
ated by Random S-INS-PAIR and executing them with Snow-
board and SKI. Snowboard achieves slightly higher per-
formance than SKI (193.8 vs 170.3 executions/minute). Af-
ter inspecting several concurrent-test execution traces, we
find this is due to SKI’s execution of more vCPUs switches
than Snowboard: SKI yields thread execution whenever it
observes the write or read instruction involved in a PMC (re-
gardless ofmemory targets), while Snowboard only resched-
ules execution when it observes a precise PMC write or read
access.
Importantly, Snowboard can expose concurrency bugs

much faster than SKI. We execute all 9 concurrent tests that
found bugs in Linux 5.3.10 with Snowboard and SKI. SKI re-
quires 84 times more interleavings than Snowboard on aver-
age to expose the concurrency bug (826.29 interleavings/test
on average for SKI, versus only 9.76 interleavings/test for
Snowboard). Since Snowboard uses SKI for its fine-grained
scheduling control, its advantage comes solely from its use
of PMCs as scheduling hints and the scheduling algorithm
(Algorithm 2). In contrast, SKI on its own has to consider
all potential shared memory accesses, and randomly select a
few to explore.

6 Discussion

Testing Thread Count. Although the vast majority of con-
currency bugs can be discovered with two testing threads
that interleave with each other [62], some only occur with
three or more threads running in parallel. As the input space
dimension becomes cubic or even higher, finding a concur-
rent test that exposes these intricate bugs becomes even
more challenging. Snowboard should apply to input spaces
of more dimensions, e.g., with PMCs of 1 shared write with
2 reads, or PMC chains. Found high-dimension real-world
bugs should motivate such future extensions.
Hardware Input&Hardware-specific bugs. Snowboard
exercises certain virtualized hardware through associated
system calls. However, hardware drivers also receive input
from the device itself. Thus, generating concurrent tests to
the device is also important for finding concurrency bugs in
hardware. As devices usually have diverse input specifica-
tions, Snowboard could leverage existing hardware-specific
input generation methods [72] to generate device-specific,
sequential test corpora.
In addition, since Snowboard always serializes instruc-

tions from two threads when exploring interleavings, it can-
not expose concurrency bugs that only happen in weak mem-
ory models [2]. Finding such concurrency bugs usually re-
quires specific approaches [9, 40] and Snowboard currently
does not target these bugs.
Bug Diagnosis and Deterministic Reproduction. The
Snowboard PMC approach also assists debugging, which
is particularly valuable for diagnosing concurrency bugs.
Identifying the problematic interleaving is typically very
challenging when debugging kernel concurrency bugs due
to the plethora of interleavings. Concurrent tests generated
by Snowboard allow developers to refer to the PMC channel
to understand a possible cause. In addition, Snowboard has
the benefit of providing a reliable environment to replicate
bugs once they are found. Although our implementation
does not reproduce the wall clock, in all cases we evaluated,
Snowboard was able to reproduce found bugs.
Generality. This work focuses on the Linux kernel because
it is a critical system, and there is vibrant interest from the
research community in higher kernel robustness. The Snow-
board approach should also apply to other binaries with
a well-defined API, available sequential test corpora, and
a reasonable definition of bug detection (e.g., deadlock de-
tection, exceptions, crashes). Most importantly, PMCs are
predictive as long as individual operations touch relatively
small swaths of memory; operations that touch big objects,
e.g., a DBMS updating an in-memory index, would make
PMC identification imprecise, reducing utility.

7 Related Work

Kernel Testing.Manually generated kernel tests have been
shown to be effective [4, 51, 58], but require significant de-
veloper effort and do not cover all corner cases. Randomness-
based testing systems, such as Syzkaller [31],Moonshine [70],
and HFL [50], have become effective at testing complex sys-
tems, such as kernels, through feedback mechanisms that
guide test mutations. This enables them to generate tests that
explore complex states and deep paths, despite the complex
system call semantics and dependencies [15, 35, 56]. Snow-
board uses Syzkaller for initial sequential test generation,
generalizes to any sequential test-generation mechanism.
Kernel Concurrency Testing. Razzer [43] and Krace [92],
the closest work to Snowboard (§2.1), are testing frame-
works that target data races in the kernel or in filesystems.
Razzer uses static analysis to identify possible data races
and relies on fuzzing to generate concurrent inputs that
test these data races. Krace proposes feedback-based fuzzing
techniques for multi-threaded kernel input generation with
the help of a new coverage metric. By contrast, Snowboard
is not data-race specific. It generates concurrent tests by
identifying PMCs between two threads, and therefore tack-
les all interleaving-dependent bugs. Also, it identifies PMCs
using a common kernel state, which leads to lower false pos-
itive rates than static-data race detectors [20, 85], which are
notoriously prone to false positives.
DataCollider [21] detects data races in the kernel by ran-

domly scheduling memory accesses and SKI [27] provides
systematic instruction-schedule exploration. Instead, Snow-
board focuses its interleaving exploration on a specific
scheduling hint—the PMC—thus exposing bugs triggered
by that PMC with fewer trials. Nevertheless, Snowboard is
in general orthogonal to DataCollider and SKI and it could
be used to generate concurrent tests as input to them.
Schedule Space Exploration. Concurrent testing requires
a schedule exploration approach. Traditionally, developers
employed stress testing to cause schedule diversity during
testing but more effective techniques have been proposed,
which aim to explore the exponential interleaving space bet-
ter. Several techniques use noise generators [21, 71], typically
by injecting sleeps or breakpoints. To reason about inter-
leavings, other techniques propose more systematic algo-
rithms that implement testing schedulers [24]. For instance,
CHESS [69] and PCT [8] provide theoretical foundations to
reason about schedules and propose schedule exploration
algorithms for user-space applications. Snowboard employs
a scheduling algorithm based on SKI [27] and PCT [8], but
customizes the exploration to use PMCs as hints, which dra-
matically narrows the search space.

Input Space Exploration. Prior work [75–77] attempts
to generate concurrent tests for applications (e.g., Java li-
braries) by analyzing sequential tests. However, these ap-
proaches usually entail heavy analysis on both the target
application and the execution trace, thus they do not scale to
large applications or the kernel. For instance, some require
comprehensive lockset analysis on the execution trace, but
as more fine-grained and optimistic locking protocols are
used [14, 48], lockset analysis suffers from high false pos-
itive rate [17, 78, 79, 92]. The focus of Snowboard is the
kernel, which has a complex interface and large size, making
it impractical to use standard analysis techniques. In par-
ticular, Snowboard does not require static analysis, which
generally fails to reason about complex code with extensive
aliasing.
Bug Oracles. Bug oracles check whether the program sat-
isfies some aspect of the specification [7, 82, 83, 91]. Simple
oracles detect crashes, kernel panics, or hangs; we leverage
such oracles in Snowboard. There are other techniques that
check for atomicity violations [12, 22, 25, 61, 63, 65, 71] and
abnormal communication [26, 64, 97] that belie suspicious
executions. Data race detectors [1, 13, 23, 38, 47, 52, 78, 84,
85, 96] fall into the oracle category. As discussed, data races
are only associated with one class of concurrency bug and
not all data races are bugs, especially in the kernel [21]. Bug
oracles are generally orthogonal to the input/schedule space
exploration problem, which is the focus of Snowboard.

8 Conclusion
This work introduces Snowboard, a framework to gener-
ate effective kernel concurrent tests. Snowboard observes
the execution behavior of kernel sequential tests and uses
observed memory accesses to identify PMCs, a hint meant
to predict actual memory channels during concurrent exe-
cution. Among those, it decides which PMCs to turn into
tests by clustering them under various strategies. An ex-
haustive study provides evidence that testing one PMC for
every unique pair of potentially communicating instructions,
from least to most often observed in the corpus, leads to the
most effective (and productive!) exploration of recent Linux
kernels. Snowboard has found 14 new kernel concurrency
bugs so far, some critical, and some persistent after years of
exhaustive kernel testing by the open-source community.

Acknowledgments
We are thankful for the insightful feedback provided by the
anonymous reviewers and our shepherd Emery Berger. We
are also grateful to Martin Maas for early feedback on this
work.

References
[1] Adil Ahmad, Sangho Lee, Pedro Fonseca, and Byoungyoung Lee. 2021.

Kard: Lightweight Data Race Detection with per-Thread Memory Pro-
tection. In Proceedings of the 26th ACM International Conference on Ar-
chitectural Support for Programming Languages and Operating Systems
(Virtual, USA) (ASPLOS 2021). Association for Computing Machinery,
New York, NY, USA, 647–660. https://doi.org/10.1145/3445814.3446727

[2] Jade Alglave, Luc Maranget, Paul E. McKenney, Andrea Parri, and Alan
Stern. 2018. Frightening Small Children and Disconcerting Grown-Ups:
Concurrency in the Linux Kernel. In Proceedings of the Twenty-Third
International Conference on Architectural Support for Programming Lan-
guages and Operating Systems (Williamsburg, VA, USA) (ASPLOS ’18).
Association for Computing Machinery, New York, NY, USA, 405–418.
https://doi.org/10.1145/3173162.3177156

[3] Darrell Anderson. 2002. Fstress: A Flexible Network File Service Bench-
mark. Technical Report.

[4] Linux Kernel Archives. [n.d.]. Linux Kernel Selftests. https://www.
kernel.org/doc/Documentation/kselftest.txt Accessed: 7 May 2021.

[5] Jia-Ju Bai, Julia Lawall, Qiu-Liang Chen, and Shi-Min Hu. 2019. Ef-
fective Static Analysis of Concurrency Use-After-Free Bugs in Linux
Device Drivers. In 2019 USENIX Annual Technical Conference (USENIX
ATC 19). USENIX Association, Renton, WA, 255–268. https://www.
usenix.org/conference/atc19/presentation/bai

[6] Fabrice Bellard. 2005. QEMU, a Fast and Portable Dynamic
Translator. In 2005 USENIX Annual Technical Conference
(USENIX ATC 05). USENIX Association, Anaheim, CA, 41.
https://www.usenix.org/conference/2005-usenix-annual-technical-
conference/qemu-fast-and-portable-dynamic-translator

[7] Sebastian Burckhardt, Chris Dern, Madanlal Musuvathi, and Roy Tan.
2010. Line-up: A Complete and Automatic Linearizability Checker. In
Proceedings of the 31st ACM SIGPLAN Conference on Programming Lan-
guage Design and Implementation (Toronto, Ontario, Canada) (PLDI ’10).
Association for Computing Machinery, New York, NY, USA, 330–340.
https://doi.org/10.1145/1806596.1806634

[8] Sebastian Burckhardt, Pravesh Kothari, Madanlal Musuvathi, and San-
tosh Nagarakatte. 2010. A Randomized Scheduler with Probabilistic
Guarantees of Finding Bugs. SIGARCH Comput. Archit. News 38, 1
(March 2010), 167–178. https://doi.org/10.1145/1735970.1736040

[9] Jacob Burnim, Koushik Sen, and Christos Stergiou. 2011. Testing
Concurrent Programs on Relaxed Memory Models. In Proceedings of
the 2011 International Symposium on Software Testing and Analysis
(Toronto, Ontario, Canada) (ISSTA ’11). Association for Computing
Machinery, New York, NY, USA, 122–132. https://doi.org/10.1145/
2001420.2001436

[10] Pablo Carvalho, Rommel Cruz, Lucia M A Drummond, Cristiana
Bentes, Esteban Clua, Edson Cataldo, and Leandro A J Marzulo.
2020. Kernel concurrency opportunities based on GPU benchmarks
characterization. Cluster Computing 23, 1 (2020), 177–188. https:
//doi.org/10.1007/s10586-018-02901-1

[11] David Cerdeira, Nuno Santos, Pedro Fonseca, and Sandro Pinto.
2020. SoK: Understanding the Prevailing Security Vulnerabilities in
TrustZone-assisted TEE Systems. In 2020 IEEE Symposium on Security
and Privacy (SP). 1416–1432. https://doi.org/10.1109/SP40000.2020.
00061

[12] FengChen, Traian Florin Serbanuta, andGrigore Rosu. 2008. JPredictor:
A Predictive Runtime Analysis Tool for Java. In Proceedings of the 30th
International Conference on Software Engineering (Leipzig, Germany)
(ICSE ’08). Association for Computing Machinery, New York, NY, USA,
221–230. https://doi.org/10.1145/1368088.1368119

[13] Jong-Deok Choi, Keunwoo Lee, Alexey Loginov, Robert O’Callahan,
Vivek Sarkar, andManu Sridharan. 2002. Efficient and Precise Datarace

Detection for Multithreaded Object-Oriented Programs. In Proceed-
ings of the ACM SIGPLAN 2002 Conference on Programming Lan-
guage Design and Implementation (Berlin, Germany) (PLDI ’02). As-
sociation for Computing Machinery, New York, NY, USA, 258–269.
https://doi.org/10.1145/512529.512560

[14] The Kernel Development Community. 2020. Linux Rcu Documentation.
http://blog.foool.net/wp-content/uploads/linuxdocs/RCU.pdf

[15] Jake Corina, Aravind Machiry, Christopher Salls, Yan Shoshitaishvili,
Shuang Hao, Christopher Kruegel, and Giovanni Vigna. 2017. DIFUZE:
Interface Aware Fuzzing for Kernel Drivers. In Proceedings of the 2017
ACM SIGSAC Conference on Computer and Communications Security
(Dallas, Texas, USA) (CCS ’17). Association for Computing Machin-
ery, New York, NY, USA, 2123–2138. https://doi.org/10.1145/3133956.
3134069

[16] James Darvell. 2015. urgent-kernel-patch-ubuntu. https://www.
linuxjournal.com/content/urgent-kernel-patch-ubuntu

[17] Pantazis Deligiannis, Alastair F. Donaldson, and Zvonimir Rakamarić.
2015. Fast and Precise Symbolic Analysis of Concurrency Bugs in
Device Drivers. In Proceedings of the 30th IEEE/ACM International
Conference on Automated Software Engineering (Lincoln, Nebraska)
(ASE ’15). IEEE Press, 166–177. https://doi.org/10.1109/ASE.2015.30

[18] Vincent Driessen. [n.d.]. Redis queue. https://python-rq.org Accessed:
7 May 2021.

[19] Eric Dumazet. 2021. net/packet: remove data races in fanout
operations. https://github.com/torvalds/linux/commit/
94f633ea8ade8418634d152ad0931133338226f6

[20] Dawson Engler and Ken Ashcraft. 2003. RacerX: Effective, Static
Detection of Race Conditions and Deadlocks. In Proceedings of the
Nineteenth ACM Symposium on Operating Systems Principles (Bolton
Landing, NY, USA) (SOSP ’03). Association for Computing Machinery,
New York, NY, USA, 237–252. https://doi.org/10.1145/945445.945468

[21] John Erickson, Madan Musuvathi, Sebastian Burckhardt, and Kirk
Olynyk. 2010. Effective Data-Race Detection for the Kernel. In
Operating System Design and Implementation (OSDI’10) (operat-
ing system design and implementation (osdi’10) ed.). USENIX.
https://www.microsoft.com/en-us/research/publication/effective-
data-race-detection-for-the-kernel/

[22] Cormac Flanagan and Stephen N Freund. 2004. Atomizer: A Dynamic
Atomicity Checker for Multithreaded Programs. In Proceedings of the
31st ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages (Venice, Italy) (POPL ’04). Association for Computing Ma-
chinery, New York, NY, USA, 256–267. https://doi.org/10.1145/964001.
964023

[23] Cormac Flanagan and StephenN. Freund. 2009. FastTrack: Efficient and
Precise Dynamic Race Detection. In Proceedings of the 30th ACM SIG-
PLAN Conference on Programming Language Design and Implementa-
tion (Dublin, Ireland) (PLDI ’09). Association for ComputingMachinery,
New York, NY, USA, 121–133. https://doi.org/10.1145/1542476.1542490

[24] Pedro Fonseca, Cheng Li, and Rodrigo Rodrigues. 2011. Finding Com-
plex Concurrency Bugs in Large Multi-Threaded Applications. In Pro-
ceedings of the Sixth Conference on Computer Systems (Salzburg, Aus-
tria) (EuroSys ’11). Association for Computing Machinery, New York,
NY, USA, 215–228. https://doi.org/10.1145/1966445.1966465

[25] Pedro Fonseca, Cheng Li, and Rodrigo Rodrigues. 2011. Finding Com-
plex Concurrency Bugs in Large Multi-Threaded Applications. In Pro-
ceedings of the Sixth Conference on Computer Systems (Salzburg, Aus-
tria) (EuroSys ’11). Association for Computing Machinery, New York,
NY, USA, 215–228. https://doi.org/10.1145/1966445.1966465

[26] Pedro Fonseca, Cheng Li, Vishal Singhal, and Rodrigo Rodrigues. 2010.
A study of the internal and external effects of concurrency bugs. In 2010
IEEE/IFIP International Conference on Dependable Systems Networks
(DSN). 221–230. https://doi.org/10.1109/DSN.2010.5544315

[27] Pedro Fonseca, Rodrigo Rodrigues, and Björn B. Brandenburg. 2014.
SKI: Exposing Kernel Concurrency Bugs through Systematic Schedule

https://doi.org/10.1145/3445814.3446727
https://doi.org/10.1145/3173162.3177156
https://www.kernel.org/doc/Documentation/kselftest.txt
https://www.kernel.org/doc/Documentation/kselftest.txt
https://www.usenix.org/conference/atc19/presentation/bai
https://www.usenix.org/conference/atc19/presentation/bai
https://www.usenix.org/conference/2005-usenix-annual-technical-conference/qemu-fast-and-portable-dynamic-translator
https://www.usenix.org/conference/2005-usenix-annual-technical-conference/qemu-fast-and-portable-dynamic-translator
https://doi.org/10.1145/1806596.1806634
https://doi.org/10.1145/1735970.1736040
https://doi.org/10.1145/2001420.2001436
https://doi.org/10.1145/2001420.2001436
https://doi.org/10.1007/s10586-018-02901-1
https://doi.org/10.1007/s10586-018-02901-1
https://doi.org/10.1109/SP40000.2020.00061
https://doi.org/10.1109/SP40000.2020.00061
https://doi.org/10.1145/1368088.1368119
https://doi.org/10.1145/512529.512560
http://blog.foool.net/wp-content/uploads/linuxdocs/RCU.pdf
https://doi.org/10.1145/3133956.3134069
https://doi.org/10.1145/3133956.3134069
https://www.linuxjournal.com/content/urgent-kernel-patch-ubuntu
https://www.linuxjournal.com/content/urgent-kernel-patch-ubuntu
https://doi.org/10.1109/ASE.2015.30
https://python-rq.org
https://github.com/torvalds/linux/commit/94f633ea8ade8418634d152ad0931133338226f6
https://github.com/torvalds/linux/commit/94f633ea8ade8418634d152ad0931133338226f6
https://doi.org/10.1145/945445.945468
https://www.microsoft.com/en-us/research/publication/effective-data-race-detection-for-the-kernel/
https://www.microsoft.com/en-us/research/publication/effective-data-race-detection-for-the-kernel/
https://doi.org/10.1145/964001.964023
https://doi.org/10.1145/964001.964023
https://doi.org/10.1145/1542476.1542490
https://doi.org/10.1145/1966445.1966465
https://doi.org/10.1145/1966445.1966465
https://doi.org/10.1109/DSN.2010.5544315

Exploration. In 11th USENIX Symposium on Operating Systems De-
sign and Implementation (OSDI 14). USENIX Association, Broomfield,
CO, 415–431. https://www.usenix.org/conference/osdi14/technical-
sessions/presentation/fonseca

[28] GNU. [n.d.]. Conditionals with Omitted Operands. https://gcc.gnu.
org/onlinedocs/gcc/Conditionals.html Accessed: 7 May 2021.

[29] Sishuai Gong. 2021. configfs: fix a race in configfs_-
lookup(). https://github.com/torvalds/linux/commit/
c42dd069be8dfc9b2239a5c89e73bbd08ab35de0

[30] Sishuai Gong. 2021. net: fix a concurrency bug in l2tp_-
tunnel_register(). https://github.com/torvalds/linux/commit/
69e16d01d1de4f1249869de342915f608feb55d5

[31] Google. 2015. Syzkaller-kernel fuzzer. https://github.com/google/
syzkaller

[32] Google. 2019. Introducing E2, new cost-optimized gen-
eral purpose VMs for Google Compute Engine. https:
//cloud.google.com/blog/products/compute/google-compute-
engine-gets-new-e2-vm-machine-types

[33] gregkh. 2012. Patch "ext4: fix crash when accessing /proc/mounts
concurrently" has been added to the 3.6-stable tree. https://www.mail-
archive.com/stable@vger.kernel.org/msg19380.html

[34] Ronghui Gu, Zhong Shao, Hao Chen, Xiongnan (Newman) Wu, Jie-
ung Kim, Vilhelm Sjöberg, and David Costanzo. 2016. CertiKOS: An
Extensible Architecture for Building Certified Concurrent OS Ker-
nels. In 12th USENIX Symposium on Operating Systems Design and
Implementation (OSDI 16). USENIX Association, Savannah, GA, 653–
669. https://www.usenix.org/conference/osdi16/technical-sessions/
presentation/gu

[35] HyungSeok Han and Sang Kil Cha. 2017. IMF: Inferred Model-Based
Fuzzer. In Proceedings of the 2017 ACM SIGSAC Conference on Computer
and Communications Security (Dallas, Texas, USA) (CCS ’17). Asso-
ciation for Computing Machinery, New York, NY, USA, 2345–2358.
https://doi.org/10.1145/3133956.3134103

[36] Red Hat. 2015. Panic due to race condition between iput() and invali-
date_inodes(), kernel BUG at fs/inode.c. https://access.redhat.com/
solutions/1593553

[37] RedHat. 2017. CVE-2017-17712 kernel: Race condition in raw_sendmsg
function allows denial-of-service or kernel addresses leak. https:
//bugzilla.redhat.com/show_bug.cgi?id=1526427

[38] Chun-Hung Hsiao, Jie Yu, Satish Narayanasamy, Ziyun Kong, Cris-
tiano L. Pereira, Gilles A. Pokam, Peter M. Chen, and Jason Flinn. 2014.
Race Detection for Event-Driven Mobile Applications. In Proceed-
ings of the 35th ACM SIGPLAN Conference on Programming Language
Design and Implementation (Edinburgh, United Kingdom) (PLDI ’14).
Association for Computing Machinery, New York, NY, USA, 326–336.
https://doi.org/10.1145/2594291.2594330

[39] Jian Huang, Moinuddin K. Qureshi, and Karsten Schwan. 2016. An
Evolutionary Study of Linux Memory Management for Fun and
Profit. In 2016 USENIX Annual Technical Conference (USENIX ATC
16). USENIX Association, Denver, CO, 465–478. https://www.usenix.
org/conference/atc16/technical-sessions/presentation/huang

[40] Mohammad Majharul Islam and Abdullah Muzahid. 2013. Characteriz-
ing Real World Bugs Causing Sequential Consistency Violations. In 5th
USENIX Workshop on Hot Topics in Parallelism (HotPar 13). USENIX As-
sociation, San Jose, CA. https://www.usenix.org/conference/hotpar13/
workshop-program/presentation/islam

[41] Takashi Iwai. 2021. ALSA: control: Fix racy management of user ctl
memory size account. https://patches.linaro.org/patch/421808/

[42] Joab Jackson. 2012. Nasdaq’s Facebook glitch came from ’race condi-
tions’. https://www.computerworld.com/article/2504676/nasdaq-s-
facebook-glitch-came-from--race-conditions-.html

[43] Dae R. Jeong, Kyungtae Kim, Basavesh Shivakumar, Byoungyoung Lee,
and Insik Shin. 2019. Razzer: Finding kernel race bugs through fuzzing.
Proceedings - IEEE Symposium on Security and Privacy 2019-May (2019),

754–768. https://doi.org/10.1109/SP.2019.00017
[44] Dave Jones. 2012. Trinity: Linux system call fuzzer. https://github.

com/kernelslacker/trinity
[45] Daniel Jordan. 2018. ktask: multithread CPU-intensive kernel work.

http://lkml.iu.edu/hypermail/linux/kernel/1811.0/03370.html
[46] Sanidhya Kashyap, Changwoo Min, and Taesoo Kim. 2017. Scalable

NUMA-aware Blocking Synchronization Primitives. In 2017 USENIX
Annual Technical Conference (USENIX ATC 17). USENIX Association,
Santa Clara, CA, 603–615. https://www.usenix.org/conference/atc17/
technical-sessions/presentation/kashyap

[47] Baris Kasikci, Cristian Zamfir, and George Candea. 2013. RaceMob:
Crowdsourced Data Race Detection. In Proceedings of the Twenty-
Fourth ACM Symposium on Operating Systems Principles (Farminton,
Pennsylvania) (SOSP ’13). Association for Computing Machinery, New
York, NY, USA, 406–422. https://doi.org/10.1145/2517349.2522736

[48] Linux Kernel. [n.d.]. Sequence counters and sequential locks. https:
//www.kernel.org/doc/html/latest/locking/seqlock.html Accessed: 7
May 2021.

[49] Michael Kerrisk. [n.d.]. syscalls(2) — Linux manual page. https:
//man7.org/linux/man-pages/man2/syscalls.2.html Accessed: 7 May
2021.

[50] Kyungtae Kim, Dae R. Jeong, Chung Hwan Kim, Yeongjin Jang, Insik
Shin, and Byoungyoung Lee. 2020. HFL: Hybrid Fuzzing on the Linux
Kernel. In 27th Annual Network and Distributed System Security Sympo-
sium, NDSS 2020, San Diego, California, USA, February 23-26, 2020. The
Internet Society. https://www.ndss-symposium.org/ndss-paper/hfl-
hybrid-fuzzing-on-the-linux-kernel/

[51] KUnit. [n.d.]. KUnit - Unit Testing for the Linux Kernel. https:
//kunit.dev/third_party/kernel/docs/ Accessed: 7 May 2021.

[52] Oren Laadan, Nicolas Viennot, Chia-Che Tsai, Chris Blinn, Junfeng
Yang, and Jason Nieh. 2011. Pervasive Detection of Process Races in
Deployed Systems. In Proceedings of the Twenty-Third ACM Sympo-
sium on Operating Systems Principles (Cascais, Portugal) (SOSP ’11).
Association for Computing Machinery, New York, NY, USA, 353–367.
https://doi.org/10.1145/2043556.2043589

[53] Michael Larabel. 2019. The Linux Kernel Enters 2020 At 27.8 Million
Lines In Git ButWith Less Developers For 2019. https://www.phoronix.
com/scan.php?page=news_item&px=Linux-Git-Stats-EOY2019

[54] Yoochan Lee, Changwoo Min, and Byoungyoung Lee. 2021. ExpRace:
Exploiting Kernel Races through Raising Interrupts. In 30th USENIX
Security Symposium (USENIX Security 21). USENIX Association,
2363–2380. https://www.usenix.org/conference/usenixsecurity21/
presentation/lee-yoochan

[55] Michel Lespinasse. 2020. Fine grained MM locking. https:
//patchwork.kernel.org/project/linux-mm/cover/20200224203057.
162467-1-walken@google.com/

[56] Hongliang Liang, Yixiu Chen, Zhuosi Xie, and Zhiyi Liang. 2020. X-
AFL: A Kernel Fuzzer Combining Passive and Active Fuzzing. In Pro-
ceedings of the 13th European Workshop on Systems Security (Heraklion,
Greece) (EuroSec ’20). Association for Computing Machinery, New
York, NY, USA, 13–18. https://doi.org/10.1145/3380786.3391400

[57] Qianyu Liu, Naijie Gu, and Junjie Su. 2019. Method for Reducing
Overhead of Shared Memory Access Instrumentation. In Proceedings
of the 3rd International Conference on Computer Science and Application
Engineering (Sanya, China) (CSAE 2019). Association for Computing
Machinery, New York, NY, USA, Article 9, 6 pages. https://doi.org/10.
1145/3331453.3361323

[58] LTP. 2012. Linux test project. https://linux-test-project.github.io
[59] Lanyue Lu, Andrea C. Arpaci-Dusseau, Remzi H. Arpaci-Dusseau,

and Shan Lu. 2013. A Study of Linux File System Evolution. In 11th
USENIX Conference on File and Storage Technologies (FAST 13). USENIX
Association, San Jose, CA, 31–44. https://www.usenix.org/conference/
fast13/technical-sessions/presentation/lu

https://www.usenix.org/conference/osdi14/technical-sessions/presentation/fonseca
https://www.usenix.org/conference/osdi14/technical-sessions/presentation/fonseca
https://gcc.gnu.org/onlinedocs/gcc/Conditionals.html
https://gcc.gnu.org/onlinedocs/gcc/Conditionals.html
https://github.com/torvalds/linux/commit/c42dd069be8dfc9b2239a5c89e73bbd08ab35de0
https://github.com/torvalds/linux/commit/c42dd069be8dfc9b2239a5c89e73bbd08ab35de0
https://github.com/torvalds/linux/commit/69e16d01d1de4f1249869de342915f608feb55d5
https://github.com/torvalds/linux/commit/69e16d01d1de4f1249869de342915f608feb55d5
https://github.com/google/syzkaller
https://github.com/google/syzkaller
https://cloud.google.com/blog/products/compute/google-compute-engine-gets-new-e2-vm-machine-types
https://cloud.google.com/blog/products/compute/google-compute-engine-gets-new-e2-vm-machine-types
https://cloud.google.com/blog/products/compute/google-compute-engine-gets-new-e2-vm-machine-types
https://www.mail-archive.com/stable@vger.kernel.org/msg19380.html
https://www.mail-archive.com/stable@vger.kernel.org/msg19380.html
https://www.usenix.org/conference/osdi16/technical-sessions/presentation/gu
https://www.usenix.org/conference/osdi16/technical-sessions/presentation/gu
https://doi.org/10.1145/3133956.3134103
https://access.redhat.com/solutions/1593553
https://access.redhat.com/solutions/1593553
https://bugzilla.redhat.com/show_bug.cgi?id=1526427
https://bugzilla.redhat.com/show_bug.cgi?id=1526427
https://doi.org/10.1145/2594291.2594330
https://www.usenix.org/conference/atc16/technical-sessions/presentation/huang
https://www.usenix.org/conference/atc16/technical-sessions/presentation/huang
https://www.usenix.org/conference/hotpar13/workshop-program/presentation/islam
https://www.usenix.org/conference/hotpar13/workshop-program/presentation/islam
https://patches.linaro.org/patch/421808/
https://www.computerworld.com/article/2504676/nasdaq-s-facebook-glitch-came-from--race-conditions-.html
https://www.computerworld.com/article/2504676/nasdaq-s-facebook-glitch-came-from--race-conditions-.html
https://doi.org/10.1109/SP.2019.00017
https://github.com/kernelslacker/trinity
https://github.com/kernelslacker/trinity
http://lkml.iu.edu/hypermail/linux/kernel/1811.0/03370.html
https://www.usenix.org/conference/atc17/technical-sessions/presentation/kashyap
https://www.usenix.org/conference/atc17/technical-sessions/presentation/kashyap
https://doi.org/10.1145/2517349.2522736
https://www.kernel.org/doc/html/latest/locking/seqlock.html
https://www.kernel.org/doc/html/latest/locking/seqlock.html
https://man7.org/linux/man-pages/man2/syscalls.2.html
https://man7.org/linux/man-pages/man2/syscalls.2.html
https://www.ndss-symposium.org/ndss-paper/hfl-hybrid-fuzzing-on-the-linux-kernel/
https://www.ndss-symposium.org/ndss-paper/hfl-hybrid-fuzzing-on-the-linux-kernel/
https://kunit.dev/third_party/kernel/docs/
https://kunit.dev/third_party/kernel/docs/
https://doi.org/10.1145/2043556.2043589
https://www.phoronix.com/scan.php?page=news_item&px=Linux-Git-Stats-EOY2019
https://www.phoronix.com/scan.php?page=news_item&px=Linux-Git-Stats-EOY2019
https://www.usenix.org/conference/usenixsecurity21/presentation/lee-yoochan
https://www.usenix.org/conference/usenixsecurity21/presentation/lee-yoochan
https://patchwork.kernel.org/project/linux-mm/cover/20200224203057.162467-1-walken@google.com/
https://patchwork.kernel.org/project/linux-mm/cover/20200224203057.162467-1-walken@google.com/
https://patchwork.kernel.org/project/linux-mm/cover/20200224203057.162467-1-walken@google.com/
https://doi.org/10.1145/3380786.3391400
https://doi.org/10.1145/3331453.3361323
https://doi.org/10.1145/3331453.3361323
https://linux-test-project.github.io
https://www.usenix.org/conference/fast13/technical-sessions/presentation/lu
https://www.usenix.org/conference/fast13/technical-sessions/presentation/lu

[60] Shan Lu, Weihang Jiang, and Yuanyuan Zhou. 2007. A Study of
Interleaving Coverage Criteria. In The 6th Joint Meeting on Euro-
pean Software Engineering Conference and the ACM SIGSOFT Sym-
posium on the Foundations of Software Engineering: Companion Pa-
pers (Dubrovnik, Croatia) (ESEC-FSE companion ’07). Association
for Computing Machinery, New York, NY, USA, 533–536. https:
//doi.org/10.1145/1295014.1295034

[61] Shan Lu, Soyeon Park, Chongfeng Hu, Xiao Ma, Weihang Jiang, Zhen-
min Li, Raluca A. Popa, and Yuanyuan Zhou. 2007. MUVI: Auto-
matically Inferring Multi-Variable Access Correlations and Detecting
Related Semantic and Concurrency Bugs. In Proceedings of Twenty-First
ACM SIGOPS Symposium on Operating Systems Principles (Stevenson,
Washington, USA) (SOSP ’07). Association for Computing Machinery,
New York, NY, USA, 103–116. https://doi.org/10.1145/1294261.1294272

[62] Shan Lu, Soyeon Park, Eunsoo Seo, and Yuanyuan Zhou. 2008. Learn-
ing from Mistakes: A Comprehensive Study on Real World Concur-
rency Bug Characteristics. In Proceedings of the 13th International
Conference on Architectural Support for Programming Languages and
Operating Systems (Seattle, WA, USA) (ASPLOS XIII). Association
for Computing Machinery, New York, NY, USA, 329–339. https:
//doi.org/10.1145/1346281.1346323

[63] Shan Lu, Joseph Tucek, Feng Qin, and Yuanyuan Zhou. 2006. AVIO:
Detecting Atomicity Violations via Access Interleaving Invariants.
In Proceedings of the 12th International Conference on Architectural
Support for Programming Languages and Operating Systems (San Jose,
California, USA) (ASPLOS XII). Association for Computing Machinery,
New York, NY, USA, 37–48. https://doi.org/10.1145/1168857.1168864

[64] Brandon Lucia and Luis Ceze. 2009. Finding concurrency bugs with
context-aware communication graphs. In 42st Annual IEEE/ACM Inter-
national Symposium on Microarchitecture MICRO-42 2009, December
12-16, 2009, New York, New York, USA, David H. Albonesi, Margaret
Martonosi, David I. August, and José F. Martínez (Eds.). ACM, 553–563.
https://doi.org/10.1145/1669112.1669181

[65] Brandon Lucia, Joseph Devietti, Luis Ceze, and Karin Strauss. 2009.
Atom-Aid: Detecting and Surviving Atomicity Violations. IEEE Micro
29, 1 (2009), 73–83. https://doi.org/10.1109/MM.2009.1

[66] LWN. 2018. Introducing the syzbot dashboard. https://lwn.net/
Articles/749910/

[67] Aravind Machiry, Chad Spensky, Jake Corina, Nick Stephens, Christo-
pher Kruegel, and Giovanni Vigna. 2017. DR. CHECKER: A Soundy
Analysis for Linux Kernel Drivers. In 26th USENIX Security Sympo-
sium (USENIX Security 17). USENIX Association, Vancouver, BC, 1007–
1024. https://www.usenix.org/conference/usenixsecurity17/technical-
sessions/presentation/machiry

[68] Paul McKenney. 2019. The RCU API, 2019 edition. https://lwn.net/
Articles/777036/

[69] Madanlal Musuvathi, Shaz Qadeer, Thomas Ball, Gerard Basler, Pira-
manayagam Arumuga Nainar, and Iulian Neamtiu. 2008. Finding and
Reproducing Heisenbugs in Concurrent Programs. In Proceedings of
the 8th USENIX Conference on Operating Systems Design and Implemen-
tation (San Diego, California) (OSDI’08). USENIX Association, USA,
267–280. https://dl.acm.org/doi/10.5555/1855741.1855760

[70] Shankara Pailoor, Andrew Aday, and Suman Jana. 2018. MoonShine:
Optimizing OS Fuzzer Seed Selection with Trace Distillation. In 27th
USENIX Security Symposium (USENIX Security 18). USENIX Associa-
tion, Baltimore, MD, 729–743. https://www.usenix.org/conference/
usenixsecurity18/presentation/pailoor

[71] Soyeon Park, Shan Lu, and Yuanyuan Zhou. 2009. CTrigger: Exposing
Atomicity Violation Bugs from Their Hiding Places. In Proceedings
of the 14th International Conference on Architectural Support for Pro-
gramming Languages and Operating Systems (Washington, DC, USA)
(ASPLOS XIV). Association for Computing Machinery, New York, NY,
USA, 25–36. https://doi.org/10.1145/1508244.1508249

[72] Hui Peng andMathias Payer. 2020. USBFuzz: A Framework for Fuzzing
USB Drivers by Device Emulation. In 29th USENIX Security Symposium
(USENIX Security 20). USENIX Association, 2559–2575. https://www.
usenix.org/conference/usenixsecurity20/presentation/peng

[73] Bo Qiao, Oliver Reiche, Jürgen Teich, and Frank Hannig. 2020. Unveil-
ing Kernel Concurrency in Multiresolution Filters on GPUs with an
Image Processing DSL. In Proceedings of the 13th Annual Workshop on
General Purpose Processing Using Graphics Processing Unit (San Diego,
California) (GPGPU ’20). Association for Computing Machinery, New
York, NY, USA, 11–20. https://doi.org/10.1145/3366428.3380773

[74] Rapid7. 2011. Linux PolicyKit Race Condition Privilege Escalation.
https://www.rapid7.com/db/modules/exploit/linux/local/pkexec/

[75] Malavika Samak andMurali Krishna Ramanathan. 2014. Multithreaded
Test Synthesis for Deadlock Detection. In Proceedings of the 2014 ACM
International Conference on Object Oriented Programming Systems Lan-
guages & Applications (Portland, Oregon, USA) (OOPSLA ’14). As-
sociation for Computing Machinery, New York, NY, USA, 473–489.
https://doi.org/10.1145/2660193.2660238

[76] Malavika Samak and Murali Krishna Ramanathan. 2015. Synthesizing
Tests for Detecting Atomicity Violations. In Proceedings of the 2015
10th Joint Meeting on Foundations of Software Engineering (Bergamo,
Italy) (ESEC/FSE 2015). Association for Computing Machinery, New
York, NY, USA, 131–142. https://doi.org/10.1145/2786805.2786874

[77] Malavika Samak, Murali Krishna Ramanathan, and Suresh Jagan-
nathan. 2015. Synthesizing Racy Tests. In Proceedings of the 36th ACM
SIGPLAN Conference on Programming Language Design and Imple-
mentation (Portland, OR, USA) (PLDI ’15). Association for Computing
Machinery, New York, NY, USA, 175–185. https://doi.org/10.1145/
2737924.2737998

[78] Stefan Savage, Michael Burrows, Greg Nelson, Patrick Sobalvarro, and
Thomas Anderson. 1997. Eraser: A dynamic data race detector for
multi-threaded programs. SIGOPS Oper. Syst. Rev. 31, 5 (1997), 27–37.
https://doi.org/10.1145/269005.266641

[79] Justin Seyster, Prabakar Radhakrishnan, Samriti Katoch, Abhinav Dug-
gal, Scott D. Stoller, and Erez Zadok. 2011. Redflag: A Framework
for Analysis of Kernel-Level Concurrency. In Proceedings of the 11th
International Conference on Algorithms and Architectures for Parallel
Processing - Volume Part I (Melbourne, Australia) (ICA3PP’11). Springer-
Verlag, Berlin, Heidelberg, 66–79. https://dl.acm.org/doi/10.5555/
2075416.2075425

[80] Yao Shi, Soyeon Park, Zuoning Yin, Shan Lu, Yuanyuan Zhou, Wen-
guang Chen, and Weimin Zheng. 2010. Do I Use the Wrong Defini-
tion? DeFuse: Definition-Use Invariants for Detecting Concurrency
and Sequential Bugs. In Proceedings of the ACM International Con-
ference on Object Oriented Programming Systems Languages and Ap-
plications (Reno/Tahoe, Nevada, USA) (OOPSLA ’10). Association
for Computing Machinery, New York, NY, USA, 160–174. https:
//doi.org/10.1145/1869459.1869474

[81] Armando Solar-Lezama, Christopher Grant Jones, and Rastislav Bodik.
2008. Sketching Concurrent Data Structures. In Proceedings of the
29th ACM SIGPLAN Conference on Programming Language Design
and Implementation (Tucson, AZ, USA) (PLDI ’08). Association for
Computing Machinery, New York, NY, USA, 136–148. https://doi.org/
10.1145/1375581.1375599

[82] Viktor Vafeiadis. 2010. Automatically Proving Linearizability. In Pro-
ceedings of the 22nd International Conference on Computer Aided Verifi-
cation (Edinburgh, UK) (CAV’10). Springer-Verlag, Berlin, Heidelberg,
450–464. https://doi.org/10.1007/978-3-642-14295-6_40

[83] Martin Vechev, Eran Yahav, and Greta Yorsh. 2009. Experience with
Model Checking Linearizability. In Proceedings of the 16th Interna-
tional SPIN Workshop on Model Checking Software (Grenoble, France).
Springer-Verlag, Berlin, Heidelberg, 261–278. https://doi.org/10.1007/
978-3-642-02652-2_21

https://doi.org/10.1145/1295014.1295034
https://doi.org/10.1145/1295014.1295034
https://doi.org/10.1145/1294261.1294272
https://doi.org/10.1145/1346281.1346323
https://doi.org/10.1145/1346281.1346323
https://doi.org/10.1145/1168857.1168864
https://doi.org/10.1145/1669112.1669181
https://doi.org/10.1109/MM.2009.1
https://lwn.net/Articles/749910/
https://lwn.net/Articles/749910/
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/machiry
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/machiry
https://lwn.net/Articles/777036/
https://lwn.net/Articles/777036/
https://dl.acm.org/doi/10.5555/1855741.1855760
https://www.usenix.org/conference/usenixsecurity18/presentation/pailoor
https://www.usenix.org/conference/usenixsecurity18/presentation/pailoor
https://doi.org/10.1145/1508244.1508249
https://www.usenix.org/conference/usenixsecurity20/presentation/peng
https://www.usenix.org/conference/usenixsecurity20/presentation/peng
https://doi.org/10.1145/3366428.3380773
https://www.rapid7.com/db/modules/exploit/linux/local/pkexec/
https://doi.org/10.1145/2660193.2660238
https://doi.org/10.1145/2786805.2786874
https://doi.org/10.1145/2737924.2737998
https://doi.org/10.1145/2737924.2737998
https://doi.org/10.1145/269005.266641
https://dl.acm.org/doi/10.5555/2075416.2075425
https://dl.acm.org/doi/10.5555/2075416.2075425
https://doi.org/10.1145/1869459.1869474
https://doi.org/10.1145/1869459.1869474
https://doi.org/10.1145/1375581.1375599
https://doi.org/10.1145/1375581.1375599
https://doi.org/10.1007/978-3-642-14295-6_40
https://doi.org/10.1007/978-3-642-02652-2_21
https://doi.org/10.1007/978-3-642-02652-2_21

[84] Kaushik Veeraraghavan, Peter M. Chen, Jason Flinn, and Satish
Narayanasamy. 2011. Detecting and Surviving Data Races Using Com-
plementary Schedules. In Proceedings of the Twenty-Third ACM Sym-
posium on Operating Systems Principles (Cascais, Portugal) (SOSP ’11).
Association for Computing Machinery, New York, NY, USA, 369–384.
https://doi.org/10.1145/2043556.2043590

[85] Jan Wen Voung, Ranjit Jhala, and Sorin Lerner. 2007. RELAY: Static
Race Detection on Millions of Lines of Code. In Proceedings of the
the 6th Joint Meeting of the European Software Engineering Confer-
ence and the ACM SIGSOFT Symposium on The Foundations of Soft-
ware Engineering (Dubrovnik, Croatia) (ESEC-FSE ’07). Association
for Computing Machinery, New York, NY, USA, 205–214. https:
//doi.org/10.1145/1287624.1287654

[86] Cong Wang. 2021. net: fix dev_ifsioc_locked() race
condition. https://github.com/torvalds/linux/commit/
3b23a32a63219f51a5298bc55a65ecee866e79d0

[87] Pengfei Wang, Jens Krinke, Kai Lu, Gen Li, and Steve Dodier-Lazaro.
2017. How Double-Fetch Situations turn into Double-Fetch Vulnerabil-
ities: A Study of Double Fetches in the Linux Kernel. In 26th USENIX Se-
curity Symposium (USENIX Security 17). USENIX Association, Vancou-
ver, BC, 1–16. https://www.usenix.org/conference/usenixsecurity17/
technical-sessions/presentation/wang-pengfei

[88] Robert Watson. 2007. Before & After Under The Giant
Lock. https://lists.freebsd.org/pipermail/freebsd-hackers/2007-
November/022368.html

[89] Wikipedia contributors. 2020. Therac-25 — Wikipedia, The Free
Encyclopedia. https://en.wikipedia.org/w/index.php?title=Therac-
25&oldid=992942654.

[90] Herbert Xu. 2020. rhashtable: Fix unprotected RCU derefer-
ence in __rht_ptr. https://github.com/torvalds/linux/commit/
1748f6a2cbc4694523f16da1c892b59861045b9d

[91] Min Xu, Rastislav Bodík, and Mark D. Hill. 2005. A Serializability
ViolationDetector for Shared-Memory Server Programs. In Proceedings
of the 2005 ACM SIGPLANConference on Programming Language Design
and Implementation (Chicago, IL, USA) (PLDI ’05). Association for
Computing Machinery, New York, NY, USA, 1–14. https://doi.org/10.
1145/1065010.1065013

[92] Meng Xu, Sanidhya Kashyap, Hanqing Zhao, and Taesoo Kim. 2020.
Krace: Data Race Fuzzing for Kernel File Systems. In 2020 IEEE Sympo-
sium on Security and Privacy (SP). 1643–1660. https://doi.org/10.1109/
SP40000.2020.00078

[93] Meng Xu, Chenxiong Qian, Kangjie Lu, Michael Backes, and Taesoo
Kim. 2018. Precise and Scalable Detection of Double-Fetch Bugs in OS
Kernels. In 2018 IEEE Symposium on Security and Privacy (SP). 661–678.
https://doi.org/10.1109/SP.2018.00017

[94] Cheer-Sun D. Yang, Amie L. Souter, and Lori L. Pollock. 1998. All-Du-
Path Coverage for Parallel Programs. SIGSOFT Softw. Eng. Notes 23, 2
(March 1998), 153–162. https://doi.org/10.1145/271775.271804

[95] Jie Yu, Satish Narayanasamy, Cristiano Pereira, and Gilles Pokam. 2012.
Maple: A Coverage-Driven Testing Tool for Multithreaded Programs.
In Proceedings of the ACM International Conference on Object Oriented
Programming Systems Languages and Applications (Tucson, Arizona,
USA) (OOPSLA ’12). Association for Computing Machinery, New York,
NY, USA, 485–502. https://doi.org/10.1145/2384616.2384651

[96] Yuan Yu, Tom Rodeheffer, and Wei Chen. 2005. RaceTrack: Efficient
Detection of Data Race Conditions via Adaptive Tracking. In Proceed-
ings of the Twentieth ACM Symposium on Operating Systems Principles
(Brighton, United Kingdom) (SOSP ’05). Association for Computing
Machinery, New York, NY, USA, 221–234. https://doi.org/10.1145/
1095810.1095832

[97] Wei Zhang, Junghee Lim, RamyaOlichandran, Joel Scherpelz, Guoliang
Jin, Shan Lu, and Thomas Reps. 2011. ConSeq: Detecting Concurrency
Bugs through Sequential Errors. In Proceedings of the Sixteenth Interna-
tional Conference on Architectural Support for Programming Languages

and Operating Systems (Newport Beach, California, USA) (ASPLOS
XVI). Association for Computing Machinery, New York, NY, USA,
251–264. https://doi.org/10.1145/1950365.1950395

[98] Kaiyang Zhao, Sishuai Gong, and Pedro Fonseca. 2021. On-Demand-
Fork: A Microsecond Fork for Memory-Intensive and Latency-Sensitive
Applications. Association for Computing Machinery, New York, NY,
USA, 540–555. https://doi.org/10.1145/3447786.3456258

https://doi.org/10.1145/2043556.2043590
https://doi.org/10.1145/1287624.1287654
https://doi.org/10.1145/1287624.1287654
https://github.com/torvalds/linux/commit/3b23a32a63219f51a5298bc55a65ecee866e79d0
https://github.com/torvalds/linux/commit/3b23a32a63219f51a5298bc55a65ecee866e79d0
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/wang-pengfei
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/wang-pengfei
https://lists.freebsd.org/pipermail/freebsd-hackers/2007-November/022368.html
https://lists.freebsd.org/pipermail/freebsd-hackers/2007-November/022368.html
https://en.wikipedia.org/w/index.php?title=Therac-25&oldid=992942654
https://en.wikipedia.org/w/index.php?title=Therac-25&oldid=992942654
https://github.com/torvalds/linux/commit/1748f6a2cbc4694523f16da1c892b59861045b9d
https://github.com/torvalds/linux/commit/1748f6a2cbc4694523f16da1c892b59861045b9d
https://doi.org/10.1145/1065010.1065013
https://doi.org/10.1145/1065010.1065013
https://doi.org/10.1109/SP40000.2020.00078
https://doi.org/10.1109/SP40000.2020.00078
https://doi.org/10.1109/SP.2018.00017
https://doi.org/10.1145/271775.271804
https://doi.org/10.1145/2384616.2384651
https://doi.org/10.1145/1095810.1095832
https://doi.org/10.1145/1095810.1095832
https://doi.org/10.1145/1950365.1950395
https://doi.org/10.1145/3447786.3456258

	Abstract
	1 Introduction
	2 Background and Motivation
	2.1 Kernel Concurrency Testing
	2.2 Potential Memory Communication (PMC)

	3 Goals and Approach
	3.1 Problem Definition
	3.2 Snowboard Design Overview

	4 Snowboard Architecture
	4.1 Sequential Test Generation and Profiling
	4.2 PMC Identification
	4.3 PMC Selection
	4.4 Concurrent Test Execution

	5 Evaluation
	5.1 Experimental Setup
	5.2 Finding New Concurrency Bugs
	5.3 PMC Identification and Clustering Strategies
	5.4 Performance

	6 Discussion
	7 Related Work
	8 Conclusion
	Acknowledgments
	References

