Neural Models of Text Normalization for
Speech Applications

Hao Zhang* Richard Sproat*
Google, Inc. Google, Inc.

Axel H. Ng* Felix Stahlberg**
Google, Inc. University of Cambridge
Xiaochang Peng! Kyle Gorman*
Facebook, Inc. Google, Inc.

Brian Roark*
Google, Inc.

Machine learning, including neural network techniques, have been applied to virtually
every domain in natural language processing. One problem that has been somewhat resis-
tant to effective machine learning solutions is text normalization for speech applications
such as text-to-speech synthesis (TTS). In this application, one must decide, for example,
that 123 is verbalized as one hundred twenty three in 123 pages but as one twenty three
in 123 King Ave. For this task, state-of-the-art industrial systems depend heavily on
hand-written language-specific grammars.

We propose neural network models which treat text mormalization for TTS as a
sequence-to-sequence problem, in which the input is a text token in context, and the output
1s the verbalization of that token. We find that the most effective model, in accuracy and
efficiency, is one where the sentential context is computed once and the results of that
computation are combined with the computation of each token in sequence to compute
the verbalization. This model allows for a great deal of flexibility in terms of representing
the context, and also allows us to integrate tagging and segmentation into the process.

These models perform very well overall, but occasionally they will predict wildly
inappropriate verbalizations, such as reading 3cm as three kilometers. While rare, such
verbalizations are a major issue for TTS applications. We thus use finite-state covering
grammars to guide the neural models, either during training and decoding, or just during

* Google Inc. 76 Ninth Ave, 4th Floor, New York, NY 10011, USA. E-mail:
{haozhang,rws,axelhng,kbg,roark}@google. com
++ University of Cambridge, Department of Engineering, Trumpington St, Cambridge CB21PZ, United
Kingdom. E-mail: £s439@cam.ac.uk
1 Facebook, 1101 Dexter Ave N, Seattle, WA 98109. E-mail: xiaochang@fb.com

Submission received: 27 June 2018; revised version received: 18 January 2019; accepted for publication:
21 February 2019.

© 2018 Association for Computational Linguistics

Computational Linguistics Volume XX, Number X

decoding, away from such “unrecoverable” errors. Such grammars can largely be learned
from data.

1. Introduction

A key question in the use of machine learning components within applications is what
accuracy level is required in order for the learned models to be useful. The answer can vary
dramatically depending on the application. For example, predicting the preferred internal
heat for the passengers of a vehicle based on past preferences is likely useful as long as
the prediction is within a degree or two of the actual preference, and worse performance
on occasion is hardly catastrophic. The same cannot be said for the navigational systems
of a self-driving vehicle, where even rare errors cannot be tolerated. Such thresholds
for usefulness have been at play in speech and language processing since the earliest
real-world applications. For example, Munteanu et al. (2006) attempted to establish a
maximum word-error rate at which automatic speech recognition transcriptions are useful
for tasks such as skimming on-line videos for content, concluding that at 25% WER the
transcripts were still useful for such a task. The WER threshold for usefulness will be far
lower for spoken assistant applications and presumably lower still for spoken interfaces to
navigation systems. Similarly, machine translation may be found to be very useful when
it comes to getting the gist of, say, a newspaper article, but direct use of its output is
risky, illustrated by menu translation disasters.! The threshold of acceptable risk depends
on the use of the system output, much like the threshold for acceptable latency.

Text normalization is a ubiquitous pre-processing stage for a range of speech and
language processing applications, and its requirements depend quite heavily on the
application for which it is designed—one reason, perhaps, that general machine learning
methods to address the problem are not quite as common as in other areas of the
field. Most text normalization methods will involve tokenization and matching of tokens
against an existing lexicon. Beyond that, the downstream application may require
mapping of certain tokens to new token sequences, including such trivial changes as
de-casing to more complex mappings, e.g., expanding abbreviations or handling non-
standard spellings such as those found in social media. In this paper, we focus on text
normalization for speech applications, such as sending text through a text-to-speech
synthesis engine to be read aloud. This use scenario has some characteristics that make it
different from text normalization scenarios that do not have a spoken target. The handling
of numbers, for example, is quite different. When normalizing text for, say, syntactic
parsing or other natural language algorithms operating solely within the written domain,
one common approach is to replace the numerical value (e.g., 197) with one or more
placeholder class labels (e.g., N) so that all numerical values within a class are processed
similarly by the parser. When normalizing text for speech synthesis, however, the written
numeric value must be mapped to its spoken form (e.g., one hundred ninety seven or
one nine seven), which is often called number naming. Thus, in the parsing scenario
the normalization is deterministic; in the speech synthesis scenario it is contextually
ambiguous. Number naming becomes especially tricky in inflected languages, such as
Russian, where numbers take on the case of their predicates. Furthermore, writing long
numbers out as they are spoken is not something people tend to do, so training data must
be curated (rather than harvested, as in machine translation)—large, naturally occurring
parallel corpora for this do not exist.

1 E.g.: http://languagelog.ldc.upenn.edu/nll/?p=4136

Zhang, Sproat, Ng, Stahlberg, Peng, Gorman, Roark Neural Models of Text Normalization

Text normalization for speech synthesis comes with some application demands
that dictate acceptable latencies and error rates. As it is heavily used in mobile and
spoken assistant applications, latency is a key consideration. Further, some errors are
catastrophic, impacting not only the naturalness of the voice but the accuracy of the
rendition. Inflecting number names incorrectly in, say, Russian does lead to a lack of
naturalness, but the result would be usable in most cases. However, producing number
names that are not value preserving renders the result worse than unusable, since the user
would be grossly misinformed. For example, when reading a written address (e.g., 197
Pine Ave.), if the numeric value is not preserved in the normalization (nineteen hundred
seven Pine Avenue), then a driver using spoken directions in a map application may be
led astray. Text normalization is thus a problem for which machine learning holds promise
for contextual disambiguation, but under some relatively strict application demands.

In this paper, we present several novel sequence-to-sequence architectures to address
this problem, which outperform standard Transformer-based methods heavily used in
neural machine translation (Vaswani et al. 2017). Further, some of the architectures
exploit special characteristics of the problem to achieve significant further speedups
without sacrificing accuracy. In addition, we explore methods for avoiding the kinds
of catastrophic errors mentioned above (and presented in more detail below) to which
the neural methods are prone. We present methods for learning finite-state covering
grammars, which help avoid solutions that are catastrophic, e.g., not value preserving.
Our approach represents a feasible combination of linguistic knowledge and data-driven
methods that yield efficient architectures that meet demanding application performance
requirements.

The specific contributions of this paper include:

The presentation of a large-scale, publicly available dataset for this problem.
Multiple new neural architectures that significantly improve upon the accuracy and
efficiency of the models presented in Sproat and Jaitly Sproat and Jaitly (2016,
2017), as well as a set of other baselines.

New general methods for finite-state covering grammar induction from data, used to
avoid catastrophic errors, which extend the methods of Gorman and Sproat (2016)
to other kinds of input that require normalization besides just numbers, such as
dates or measure expressions.

Extensive and informative evaluation of the models in a range of use scenarios.

In the next section we provide more background on the problem of text normalization
before presenting our methods.

2. Text normalization, and why it is hard

Ever since the earliest invention of writing, in Mesopotamia over 5,000 years ago, people
have used various sorts of abbreviatory devices. In most ancient writing systems, numbers
were almost exclusively written with numerical symbols, rather than with number words
representing the way one would say the number. Weights and measures often had
standard short representations, and ordinary words could also be abbreviated to save
space or time. That tradition has survived into modern writing systems. In English, while
there are prescriptive conventions on, say, writing the full words for numbers when they
begin a sentence (Seventy-two people were found .. rather than 72 people were found),
there are nonetheless many things that would typically not be written out in words.
These include numbers whose verbalization requires many words, as well as times, dates,

Computational Linguistics Volume XX, Number X

monetary amounts, measure expressions, and so on. It is not so unusual to find three
million written out, but 3,234,987 is much easier to read and write as a digit sequence.
One might write three thirty or half past three for a time, but 3:30 is just as likely, and
even preferable in many contexts. It would be much more likely to see $39.99 written
thus, rather than as thirty-nine dollars and ninety-nine cents, or thirty-nine, ninety-nine.
For many of these cases there are differences across genres: fully verbalized forms are
much more likely in fictional prose, whereas numerical or abbreviated forms are much
more likely in scientific texts, news, or on Wikipedia.

Following Taylor (2009), we use the term semiotic class to denote things like numbers,
times, dates, monetary amounts, etc., that are often written in a way that differs from the
way they are verbalized. Text normalization refers to the process of verbalizing semiotic
class instances, e.g., converting something like 3 [b into its verbalization three pounds.
As part of a text-to-speech (T'TS) system, the text normalization component is typically
one of the first steps in the pipeline, converting raw text into a sequence of words, which
can then be passed to later components of the system, including word pronunciation,
prosody prediction and ultimately waveform generation.

Work on text normalization for TTS dates to the earliest complete text-to-speech
system, MITalk (Allen, Hunnicutt, and Klatt 1987). The earliest systems were based
entirely on rules hard-coded in Fortran or C. The Bell Labs multilingual text-to-speech
system (Sproat 1996, 1997) introduced the use of weighted finite-state transducers
for text nmormalization, and this approach is still in use in deployed systems, such as
Google’s Kestrel text-normalization system (Ebden and Sproat 2014). Sproat et al.
(2001) describe an early attempt to apply machine learning to text normalization for
TTS. The main challenge in text normalization is the variety of semiotic classes. Sproat
et al. (2001) give an initial taxonomy (Table 1) with three major categories: “mostly
alphabetic”, “numeric”, and “miscellaneous”. Within these broad categories finer-grained
classifications depend in part on how the input maps to the output verbalization, and in
part on the kind of entity denoted by the token.

From a modern perspective, this taxonomy has a number of obvious omissions. Some
of these omitted types did not exist, or were considerably less common, at the time of
writing, such as hashtags or “funny spellings” like slloooooww. The increasing prominence
of such categories has led to a considerable body of work on normalizing SMS and social
media text (Xia, Wong, and Li 2006; Choudhury et al. 2007; Kobus, Yvon, and Damnati
2008; Beaufort et al. 2010; Liu et al. 2011; Pennell and Liu 2011; Aw and Lee 2012; Liu,
Weng, and Jiang 2012; Liu et al. 2012; Hassan and Menezes 2013; Yang and Eisenstein
2013; Chrupata 2014; Min and Mott 2015, inter alia).? Text normalization is thus a task
of great importance for many diverse real-world applications, although the requirements
of large-scale speech applications such as TTS and automatic speech recognition (ASR)
have received comparatively little attention in the natural language processing literature.
A recent update to this taxonomy is presented by van Esch and Sproat (2017). Among
the new categories are season/episode designations (S01/E02), ratings (4.5/5), vision
(20/20), and chess notation (Nc6). What is noteworthy about these novel categories is
that each of them has idiosyncratic ways of verbalization. Thus a rating 4.5/5 is read
four point five out of five, whereas the vision specification 20/20 is read twenty twenty
and the season/episode designation S01/E02 is read season one, episode two, and so on.

2 Text normalization of social media tends to focus on different problems from those that are the
main concern of normalization aimed at speech applications. For example, how one pronounces
number sequences is generally of little or no concern in the normalization of social media text,
though it is essential for most speech applications.

Zhang, Sproat, Ng, Stahlberg, Peng, Gorman, Roark

Neural Models of Text Normalization

EXPN abbreviation adv, N.Y, mph, gov’t
alpha LSEQ letter sequence CIA, D.C, CDs
ASWD read as word CAT, proper names
MSPL misspelling geogaphy
NUM number (cardinal) 12,45,1/2,0-6
NORD number (ordinal) May 7, 3rd, Bill Gates 11l
NTEL telephone (or part of) 212 555-4523
NDIG number as digits Room 101
N NIDE identifier 747,386, 15, pc110, 3A
U NADDR number as street address 5000 Pennsylvania, 4523 Forbes
M NZIP zip code or PO Box 91020
B NTIME a (compound) time 3-20, 11:45
E NDATE a (compound) date 2/2/99, 14/03/87 (or US) 03/14/87
R NYER year(s) 1998, 80s, 1900s, 2003
S MONEY money (US or other) $3-45, HK$300, Y20,000, $200K
BMONEY money tr/m/billions $3-45 billion
PRCT percentage 75%, 3-4%
SPLT mixed or “split” WS99, x220, 2-car
(see also SLNT and PUNC examples)
SLNT not spoken, word boundary or emphasis character:
M word boundary M.bath, KENT*RLTY, _really_
I PUNC not spoken, non-standard punctuation: “***” in
S phrase boundary $99,9K***Whites,...” in DECIDE. . . Year
C FNSP funny spelling slloooooww, sh*t
URL url, pathname or email hitp:/lapj.co.uk, lusr/local, phj@tpt.com
NONE should be ignored ascii art, formatting junk
Table 1

A taxonomy of non-standard words, from Sproat et al. (2001), Table 1, page 293, used with

permission.

To a first approximation, one can handle all of these cases using hand-written
grammars—as in Sproat (1997) and Ebden and Sproat (2014). However, different aspects
of the problem are better treated using different approaches. Text normalization can be
basically broken down into three notional components. The first is tokenization: how
do we segment the text into tokens each of which is a word, a punctuation token or
an instance of a semiotic class? Second, what are the reasonable ways to verbalize that
token? And third, which reading is most appropriate for the given context?

The first component, tokenization, can be treated with hand-written grammars, but
this may be brittle and challenging to maintain. Thus it seems desirable to use machine
learned taggers, similar to those used to segment text in writing systems which do
not separate words with spaces; see, for example, Wang and Xu (2017) who employ
convolutional neural networks for Chinese word segmentation.

The second component, verbalization, can be treated with hand-written language-
specific grammars. But as it is well-known, such grammars may require some degree of
linguistic expertise, can be complex to develop, and with sufficient complexity become

Computational Linguistics Volume XX, Number X

difficult to maintain. And as noted above, there is great diversity between different
semiotic classes.?

Finally, selecting the appropriate verbalization in context, can also be framed as
a sequence labeling problem, since the verbalization of a token depends on what it
represents. For instance, 4/5 can be a date, a fraction or a rating, and once we know which
it is, the verbalization is fairly straightforward. In languages with complex inflectional
morphology, one may also need to know which morphosyntactic category a string falls
into—in Russian, for example, it is not enough to know that 323 is to be read as a
cardinal number, since one also needs to know what grammatical case to use—but again
this is a sequence labeling problem.*

While this three-component system is feasible, it is desirable—as we do in some
experiments below—to treat earlier stages (such as tokenization or semiotic class labeling)
as a latent variable passed to later stages; thus it would be preferable to train all
three models jointly. Furthermore, since these three components involve both labeling
with a fixed tagset—for segmentation and semiotic classification—and string-to-string
transductions—for verbalization—a neural network approach, which is suited to both
types of relations, is a priori desirable.

We note two points at the outset. First, the required data, namely raw text and
its verbalized equivalent, cannot in general be expected to occur naturally. Machine
Translation can to a large extent rely on “found” data since people translate texts for
practical reasons, such as providing access to documents to people not able to read
the source language. In contrast there is no reason why people would spend resources
producing verbalized equivalents of ordinary written text: in most cases, English speakers
do not need a gloss to know how to read $10 million. Thus, if one wants to train neural
models to verbalize written text, one must produce the data.? Second, the bar for success
in this domain seems to be higher than it is in other domains in that users expect TTS
systems to correctly read numbers, dates, times, currency amounts, and so on. As we
show below, deep learning models produce good results overall; but as we shall also
show, neural networks tend to make the occasional error that would be particularly
problematic for a real application.

We distinguish between two types of error that a text normalization system might
make. The first, and less serious kind involves picking the wrong form of a word, while
otherwise preserving the meaning. For example, if the system reads the road is 45 km long

3 As a consequence, much of the subsequent work on applying machine learning to text normalization
for speech applications focuses on specific semiotic classes, like letter sequences (Sproat and Hall
2014), abbreviations (Roark and Sproat 2014), or cardinal numbers (Gorman and Sproat 2016).

4 In fact, Kestrel (Ebden and Sproat 2014) uses a machine-learned morphosyntactic tagger for
Russian.

5 It has been suggested that raw text paired with speech—such as produced by ASR systems—does
exist in large volume. However, several problems prevent use of such data for text normalization at
the present time. First, many genres of text including literary text, and even news stories, are not
particularly rich in text normalization problems. We have used Wikipedia text in many of our
experiments because it is rich in at least some semiotic classes, such as dates, measure expressions
and various other numerical expressions. Unfortunately while there is a spoken subset of Wikipedia,
volume is very low and quality is variable. Furthermore, many of the chosen articles are, again, not
very rich in text normalization issues, and there is often a mismatch between the version of the
article that was read, and what is currently available on (written) Wikipedia. Closed captioning is
more promising, but it is notorious for not-infrequent departures from the spoken text, and much
closed captioned text is, again, not particularly rich in text normalization issues. Finally, we note a
recent trend towards “end-to-end” ASR systems (Chan et al. 2016; Chiu et al. 2017, inter alia) that
map from audio directly to written form, without an intermediate “spoken-form” transcription. For
a text written as In 1983, ... the recognizer would transcribe In 1983, rather than in nineteen
eighty three, making it useless for our purposes.

Zhang, Sproat, Ng, Stahlberg, Peng, Gorman, Roark Neural Models of Text Normalization

as the road is forty five kilometer long, this is wrong, but humans can easily recover from
the error and still understand the message. Such errors are particularly likely to occur
in languages with complex inflectional morphology. Errors of this first kind, however, do
not generally reduce the intelligibility of the resulting speech insofar as the same message
is conveyed, albeit ungrammatically. Contrast this with the second kind of error, where
the error results in a totally different message being conveyed. If the system read the
sentence as the road is thirty five kilometers long, getting the number wrong completely,
it would convey the wrong meaning entirely. Unfortunately, we find that neural network
models are particularly prone to the latter type of error; similar issues in neural machine
translation are discussed by Arthur, Neubig, and Nakamura (2016). We refer to the latter
class as unrecoverable errors because they miscommunicate information in a way that is
hard for the hearer to recover from. Even if unrecoverable errors occur only infrequently,
one never knows when to expect such an error, and, because such errors are sporadic, it
is hard to guard against them if the neural model is left to its own devices.

It is worth emphasizing up front that unrecoverable errors are one reason why
approaches like Char2Wav (Sotelo et al. 2017) that purport to provide a complete “end-
to-end” neural network that maps directly from raw text to waveforms, are unlikely to
replace industrial T'TS systems in the near term. Text normalization by itself is a hard
problem. If one is expecting to solve not only that, but also other aspects of speech
such as word pronunciation and prosody by inferring a model from a limited amount of
aligned text and speech data, then one is setting one’s expectations higher than what
currently seems reasonable to expect of neural models. While research on “end-to-end”
neural TTS has produced impressive demonstrations, our own results suggest they will
make embarrassing errors when applied to arbitrary text, and such errors would be hard
to fix in an end-to-end system. The covering grammar solution to these errors that we
present below depends on the fact that we are producing symbolic (string) output: It is
hard to see how one would apply such methods to correct continuous output, such as
a waveform or a sequence of speech parameters. There would therefore be no hope for
solving such errors in a fully end-to-end system, other than augmenting the training data
with targeted examples and hoping for the best.

Sequence-to-sequence text normalization has the promise of providing accurate
normalization with far less development and maintenance effort than hand-written
grammars. For deployment as part of an actual TTS system however, such an approach
must also be sufficiently fast at time of inference, yield very high accuracy, and be reliable
and predictable, i.e., without producing the kinds of unrecoverable errors illustrated
above. In this paper, we explore a range of neural architectures, and demonstrate
an accuracy similar to that of heavily engineered hand-written methods. We achieve
substantial speedups with certain methods for encoding sentence context, as well as
methods for integrating constraints that forbid the more egregious kinds of unrecoverable
errors. In sum, this paper presents methods for text normalization that meet most of the
engineering requirements for use in large-scale text-to-speech systems.

3. Previous approaches to text normalization

3.1 Standard approaches

The standard approach in industrial text-normalization systems employs complex hand-
written grammars to verbalize input tokens. An example of such a system is Google’s

Kestrel text-to-speech text normalization system (Ebden and Sproat 2014). Kestrel is
powered by classification grammars, which tokenize the input and classify text tokens

Computational Linguistics Volume XX, Number X

according to their semiotic class; and verbalization grammars, which determine the
contextually appropriate verbalization for a token, in conjunction with machine learned
morphosyntactic taggers.

Tokens in Kestrel need not correspond to whitespace-delimited tokens, even in those
languages where whitespace or punctuation is used to separate words. Thus the Kestrel
grammars recognize Jan.I, 2012 as a date and parse it as a single token, identifying the
month, day and year, and represent it internally using a protocol-buffer representation
like the following:%

date { month: "January" day: "1" year: "2012"}

Verbalization grammars then convert from a serialization of the protocol buffer repre-
sentation into actual word sequences, such as January the first twenty twelve. Tokeniza-
tion/classification and verbalization grammars are compiled into weighted finite-state
transducers (WFSTs) using the Thrax grammar development library (Roark et al. 2012).

One advantage of separating tokenization/classification from verbalization via the
intermediate protocol buffer representation is that it allows for reordering of elements,
something that is challenging with WFSTs.” The need for reordering arises, for example,
in the treatment of currency expressions where currency symbols such as ‘$’ or ‘€’ often
occur before digits, but are verbalized after the corresponding digits. An input $30 might
be parsed as something like

money { currency: "USD" amount { integer: "30" } }
which would then be reordered prior to verbalization as
money { amount { integer: "30" } currency: "USD" }

An open-source version of Kestrel includes sample grammars for a subset of English text
normalization problems.®

Similar approaches have been adopted for ASR verbalization (Sak et al. 2013, inter
alia). In this case the problem is not generally to verbalize text at runtime, but rather as
a component of an acoustic- and language-model training procedure that ingests written
text as training data and converts it to possible spoken forms. Unlike the situation in
TTS where one usually wants just one output verbalization for a given context, in ASR,
it may be desirable to produce a set of possible verbalizations; for example, 1999 might
be verbalized as nineteen ninety nine if it is a date, or as one thousand nine hundred
(and) ninety nine if it is an ordinary number.

3.2 Previous neural approaches to text normalization

There has been some work on neural network methods for social media text normalization
(Chrupala 2014; Min and Mott 2015) that demonstrates competitive performance in
shared tasks. However, as we noted above, these systems have a somewhat different
focus than speech applications.

Sproat and Jaitly (2016) explore two neural models of text normalization. The first
involves a long short-term memory, or LSTM (Hochreiter and Schmidhuber 1997), recur-
rent neural network (RNN) which produces a lattice-like list of possible verbalizations

6 https://developers.google.com/protocol-buffers/.

7 As we will show below, pushdown transducers can be used for this purpose, and are finite-state
equivalent if the vocabulary of elements to be reordered is itself finite.

8 See\url{http://github.com/google/sparrowhawk}.

Zhang, Sproat, Ng, Stahlberg, Peng, Gorman, Roark Neural Models of Text Normalization

which are then rescored by a separate LSTM language model. The second is an RNN with
an attention mechanism modeled on Chan et al. (2016). A subsequent study (Sproat and
Jaitly 2017) focuses solely on the latter model, which outperformed the former; despite
this, it still produces a substantial number of unrecoverable errors as described above.
This paper also describes a method for preventing unrecoverable errors using WFST-
based covering grammars, a method described in much greater detail in Section 6.

While Sproat and Jaitly (2016) and Sproat and Jaitly (2017) have been starting
points for our work, and our “sliding window” baseline (Section 5.2) is based on this
prior work, the present work goes well beyond it in a number of respects. First we
develop further neural architectures that outperform this prior system. Second, though
the covering grammar mechanism was introduced in the prior work, we extend it here
both in that we introduce a method for inducing most of the covering grammar models
from data, and second we define more precisely how the covering grammars are actually
used during decoding. Finally we report results on new datasets.

Arik et al. (2017) present a neural network TTS system that mimics the traditional
separation into linguistic analysis (or front-end) and synthesis (or back-end) modules.
It is unclear to what degree this system in fact performs text normalization since the
only front-end component they describe is grapheme-to-phoneme conversion, which is a
separate process from text normalization and usually performed later in the pipeline.

Some prior work, such as Shugrina (2010), focuses on the inverse problem of denormal-
1zing spoken sequences into written text in the context of Automatic Speech Recognition
so that two hundred fifty would get converted to 250 or three thirty as a time would get
formatted as 3:30. Pusateri et al. (2017) describe a system in which denormalization is
treated as a neural network sequence labeling problem using a rich tagset.

The data we report on in this paper was recently released and was the subject
of a Kaggle competition (see below), and a few recent studies (Pramanik and Hussain
2018; Yolchuyeva, Németh, and Gyires-Téth 2018, inter alia) propose neural network
approaches to text normalization using this data set. We postpone discussion of this
work until a later section (Section 7.7).

4. A Transformer model

Before we turn to a discussion of our own neural text normalization models, we present
some results using a different approach, one that probably has already occurred to the
reader. Namely: why not treat the text normalization problem as a machine translation
task, where the source language is raw text and the target language is normalized text,
in the same language as the source language. Thus in our case a source sentence might be

John lives at 123 King Ave next to A&P.
and the corresponding target would be
John lives at one twenty three King Avenue next to A_letter and P_letter sil

Clearly this is a much easier problem than real translation, especially when it
comes to translation between two very dissimilar languages such as English and
Japanese.

To this end we trained a Transformer model (Vaswani et al. 2017) on our English
training set, as described in Section 7.1, and tested on our standard English test set. Since
the problem is a full sequence-to-sequence task, the training corpus was transformed into

Computational Linguistics Volume XX, Number X

a sequence of pairs of raw input sentences, and normalized output sentences, as in the
example above.

The details of our Transformer model are summarized in Appendix A.2.

Since there was no simple way to align the input tokens with the output verbalization,
we evaluated for sentence accuracy only. Note that the amount of training data — about
10 million tokens — is perhaps an order of magnitude less data than is commonly used for
translation between high-resource languages. On the other hand, our task is significantly
easier than real translation. It is not clear how these two factors trade off against one
another.

The overall sentence accuracy of the Transformer system on our data was 96.53%
(sentence error rate of 3.47%), which is lower than the accuracy of 97.75% we report
below for our best system (see Table 5). As with our own purely neural systems, the
Transformer model is prone to unrecoverable errors. Among these are:

. A predilection for replacing the letter ¢ with « so that the letter sequence
IUCN, for instance is verbalized as v u ¢ n.

e Inappropriate expansions such as verbalizing they’ve been outside as they
avenue been outside, or Cherokee’s 2.8 V 6 as cherokee’s two point eight
volts six.

e Complete substitution of different lexical items: Yahoo! verbalized as o m 1.

A similar experiment with our Russian data produced similar results. Here the
sentence accuracy of the system is 93.35% (error rate of 6.65%), compared to our own
best sentence accuracy of 95.46% from Table 5. Common types of errors in Russian are:

* xunomemp 6 keadpame "kilometer squared' (and morphological variants) instead
of keadpammnwiii kunomemp “square kilometer' (and morphological variants). This
is due to mistokenized examples of ku? in the training data being translated as x u
6 keadpame, with the Transformer model generalizing that pattern. Our own
models do not make this error.

* Wrong choice of letters in letter sequences, as in English.

e Stopping problems in transliterations. E.g. the English word narrative
transliterated not as nappamus (literally narrativ), but as
Happamusmumuemuemusmusmusmus. Such stopping problems are familiar in
sequence-to-sequence models---see e.g. Section 5.2.3 of Xie (2017), for a
discussion of this problem in neural Natural Language Generation.

As already noted—and see, especially, Sections 7.6 and 7.8—our own neural models
make similar kinds of errors, but the fact that the Transformer model is prone to such
errors, coupled with slightly higher overall error rates, at least serves as an answer to the
question that people often ask, namely why we do not treat this as a Machine Translation
task? Simply put, state-of-the-art MT models do not solve the problem since we would
still need to have some mechanism to correct for these errors.

This then leads us to the more serious issue, namely that treating the problem as
a sequence-to-sequence problem where the input and output are full sentences makes it
much more difficult to correct such errors, since it would be harder to reconstruct which
output token(s) correspond to which input token(s), and thus which portion of the input
is responsible for the errorful output. This in turn motivates architectures that treat

10

Zhang, Sproat, Ng, Stahlberg, Peng, Gorman, Roark Neural Models of Text Normalization

John <self>
lives <self>
at <self>
123 one twenty three
King <self>

Ave avenue

next <self>

to <self>

A&P a_letter and p_letter
sil

Table 2
An example training sentence.

each input token separately. With such an architecture, one has a chance of correcting
the output by an approach such as the covering grammar approach we will discuss in
Section 6, or in the worst case by simply adding the input token to a whitelist that forces
it to be verbalized in a particular way. We view these issues as compelling motivations
for not adopting an “out-of-the-box” solution, but rather designing models that keep the
relation between input and output tokens clear. We turn immediately to a discussion of
our models.

5. Our models

In the previous section we argued against using an architecture designed for machine
translation for text normalization. In this section we present novel models and their
components that are specifically designed for this problem. We start with a discussion of
segmentation.

5.1 Segmentation

Most of our models (except the one presented in Section 5.4) assume pre-segmented
input. Table 2 gives an example of the data used for these models. We assume the
same segmentation standard as (Ebden and Sproat 2014), which generally splits off
punctuation and separates words by whitespace, but also treats as a single segment
multiword sequences that represent dates (Jan. 3, 2016), certain money expressions ($5
million), and so on. We use a special token <self> to indicate that the input is to be
passed through. The token sil is used to represent silence, which is typically associated
with punctuation. We denote the set of all possible Kestrel (input) segments as S, and
the set of all possible output words (the target vocabulary) as W. We represent each
sentence in the training corpus as a sequence of pairs ((x1,41),. .., (2, y1)) where [is the
sentence length in segments. Each x; € S is a single segment such as a complete date,
address, money expression, etc. (e.g., x; = 123). y; € {<self>, sil} U W contains the
normalized form of z; as sequence of words (e.g., y; = (one, twenty, three)).

The output word vocabulary W in our setup is relatively small since it only contains
words used for non-trivial normalization such as number names etc. On the input side,
however, we need to tokenize segments into smaller chunks to obtain a fixed-size input
vocabulary for the neural models. We denote the input vocabulary to the neural model

11

Computational Linguistics Volume XX, Number X

t=1 t=2 t=3 t=4
one twenty three </s>

t t ! t

GRUec
— —_ —_ —_ —_— —_— —_ —_ —_— —_— —_— —»GR'UGHC
-— - - - -~ -~ - - -~ -~ -~ -~
a t <norm> 1 2 3 </norm> K [n g

Figure 1
The sliding window model, with a bidirectional RNN encoder and an attention mechanism
decoder.

as T, and the mapping from segment to token sequence as tok : S — TF. T can be a
short list of full words, word features (Section 5.3.1), subword units (Sennrich, Haddow,
and Birch 2016), or characters.

We will use the @-operator to denote string concatenation.

5.2 The sliding window model

In the next few sections we detail the various architectures that we have applied to the
problem of text normalization, starting with our baseline model.

We use the model of Sproat and Jaitly (2016, 2017) as a strong neural baseline,
which consists of a bidirectional RNN encoder and an attention mechanism decoder.
Appendix A.3 lists the hyper-parameters we use in our experiments.

12

Zhang, Sproat, Ng, Stahlberg, Peng, Gorman, Roark Neural Models of Text Normalization

We refer to this model as sliding window model (Figure 1) as we normalize each
segment by feeding in a context window of n segments to the left and right around the
segment of interest (where n is typically 3). The token of current interest is enclosed in
the tags <norm>..</norm> as in the example below:

John lives at <mnorm> 123 </norm> King Ave next to A&P .
The output being predicted is just the verbalization of the current segment:
one twenty three

More formally, the model normalizes the i-th segment by learning to predict the
following probability:

|yl
PyilTion, ..., Tiyn) = HP((yi)t‘(yi)iilv$i7n7 s Tign) (1)

=t =g(")

where g(-) is modeled by an RNN-based attentional encoder-decoder network (Bahdanau,
Cho, and Bengio 2015) in which the encoder consumes the context window around the
to-be-normalized segment:

i—1 min(l,i+n)
P tok(zr) ® < norm > @ tok(z;) & < /norm>& P tok(zx) (2)
k=max(1,i—n) k=i+1

If the length of the resulting sequence is [, the encoder built on gated recurrent
units (GRUepc in Figure 1) generates [hidden states ((h;)q,...,(h;);). The attention
mechanism works as follows:

- - l
P((yi) (W) Tims - i) = P((0i), | (wi)7 s (hi)y)
= g((yi)t_la Si,ts Ci,t)
where g is a nonlinear function that outputs the probability of (y;),, given state s; ; of the

decoder RNN (GRUyq,. in Figure 1) at time step ¢ after producing (y;)" " and attending

over (hl)l1 to result in the context vector ¢; ;. Concretely, ¢;; is a weighted sum of the
encoder hidden states.

!
Cit = Z (ai)y;(hi); (3)

The weight of each hidden state is computed as

_ eXP((ei)tj)
S 1 exp((ei)y,)

(ai)tj

13

Computational Linguistics Volume XX, Number X

where

(ei)y; = a(sit-1, (hi);)

and where a is the alignment model that computes the matching score between input
position j and output position ¢ for the i-th example, which is implemented as a single-
layer multilayer perceptron with tanh(-) as the activation function.

Note that even though each segment is considered separately from the other segments,
the use of an input context of 3 words is generally sufficient to disambiguate in cases
where a given segment might have more than one possible verbalization. Thus if the input
were:

I raised <norm> 123 </norm> goats .

the context around 123 in this instance would be sufficient to determine that the correct
reading is:

one hundred twenty three

One advantage of processing each segment separately is that it allows for parallel
processing during decoding, which significantly speeds up decoding.

The input sequence for the sliding window model is a character sequence (i.e. tok(+)
maps to characters, and T is the English character set), since for a segment like 123,
one needs to see the individual digits to know how to read it. It is also useful to see the
individual characters for out-of-vocabulary words to determine whether they should be
mapped to <self>.?

5.3 Contextual sequence-to-sequence models

The previous section described our baseline sequence-to-sequence model where data are
presented to the model one segment at a time using a sliding window, with each segment
enclosed in <norm>..</norm> tags. In this and the following sections, we propose
alternative neural network architectures for this problem.

The models proposed in this section can be characterized as contextual sequence-
to-sequence models illustrated schematically in Figure 2. Here the problem is cast as a
contexrt-aware sequence-to-sequence mapping task from the input (character) sequence 1
2 3 to the output (word) sequence one twenty three. The context of this sequence-
to-sequence problem is encoded with two vector representations: one for the left context
John lives at, and one for the right context: King Ave next to A&P. The core
of this architecture is an RNN-based attentional sequence-to-sequence network with a
bidirectional encoder GRUjq built from gated recurrent units, or GRUs (Cho et al.
2014). Appendix A.4 lists the hyper-parameters we use in our experiments.

5.3.1 Encoding the context. We propose to use two additional RNNs to produce
distributed representations of the full sentence context. Figure 3 shows the complete
model architecture. In addition to the core sequence-to-sequence encoder GRUyyiq (shown
with orange boxes in the figure) we use two more GRU networks (GRU_, and GRU.) to

9 We have also experimented with word piece and other encodings for surrounding context, as
discussed below.

14

Zhang, Sproat, Ng, Stahlberg, Peng, Gorman, Roark Neural Models of Text Normalization

one twenty three

John lives at King Ave next to A&P

Figure 2
Text normalization with a contextual sequence-to-sequence model.

encode the context. The hidden states of GRU_, and GRU, which are adjacent to the to-
be-normalized segment are used as context representations. Note that the tokenization
for the context is independent of the middle segment, which makes it possible to use
coarse-grained tokenization such as words or word pieces for the context and characters
for the to-be-normalized part. In our later experiments, we always use characters for the
middle segment (i.e. tokmiq(-) maps to the character set Ti,iq), but vary the granularity for
the context tokenization tokeontext : S — Teontext- Lhe choices for Teontext include (from
coarse to fine) words, word pieces (Schuster and Nakajima 2012; Sennrich, Haddow,
and Birch 2016; Wu et al. 2016), or even characters. We also experiment with word
features, which represent words by extracting character n-gram features for n up to three
within each word, hashing and embedding them, and finally applying a transformation
to produce a fixed-length dense vector. The simplest transformation is a summation, but
it can also be a neural network such as an RNN. Figure 4 shows the character n-gram
based word contextual model.

Unlike the sliding window model (Eq. 2), our new contextual sequence-to-sequence
model conditions on the full sentence to normalize the i-th segment:

|yl

Pyilz1,...,m) = HP((yl)t | ()1 o), (4)

15

Computational Linguistics Volume XX, Number X

t=1 t=2 t=3 t=4
one twenty three </s>

t ! ! t

GRUgec
—_— —_— —_—
¢ +(context)
— id ;;
BN hi—y h’g]f/l Vit 1 N
1

GRrUmid
—_— —_—
-— -—

1 2 3
GRU.,

GRUL_

John lives at 123 King Ave. next

1=1 =2 1=3 1 =4 1= i1=6 1=17
Figure 3
Encoding the context with RNNs GRU_, and GRU,_.
where ¢;; is the concatenation of three vectors (see Figure 3):

— .
cip = (hi—1; h% hiv1)- (5)

%
Here, hj and E for 1 < k <[are the hidden states of GRU_, and GRU_ which run over
the complete input sequence @;zl tokeontext (7%)-1°

10 Since tokcontext () can yield multiple tokens for a single segment, these equations may require
multiple steps.

16

Zhang, Sproat, Ng, Stahlberg, Peng, Gorman, Roark Neural Models of Text Normalization

GRU_,
GRU_
Figure 4
Word contextual model based on character n-grams within each word.
% H
hi - GRU%(hiflv tOkcontcxt (l'z)) (6)
hi = GRU (i1, t0kcontens (1)) (7)

The representation of the middle segment hg‘tid at time t is computed using attention
over the hidden states of yet another bidirectional RNN GRU,,;q which only consumes
the segment to normalize tokmiq(z;). It is the same attention mechanism as described
in Section 5.2 with the crucial difference that the region of attention is restricted to the
segment to normalize. The difference between the class of contextual models described

17

Computational Linguistics Volume XX, Number X

‘concat’ strategy

t=1 t=2 t=3 t=4
one twenty three </s>

! ! t !

_— — —

W

¢; ¢ (context)

GRUdcc

mid const
hi h;

‘init’ strategy

t=1 t=2 t=3 t=4
one twenty three </s>

! ! t !

_ — —

W

¢; ¢ (context)

GRUgec

const mid
h; h%

Figure 5
Using the context representations in the decoder network.

here and the baseline sliding window model is clear from the constrast between Equation 3
and Equation 5. While the sliding window model uses surrounding context through the
attention mechanism, the contextual models use context directly as a constant vector.

5.3.2 Integrating context encodings. The context-aware sequence-to-sequence mod-
els presented in the previous section concatenate a vector h,?:‘tid with a constant context
vector to obtain the input ¢;+ to the decoder network at each time step. We refer to this
approach as the ‘concat’ strategy. This gives the decoder access to the context outside the
to-be-normalized segment at each time step but in doing so increases the dimensionality
of the decoder input. An alternative way is to only use the attention-based vector as input
to the decoder network (i.e. ¢;; = h?"gd). The constant context is only used to initialize
the decoder RNN state; we refer to this as the ‘init’ strategy. Figure 5 contrasts both
methods. We will compare these strategies in terms of both speed and accuracy.

18

Zhang, Sproat, Ng, Stahlberg, Peng, Gorman, Roark Neural Models of Text Normalization

5.4 Stacking tagging and contextual models

In the previous sections, we have assumed the input sequence is pre-segmented into
tokens. However, in real-world applications the normalization model needs to be fed with
segmented output produced by a segmenter. A segmenter can be rule-based like that in
Kestrel (Ebden and Sproat 2014), or a neural network based sequence tagging model
trained together with a normalization model.

Generally speaking, the majority of tokens are either normal words that are left alone
(<self>) or punctuation symbols that are mapped to silence (sil). We refer to these
two types of tokens as trivial cases and the remaining tokens as difficult cases. Thus, we
have a three-class coarse-grained classification problem on input words: <self>, sil,
and other (difficult cases).

We treat input segmentation and coarse-grained classification as a joint tagging
problem, using a stacked multi-task strategy in modeling. In this model, the hidden
states of the sentence context RNNs are shared between the tagger and the normalizer.
At training time, the tagging loss and the normalization loss sum up to become the
total loss to minimize. At decoding time, we stack the two models. In the first stage, the
tagger predicts segmentation and class labels for trivial tokens. In the second stage, the
sequence-to-sequence normalization model predicts the normalized output for the other
input tokens.

The two-stage approach has two potential benefits. It can be more computationally
efficient because the tagging RNN has a much smaller output vocabulary than the
normalization decoder RNN and does not require an attention mechanism. With multi-
task training of a shared input encoder, the speed-up is more significant. The model
has the potential to be more accurate in classifying trivial cases because classification
crucially depends on the surrounding context.

The multi-task network is visualized in Figure 6. For the sequence tagging model,
the transition actions are the sequence of tag labels. To differentiate trivial cases from
difficult cases, we use a three-label tag set: <self>, sil and I; the latter represents
a difficult case. To distinguish the beginning position of a segment from non-beginning
positions, we use the labels B and M. In order to learn the token boundaries and classes
jointly, we simply conjoin these two tag sets; for instance, B-I refers to the start of a
difficult case. The lower portion of Figure 6 shows the RNN architecture for the tagger.
We reuse the backward RNN encoder (GRU.) to encode the right-to-left context for each
word position. In addition to the recurrent link to its previous time step, each hidden
state of GRUy,e also attends to the encoder state at the same word position from the
GRU_ layer.

5.5 Incorporating reconstruction loss

We observe that unrecoverable errors usually involve linguistically coherent output, but
simply fail to correspond to the input. In the terminology used in machine translation,
one might say that they favor fluency over adequacy, The same pattern has been identified
in neural machine translation (Arthur, Neubig, and Nakamura 2016), which motivates a
branch of research that can be summarized as enforcing the attention-based decoder to
pay more “attention” to the input. Tu et al. (2016) and Mi et al. (2016) argue that the root
problem lies in the attention mechanism itself. Unlike traditional phrase-based machine
translation, there is no guarantee that the entire input can be “covered” at the end of
decoding, and thus they strengthen the attention mechanism to approximate a notion
of input coverage. Tu et al. (2017) suggest that the fix can also be made in the decoder

19

Computational Linguistics Volume XX, Number X

t=1 t=2 t=3 t=4
one twenty three </s>

! t t t

1 ! GRUdec
¢+ (context)
e R
t
GRUmia

1 2 3
GRU,

r/r Y Y (T

John lives at 123 King Ave next
i=1 i=2 i=3 i=4 i= i= i =

GR'Utag

! ! ! ! ! ! !

<self> <self> <self> B-I <self> B-I <self>

Figure 6
Multi-task encoder RNNs GRU_, and GRU_ for tagging and contextual text normalization.

RNN. The key insight here is that the hidden states in the decoder RNN should keep
memory of the correspondence with the input. In addition to the standard translation
loss, there should also be a reconstruction loss, which is the cost of translating back
to the input from the decoder hidden states. The new training objective is minimizing
a (weighted) combination of translation loss and reconstruction loss. This is visualized
in Figure 7. The relative weights of reconstruction loss vs. translation loss represent the
relative importance of adequacy and fluency. The reconstruction component of this model
can also be used in two ways. First, it can act as a regularizer on the translation model
parameters; while it slows down training it does not affect decoding speed. Second, the
jointly trained reconstruction model can be used to rerank the translation model outputs
by adding the reconstruction loss term to hypotheses in the beam. We report results in
both settings in section 7.

One caveat is in order, however; our translation problem is not fully symmetric. For
words that should be translated to <self> and sil, reconstruction is infeasible. For
such cases, the decoder state sequence is of length 1, and it is unrealistic to expect that

20

Zhang, Sproat, Ng, Stahlberg, Peng, Gorman, Roark Neural Models of Text Normalization

1 2 3 </s>
N T SR m—
GRUgec
¢;,¢(context)
— h?d o =
GRUumia
et

1 2 3
GRU_,

GRU.

[L S R

John lives at 123 King Ave. next

i = i = =3 i=4 1=25 i=6 1=

Figure 7
Model with translation loss and reconstruction loss.

a single decoder state is capable of reconstructing the entire input sequence. Hence,
in implementation, we skip all examples that are <self> and sil and only apply
reconstruction loss on the remaining examples. This is mathematically equivalent to
setting the reconstruction loss to zero for all trivial examples.

In this section we have presented a suite of neural models for text normalization.
Before we turn to the experiments and results with these models we describe how weak

21

Computational Linguistics Volume XX, Number X

covering grammars can be used to mitigate against some of the unrecoverable errors to
which the neural models are prone.

6. Inferring language-particular covering grammars from data

One effective strategy for mitigating against some of the unrecoverable errors produced by
pure neural models is to constrain the output for difficult cases with covering grammars,
which are grammars that are intended to cover the set of verbalizations that are
reasonable for a given input. In principle such grammars can be implemented as any
kind of constraint on the output, but we focus on finite-state models.

The reasons for the occurrence of unrecoverable errors are not fully understood but
plausible culprits are lack of sufficient training data for given expressions, and contexts
that might favor a given output enough to make the system disregard the input.'' For
example, the model may have learned to verbalize 3kg as three kilograms, but it may
not generalize what it has learned to cases that have occurred less often in the training
data, such as 3mA (three milliamperes) or 329,132kg (three hundred twenty nine thousand
one hundred thirty two kilograms). Large numbers are particularly challenging since it
is unlikely the RNN will have seen enough examples of numbers in the training data to
fully grasp the number name system of the language. In general, there may not have
been enough instances of any given semiotic class (measure, money, cardinal number,
date, time ...) for the system to learn a complete model of that class. Also problematic
are cases where a known expression is written in a way that the system has not seen
many examples of. If kilograms is usually written kg in the training data, then the model
may simply not know what to do when it sees 3.5 kilograms in new data.

In other cases, the context may introduce a bias. Consider a date like April 12, 908,
where the neural system might verbalize this as April twelfth sil nineteen o eight, even
though it has no problem correctly verbalizing three digit numbers in other contexts. In
data sources such as that in Wikipedia perhaps as many as 99% of the examples of the
form month-day-year have a four-digit year, reflecting a bias towards events occurring
after AD 1000. Thus it is not surprising that the neural system would have a bias to
interpret something as a four-digit date in such contexts, even if the input is a three-
digit date.

The role of covering grammars is to limit the choices that the neural system has to
choose from to only those reasonable given the input.

The grammars used in a largely hand-crafted text normalization system tend to
be quite complex since they need to produce the contextually appropriate rendition
of a particular token. In contrast, covering grammars—henceforth CG—are lightweight
grammars, that enumerate the reasonable possible verbalizations for an input, rather
than trying to specify the correct version for a specific instance. It is sufficient if the CG
tells us that 3mA could be three milliampere or three milliamperes, and restricts us from
reading it as, for example, three million liters.

Clearly it would be possible to construct CGs completely by hand using a grammar
development toolkit as was done for the more detailed Kestrel grammars, which were
developed using the Thrax grammar compiler (Roark et al. 2012). However, it would
obviously be desirable if we could minimize the handwork needed to providing a minimal
amount of language-specific information (how one reads measure expressions or months

11 In addition, inconsistencies in training (2010 as a year could be either twenty ten or two thousand
ten), may also confuse the model.

22

Zhang, Sproat, Ng, Stahlberg, Peng, Gorman, Roark Neural Models of Text Normalization

of the year for example), a small number of hand-developed rules, and otherwise rely on
training data to induce the final CG. In this section we explore this approach, and we
build off our prior work on inducing number name grammars reported by Gorman and
Sproat (2016), generalizing the concept to semiotic classes in general.

6.1 Inducing number name covering grammars

Gorman and Sproat (2016) reported on a system that can induce a number-name
grammar expressed as an FST from a minimal set of training pairs consisting of digit
sequences and their verbalizations. The method requires knowing the meanings of all
basic number words—1 is one, 20 is twenty, 100 is hundred, etc.; and a list of about
300 examples of complex number names and their digit representation built out of these
basic number words. In languages that inflect numbers, like Russian, all inflected forms
of all number words should be given, so that the entry for 100, for example, would list
all the forms in which the word meaning 7100 might appear.

When composing complex number names, languages use a limited set of bases (base
10 is overwhelmingly the most common across the world’s languages, with base 20 being
a distant second place), and a limited set of arithmetic operations that can be applied
to those bases. Summation and multiplication are overwhelmingly the most common
operations (with subtraction being a much rarer option), and indeed one typically
constructs a complex number name via sums of products of the bases; see Hurford (1975)
for extensive discussion of the operations used by various languages in the construction
of number names. Thus the English number name three thousand two hundred fifty four
is interpreted as the sum 3 x 1000 4+ 2 x 100 4+ 50 + 4. Similarly French quatre-vingt-dix-
sept (97) is 4 x 20+ 10 + 7.

If we take the French case and consider the digit representation 97, and assuming
we allow bases 10 and 20, and potential base words for 80 and 90, then some reasonable
ways to factor this are:

90+ 7
80+10+7
4x20+10+7

To compute such factors, assume that we have a (universal) arithmetic FST < that
transduces from a digit string to a lattice of possible arithmetic expressions.

Now consider the verbalization quatre-vingt-diz-sept (4 20 10 7). If one knew nothing
about French except the meanings of these individual words, there would theoretically
be a number of ways that the terms could be combined arithmetically, including:

4+20+10x7
4+20+10+7
4x20+10+7

Similarly, assume that we have a language-particular lexical map . that maps a sequence
of number words in the language to a lattice of possible arithmetic combinations.

For any training pair (4,0) (e.g. quatre-vingt-diz-sept — 97), we seek a set of paths
& defined as follows

23

Computational Linguistics Volume XX, Number X

P = Toutput [7' o ,,E,ﬂ] N Tinput [,2771 o O] (8)

where 7 is the projection operation over regular relations. In practice & will usually
contain just one path for a given training pair, though this requires some care in choosing
the training pair set; see Gorman and Sproat (2016) for further details.

Given a set of training pairs, we obtain a set of paths, from which a grammar ¢ can
be extracted. A number name reader & can then be defined as:

C=LoGow ! ©)

Again, see (Gorman and Sproat 2016) for further details on the method sketched above.

Note that in this discussion we have been implicitly assuming that we are talking
about cardinal (counting) numbers, but the above method works equally well for ordinals
(first, sixth, twenty third ..). Other ways of reading numbers such as digit-by-digit readings
can be handled by incorporating the learned number-name transducer % into a hand-
built rule using Thrax or similar grammar development tools.

6.2 Extending CG induction to other semiotic classes

To see how this approach might be extended to more general semiotic classes, consider
the reading of dates, as in the following examples, which give plausible written forms and
their verbalization:

Jan 4, 1999 — January the fourth nineteen ninety nine
03/15/2000 — March the fifteenth two thousand
15/03/2000 — March the fifteenth two thousand
04/07/1976 — the fourth of July nineteen seventy six

The problem is to produce a CG that can map from representations like those on the
left, to the verbalizations on the right.

We follow Ebden and Sproat (2014) in breaking this problem down into two stages,
namely a tokenization and markup phase where the written date is mapped to a canonical
markup representation, and the second where the markup is verbalized. The markup
system is similar to the simpler format used in the open-source version of Kestrel,
Sparrowhawk.'? For the above dates, the following representations are used:

Jan 4, 1999 — datel|month:1|day:4|year:1999]|
03/15/2000 — datelmonth:3|day:15|year:2000]|
15/03/2000 — datelday:15|month:3|year:2000]|
04/07/1976 — datelday:4|month:7|year:1976]|

For the purely numerical formats of dates, these mappings are largely universal and
require no language-particular grammars. For cases like the first example Jan 4, 1999,
one obviously needs language-particular information on how the months, and in some
languages the months and years, may be written, but even here there are only three
orderings:

12 http://github.com/google/sparrowhawk/tree/master/documentation.

24

Zhang, Sproat, Ng, Stahlberg, Peng, Gorman, Roark Neural Models of Text Normalization

month day year
day month year
year month day

that are at all common across languages. One may therefore accomplish this first
mapping using a few language particular rules added to mostly language-independent
ones, which means that one can eschew trying to learn this phase in favor of developing
a grammar for this phase by hand, and modifying it as needed for other languages. (In
the case of dates, we make use of the tokenizer grammars for dates that are already part
of Kestrel.)

The problem then remains to learn the mappings from the markup to the verbaliza-
tion. Or in other words:

date|month:1|day:4|year:1999]|
date|month:3|day:15|year:2000|
date|day:15|month:3|year:2000|
datel|day:4|month:7|year:1976]|

— January the fourth nineteen ninety nine
— March the fifteenth two thousand
— March the fifteenth two thousand
— the fourth of July nineteen seventy six
One further point needs to be made about the third example since it involves a reordering
of the month and day in the verbalization. Reordering of arbitrary elements is not possible
with regular relations but one can do limited reordering using pushdown transducers
(Allauzen and Riley 2012). Pushdown transducers (PDT) are FSTs that mimic the oper-
ations of pushdown automata using a set of paired parentheses, where the parentheses
simulate a stack. For example, the non-regular language a™b™ can be recognized by a
PDT that allows any number of a, with a parenthesis “(” before each a, followed by any
number of b, with a parenthesis “)” after each b, requiring that the parentheses balance.
For our problem, we can use the parentheses in the pushdown operations to remember
that if we insert month:3 before a day, we should delete the original month:3 after the
day. Thus in the method described below, we actually present both orderings of month
and day components, leaving the induction method described below to determine which
is the best match to the given verbalization.'® Similar reorderings are needed in currency
expressions, times and in some languages measure expressions and fractions.

Consider the first mapping above, date |month:1|day:4|year:1999| as January the
fourth nineteen ninety nine. We assume we have language-particular class grammars as
follows:

° % a cardinal number CG as described above

. 0 a similarly-derived ordinal number CG

13 Reading ISO format dates like 2000/05/06 as May the sizth two thousand is not supported by the
system described here. These would involve either moving the year after the month/day sequence;
or moving the month/day combination before the year. In the first case the PDT would have to
remember which year was deleted in order to insert it at the end, with thousands of distinct years
to remember; or else remember which of 365 month/day combinations appeared after the year in
order to insert it before. Due to the large number of entities that need to be remembered by the
PDT, the approach is not practical in this case.

25

Computational Linguistics Volume XX, Number X

. A month names (including inflected forms) for the language, mapping
from numerical designations such as month:1

. . deletion of markup such as date or |

¢ Any needed language-particular readings not covered above. In English,
years have a reading that differs from standard cardinal numbers, and so it
is worthwhile to write a grammar % that covers years. An example of such
a grammar is given in Appendix A.1.

The above transducers are assumed to be unweighted. We also assume an edit transducer
& that can replace any string with any other string by inserting or deleting characters
at a cost—in the tropical semiring, a large positive number for each insertion or deletion.
Each of €,0, #,.%,&, etc. is associated with a tagger T that introduces class-specific
tags at the beginning and end of each matched span. These tag insertions have a small
positive cost in order to favor longer matching spans in cases where more than one parsing
is possible for an input string, when the shortest path is computed (see below). Thus
T[0] would transduce an input 4 to <ord>fourth</ord>; these tags will be used below
to induce general class rules from examples involving particular class instances. We can
then define a mapper from the markup to the tagged representation as:

Map = (T[C\UT[O\UT[AUT[LIUTI[E])"

In other words, we define the Map as the the concatenative closure of the taggers for
each of the known types. To map from the output of Map to the verbalization (January
the fourth nineteen ninety nine) we assume a transducer & that deletes tags.

Thus the input i is composed with Map, which is then composed with &, which is
composed with the output o. Analogously to the induction of number name grammars
described above, since we wish to extract the best alignment leading to the best rule from
the instance in question, we compute the shortest path P that lies in the intersection of
the output of Map and the input of 2, but here we need to preserve the input side as
well, since what we need in this case is to learn a transducer that maps between the
markup and sequences of tagged spans, and so we do not want to project to the output
of i 0o Map. Thus:

P = ShortestPath[[i o Map] o Tinput[Z o 0]).

In the example at hand, date|month:1|day:4|year:1999|, and verbalization January
the fourth nineteen ninety nine. P would be as in Figure 8.

In the next stage we replace spans that are tagged with tags other than markup or
edit with class labels on both the input and output side, and remove all tags. In the
example at hand the output is as in Figure 9.

Given a training corpus of dates and other semiotic classes (which can be the
same training corpus as is used to train the neural models), we compute the union
of all class-replaced path patterns P as in Figure 9. In practice, it is useful to remove
patterns that occur less than a minimum number of times in order to remove spuri-
ous inductions or patterns that do not generalize well: in our experiments we used
a minimum count of 50. In the final step, we perform recursive transition network
replacement on the resulting union to replace the class labels with the correspondingly
named FSTs as defined in the language-specific grammar; thus MONTH in Figure 9

26

Zhang, Sproat, Ng, Stahlberg, Peng, Gorman, Roark

€
datel
€
€

month:1

€
€

|day:
€

[WS N NYC NNe NN Ne)

1999

A —

Figure 8

<markup>
€
</markup>
<month>
January
</month>
<markup>
€
</markup>
<edit>
the
</edit>
<ord>
fourth
</ord>
€
<year>

Neural Models of Text Normalization

nineteen ninety nine

</year>
<markup>
€
</markup>

Shortest markup path for the input date|month:1|day:4|year:1999| and the verbalization
January the fourth nineteen ninety nine.

Figure 9

datel| €

MONTH MONTH
|day: €

€ the
ORDINAL ORDINAL
| €

YEAR YEAR

€

Shortest markup path for the input date|month:1|day:4|year:1999| and the verbalization
January the fourth nineteen ninety nine, after replacement with class labels.

would be replaced by the .# WFST. This has the result that if we have seen one
pair date|month:1|day:4|year:1999|—January the fourth nineteen ninety nine, the
resulting grammar will be able to verbalize, e.g., date|month:3|day:5|year:2012| as

March the fifth twenty twelve.

27

Computational Linguistics Volume XX, Number X

two

twenty

-bee

}"’{-wé”) ™ three | edght

Decoder RNN }/ ten ~grans e
— ™ </s>

e o LA

Figure 10

An illustration of on-the-fly intersection with a covering grammar; the lattice produced from
the input 123 projects to an acceptor that only accepts one two three and one twenty three,
and intersecting this with the RNN outputs at each position (where higher ranking output is
indicated by a higher position in the cell) will result in the output one twenty three.

6.3 Using the covering grammar with neural models

The application of covering grammar constraints to constraining the verbalizations
emitted by the neural models requires some care. Here we briefly describe the issues
and our approach to solving them.

When we apply the covering grammar to an input token, if the covering grammar
produces a lattice of possible verbalizations for that token, then we use that lattice
to guide the neural model. This is similar in principle to recent work by Ng, Gorman,
and Sproat (2017), in which covering grammars are used to generate hypotheses for a
(non-neural) reranking model. But if the covering grammar fails, for instance because
the token is out of scope for the covering grammar (as would be the case for a typical
word that would be mapped to <self>), then the neural model is unconstrained. We
implement the application of a covering grammar constraint as on-the-fly intersection
(Figure 10) between two deterministic automata, where the lattice from the covering
grammar is projected onto the output, and determinized to become a deterministic finite
state automaton; and the RNN decoder can be considered as a weighted deterministic
automaton with an infinite state space.

Suppose first of all that one has trained a covering grammar and then wants to
apply the constraints of the grammar (e.g. that 3 kg can be either three kilogram or

28

Zhang, Sproat, Ng, Stahlberg, Peng, Gorman, Roark Neural Models of Text Normalization

three kilograms, but nothing else) at decoding time. The obvious method of applying the
constraint and then computing the softmax as used in Sproat and Jaitly (2016, 2017) is
potentially problematic since it can distort the rankings of analysis paths produced by
the system. Suppose for an input 123 we have two outputs (among many) namely one
two three </s> and one twenty three </s>, where </s> is the stop symbol, and
suppose that:

P(one two three </s>) = P(one two three) X P(</s> | one two three) (10)
=04 %05 (11)

P(one twenty three </s>) = P(one twenty three) x P(</s> | one twenty three)
(12)

=0.4x 0.9 (13)

and another, impossible, prediction:

P(one two three four </s>) = P(one two three four) X P(</s> | one two three
(14)
=0.3x0.9 (15)

Given the above, the probability of one two three being string final is less than the
comparable probability of one twenty three; so that

P(one two three </s>) < P(one twenty three </s>). (16)

Now suppose we have a covering grammar that in this instance only allows one two

three and one twenty three, thus filtering out other options like one twenty two.

Then letting @ represent the probabilities for the combined system,

P(one two three)

two th = 17
Q(one two three) P(one two three)+ P(one twenty three) (17)
= 0.5 (18)

= Q(one twenty three) (19)

and since both must now be string final (there is no other possibility but </s> after
either sequence),

Q(</s> | one two three) = Q(</s> | one twenty three) =1 (20)

SO NOW

29

four)

Computational Linguistics Volume XX, Number X

Q(one two three </s>) = Q(one twenty three </s>). (21)

Instead, if we wish to use a covering grammar with an already trained neural model we
must first apply softmax and then constrain.

Alternatively one can constrain during training, which will guarantee that the ranks
between paths will be preserved at decoding time, in which case one can at decoding time
safely constrain and then apply softmax. The main drawback of this approach is that
if the lattice produced by the covering grammar for the given training input does not
contain the true output as defined in the training then that training instance is lost. In
our experiments discussed below we report results both on training and decoding using
CGs, as well as decoding only, first applying softmax and then constraining.

7. Experiments
7.1 Description of the data

Our data consists of all English and Russian Wikipedia text that can be properly decoded
as UTF-8, which was then divided into sentences, and run through the Google TTS
system’s Kestrel text normalization component to produce verbalizations. The original
data was mined in Spring 2016, and has been released on GitHub'4, divided into 100
files per language, in the format described in Table 2.

We chose Wikipedia for three reasons. First of all, Wikipedia is a reasonable appli-
cation of TTS in that Wikipedia text is already found as input to TTS in, for example,
the question-answering component of the Google Assistant.!'®> Second, Wikipedia is a
reasonable instance of what might be called “general” English or Russian text. Finally,
there are very few legal limitations on the use of Wikipedia text.

To the extent that we look to provide accuracy commensurate with this heavily
engineered hand-built normalization system, this is an appropriate data set for evaluating
neural text normalization. The accuracy of the Kestrel annotations is high: a manual
analysis of about 1,000 examples from the test data suggests an overall error rate of
approximately 0.1% for English and 2.1% for Russian. The largest category of errors for
Russian involves years being read as cardinal numbers rather than the expected ordinal
form.

Although the test data were of course taken from a different portion of the Wikipedia
text than the training and development data, still a huge percentage of the individual
tokens of the test data—98.9% in the case of Russian and 99.5% in the case of English—
were found in the training set. There is thus a large potential for the system simply
memorizing certain examples. Nonetheless, as Sproat and Jaitly (2016) show for an earlier
neural model, the system is not simply memorizing.

Our full dataset consists of 1.1 billion words of English, and 290 million words of
Russian text. Since ultimately the goal is to produce systems that can be trained on
hand annotated data, one must therefore consider the amount of data that it is practical
to hand annotate. Clearly nearly a billion words or even 290 million words is not very
practical. Therefore, in our experiments below we train using the first file for English

14 https://github.com/rwsproat/text-normalization-data.
15 https://en.wikipedia.org/wiki/Google_Assistant.

30

Zhang, Sproat, Ng, Stahlberg, Peng, Gorman, Roark Neural Models of Text Normalization

(about 10 million tokens) and the first four files for Russian (about 11 million tokens),
and evaluate on the first 92,000 tokens of the last file for English, and the first 93,000
tokens of the last file for Russian. Files 90-94 are used for development.!'6

In late 2017 we hosted a text normalization competition on Kaggle with both our
English and Russian data sets.!” Sproat and Gorman (2018) provide a short review of the
competition results. As part of that competition we developed new test sets consisting of
70 thousand Wikipedia sentences (about 1 million tokens) in both languages. These data
were mined in Fall 2017, and were filtered to exclude any sentences present in the original
data set released on GitHub. This test data set is challenging, in particular for English
because there were some changes to the way Kestrel tokenizes certain semiotic classes, in
particular measure expressions, between when we created the first data set, and when we
created this data set. In the original data set measures with fully spelled measure words
like 5 kilograms were tokenized with the measure term separate, whereas in the later set
such data were tokenized as a single measure token. Not surprisingly, neural models have
some problems with this novel tokenization since in the training data they have not seen
many instances of fully-spelled measures in the same token as a preceding number, and
the model they have learned does not generalize well. One could argue that the test set
is therefore unfair, but on the other hand, it is not unreasonable to expect that new data,
say from a slightly new domain, will show differences of this kind. In any case, as we will
see, covering grammars are particularly effective at overcoming this limitation. Below we
also report results on the Kaggle test data (using the same training data as was used to
evaluate on the main test set).

Finally we have collected a set of manually annotated English Wikipedia sentences
for internal use. We describe these data and report results on them in Section 7.6.

7.2 Context representation

We first compare different representations of linguistic context. Recall that the sliding
window model, described in Section 5.2, uses a character context within a fixed 3-word
window of the token to be normalized. The architecture described in Section 5.3 can be
instantiated with different choices of basic input units for sentence context.

Table 3 compares the sliding window models with three types of input units: char-
acters, word pieces, and word features (character 3-grams), on the English and Russian
test sets. Here and below All denotes accuracies/errors for all tokens Semiotic class
denotes the interesting classes (i.e., not sil, <self> or punctuation) and Sentence is
the per-sentence accuracy/error. We observe first that two-level contextual models are
more efficient than the sliding-window baseline model due to sharing of context. Secondly,
we find that inference is more efficient with larger contextual units (see speed in the last
column), with word feature context having the best overall accuracy-speed tradeoft.

The results of the two context utilization strategies discussed in Section 5.3.2 are
shown in Table 4. The ‘init‘ strategy is clearly more efficient. It is also more accurate on
the sentence level for English. For Russian, the ‘concat‘ strategy is more accurate in all
metrics, indicating the importance of context.

16 Note that this corresponds to the train-dev-test split that can be found in the script available with
the GitHub data
(https://github.com/rwsproat/text-normalization-data/blob/master/split.sh).

17 See https://www.kaggle.com/c/text-normalization-challenge-english-language and
https://wuw.kaggle.com/c/text-normalization-challenge-russian-language.

31

Computational Linguistics

Volume XX, Number X

Accuracy(Error)

All

Semiotic class

Sentence

Speed

English (Standard):
Sliding window
Context (Char)
Context (WP)
Context (WF)

Russian (Standard):
Sliding window
Context (Char)
Context (WP)
Context (WF)

99.79% (0.21%)
99.79% (0.21%)
99.79% (0.21%)

99.84% (0.16%)*

99.64% (0.36%)
99.65% (0.35%)
99.61% (0.39%)
99.62% (0.38%)

98.20% (1.80%)
98.20% (1.80%)

98.35% (1.65%)
98.30% (1.70%)

97.31% (2.69%)
97.26% (2.74%)

96.94% (3.06%)*
97.01% (2.99%)*

97.99% (2.01%)
97.87% (2.13%)
97.76% (2.24%)

98.20% (1.80%)

95.61% (4.39%)
95.70% (4.30%)
95.26% (4.74%)
95.46% (4.54%)

1.0x
1.3x
1.4x
1.4x

1.0x
1.8x
1.8x
2.0x

Table 3

Results for models of different context representations: Char(acter), W(ord)P (iece),
W (ord)F(eature). For the contextual models we specify the tokenization level of the sentential

ko,

context. “*': difference is statistically significant (P < .05 on the McNemar test) in comparison
to the sliding window baseline. For speed, e.g. “1.4x” means 1.4 times faster.

Accuracy (Error)

Speed
All Semiotic class Sentence

English (Standard):
Word feat. init 99.84% (0.16% 98.30% (1.70%) 98.20% (1.80%) 1.4x
concat 99.82% (0.18%) 98.42% (1.58% 97.96% (2.04%) 1.2x

Russian (Standard):
Word feat. init 99.62% (0.38%) 97.01% (2.99%) 95.46% (4.54%) 2.0x
concat 99.66% (0.34%)* 97.32% (2.68%)* 95.80% (4.20%) 1.7x

Table 4

Results for models with different context utilization strategies.

(P < .05 on the McNemar test).

7.3 Stacking tagging and normalization

7 gtatistically significant

We then consider the effect of stacking the tagging model and the normalization model
and training them with a multi-task loss as described in Section 5.4.

Table 5 shows the results of accuracy and speed on the English and the Russian test
sets. For both languages, stacked models for both languages are clearly more efficient than
their pure sequence-to-sequence counterparts: four times faster in English, and faster yet
in Russian. Multi-task training with tagging loss results in even more accurate model for
Russian, presumably due to a regularization effect. Only 0.74% of English sentences and

32

Zhang, Sproat, Ng, Stahlberg, Peng, Gorman, Roark

Neural Models of Text Normalization

Fy

Acc (Err)

Speed
All Segmentation Sentence

English (Standard):

Word-feat. 99.84% (0.16%) 100.00% (0.00%) 98.20% (1.80%) 1.4x

+ tag. loss 99.83% (0.17%) 100.00% (0.00%) 98.12% (1.88%) 1.5x

+ tok./tag. 99.75% (0.25%) 99.26% (0.74%) 97.75% (2.25%) 4.0x
Russian (Standard):

Word-feat. 99.62% (0.38%) 100.00% (0.00%) 95.46% (4.54%) 2.0x

+ tag. loss 99.65% (0.35%) 100.00% (0.00%) 95.62% (4.38%) 2.2x

+ tok./tag. 99.59% (0.41%) 99.63% (0.37%) 95.46% (4.54%) 5.7x

Table 5

Results with stacked tagging and normalization models. “+ tag. loss”: with multi-task loss of
tokenization and semiotic class tagging. “+ tok/tag”: with a stacked tokenization and semiotic
class tagging model.

Accuracy (Error)

All Semiotic class Sentence

English (Kaggle):
Best model
+ reconstr. loss

99.17% (0.83%)
99.15% (0.85%)

90.08% (9.92%)
90.10% (9.90%)

89.58% (10.42%)
89.43% (10.57%)

Russian (Kaggle):
Best model
+ reconstr. loss

99.01% (0.99%)
99.01% (0.99%)

94.09% (5.91%)
94.10% (5.90%)

89.02% (10.98%)
89.05% (10.95%)

Table 6
Results with and without reconstruction loss. “+ reconstr. loss“: with reconstruction loss.

0.37% of Russian sentences contain segmentation errors, indicating that the underlying
RNN tagger is highly accurate.

Even though the stacked models are performing a more challenging task—text
normalization without assuming existence of pre-segmented semiotic class tokens—the
degradation in accuracy is small for English and smaller for Russian.

7.4 Reconstruction loss

Table 6 shows the effect of adding reconstruction loss, as described in Section 5.5, to the
best contextual models for English and Russian. We report results on the much-larger
Kaggle test sets to minimize the effect of noise. Unfortunately, there is little effect and
the differences are statistically insignificant (P > .05) according to the McNemar test
(Gillick and Cox 1989).

33

Computational Linguistics

Volume XX, Number X

Accuracy (Error)

All

Semiotic class

Sentence

English (Standard):
Best model
+ CG decoding
+ CG training

English (Kaggle):
Best model
+ CG decoding
+ CG training

Russian (Standard):
Best model
+ CG decoding
+ CG training

Russian (Kaggle):
Best model
+ CG decoding
+ CG training

99.84% (0.16%)

99.84% (0.16%)
99.84% (0.16%)

99.17% (0.83%)

99.22% (0.78%)*
99.20% (0.80%)*

99.65% (0.35%
99.64% (0.36%)

99.62% (0.38%)

99.01% (0.99%)

99.01% (0.99%)*
98.94% (1.06%)*

98.30% (1.70%)
98.36% (1.64%)

98.56% (1.44%)*

90.08% (9.92%)
90.69% (9.31%)*

90.71% (9.29%)*

97.17% (2.83%)

97.19% (2.81%)
97.01% (2.99%)

94.09% (5.91%)
94.12% (5.88%)*
94.17% (5.83%)*

98.20% (1.80%)

98.24% (1.76%)
98.17% (1.83%)

89.58% (10.42%)

90.09% (9.91%)
89.87% (10.13%)

95.62% (4.38%)
95.58% (4.42%)

95.26% (4.74%)

89.02% (10.98%)
89.03% (10.97%)

88.13% (11.87%)

Table 7
Results using the best neural model with and without induced covering grammars. “+ CG

decoding”: covering grammar used during decoding; “+ CG training”: covering grammar used

during training and decoding. ‘*’: difference is statistically significant (P < .05 on the

McNemar test) in comparison with the baseline model without CG.

7.5 Covering grammars

In this section, we show results of adding covering grammars to the training or decoding
of the RNN models. We report results for both English and Russian.

Before turning to the main result, it is worth considering the coverage of the covering
grammars on held-out data, defined as:

C = Ziex IZ

]

(22)

where x is the set of test examples where the grammar ¢ produces a non-null output,
and I; = 1 for a given input 7 iff the true output is found in moyeput(i 0 ¢].

We measured this for the covering grammars for English and Russian on the second
English file (roughly 10 million tokens) and files 5-8 of Russian (also roughly 10 million
tokens). The English grammar matched about 500 thousand tokens, with about 99%
coverage; the Russian grammar matched about 400 thousand tokens, with about 99.5%
coverage.

34

Zhang, Sproat, Ng, Stahlberg, Peng, Gorman, Roark Neural Models of Text Normalization

Table 7 demonstrates that the overall best choice is training the RNN without
covering grammars and decoding with covering grammars. We speculate that covering
grammars used to constrain training may be causing overfitting. Table 8 breaks the
results down by semiotic clas, with significant improvements (P < .05 on the McNemar
test) indicated. We observe improvements for four interesting semiotic classes: DATE,
CARDINAL, MEASURE, and MONEY. But there are also two degradations, in DECI-
MAL and TELEPHONE, for Russian.

See Section 7.8 for a deeper dive into the benefits of using covering grammars.

7.6 Results on hand-annotated data

Finally, we report briefly on some experiments we have conducted on human-corrected
data. While we currently have no plans to open-source this dataset, we feel it is
nonetheless useful to give the reader a sense of how the system performs on a smaller,
but cleaner and more accurate set of data.

English data from the main Kestrel-annotated data reported above was prepared that
included longer sentences (to minimize the number of sentence fragments), where each
sentence included at least one non-trivial text normalization token. This data was then
sent to outside vendors, who were tasked with correcting the verbalized output where
needed. Since the correction tool presented data one token per line, we also presented the
original Wikipedia sentence to raters, in order to make it easier to determine cases where
the tokenization might be unclear. Every file was sent to three independent annotators.
Note that the external annotators are not expected to have linguistic training, merely be
competent speakers of the language.

Tokens where all three annotators agreed were assumed to be correct, and if two
out of three annotators agreed, we picked the majority rating. For tokens where none of
the annotators agreed, the entire sentence containing those tokens was sent to internal
annotators for quality control (QC). Internal annotators are all trained linguists. Of the
tokens that were not sent for QC, 97.2% had three-way agreement, and the remainder
2-way agreement. Of course even three-way agreement does not guarantee correctness. A
rough manual analysis of a sample of cases discussed below where the system actually
produced a correct output even though it differed from the gold standard, suggested an
approximately 0.2% error rate for the human annotators.

As of the time of writing, we have collected 3.1 million tokens of data, of which we
use 2.5 million as training and 540K tokens as testing.

We trained our baseline text normalization model and a covering grammar. Since
the data in this case are not annotated with gold semiotic classes, we just report
overall accuracies. The baseline model achieves an error rate of 0.82% (4,410 errors —
corresponding to an accuracy of 99.18%); adding CG decoding reduces it to 0.80% (4,330
errors or 99.20% accuracy). 80 examples are impacted by the addition of CG decoding,
all of which involve correcting an unrecoverable error such as reading €90 million as
ninety million dollars. As we also discuss below in Section 7.8, the covering grammars
appear to be effective at targeting unrecoverable errors.

We then went through all the errors in the system with the CG decoding in more
detail and classified them into three categories:

e Unrecoverable, such as reading Ib in Excalibur Ib projectiles as the fourth.

. Recoverable, such as reading the interjection pssst as a letter sequence.

35

Computational Linguistics

Volume XX, Number X

English

Russian

Standard

Kaggle

Standard

Kaggle

PLAIN:

Best model

+ CG decoding
PUNCT:

Best model

+ CG decoding
DATE:

Best model

+ CG decoding
LETTERS:

Best model

+ CG decoding
CARDINAL:

Best model

+ CG decoding
VERBATIM:

Best model

+ CG decoding
MEASURE:

Best model

+ CG decoding
ORDINAL:

Best model

+ CG decoding
DECIMAL:

Best model

+ CG decoding
ELECTRONIC:

Best model

+ CG decoding
DIGIT:

Best model

+ CG decoding
TELEPHONE:

Best model

+ CG decoding
MONEY:

Best model

+ CG decoding
FRACTION:

Best model

+ CG decoding
TIME:

Best model

+ CG decoding

99.9% (0.10%)
99.9% (0.10%)

99.9% (0.10%)
99.9% (0.10%)

99.5% (0.50%)
99.5% (0.50%)

97.5% (2.50%)
97.5% (2.50%)

99.4% (0.60%)
99.5% (0.50%)

99.9% (0.10%)
99.9% (0.10%)

97.2% (2.80%)
97.9% (2.10%)

98.1%
99.0%

1.90%)
1.00%)

100.0%

100.0% (0.00%

—~— —~—

0.00%)
)

36.70%
36.70%

63.3%
63.3%

86.4%
86.4%

13.60%
13.60%

—~~ —~

)
)
)
)

5.40%

94.6%)
5.40%)

94.6%

97.3%
97.3%

2.70%)
2.70%)

—~— —~—

81.3% (18.70%)
81.3% (18.70%)

75.0% (25.00%)
75.0% (25.00%)

99.3% (0.70%)
99.3% (0.70%)

99.9% (0.10%)
99.9% (0.10%)

98.9% (1.10%)
99.0% (1.00%)*

95.9% (4.10%)
95.9% (4.10%)

98.8% (1.20%)
99.1% (0.90%)*

99.1% (0.90%)
99.1% (0.90%)

73.3% (26.70%)
88.5% (11.50%)*

98.1% (1.90%
98.3% (1.70%

)
)
98.9% (1.10%)
98.9% (1.10%)
96.60%
96.60%

3.4%
3.4%

83.1%
83.3%

16.90%
16.70%

A,.\ /_\,_\
NN NN,

88.5% (11.50%)
88.5% (11.50%)

89.8% (10.20%)
92.4% (7.60%)*

77.1% (22.90%)
77.1% (22.90%)

90.2% (9.80%)
90.2% (9.80%)

99.8% (0.20%)
99.8% (0.20%)

99.9% (0.10%)
99.9% (0.10%)

98.2% (1.80%)
98.2% (1.80%)

98.9% (1.10%)
98.9% (1.10%)

97.2% (2.80%)
97.1% (2.90%)

100.0% (0.00%)
100.0% (0.00%)

92.2% (7.80%)
92.0% (8.00%)

99.3% (0.70%)
99.3% (0.70%)

91.7% (8.30%)
91.7% (8.30%)

64.6% (35.40%)
64.6% (35.40%)

93.8% (6.20%)
93.8% (6.20%)

95.5% (4.50%)
95.5% (4.50%)

89.5% (10.50%)
84.2% (15.80%)

82.6% (17.40%)
82.6% (17.40%)

75.0% (25.00%)
75.0% (25.00%)

99.1% (0.90%)
99.1% (0.90%)

97.5% (2.50%)
97.6% (2.40%)

98.3% (1.70%)
98.3% (1.70%)*

96.2% (3.80%)
96.3% (3.70%)

89.9% (10.10%)
90.1% (9.90%)*

98.6% (1.40%)
98.6% (1.40%)

89.9% (10.10%)
90.1% (9.90%)*

96.9% (3.10%)
97.0% (3.00%)

77.6% (22.40%)*
76.5% (23.50%)

32.2% (67.80%)
32.2% (67.80%)

99.6% (0.40%)
99.6% (0.40%)

95.5% (4.50%)*
93.4% (6.60%)

77.8% (22.20%)
79.9% (20.10%)*

78.8% (21.20%)
78.8% (21.20%)

78.8% (21.20%)
79.7% (20.30%)

Table 8

Semiotic class accuracies (errors) with and without covering grammars.

significant.

e Not an error, either cases where the system produced an acceptable
variant, or the human annotation was actually wrong.

36

ok

: statistically

Zhang, Sproat, Ng, Stahlberg, Peng, Gorman, Roark Neural Models of Text Normalization

In the last category, occasionally the human annotators introduced errors, but more com-
monly they failed to correct errors that were made by the Kestrel system that generated
the data. For example, there were 97 cases where human annotators accepted Kestrel’s
prediction of a letter sequence reading, but the correct reading is <self>; for instance,
the acronym UNESCO was predicted to be a letter sequence but is conventionally read
as if it were an ordinary word. The last category of non-errors comprised 2,794 examples
which reduces the number of real errors to 1,536 or 0.28% (accuracy: 99.72%).

Finally it is worth asking how well the neural model actually compares with Kestrel.
Since the annotators were correcting Kestrel’s output, we might in principle take any
correction as an indication of an error in Kestrel. Unfortunately things are not quite
so simple since the annotation guidelines given to the raters in many cases resulted in
a different annotation where Kestrel’s prediction was not really an error. We therefore
randomly sampled the differences between Kestrel and the annotator output, and derived
an estimate of a true Kestrel error rate of about 3,600 errors, or 0.67%. This is
approximately three times the error rate of the neural system. Examples of the errors
corrected by the neural model include reading 3rd ed as third edition (ed is not expanded
by Kestrel), and id as a letter sequence rather than the word id in id: G000404.

While this seems quite promising for a neural network approach to this problem,
one must remember that the neural model still makes errors that are unrecoverable, and
which are not currently handled by the covering grammar. These errors can be quite bad
as, for instance, misreading the Roman numeral II as the third. In a few rare cases, the
neural network models even map an input word onto a completely unrelated output word,
for instance reading but as Sunday. Kestrel does not make these sort of errors under any
circumstance. So while the error rates are lower for the neural system, there is still work
to be done to improve on the kinds of errors produced.

7.7 Comparison with other published results

Since the publication of Sproat and Jaitly (2016) and Sproat and Jaitly (2017), and
the Kaggle competition based on the same data (Sproat and Gorman 2018), there have
been a few publications on alternative neural approaches to the same problem. Notable
among these are Yolchuyeva, Németh, and Gyires-T6th (2018), who apply convolutional
networks (LeCun and Bengio 1995), and Pramanik and Hussain (2018), who employ
differentiable neural computers (DNC) (Graves et al. 2016). It is instructive to briefly
compare our results with theirs.

Yolchuyeva, Németh, and Gyires-Téth (2018) compare several models. Their Model 1
is a unidirectional LSTM, and Model 2 a bidirectional LSTM. Model 3 uses convolutional
layers, with two variants for embedding: continuous bag of words (CBOW) and skip-gram
(SG). They reported results for English, and the accuracies for all these models are given
in columns 2-5 of Table 9. Unfortunately it is hard to compare our system directly with
their results since while they do seem to use the same data as was used by Sproat and
Jaitly (2017) for training (i.e. the same as used here) they actually split this data into
training, development and test, which means that their test set is not identical to either
of the ones we report on.

Accuracies for the DNC system of Pramanik and Hussain (2018) are given in the sixth
column of Table 9, along with the results of our best system without covering grammar
constraints, in the final column. Once again the systems are not directly comparable,
since while Pramanik and Hussain do test on our “standard” test set, they train on the
first 20 million tokens of the entire published dataset rather than, as in our case, the first
10 million.

37

Computational Linguistics

Volume XX, Number X

Y Mod.1 Y Mod.2 Y Mod. 3 (CBOW) Y Mod. 3 (SG) P&H Ours (—CG)
PLAIN 99.7 99.7 99.7 99.8 994 99.9
PUNCT 99.9 99.9 99.9 99.9 99.9 99.9
DATE 98.72 98.76 98.90 98.99 99.7 99.5
LETTERS 80.35 80.50 79.80 81.22 97.1 97.5
CARDINAL 98.63 95.74 98.76 98.89 99.4 99.4
VERBATIM 96.53 96.76 96.89 97.22 994 99.9
MEASURE 93.14 88.60 93.01 91.34 97.1 97.2
ORDINAL 92.46 91.76 92.46 93.99 98.0 98.1
DECIMAL 96.12 98.53 96.3 96.12 98.9 100.0
MONEY 86.75 79.79 97.9 87.97 973 97.3
DIGIT 66.16 61.11 66.83 68.01 79.5 86.4
TIME 55.33 54.66 51.33 60.6 75.0 75.0
FRACTION 28.47 32.63 27.7 375 923 81.3

Table 9

Accuracies for the four models presented by Yolchuyeva, Németh, and Gyires-T6th (2018)

(first four columns), Pramanik and Hussain (2018) and our own best model results from
Table 8 without covering grammar restrictions, broken down by semiotic class. Results for best
system(s) in each category are underlined.

PLAIN
PUNCT

DATE
LETTERS
CARDINAL
VERBATIM
MEASURE
ORDINAL
DECIMAL
MONEY
DIGIT
TIME
FRACTION

P&H
99.5
99.9
97.3
99.1
94.2

100.0
89.8
94.6
90.0
89.4

100.0
75.0
82.6

Ours (—CG)
99.8
99.9
98.2
98.9
97.2

100.0
99.2
99.3
91.7
89.5
93.8
75.0
82.6

Table 10

Accuracies for Russian from Pramanik and Hussain (2018) and our own best model results

from Table 8 without covering grammar restrictions, broken down by semiotic class. Results for

best system(s) in each category are underlined.

In general Pramanik and Hussain’s system does better than any of the systems
reported by Yolchuyeva et al, but for most categories, our own system does better than
either. Our system is tied with the DNC system for PUNCT, CARDINAL, MONEY and
TIME. The DNC system gets the highest accuracies for DATE and FRACTION.

Table 10 compares accuracies for Russian from Pramanik and Hussain (2018) and
our own best system without the covering grammar restrictions. In this case Pramanik

38

Zhang, Sproat, Ng, Stahlberg, Peng, Gorman, Roark Neural Models of Text Normalization

English Russian
Standard Kaggle Standard Kaggle

CARDINAL:

Best model 1 49 1 73

+ CG decoding 0 15 3 36
DATE:

Best model 2 24 0 33

+ CG decoding 1 4 0 3
DECIMAL:

Best model 0 0 0 1

+ CG decoding 0 0 0 7
DIGIT:

Best model 0 4 0 0

+ CG decoding 0 3 0 0
MEASURE:

Best model 2 453 2 38

+ CG decoding 1 75 3 29
MONEY:

Best model 0 18 0 9

+ CG decoding 0 4 1 4
ORDINAL:

Best model 1 2 0 4

+ CG decoding 0 0 0 2

Table 11
Per-semiotic class error counts with and without covering grammars, covering only classes
where there is a difference between using and not using the covering grammar.

and Hussain’s training data was the same as our own, so the results are more fairly
comparable. Once again, there is no obvious benefit of the DNC overall. The systems
achieve the same accuracies on PUNCT, VERBATIM, TIME and FRACTION. The
DNC system performs better on DIGIT and LETTERS. Our system performs better on
PLAIN, MEASURE, CARDINAL, ORDINAL, DECIMAL and MONEY.

On balance, then, the convolutional models of Yolchuyeva, Németh, and Gyires-Téth
(2018) seem to underperform the state of the art, and the DNC models of Pramanik and
Hussain (2018) are not an obvious win. Considering that DNCs are a much more complex
and “deep” architecture than the systems we are proposing, one has to question whether
the benefits outweigh the costs of adopting such a system.

7.8 Detailed analysis of errors with and without Covering Grammars

Table 11 breaks down the numbers of errors per semiotic class where the raw neural
model and the neural model plus CG decoding produce a different result; in other words,
cases where at least one of the two systems is in error, but do not produce the same error.
Since the numbers of errors is much larger in the Kaggle set — reflecting the larger size
of the Kaggle test data, and the differences from the standard set already described —
we concentrate in this discussion mostly on this set.

39

Computational Linguistics Volume XX, Number X

7.8.1 English Kaggle errors. The covering grammar corrected the only two ORDINAL
errors in the set (1243rd as twelve forty three and 19961st as one thousand nine hundred
ninety siz thousand siz hundred nineteen). For DIGIT, the three covering grammar errors
were all instances of reading a digit sequence as a cardinal number — e.g. 14053 as
fourteen thousand fifty three: the best neural system alone produced fourteen o five three
for this example, which is also arguably acceptable.

The four MONEY errors with the covering grammar were all instances of reading
a fully specified currency using a shorter name. For example: PKR 60 billion as sixty
billion rupees, rather than the gold form sizty billion Pakistani rupees. These are arguably
acceptable variations: the neural model alone produced six hundred billion euros, which
gets both the currency and the number wrong.

In the case of DATE, the four CG errors involved misreading cases like 3/1/03 as
March first three (rather than o three); the ambiguous date 28-05-16 as May twenty
eighth, sizteen (gold is the sizteenth of May, twenty eight; and the dubious date 1 May,
3272 as the first of May three thousand two hundred seventy two (the neural net alone
gets one million May third twenty two.

CARDINAL errors from the CG involve misreading (mostly) long numbers as digit
sequences. In most of these cases the CG does in fact allow the cardinal reading, but also
offers the digit-by-digit reading, which in the cases at hand the neural model prefers. For
example, in the case of 10000, the CG allows both ten thousand and one o o o o, and
given the choice, the neural model picks the latter: left to its own devices, the neural
model produced one thousand.

Finally a large number of the CG MEASURE errors involved singularizations of
measures that were written as plurals. Thus, for example, 45 minutes was verbalized as
forty five minute. The covering grammar allows both but, again, the neural model for
some reason prefers the singular form. In this particular case the neural model on its own
produced forty five millimeters. Among the 75 errors, there was just one unrecoverable
error, where 4 Kg was verbalized by the CG as four grams, evidently pointing to an error
in the induction.

7.8.2 Russian Kaggle errors. For the Russian regular set two of the categories —
CARDINAL, MEASURE — showed slightly higher numbers of errors with the CG than
without it. For CARDINAL this turned out to be due to a bug in the data, where
three numbers were predicted by Kestrel to be sil, whereas the CG correctly decoded
them as a form of the correct number: thus 3 as mpex. The MEASURE cases were all of
a similar nature, where Kestrel had predicted sil: thus 80 % predicted correctly with the CG as
80CcbLMUOECAMU NPOYEHMOB.

Turning to the Kaggle test set, the CARDINAL errors with the CG were mostly cases where
the CG in fact corrected an error made by the neural model alone, but still got the morphological
form wrong. Thus 200 was predicted by the neural model to be nozs (‘null"), and the CG corrected
this to dsyxcom ‘two hundred' (genitive case), whereas the reference form was dgecmu “two
hundred' (nominative/accusative case). In some cases there was an error in the reference data,
as with 21, where both the “*golden" form and the neural model had dsaoyamu *twenty', whereas
the CG correctly forced it to dsaoyamu oonou “twenty one'. In a handful of cases, decoding with
a CG produced a digit sequence, as in 800 appearing as socems Honwb Hoaw. As with English, the
CG allows both the digit sequence and the cardinal reading, but the neural model, offered the
choice, picks the digit sequence: left to its own devices, it predicted sil.

The three DATE errors were all morphological variants of the correct form, as were all the
DECIMAL and MEASURE errors. In general with the MEASURE cases, the neural model alone
produced forms that were completely wrong, often si/, or as in cases like 309u3, an incomplete

40

Zhang, Sproat, Ng, Stahlberg, Peng, Gorman, Roark Neural Models of Text Normalization

reading mpucma oesamwv kyouueckux 'three hundred nine cubic', which the CG corrected to
mpucma desams Kyouueckux mempa 'three hundred nine cubic meters'.

In a similar way, all MONEY CG errors involved morphological case differences. Thus £4
is verbalized as uemwipoms pynmos cmepnunzos *four pounds sterling' (instrumental case) rather
than yvemoipex gpynmos cmepnuneos (genitive); the neural net produced uemvipomsa uemvipoms
(*four four') on its own.

Finally one of the two ordinal errors involved a case difference; the other -/0 was a misclas-
sified example read correctly (modulo morphological form) as munyc decsamu “minus ten' with
the CG, where the reference was decsimom “tenth'.

7.8.3 Summary. As we have seen in the preceding analysis, the vast majority of cases where the
CG produces a different result from the neural model alone are an improvement. Either the error
is completely corrected, or the *“error" actually corrects an error in the gold standard, or the form
is at least a reasonable alternative form for the given input, rather than an unrecoverable error.
We can therefore conclude that the CGs are working as intended.

8. Discussion

We have presented a variety of neural architectures for text normalization intended for
speech applications. We have shown what we have called the contertual model with
word or word-feature context outperforms, in both speed and accuracy, a number of
other systems including a baseline architecture introduced by (Sproat and Jaitly 2017).
We also find that a coarse-to-fine model, which first segments and tags the input, then
applies verbalization to non-trivial cases, is viable.

As we noted in the introduction, there has been increased research interest in this
task due to our release of the data and an associated Kaggle competition, and a few recent
papers apply neural network methods to this data set. We already discussed the work
of Yolchuyeva, Németh, and Gyires-Téth (2018) use convolutional networks (LeCun and
Bengio 1995), and Pramanik and Hussain (2018) employ differentiable neural computers
(Graves et al. 2016). While the results in these papers do show some improvement over the
results reported in (Sproat and Jaitly 2016, 2017)—at least for some semiotic classes—
they do not seem to offer substantial gains in compared to the results reported here.
Furthermore the system of Pramanik and Hussain (2018) continues to make unrecoverable
errors, though they do claim that their solution fails to make such errors in DATE
examples like 11/10/2008; and while Yolchuyeva, Németh, and Gyires-Téth (2018) do
not report whether their system makes these kinds of errors, given that their overall
per-class errors do not differ substantially from our own, it would be surprising if such
errors did not occur.

Therefore it seems reasonable to conjecture that one is not going to eliminate the
problem of unrecoverable errors by simply choosing a different model architecture. Rather,
neural network solutions in general tend to make unrecoverable errors, and for these we
have argued that using trainable finite-state covering grammars is a reasonable approach,
but we continue to look for ways to improve covering grammar training and coverage.'®

At the same time, we are currently exploring whether other neural approaches
can help mitigate against unrecoverable errors. One approach that seems plausible is

18 We also employ a whitelisting mechanism that can impose a hard override for a particular case if
the system gets something wrong. Overrides can either based on simple string matching, or else can
dispatch the input to a WFST grammar.

41

Computational Linguistics Volume XX, Number X

generative adversarial networks (Goodfellow et al. 2014; Goodfellow 2016), which have
achieved impressive results in vision-related tasks but which have been also applied to
NLP tasks including machine translation (Wu et al. 2017; Yang et al. 2018).

Given the great success of deep learning for many problems, it is tempting to simply
accrete speech and language tasks to a general class of problems and to worry less about
the underlying problem being solved. For example, at a certain level of abstraction, all of
text-to-speech synthesis can be thought of as a sequence-to-sequence problem where the
input sequence is a string of characters and the output sequence is some representation
of a waveform. “End-to-end” TTS models such as Char2Wav (Sotelo et al. 2017) treat
the problem in this way, with no attempt to consider the many subproblems involved
in this transduction. As we argued earlier, our work suggests that such approaches are
unlikely to provide a solution to issues like unrecoverable errors in text normalization.
More generally, our work suggests that domain-specific knowledge is still useful in a deep
learning paradigm. Text normalization may seem at first to be an “easy” problem, since
it is not difficult to achieve high overall label accuracy, but a great deal of further effort is
necessary to prevent unrecoverable errors. This is not to say that a pure neural network
approach to text normalization, or to TTS in general, is impossible, but it does suggest
that one should continue to pay close attention to the linguistic details of the underlying
problems.

Acknowledgments

The authors wish to thank Navdeep Jaitly for his collaboration in the early stages of
this project. We thank Michael Riley and colleagues at DeepMind for much discussion
as this work evolved. We acknowledge audiences at Johns Hopkins University, the City
University of New York, Gothenburg University, and Chalmers University, for comments
and feedback on presentations of this work. Alexander Gutkin assisted with the initial
data preparation. The initial tokenization phase of our covering grammars for measure
expressions was augmented with grammars developed by Mark Epstein for information
extraction. Finally Shankar Kumar provided extensive help with the transformer models
including training reported in Section 4.

References

Allauzen, Cyril and Michael Riley. 2012. A
pushdown transducer extension for the

multilingual chat system. In ACL, pages
31-36.
Bahdanau, Dzmitry, Kyunghyun Cho, and

OpenFst library. In CIAA, pages 66-77.

Allen, Jonathan, Sharon M. Hunnicutt, and
Dennis Klatt. 1987. From Text to Speech:
The MITalk System. Cambridge
University Press, Cambridge.

Arthur, Philip, Graham Neubig, and Satoshi
Nakamura. 2016. Incorporating discrete
translation lexicons into neural machine
translation. In EMNLP, pages 1557-1567.

Arik, Sercan, Mike Chrzanowski, Adam
Coates, Gregory Diamos, Andrew
Gibiansky, Yongguo Kang, Xian Li, John
Miller, Andrew Ng, Jonathan Raiman,
Shubho Sengupta, and Mohammad
Shoeybi. 2017. Deep voice: Real-time
neural text-to-speech. ArXiv:1702.07825.

Aw, Ai Ti and Lian Hau Lee. 2012.
Personalized normalization for a

42

Yoshua Bengio. 2015. Neural machine
translation by jointly learning to align
and translate. In ICLR.

Beaufort, Richard, Sophie Roekhaut,
Louise-Amélie Cougnon, and Cédrick
Fairon. 2010. A hybrid rule/model-based
finite-state framework for normalizing
SMS messages. In ACL, pages 770-779.

Chan, William, Navdeep Jaitly, Quoc V. Le,
and Oriol Vinyals. 2016. Listen, attend
and spell: A neural network for large
vocabulary conversational speech
recognition. In ICASSP, pages
4960-4964.

Chen, Mia Xu, Orhan Firat, Ankur Bapna,
Melvin Johnson, Wolfgang Macherey,
George Foster, Llion Jones, Niki Parmar,
Mike Schuster, Zhifeng Chen, Yonghui

Zhang, Sproat, Ng, Stahlberg, Peng, Gorman, Roark

Wu, and Macduff Hughes. 2018. The best
of both worlds: Combining recent
advances in neural machine translation.
CoRR, abs/1804.09849.

Chiu, Chung-Cheng, Tara N. Sainath,
Yonghui Wu, Rohit Prabhavalkar, Patrick
Nguyen, Zhifeng Chen, Anjuli Kannan,
Ron J. Weiss, Kanishka Rao, Ekaterina
Gonina, Navdeep Jaitly, Bo Li, Jan
Chorowski, and Michiel Bacchiani. 2017.
State-of-the-art speech recognition with
sequence-to-sequence models.
ArXiv:1712.01769.

Cho, Kyunghyun, Bart van Merriénboer,
Caglar Gulcehre, Dzmitry Bahdanau,
Fethi Bougares, Holger Schwenk, and
Yoshua Bengio. 2014. Learning phrase
representations using RNN
encoder-decoder for statistical machine
translation. In EMNLP, pages 1724-1734.

Choudhury, Monojit, Rahul Saraf, Vijit
Jain, Sudesha Sarkar, and Anupam Basu.
2007. Investigation and modeling of the
structure of texting language.
International Journal of Document
Analysis and Recognition, 10:157-174.

Chrupata, Grzegorz. 2014. Normalizing
tweets with edit scripts and recurrent
neural embeddings. In ACL, pages
680—686.

Ebden, Peter and Richard Sproat. 2014.
The Kestrel TTS text normalization
system. Natural Language Engineering,
21(3):1-21.

van Esch, Daniel and Richard Sproat. 2017.
An expanded taxonomy of semiotic
classes for text normalization. In
INTERSPEECH, pages 4016-4020.

Gillick, Larry and Stephen J. Cox. 1989.
Some statistical issues in the comparison
of speech recognition algorithms. In
ICASSP, pages 1520-6149.

Goodfellow, Ian. 2016. NIPS 2016 tutorial:
Generative adversarial networks.
ArXiv:1701.00160.

Goodfellow, Ian, Jean Pouget-Abadie,
Mehdi Mirza, Bing Xu, David
Warde-Farley, Sherjil Ozair, Aaron
Courville, and Yoshua Bengio. 2014.
Generative adversarial networks. In
NIPS, pages 2672—-2680.

Gorman, Kyle and Richard Sproat. 2016.
Minimally supervised models for number
normalization. Transactions of the
Association for Computational
Linguistics, 4:507-519.

Graves, Alex, Greg Wayne, Malcolm
Reynolds, Tim Harley, Ivo Danihelka,
Agnieszka Grabska-Barwinska, Sergio

Neural Models of Text Normalization

Go6mez Colmenarejo, Edward
Grefenstette, Tiago Ramalho, John
Agapiou, Adria Puigdomenech Badia,
Karl Moritz Hermann, Yori Zwols, Georg
Ostrovski, Adam Cain, Helen King,
Christopher Summerfield, Phil Blunsom,
Koray Kavukcuoglu, and Demis Hassabis.
2016. Hybrid computing using a neural
network with dynamic external memory.
Nature, 538:471-476.

Hassan, Hany and Arul Menezes. 2013.
Social text normalization using
contextual graph random walks. In ACL,
pages 1577-1586.

Hochreiter, Sepp and Jiirgen Schmidhuber.
1997. Long short-term memory. Neural
Computation, 9(8):1735-1780.

Hurford, James. 1975. The Linguistic
Theory of Numerals. Cambridge
University Press, Cambridge.

Kobus, Catherine, Francois Yvon, and
Géraldine Damnati. 2008. Normalizing
SMS: Are two metaphors better than
one? In COLING, pages 441-48.

LeCun, Yann and Yoshua Bengio. 1995.
Convolutional networks for images,
speech, and time-series. In Michael A.
Arbib, editor, The Handbook of Brain
Theory and Neural Networks. MIT Press,
Cambridge, pages 255-258.

Liu, Fei, Fuliang Weng, and Xiao Jiang.
2012. A broad-coverage normalization
system for social media language. In
ACL, pages 1035-1044.

Liu, Fei, Fuliang Weng, Bingqing Wang, and
Yang Liu. 2011. Insertion, deletion, or
substitution? Normalizing text messages
without pre-categorization nor
supervision. In ACL, pages 71-76.

Liu, Xiaohua, Ming Zhou, Xiangyang Zhou,
Zhongyang Fu, and Furu Wei. 2012. Joint
inference of named entity recognition and
normalization for tweets. In ACL, pages
526-535.

Mi, Haitao, Baskaran Sankaran, Zhiguo
Wang, and Abe Ittycheriah. 2016.
Coverage embedding models for neural
machine translation. In EMNLP, pages
955-960.

Min, Wookhee and Bradford Mott. 2015.
NCSU_SAS_WOOKHEE: A deep
contextual long-short term memory
model for text normalization. In WNUT,
pages 111-119.

Munteanu, Cosmin, Ronald Baecker, Gerald
Penn, Elaine Toms, and David James.
2006. The effect of speech recognition
accuracy rates on the usefulness and
usability of webcast archives. In

43

Computational Linguistics

Proceedings of the SIGCHI conference on
Human Factors in computing systems,
pages 493-502, ACM.

Ng, Axel H., Kyle Gorman, and Richard
Sproat. 2017. Minimally supervised
written-to-spoken text normalization. In
ASRU, pages 665—-670.

Pennell, Deana and Yang Liu. 2011. A
character-level machine translation
approach for normalization of SMS
abbreviations. In IJCNLP, pages
974-982.

Pramanik, Subhojeet and Aman Hussain.
2018. Text normalization using memory
augmented neural networks.
ArXiv:1806.00044.

Pusateri, Ernest, Bharat Ram Ambati,
Elizabeth Brooks, Ondrej Platek, Donald
McAllaster, and Venki Nagesha. 2017. A
mostly data-driven approach to inverse
text normalization. In INTERSPEECH,
pages 2784-2788.

Roark, Brian and Richard Sproat. 2014.
Hippocratic abbreviation expansion. In
ACL, pages 364-369.

Roark, Brian, Richard Sproat, Cyril
Allauzen, Michael Riley, Jeffrey Sorensen,
and Terry Tai. 2012. The OpenGrm
open-source finite-state grammar software
libraries. In ACL, pages 61-66.

Sak, Hagim, Frangoise Beaufays, Kaisuke
Nakajima, and Cyril Allauzen. 2013.
Language model verbalization for
automatic speech recognition. In
ICASSP, pages 8262-8266.

Schuster, Michael and Kaisuke Nakajima.
2012. Japanese and Korean voice search.
In ICASSP, pages 5149-5152.

Sennrich, Rico, Barry Haddow, and
Alexandra Birch. 2016. Neural machine
translation of rare words with subword
units. In ACL, pages 1715-1725.

Shugrina, Masha. 2010. Formatting
time-aligned ASR transcripts for
readability. In NAACL, pages 198-206.

Sotelo, Jose, Soroush Mehri, Kundan
Kumar, Jodo Felipe Santos, Kyle Kastner,
Aaron Courville, and Yoshua Bengio.
2017. Char2wav: End-to-end speech
synthesis. In ICLR.

Sproat, Richard. 1996. Multilingual text
analysis for text-to-speech synthesis.
Natural Language Engineering,
2(4):369-380.

Sproat, Richard, editor. 1997. Multilingual
Text-to-Speech Synthesis: The Bell Labs
Approach. Kluwer Academic Publishers,
Boston.

44

Volume XX, Number X

Sproat, Richard, Alan Black, Stanley Chen,
Shankar Kumar, Mari Ostendorf, and
Christopher Richards. 2001.
Normalization of non-standard words.
Computer Speech and Language,
15(3):287-333.

Sproat, Richard and Kyle Gorman. 2018. A
brief summary of the Kaggle text
normalization challenge.
http://blog.kaggle.com/2018/02/07/

a-brief-summary-of-the-kaggle-text-normalization-challenge/.

Sproat, Richard and Keith Hall. 2014.
Applications of maximum entropy rankers
to problems in spoken language
processing. In INTERSPEECH, pages
761-764.

Sproat, Richard and Navdeep Jaitly. 2016.
RNN approaches to text normalization: A
challenge. ArXiv:1611.00068.

Sproat, Richard and Navdeep Jaitly. 2017.
An RNN model of text normalization. In
INTERSPEECH, pages 754—758.

Taylor, Paul. 2009. Text-to-Speech Synthesis.
Cambridge University Press, Cambridge.

Tu, Zhaopeng, Yang Liu, Lifeng Shang,
Xiaohua Liu, and Hang Li. 2017. Neural
machine translation with reconstruction.
In AAAI pages 3097-3103.

Tu, Zhaopeng, Zhengdong Lu, Yang Liu,
Xiaohua Liu, and Hang Li. 2016.
Modeling coverage for neural machine
translation. In ACL, pages 76-85.

Vaswani, Ashish, Noam Shazeer, Niki
Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N. Gomez, Lukasz Kaiser, and Illia
Polosukhin. 2017. Attention is all you
need. CoRR, abs/1706.03762.

Wang, Chungi and Bo Xu. 2017.
Convolutional neural network with word
embeddings for Chinese word
segmentation. In IJCNLP, page 163-172.

Wu, Lijun, Yingce Xia, Zhao Li, Fei Tian,
Tao Qin, Jianhuang Lai, and Liu Tie-Yan.
2017. Adversarial neural machine
translation. ArXiv:1704.06933.

Wu, Yonghui, Mike Schuster, Zhifeng Chen,
Quoc V. Le, Mohammad Norouzi,
Wolfgang Macherey, Maxim Krikun, Yuan
Cao, Qin Gao, Klaus Macherey, Jeff
Klingner, Apurva Shah, Melvin Johnson,
Xijaobing Liu, Lukasz Kaiser, Stephan
Gouws, Yoshikiyo Kato, Taku Kudo,
Hideto Kazawa, Keith Stevens, George
Kurian, Nishant Patil, Wei Wang, Cliff
Young, Jason Smith, Jason Riesa, Alex
Rudnick, Oriol Vinyals, Greg Corrado,
Macduff Hughes, and Jeffrey Dean. 2016.
Google’s neural machine translation
system: Bridging the gap between human

Zhang, Sproat, Ng, Stahlberg, Peng, Gorman, Roark

and machine translation.
ArXiv:1609.08144.

Xia, Yunqing, Kam-Fai Wong, and Wenjie
Li. 2006. A phonetic-based approach to
Chinese chat text normalization. In ACL,
pages 993-1000.

Xie, Ziang. 2017. Neural text generation: a
practical guide. ArXiv:1711.09534.

Yang, Yi and Jacob Eisenstein. 2013. A
log-linear model for unsupervised text
normalization. In EMNLP, pages 61-72.

Yang, Zhen, Wei Chen, Feng Wang, and
Bo Xu. 2018. Improving neural machine
translation with conditional sequence
generative adversarial nets.
ArXiv:1703.04887.

Yolchuyeva, Sevinj, Géza Németh, and
Balint Gyires-T6th. 2018. Text
normalization with convolutional neural
networks. International Journal of Speech
Technology, 21:1-12.

Neural Models of Text Normalization

45

Computational Linguistics Volume XX, Number X

A. Appendices

A.1 Thrax covering grammar for English years (en_year.grm)

For more information on Thrax and its syntax, see http://thrax.opengrm.org.
Year readings for English.

import 'byte.grm' as b;

import 'number.grm' as n;

func I[expr] {

return ""

}

! expr;

cardinal = n.CARDINAL_NUMBER_NAME;

d = b.kDigit;

D = d — IlOlI;
digits = d{1,4};
cardinals = cardinal " " cardinal;

Grouping into pairs (d7d)(dd): 19 24.
pairwise = Optimize[(d{1,2} I[" "] d{2}) @ cardinals];

Reading for (d7d)00.
hundreds = Optimize[((d? D) @ cardinal) ("00" : " hundred")];

Reading for (d7D)0d.
o = Optimize[((d? D) @ cardinal) ("0" : " o ") (d @ cardinal)];

Reading for dOdd.
thousand = (d "0" d d) @ cardinal;

sigstar = Optimize[b.kBytes*];

First try digits @ hundreds, and if that fails pass through digits.
Then try digits @ pairwise, and if that fails pass through digits.
Then try digits @ o, and if that fails pass through digits.
Then try digits @ cardinals, which shall surely work.
Oh, and then make it a disjunction with thousand to allow both
"twenty ten" and "two thousand ten" readings.
export YEAR =
Optimize[
LenientlyCompose[
LenientlyCompose [
LenientlyCompose [
LenientlyCompose[digits, hundreds, sigstar],
pairwise, sigstar],
o, sigstar],
cardinal, sigstar] |

H OH H H HH

46

Zhang, Sproat, Ng, Stahlberg, Peng, Gorman, Roark Neural Models of Text Normalization

Input embedding size 256
Output embedding size 512
Number of encoder layers 1
Number of decoder layers 1

Number of encoder units 256
Number of decoder units 512
Attention mechanism size 256

Table A
Default parameters for the sliding window model.

thousand] ;
A.2 Transformer Model Details

We utilize a Transformer sequence-to-sequence model (Vaswani et al. 2017), using the
architecture described in Appendix A.2 of (Chen et al. 2018), with:

. 6 Transformer layers for both the encoder and the decoder,
U 8 attention heads,
¢ a model dimension of 512, and

U a hidden dimension of 2048.

Dropout probabilities are uniformly set to 0.1. We use a dictionary of 32k word pieces
(Schuster and Nakajima 2012) covering both input and output vocabularies and employ
the Adam optimizer. All other hyperparameter settings are borrowed from Chen et al.
(2018).

A.3 Sliding Widow Model Details

The hyper-parameters are summarized in Table A. The input vocabulary size is 254 for
English and 279 for Russian including the most frequent input characters in the training
data and <norm>, </norm>, <s>, </s>, and <unk>. The output vocabulary is 1002
for English and 2005 for Russian including the most frequent output words in the training
data and <self>, sil.

A .4 Contextual Model Details

The hyper-parameters are summarized in Table B. The sequence-to-sequence sub-model
shares the input and output vocabularies with the sliding window baseline. When the
context is character based, the context vocabulary is the same as the input vocabulary in
the sliding window baseline, i.e., 254 for English and 279 for Russian. When the context
is word piece based, the context vocabulary is 5457 for English and 5489 for Russian. For
the word feature models, we set the bucket size to 5000 for hashing character trigrams.
The context vocabulary is 5000 for word feature contextual models.

47

Computational Linguistics Volume XX, Number X

Context embedding size 256
Number of tagging output embedding size 64
Number of context encoder layers 1
Number of tagging decoder layers 1
Number of context encoder units 256
Number of tagging decoder units 64
Seq2seq Input embedding size 256
Seq2seq Output embedding size 512
Number of seq2seq encoder layers 1
Number of seq2seq decoder layers 1
Number of seq2seq encoder units 256
Number of seq2seq decoder units 512
Attention mechanism size 256

Table B
Default parameters for the contextual window model.

48

A0

