
Exploring the Feasibility of Remote Cardiac Auscultation Using Earphones

Paper #263: Revise-and-Resubmit
Abstract
The elderly over 65 accounts for 80% of COVID deaths in the
United States. In response to the pandemic, the federal, state
governments, and commercial insurers are promoting video
visits, through which the elderly can access specialists at
home over the Internet, without the risk of COVID exposure.
However, the current video visit practice barely relies on
video observation and talking. The specialist could not assess
the patient’s health conditions by performing auscultations.

This paper tries to address this key missing component in
video visits by proposing Asclepius, a hardware-software
solution that turns the patient’s earphones into a stethoscope,
allowing the specialist to hear the patient’s fine-grained heart
sound (i.e., PCG signals) in video visits. To achieve this goal,
we contribute a low-cost plug-in peripheral that repurposes
the earphone’s speaker into a microphone and uses it to cap-
ture the patient’s minute PCG signals from her ear canal. As
the PCG signals suffer from strong attenuation and multi-path
effects when propagating from the heart to ear canals, we then
propose efficient signal processing algorithms coupled with a
data-driven approach to de-reverberate and further correct the
amplitude and frequency distortion in raw PCG receptions.
We implement Asclepius on a 2-layer PCB board and follow
the IRB protocol to evaluate its performance with 30 volun-
teers. Our extensive experiments show that Asclepius can ef-
fectively recover Phonocardiogram (PCG) signals with differ-
ent types of earphones. The objective blind testing and subjec-
tive interview with five cardiologists further confirm the clini-
cal efficacy and efficiency of our system. PCG signal samples,
benchmark results, and cardiologist interviews can be found
at an anonymous link https://asclepius-system.github.io/

1 INTRODUCTION
Imagine an old man approaching his eighty, suffering from
chronic diseases and living tens of miles away from the near-
est medical center. Video visit that allows him to access spe-
cialists timely from his own home could mean life or death
for him [17]. Due to the coronavirus, going to a clinic, a
hospital, or even taking a standard check-up may put the el-
derly in danger. We thus have witnessed a rapid growth of
video visit services in the past few years. Even in the age
of post-pandemic, health organizations are promoting video
visit to avoid unnecessary emergency department visits and
prolonged hospitalizations [26, 66].

While video visit has opened the door for the elderly to
maintain access to specialists at home, the current practice
of video visit is far less effective compared to physical visit
because evaluating the patient’s health condition remotely is

Figure 1: Asclepius empowers the specialist to hear the
patient’s heart sound during a video visit.

challenging: specialists observe via video and communicate
symptoms by talking to the patient, they however cannot
perform auscultation – an indispensable physical examination
(PE) methodology – to make therapeutic decisions.

Cardiac auscultation is the most crucial physical examina-
tion among others [56]. It is performed to examine the circu-
latory system by listening to the heart sound (i.e., PCG signal)
emanating from the human heart. Although major pharma
providers have rolled out plenty of in-home digital stetho-
scope that allows patients to measure their PCG signals at
home and synchronize their data with specialists through Wi-
Fi or Bluetooth connection, these devices are usually pricey
(e.g., Thinklabs One digital stethoscope [74] costs $499 USD)
and difficult to operate for the elderly. More importantly, even
with access to these devices, patients lack professional train-
ing would not be able to place a stethoscope at the right place
for heart sound collection.

This paper explores the feasibility of designing a remote
auscultation solution for video visits. The proposed solution
should satisfy the following requirements. High accuracy.
The solution should be able to detect both coarse-grained
heart rate variation (HRV) and fine-grained cardiac features
(e.g., S1, S2 sound, and possible heart murmurs) that are es-
sential to cardiac auscultation. Easy to operate. The proposed
system should also be easy to operate, allowing specialists
to take remote cardiac auscultation with minimum patient
intervention. Low-cost. The proposed system should also be
low-cost (e.g., less than $10 USD) so that it can scale to serve
large populations rapidly and unobtrusively.

We achieve the above goals by proposing Asclepius, a
hardware-software solution that turns the speaker transducer
on the patient’s earphone into a stethoscope and uses it to con-
tinuously monitor the acoustic cardiopulmonary signals from
the patient’s ear canal, with no explicit patient intervention.
Our solution works with everyday earphones (e.g., those ear-
phones cost a few US dollars) and requires neither dedicated
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in-ear microphones nor IMU sensors (e.g., accelerometer)
that are only available on those pricey ANC earphones.

Developing Asclepius faces multiple challenges.
• First, unlike the dedicated stethoscope where the di-

aphragm is placed right above the heart with gentle force to
best capture the heart sound (i.e., PCG signals) [42], the PCG
signals captured by an earphone experience significant atten-
uation and frequency distortion when propagating through
the human bones, muscles, fat, and skins before arriving at
the human ear [43]. Accordingly, these PCG receptions tend
to be very weak and thus are likely to be buried by ambient
noises and human organ artifacts.
• Second, although using speaker as a microphone is feasi-

ble due to their structure reciprocity [20, 24, 59], capturing
PCG signals with an earphone’s speaker is still challenging
because the earphone speaker is optimized for signal emission,
not for signal absorption. Accordingly, when the weak PCG
signal arrives at the speaker’s diaphragm, only a small portion
of this signal will be transformed into a voltage signal. This
weak voltage signal is unlikely to maintain the fine-grained
PCG features such as S1 and S2 heart sound components.
• Third, an acoustic signal will get diffracted, reflected,

and absorbed when propagating from the audio cables to the
pairing device. The proportion of signal being absorbed by the
pairing device is affected by the mismatch between the two
impedances. The conventional offline impedance matching
can not be applied to our problem because both the earphone’s
impedance and the pairing device’s impedance are unknown.
They also change dramatically with hardware type, form fac-
tor, and material. To cope with these dynamics, it is essential
to conduct an online, automatic impedance matching.

To address the above challenges, Asclepius contributes
a novel hardware plugin module coupled with an efficient
software signal processing pipeline that works hand in hand
to capture, amplify, and further correct the distortion of raw
PCG receptions, as shown in Figure 2.
• Our hardware plugin turns the earphone’s speaker into

an agile microphone and uses this microphone to capture the
minute PCG signal at the ear canal. It then amplifies this PCG
signal and denoises the strong noises in the analog domain
with a low-power analog circuit. To ensure the PCG signals
can be delivered to the pairing device with minimum signal
reflections, we further design a programmable impedance cir-
cuit and propose a feedback-loop-based control algorithm to
balance the impedance between the earphone and the pairing
device automatically, without any human intervention.
• Upon receiving the PCG signals, our signal processing

pipeline running on the pairing device de-reverberates the raw
PCG reception, segments them into heart cycles, and then
corrects the frequency and phase distortion caused by the
multi-path effect when the PCG signal propagates inside the
human body. The output is sent to the specialist hereafter.
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Figure 2: Overview of Asclepius.

We implement Asclepius’s hardware on a 2-layer printed
circuit board (PCB). The total hardware cost is $5 USD. The
accompanying software processes, encompassing preprocess-
ing, segmentation, spectrogram recovery, and waveform re-
finement, are implemented on a local pairing device (a laptop)
and managed on a cloud server. We evaluate Asclepius using
12 pairs of commodity earphones. The results based on 30
volunteers of different ages, genders, and BMIs show that As-
clepius achieves consistently high PCG signal recovery accu-
racy, with 1.17% average Root Mean Squared Error (RMSE)
compared to ground-truth PCG signals. We also play 20 types
of pathological PCG signals using a speaker attached to one
end of a pork belly. These signals propagate through the 40cm
pork belly and arrive at the earphones placed on the other end,
experiencing strong multi-path fading. The emulation results
show that Asclepius can effectively recover the multi-path
distorted pathological PCG signals.

To examine the clinical efficacy of Asclepius, we invite
five cardiologists to participate in a two-phase UX study. The
blind testing in the first phase shows the diagnosis accuracy
based on Asclepius’s data is consistent with that based on
the stethoscope’s output across all five cardiologists. The
subjective evaluation in the second phase shows that all five
cardiologists can identify the S1 and S2 heart sounds and
the pathological heart murmurs from Asclepius’s recordings.
They also believe Asclepius could serve as a valuable tool
for remote visits, providing a trusting relationship between
patients and clinicians.
Claims. Different from a prior poster [2], this research project
demonstrates the feasibility of using commodity earphones
to detect fine-grained PCG signals from the ear canal. The
preliminary results are promising and the feedback from cardi-
ologists is also positive. On the other hand, we acknowledge
that Asclepius can only be used as a prescreening device
to assist video visits; the current prototype cannot replace
the dedicated stethoscope for a physical examination before
undergoing a rigid, comprehensive clinic study. The reasons
are twofold. First, the current testing cases are still very lim-
ited, and we may still face domain gaps between different
subjects, which could affect the signal reconstruction perfor-
mance. Second, the emulation of in-body transmission based
on pork belly may not reflect the signal propagation inside
human bodies fairly. To close the gap, we have been con-
sulting clinicians during the development of Asclepius and
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are currently working closely with ABC (anonymized for
double-blind review) medical center to initiate clinic studies.
Contributions and roadmap. Overall Asclepius makes the
very first step toward remote auscultation, opening the door
to efficient video visits. Moreover, we believe this project
will spark novel ideas on heart sound sensing, pushing the
whole field moving forward. The rest of the paper is organized
as follows. We present the background and motivation (§2),
followed by the hardware (§3) and software design (§4). We
then describe the system evaluation in §5. Section 6 describes
the related work. Section 7 concludes.
2 BACKGROUND AND MOTIVATION
In this section, we first explain cardiac auscultation and its
significance in clinic pre-screening. We then discuss the chal-
lenges and opportunities for remote auscultation.
2.1 Cardiac Auscultation Primer
Cardiac auscultation [1] was recognized as a cornerstone for
physical examination and medication since the early 19th cen-
tury. Medical professionals such as well-trained physicians
or specialists could assess a patient’s cardiovascular activi-
ties and make objective therapeutic decisions by placing a
stethoscope [73] on the chest of the subject and examining the
internal sounds. A stethoscope is a sound system that can cap-
ture fine-grained Phonocardiogram (PCG) signals, including
the first heart sound (S1), the second heart sound (S2) as well
as higher pitch sounds such as heart murmurs generated from
the closure and open of the heart valves and vessels when
blood goes through heart atrium and ventricle.

Cardiac auscultation based on a stethoscope is low-cost,
easy to operate, and user-friendly. As such, it has been adopted
worldwide and serves as a standard for the nursing prac-
tice [23]. Although many advanced technologies such as the
electrocardiogram (ECG) and echocardiography have been
invented for fine-grained cardiovascular activity monitoring,
cardiac auscultation with a stethoscope is still an irreplace-
able option in nursing practice. It not only helps to find a path
towards diagnosis but also serves as an opening to a trusting,
caring relationship between patients and specialists [18, 55].
2.2 Remote Auscultation: Opportunities
The demand for video visits remains strong after the pan-
demic [58]. However, cardiac auscultation is still a daunt-
ing task in video visits. Recently, the proliferation of mo-
bile devices may break this stalemate. For instance, prior
works [34, 46] have demonstrated the potential of using smart-
phones to capture heart sounds. However, like the predicament
faced by digital stethoscopes, without the necessary nursing
practice, it is challenging for a patient to put the smartphone
on the correct chest locations for heart sound capturing. Be-
sides, smartphones adopt omnidirectional microphones to
capture human speech, which makes them susceptible to mo-
tion artifacts and ambient noises during auscultation.
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Figure 3: Impedance variation measurement. The change
of impedance will alter the voltage 𝐸𝑑 .

Earphones as a stethoscope. Compared to smartphones, ear-
phones hold many unique advantages in cardiac auscultation.
• Suffer from less ambient noises. When putting on the
earphone, the ear cup, ear canal, and eardrum will couple
together, forming a hermetic space [50]. The ear cup will
block ambient noises from entering the ear canal. Meanwhile,
the heart sound will be amplified in the ear canal due to the
occlusion effect [45].
• Low system cost. Every single pair of earphones has two
speaker transducers for music playback. Due to structure
reciprocity [71], these speaker transducers can be used as
microphones to capture acoustic signals inside the ear canal.
This leaves us with a cost-effective solution for auscultation.
• Easy to operate. The earphone-based solution allows the
specialist to take cardiac auscultation online without any pa-
tient intervention.

3 ASCLEPIUS’S HARDWARE DESIGN
The PCG signals propagate through the human body to arrive
at the ear canal. The earphone speaker’s diaphragm responds
to these signals, and a weak voltage signal is generated and
then offloaded to the pairing device (e.g., a desktop or a tablet
that the patient uses to talk to the specialist) through the
audio chain. Asclepius explores this opportunity to enable
remote cardiac auscultation. In this section, we first model
the relationship between the impedance variation and the
inductive voltage signal. We then propose a low-power circuit
to detect this voltage signal.

3.1 A Theoretical Model
When an earphone connects to a pairing device, a constant,
bias voltage signal 𝐸𝑠1 will go through the earphone’s au-
dio jack, arriving at the earphone’s diaphragm. As shown in
Figure 3, let 𝑍𝑒 and 𝑍𝑝 be the impedance of the earphone
and the signal detection circuit (which will be introduced in
next section), respectively; Δ𝑍 is the earphone’s impedance
variation due to the PCG signal. 𝑍𝑝 , 𝑍𝑒 are serially connected
with each other, forming a voltage division circuit. Based on
Ohm’s law, we have:

𝐸𝑑 =
𝑍𝑒 + Δ𝑍

𝑍𝑒 + 𝑍𝑝 + Δ𝑍
· 𝐸𝑠 (1)

1 It is reasonable to request both the patient and the specialist to keep silent
during auscultation. Hence 𝐸𝑠 would not change over the course of PCG
signal detection.
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Figure 4: Schematic of the voltage detection circuit.
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Figure 5: Inductive voltage signal (a) with and (b) without
the proposed detection circuit.

Since the impedance variation Δ𝑍 caused by heartbeats is
orders of magnitude smaller than 𝑍𝑒 + 𝑍𝑝 , the above equation
can be simplified as:

𝐸𝑑 =
𝑍𝑒 + Δ𝑍
𝑍𝑒 + 𝑍𝑝

· 𝐸𝑠 (2)

Since both 𝑍𝑒 and 𝑍𝑝 are constant values, the voltage signal
𝐸𝑑 varies in proportion to 𝑍𝑒 + Δ𝑍 . Accordingly, it is feasi-
ble to detect PCG signals by tracking the voltage signal 𝐸𝑑 .
However, since the PCG signal is very weak after propagating
along the human body, the variation of voltage signal 𝐸𝑑 due
to PCG signals would be very subtle.

3.2 Inductive Voltage Detection Circuit
We propose a low-power detection circuit to detect 𝐸𝑑 from
the patient’s left ear transducer since the human heart is rel-
atively closer to the left ear [15]. The right-ear channel is
reserved for sound playback.

Figure 4 shows the schematic of this circuit. It consists of a
low-noise operational amplifier and peripheral circuits (i.e., a
set of passive resistors and capacitors). The amplifier connects
to the left-ear speaker transducer through a 3.5mm audio jack.
We pick the amplifier with good frequency response on low
frequencies (e.g., < 1kHz) to avoid extra frequency distortion
on PCG signals. We then add two identical bypass capaci-
tors (1uF) before the amplifier to filter out high-frequency
noises above the frequency of PCG signals. The equivalent
series resistances [22] of these capacitors also improve the
common-mode rejection ratio of the amplifier, ensuring a high
amplification gain. Recall that the inductive voltage signal 𝐸𝑑
varies in proportion to 𝑍𝑒 + Δ𝑍 (Equation 2), not Δ𝑍 alone.
Hence we are expected to see a strong common-mode DC
input (due to 𝑍𝑒 ) to the amplifier. Keeping a high common-
mode rejection coefficient would restrain the DC interference.

Figure 6: CDF of the power of 𝐸𝑟𝑒𝑐𝑣 . We plug 12 different
pairs of earphones into seven different pairing devices and
measure the received signal strength at the pairing device in
the absence of impedance matching. -40dBm is the minimum
power requirement for PCG signal detection.

Figure 5 shows the 𝐸𝑑 (received by an oscilloscope) with
and without using this voltage detection circuit. Apparently,
𝐸𝑑 retains clear S1 and S2 heart sound components after going
through this detection circuit, as demonstrated in Figure 5(a).
In contrast, as we remove this circuit, we can hardly find the
heartbeat cycles on the raw voltage signal receptions, let alone
the fine-grained PCG features (Figure 5(b)).
3.3 Automatic Impedance Matching (AIM)
The amplified voltage signal 𝐸𝑑 flows to the pairing device
through the audio chain. Unfortunately, since the impedance
of the pairing device𝑍𝑠 (i.e., the sound card of a laptop) differs
from the equivalent impedance of the earphone (i.e., 𝑍𝑒+𝑍𝑝

in Figure 3), only a small portion of 𝐸𝑑 will be absorbed by
the pairing device [61], which results in a very weak PCG
reception 𝐸𝑟𝑒𝑐𝑣 at the pairing device. Our benchmark study
shown in Figure 6 further confirms that in most cases the
pairing device can hardly receive the PCG signal when we
plug the detection circuit directly into the pairing device.2

Programmable impedance matching circuit. The impeda-
nce matching in Asclepius is challenging because both the
impedance of earphones 𝑍𝑒 and the pairing device 𝑍𝑠 are un-
known in advance. Even worse, their impedance also changes
drastically with the hardware type, form factor, and material.
To address this issue, we build a programmable impedance
circuit using a digital potentiometer chip MAX5402EUA [48].
Its impedance (denoted as 𝑍𝑝 ) can be programmed with an
SPI control signal, which allows us to adapt the earphone’s
effective impedance (𝑍𝑒+𝑍𝑝 ) to different pairing devices 𝑍𝑠 .
The pitfall in impedance matching. Conventionally, the
impedance matching aims to match 𝑍𝑒 +𝑍𝑝 to 𝑍𝑠 so that most
inductive voltage signal 𝐸𝑑 can be delivered to the pairing
device (i.e., 𝐸𝑟𝑒𝑐𝑣 ≈ 𝐸𝑑 ) [61]. However, in Asclepius, as we
increase 𝑍𝑝 to match 𝑍𝑒 + 𝑍𝑝 to 𝑍𝑠 , the voltage signal 𝐸𝑑 will
decline (Equation 2), indicating that the sensible PCG signals
(represented by 𝐸𝑑 ) become even weaker before arriving at the
pairing device. This is particularly detrimental to the higher
frequency components (e.g., 100 – 400 Hz) of PCG signals

2 The impedance of the earphone’s speaker is tuned for sound playback, not for
sound reception; its impedance mismatches with that of the pairing device.
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Figure 7: (a): received signal power in different impedance 𝑍𝑝 settings. (b): the signal profile in the initial, unmatched
state (𝐸𝑟𝑒𝑐𝑣 = -62dBm); (c): the signal profile in the optimal, unmatched state (𝐸𝑟𝑒𝑐𝑣 = -25dBm); (d): the signal profile in
the fully matched state (𝑍𝑝 + 𝑍𝑒 = 𝑍𝑠 , 𝐸𝑟𝑒𝑐𝑣 = -33dBm).

because these parts are already very weak due to the fact that
the higher frequency signals suffer more attenuation when
propagating through the human body [35]. Hence adopting the
conventional impedance matching principle (i.e.,𝑍𝑝+𝑍𝑒 = 𝑍𝑠 )
may not necessarily lead to a better PCG reception.

To validate this argument, we measure the power of the
received PCG signal 𝐸𝑟𝑒𝑐𝑣 at different impedance settings.
As shown in Figure 7(a), 𝐸𝑟𝑒𝑐𝑣 grows first and then declines
as we increase the impedance 𝑍𝑝 . As expected, 𝐸𝑟𝑒𝑐𝑣 at the
fully matched state 𝑠3 is 8dB lower than the signal received
at the optimal, unmatched state 𝑠2. Moreover, as shown in
Figure 7(d), the high-frequency components of PCG signals
are overwhelmed by the noise at the fully matched state 𝑠3.
An online impedance tuning algorithm. To address this
pitfall, we propose a feedback-loop-based impedance tuning
algorithm to find the optimal matching state. The basic idea is
to tune the impedance until we find a matching state that leads
to the strongest received signal 𝐸𝑟𝑒𝑐𝑣 (i.e., with the highest
SNR), as formulated below:

argmax
𝑍𝑝

𝑆𝑁𝑅(𝐸𝑟𝑒𝑐𝑣) (3)

Expediting the searching. Taking each heartbeat symbol as
the reference 𝐸𝑟𝑒𝑐𝑣 to tune the impedance 𝑍𝑝 would take an
excessively long delay since the heart rate is barely around
1–2Hz [53]. To expedite the impedance matching, we send
an active probing signal with a very short symbol time (i.e.,
10𝑚𝑠) from the user’s earphone speaker on the right-hand
side. This probing signal will propagate through the user’s
head, captured by the left-ear transducer and our detection
circuit inherently. By taking this active probing signal as
the reference signal, we can iterate through the searching
space within 3 seconds and locate the optimal impedance
setting. Specifically, the probing signal consists of consecutive
chirps on the ultra-sound (17KHz – 22KHz) band to prevent
it from 𝑖) interfering with the heart sound or motion noises,
and 𝑖𝑖) distracting users. The better noise-resilience of chirp
signals allows us to send the probing signals at a lower power
(40dBA) and thus makes no harm to human safety [64].

Algorithm 1 describes the impedance tuning process. The
ActiveMatching() function is called to determine the optimal
𝑍𝑝 value. It iterates through each impedance candidate 𝑖_𝑍𝑝

Algorithm 1: Online impedance matching
input :𝑍𝑝 ← 𝑖_𝑍𝑝 ; {𝑖_𝐸𝑟𝑒𝑐𝑣} ← {};
output :Optimal matching status;

1 Function ActiveMatching():
2 for 𝑖_𝑍𝑝 ← 0 to 𝑀𝐴𝑋 do
3 𝑐𝑢𝑟𝑟_𝐸𝑟𝑒𝑐𝑣 ← CompEnergy(𝑖_𝑍𝑝);
4 {𝑖_𝐸𝑟𝑒𝑐𝑣} ←curr_E𝑟𝑒𝑐𝑣;
5 end
6 𝑜𝑝𝑡_𝑍𝑝 ←maxitem({i_E𝑟𝑒𝑐𝑣});
7 return 𝑜𝑝𝑡_𝑍𝑝 ;
8 Function CompEnergy(𝑖):
9 capture audio symbol 𝑆𝑖 ;

10 𝑆∗𝑖 ←BPF(S𝑖 );
11 𝑆∗∗𝑖 ←LPF(S∗𝑖 · 𝑓𝑡𝑜𝑛𝑒 );
12 𝑆+𝑖 ←Conv(S∗∗𝑖 , 𝑡𝑒𝑚𝑝𝑙𝑎𝑡𝑒);
13 𝑖_𝐸𝑟𝑒𝑐𝑣 ←PSD(S+𝑖 );
14 return 𝑖_𝐸𝑟𝑒𝑐𝑣;

within the range of 0-10kΩ 3 and measures the power of the
received signal 𝑐𝑢𝑟𝑟_𝐸𝑟𝑒𝑐𝑣 in each impedance setting using
the function CompEnergy(). The CompEnergy() function con-
tains four steps: i) remove the noise of the received signal 𝑆𝑖
using a bandpass filter (BPF) with a cutoff frequency at 17k
and 22kHz; ii) down-convert 𝑆𝑖 to the baseband (i.e., 0–5kHz)
and pass it through a lowpass filter (LPF); iii) remove the
possible interference (e.g., modulated physiological signal on
the chirp symbol or hardware jitter noise) with a convolution
function; and iv) compute the power spectral density (PSD). It
is worth noting that down-converting 𝑆𝑖 to the baseband will
result in better signal quality as LPF retains fewer residual
noises at the 3dB cutoff frequency [47] compared to a BPF.

One may ask would the optimal impedance derived from
the ultrasound band be still optimal for the audible band where
the heartbeat stays? Figure 7(a) the impedance curve on both
the ultrasound band and a 0–5kHz audible band. Notably,
the pattern of the in-band impedance curve closely mirrors

3 The impedance of a pairing device’s sound card is usually less than 10kΩ [70]
and the impedance of earphones is in the range of 8–600Ω [21].
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Figure 8: Schematic (left) and PCB (right) of Asclepius.
that derived from the 17–22kHz ultrasound probing signal.
This similarity can be attributed to the inherent nature of
acoustic signals, which makes the impedance less responsive
to variations in frequency [82].

3.4 Putting Them Together
Figure 8 shows the circuit integration. The schematic contains
a low noise amplifier (INA126) for signal detection, a poten-
tiometer chip MAX5402 for automatic impedance matching,
and an LMC7660 switched capacitor voltage converter for
voltage transformation. The user can turn on/off Asclepius
with the onboard switch button. We power this PCB board
and send the control signal through a micro-USB interface.
The hardware cost is around 5 US dollars.

4 ASCLEPIUS’S SOFTWARE
The hardware module adapts the earphone’s impedance to the
pairing device so that the pairing device can capture the heart
sound signals at the cost of a minimum power loss. However,
the quality of PCG receptions is low because the PCG signals
experience strong attenuation and multi-path effects when
propagating inside the human body. Hence the energy and
frequency components of PCG receptions will be distorted.

Inspired by the success of deep neural networks (DNN) in
signal reconstruction [38, 51, 84], we introduce a data-driven
framework to mitigate the frequency and energy distortion in
PCG receptions. We envision this framework can be easily
integrated into online video visiting platforms as a software
patch, serving patients unobtrusively. The overall framework
consists of three parts: pre-processing, segmentation, and a
two-stage signal recovery. Below we elaborate on each part.
4.1 Signal pre-processing
Let 𝑥 (𝑡) be the PCG signal receptions. The sampling rate of
the sound card on the pairing device is set to 48kHz. 𝑥 (𝑡)
undergoes the following three steps.
• Filtering. We first filter 𝑥 (𝑡) with a second-order Butter-
worth low-pass filter (LPF) with a cutoff frequency at 500Hz
to eliminate the out-band noises, e.g., ambient acoustic noises.
The cutoff frequency is set based on the fact that the heart
sound components such as S1 and S2, as well as murmurs,
are in the range of 0 to 500Hz [41, 49, 52].
• Spike removal. After filtering, there are still in-band en-
ergy spikes that interfere with PCG signals. These energy
spikes are due to the friction between earphones and human

ears [3, 36]. We then apply a spike removal function to elim-
inate these energy spikes. Specifically, we divide 𝑥 (𝑡) into
consecutive 500ms time windows with 250ms hop length
and compute the maximum absolute amplitudes (MAAs) over
each window. If the MAA of a window exceeds the predefined
energy threshold (three times the median value of all MAAs),
we take it as an outlier spike and remove it from 𝑥 (𝑡).
• Normalization. Finally, we normalize 𝑥 (𝑡) by scaling it to
the range of [-1, 1] and feed the normalized signal into the
segmentation step. Such normalization would not affect the
fine-grained cardiac characteristics hidden in the collected
PCG signals because both the relative amplitude among dif-
ferent heart sound components and their frequencies are well
preserved after normalization. Figure 9(a) shows the result.

4.2 Segmentation
Next, we segment the pre-processed PCG signal 𝑥 (𝑡) into car-
diac cycles [9] for frequency and energy distortion correction.
A cardiac cycle describes the sequence of electrical and me-
chanical events that occurs with every heartbeat. It consists of
a heart relaxation (diastole) and a heart contraction (systole)
[44]. The duration of a cardiac cycle varies but normally lasts
0.6s – 1s [9]. To ensure the performance of PCG recovery,
we have to detect the precise boundary of each cardiac cycle.
Below we elaborate on our proposed segmentation method.
• Signal de-reverberation. Compared to the clinical PCG
signal captured at the human chest, PCG signals captured by
earphones propagate over longer distances inside the human
body (i.e., from the heart to the ear canal) and thus suffer more
from the multi-path effect [35]. These paths have different
lengths before reaching the receiver, thus creating different
versions that reach at different time intervals. Accordingly, we
are expected to see severe reverberations (i.e., inter-symbol
interference) on 𝑥 (𝑡), which makes the boundary of each
heartbeat cycle less distinguishable, as shown in Figure 9(b).

Motivated by the success of Wiener filter in ultrasonic
imaging de-reverberation [7, 37] and speech enhancement [19,
40, 87], we apply Wiener filter to produce an uncorrupted
PCG signal by suppressing the reverberations during diastole
intervals [30]. Step 1 in Figure 9 (b) shows the heartbeat
signal after applying the Wiener filter. The boundary of each
heartbeat cycle after filtering is easily distinguishable.
• Cardiac cycle segmentation. Next, we detect the bound-
ary of each cardiac cycle on the de-reverberated PCG signal.
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Figure 9: Signal preprocessing and segmentation. (a): The pre-processing removes the in-band interference (e.g., motion
artifacts). (b): The segmentation consists of 1○ signal de-reverberation, 2○ envelope detector, and 3○ cardiac cycle refinement. It
detects the precise heartbeat boundary and sends each heartbeat segment to the signal correction and recovery module. (c): The
comparison of segmented results with the groundtruth. The heartbeat signals are collected from a healthy 26 years old female.

A straightforward solution would be applying an amplitude
threshold to distinguish noise and cardiac signal. However,
such a design is susceptible to noise variations and thus is
less accurate. In Asclepius, we borrow the hidden Markov
model (HMM) based segmentation from biomedical com-
munity [29, 72] and propose a fast boundary detection and
then refinement two-phase segmentation method to detect the
precise boundary of PCG signals, as explained below.

⊲ Phase One: Fast boundary detection. We first apply
a homomorphic envelope detector [65], followed by a zero-
phase low-pass filter [28] to the input (i.e., the de-reverberated
PCG signal). The envelope detector keeps the profile of car-
diac signals and removes the high-frequency outliers, making
S1 and S2 heart sound peaks more prominent (the red curve
in Figure 9(b)). Next, we leverage S1 and S2 peaks to detect
the coarse-grained boundary of each cardiac cycle using auto-
correlation. The span of the cardiac cycle is estimated as the
time from lag zero to the highest correlation coefficient.

⊲ Phase Two: Refinement. The auto-correlation can only
detect the averaged length of multiple cardiac cycles. In prac-
tice, the length of a cardiac cycle may change over time due
to heart rate variability (HRV) [60]. To address this issue, we
propose a refinement phase where we search for the precise
boundary of each cardiac cycle in the vicinity of the coarse-
grained timestamp obtained in the previous step. Specifically,
we feed the truncated cardiac cycles into a hidden Marko-
based segmentation model (HMM) [72]. The HMM model
estimates the probability of the expected precise boundary
with logistic regression under the supervision of PCG fea-
ture (e.g., S1 and S2 peaks) distributions. In Asclepius, we
adopted a public PCG feature distribution. This feature distri-
bution was trained on a large cardiac database [29] and has
been proven to be effective in handling both healthy individu-
als and pathological patients who have bradycardia [4] and
tachycardia [79]. The comparison with the ground-truth in
Figure 9(c) confirms the efficacy of this design.
4.3 PCG signal correction and recovery
The frequency and the phase components of PCG signals are
both crucial to auscultations. Motivated by UltraSE [76] in
speech enhancement, we propose a two-stage deep learning

model (Figure 10) to recover the PCG spectrogram and further
refine the PCG waveform in the time domain. The whole
process only takes 0.015s to reconstruct a 1.5s heart sound.
• Stage One: spectrogram recovery. We adopt a classic
encoder-decoder model architecture UNet [63], for PCG spec-
trogram recovery. UNet has proved its efficacy in human
vital sign recovery [14, 32] and signal reconstruction (e.g.,
magnetic resonance (MR) ) [86]. As shown in Figure 10, the
model contains six encoder layers and six decoder layers with
skip connections. Each encoder layer consists of a 2D con-
volution, a batch normalization (BN), a ReLU function, and
a dropout regularization module. The stride is set to 2. Each
decoder layer comprises a 2D transposed convolution, a BN,
a ReLU, and a dropout. Notice that S1 and S2 heart sound
components normally last 0.1 second [83]; we thus set the
kernel size of the first two convolution layer to 8×8, ensuring
its reception field is appropriate to capture a complete S1 and
S2 component. Moreover, we replace the standard BN with
instance normalization (IN) [80] to expedite training conver-
gence. The frame length of each spectrogram input is set to
2048, with a hope length of 1024. We adopt L1 loss (termed
as 𝐿𝑠𝑝𝑒𝑐 ) to measure the difference between the reconstructed
PCG spectrogram and the ground-truth spectrogram.
• Stage Two: waveform refinement. After the first stage,
we will get a PCG spectrogram with reconstructed frequency
components. However, the phase values of the reconstructed
PCG signals tend to be discontinuous, which will cause incon-
sistent group delay [13, 31] across frequencies, bringing audi-
ble noises to PCG signals. To address this issue, we transform
the reconstructed spectrogram to a time-domain waveform
using a differentiable iSTFT layer [39] and then propose a
second-stage model for waveform refinement.

⊲ Model structure. We adopt a 1D UNet encoder-decoder
model [54] for PCG waveform refinement. Similar to the first-
stage model, this 1D UNet also contains six encoder layers
and six decoder layers with skip connections. Each encoder
layer comprises a 1D convolution, a BN, a PReLU, and a
dropout. The PReLU activation function allows the model
to accept negative data sample input. The default stride is
2. The decoder layer replaces the convolution with the 1D
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Figure 10: Two-stage signal recovery model in Asclepius.

Steth.Asclepius

Figure 11: Earphones and pairing devices used in Ascle-
pius (left); experiment setup on a human subject (right).

transposed convolution. Note that the audio wave is quasi-
stationary within a very short time (2-50 ms) [13], we thus set
the kernel size to 128, which ensures a 2 ms reception field
on the waveform at 48kHz sampling rate.

⊲ Loss function. Similar to the stage-one model, we adopt
L1 loss to measure the difference between the reconstructed
waveform and the ground-truth PCG waveform (termed as
𝐿𝑡𝑖𝑚𝑒 ). However, during signal reconstruction, the change of
signal samples will alter both the phase and frequency of PCG
signals, which may destroy the reconstructed spectrogram.
To address this issue, we introduce another L1 loss function
𝐿𝑠𝑝𝑒𝑐′ to measure the difference between the reconstructed
spectrum after the second stage and the first stage. This loss
function will enforce the waveform refinement model to pay
attention to phase refinement during waveform reconstruction.
• Combine two stages together. These two models are con-
nected in series, and the loss function 𝐿 is the weighted com-
bination of these three loss functions 𝐿 = 𝛼 ∗ 𝐿𝑠𝑝𝑒𝑐 + 𝐿𝑡𝑖𝑚𝑒 +
𝛽 ∗ 𝐿𝑠𝑝𝑒𝑐′ . The 𝛼 is manually set to 10 times bigger than 𝛽

to prioritize the spectrogram recovery performance during
the training. During the model training, we find the final out-
put PCG waveform contains some high-frequency artifacts
above the PCG frequency band occasionally. We thus apply
the same second-order low pass filter (§4.1) with 500 Hz
cutoff frequencies to the waveform output to eliminate the
out-band audio artifacts. The final PCG waveforms are sent
to the specialist through the video visit platform.

5 EVALUATION
We implement Asclepius’s hardware prototype on a 2-layer
printed circuit board (PCB). It works as a plug-in peripheral
connecting the earphone and the pairing device using 3.5mm
audio jacks, as shown in Figure 8. The signal processing

pipeline (except for the data-driven PCG signal reconstruc-
tion) is implemented in MATLAB. Due to the page limitation,
we put micro-benchmark results and PCG audio samples to an
anonymous external link: https://asclepius-system.github.io/

5.1 Experiments Setup
Data collection. We collect PCG signals from 30 volunteers
(21 males, 9 females) with different ages (22–67 years old),
weights, and heights (BMI ranges from 15.9 to 31.8) using
different earphones. The ground truth is obtained by an FDA-
approved Thinklabs One Digital Stethoscope [74]. The stetho-
scope is placed at the Apex area [68] under the supervision of
a medical professional. We set the stethoscope to the Bell fil-
ter mode [78] to maximize its frequency response for cardiac
signal detection while minimizing other physiological sound
interference, such as lung sound. The volunteer is asked to
keep quiet during the data collection processs to avoid unnec-
essary motion artifacts, as shown in Figure 11. Each volunteer
is asked to fill out a questionnaire for the UX study (§5.5).
Overall, 6.7 GB PCG signals are collected.
Earphone configurations. The PCG signals are collected by
twelve pairs of earphones with different wearing types (over-
ear, on-ear, and in-ear), impedance, prices, and transducer
sizes. Detailed information about these earphones can be
found on our supplementary website. Besides, three different
laptops and four different external sound cards are used to
capture the PCG signals for further processing.
Dataset preparation. We apply the pre-processing algorithm
to the raw PCG receptions, segmenting them into heart cycles
and zero-padding each heart cycle into 1.5s. Motivated by
[32, 67], we adopt leave-one-out cross-validation to evaluate
system performance: each time, we train the model on 29
volunteers and test it on another unseen volunteer.
Model training. We implement the two-stage signal recov-
ery model on PyTorch 1.6 and train it on a NVIDIA A100
GPU for 200 epochs, with a batch size of 32. We adopt Adam
optimizer with a learning rate of 1e-4. We follow a weight-
decaying policy at a decaying rate of 90% for every 50 epochs.
The hyper-parameter 𝛼 and 𝛽 are set to 10.0 and 1.0, respec-
tively. We also adopt early stopping to avoid over-fitting.
Evaluation metric. Root Mean Squared Error (RMSE) is
a widely adopted statistical metric for assessing the quality
of PCG de-noising [27, 75] and ECG digitisation [85]. Moti-
vated by them, we adopt the RMSE to quantify the recovered

https://asclepius-system.github.io/
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PCG quality in Asclepius. RMSE measures the sample-level
difference between the reconstructed PCG and the ground

truth using the equation: 𝑅𝑀𝑆𝐸 =

√︃
1
𝑁

∑𝑁
𝑛=1 (𝑥 (𝑛) − 𝑥 (𝑛))2,

where 𝑥 (𝑛) refers to the reconstructed PCG signal; 𝑥 (𝑛) refers
to the ground-truth PCG samples captured by the stethoscope.
Smaller RMSE indicates a higher similarity between the two.

5.2 Overall Performance
Figure 12 shows the PCG signal quality of 20 subjects’ results
randomly chosen from 30 volunteers. Overall, Asclepius
achieves decent performance across all 20 participants, with a
mean RMSE at 1.34%. For reference, we show the PCG wave-
form with different RMSE values in the same figure. Taking
further scrutiny of these results, we find that subjects 3, 7, 13,
and 19 have relatively higher RMSE variances (e.g., >3%)
than the remaining subjects. We checked their PCG samples
recorded by Asclepius and the stethoscope and find that the
PCG signals are partially polluted by noises. This is proba-
bly due to unintentional body motions during data collection.
We envision a larger training set may help to eliminate the
reconstruction bias caused by these motion artifacts. Audio
samples can be found at https://asclepius-system.github.io/
• Impact of age and gender. Next, we examine the impact
of gender and age on PCG signal quality. Restricted by the
number of participants, we divide our 30 participants into
five groups: F-1 (female, <26 years old), F-2 (female 26–45
years old), M-1 (male, <26 years old), M-2 (male, 26–45
years old), and M-3 (male, >45 years old), respectively. As
shown in Figure 13, all five groups achieve consistent PCG
signal quality (average RMSE = 1.17%), which indicates
that Asclepius is resilient to genders and ages. On the other
hand, compared to the group M-2 and M-3, groups F-1, F-2,
and M-1 achieve a relatively higher RMSE variance. While
we are unsure of the reasons behind this phenomenon, one
reason could be that compared to groups F-1, F-2, and M-1,
we lack sufficient training samples in groups M-2 and M-3
due to fewer participants. We plan to investigate this issue by
recruiting more participants in these two groups.

• Impact of BMI. We then examine the impact of different
Body Mass Index (BMI) on PCG quality. BMI is a golden-
standard measurement of body fat based on the subject’s
height and weight. We divide 30 participants into four groups,
namely, underweight (BMI <18.5), healthy (BMI within 18.5–
24.9), overweight (BMI within 25.0–29.9), and obese (BMI
>30.0). Figure 14 shows the results. All four groups achieve
consistent PCG signal quality (with an average RMSE of
1.09%, 1.19%, 1.13%, 1.24%, respectively), indicating As-
clepius is resilient to different BMIs.
• Impact of earphones. Next, we evaluate the impact of
earphones on the PCG signal quality. In this experiment, we
randomly pick one participant from 30 participants and extract
the PCG signals collected by six pairs of earphones (out of 12).
We then reconstruct these PCG signals with Asclepius and
show their signal quality in Figure 15. Overall, we observe
that the on-ear earphones achieve the best PCG signal quality
(average RMSE = 0.49%), followed by the over-ear earphones
(average RMSE =1.22%), and then in-ear earphones (average
RMSE = 2.80%). One reason for the superior performance of
on-ear earphones is that on-ear earphones have both a large
speaker transducer and a short distance to the ear canal. In
contrast, although in-ear earphones have even closer contact
with the ear canal, their inductive voltage signals due to the
heartbeats are relatively weaker due to the smaller size of their
speaker transducer. We did not see significant differences in
RMSE values of four pairs of over-ear earphones even though
their prices vary drastically from 40 to 300 USD.

5.3 Comparison study
We further compare Asclepius with HeadFi [24], a state-of-
the-art hardware design that reuses speakers on commodity
earphones as a microphone to sense physiological activities.
To make a fair comparison, we collect PCG signals from
seven human subjects using both HeadFi and Asclepius hard-
ware and adopt the same software processing pipeline (§4)
introduced in this paper for PCG signal processing and recov-
ery. Worth noting, over 75% pairing devices cannot capture
PCG signals with the HeadFi circuit, due to the absence of the

https://asclepius-system.github.io/
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Figure 17: Experiment setup. Figure 18: Emulation results.

Table 1: Pathological heart sounds in each group.

Group Explanations
REF Normal S1, S2 from a healthy individual.
G1 Split S1 or S2, absent S2, systolic click, etc.
G2 Holosystolic murmur, early systolic or diastolic murmur, etc.
G3 S3 gallop, S4 gallop.
G4 Systolic murmur with splitting S2, S3 and holosystolic murmur, etc.

impedance matching design (§3.3). To make HeadFi work,
we manually adjusted the circuit impedance of HeadFi, ensur-
ing the successful capture of PCG signals. For our analysis,
heart sounds data from four subjects are used as training data,
while the data from the remaining three subjects are reserved
for evaluation. Both HeadFi and Asclepius data were individ-
ually trained, maintaining consistency in signal processing,
signal recovery, and hyper-parameter initialization.
Result. Figure 16 shows the result. We observe that the av-
erage RMSE of the raw PCG signal received by Asclepius’s
hardware is 3.6%, and the average RMSE of the raw PCG
signal received by HeadFi hardware is 6.4% (nearly 2X worse
than Asclepius), indicating the effectiveness of Asclepius
hardware design. Next, the average RMSE drops to 1.5% as
we apply the first-stage signal reconstruction (spectrogram
recovery) to Asclepius. In contrast, the average RMSE drops
to 4.8% for HeadFi recordings. Furthermore, the average
RMSE declines to 0.9% once the second-stage signal recon-
struction (waveform refinement) is applied for Asclepius’s
recording, while the average RMSE maintains 4.3% when
the second-stage model is applied for the HeadFi recording.
This group of experiments manifests the efficacy of each de-
sign component of Asclepius. In the meanwhile, the average
RMSE of HeadFi’s recording after two-stage improvement
(4.3%) is still worse than the raw PCG perception of Ascle-
pius hardware (3.6%). Detailed comparative analysis and
audio samples of Asclepius and HeadFi can be found at
https://asclepius-system.github.io/

5.4 Emulating Patient’s Heart Recording
Conducting clinic studies with patients has to undergo a more
rigid IRB approval that usually takes more than a year. To
examine the efficacy of Asclepius on a patient’s heart sound
detection, we emulate clinical studies by playing pathological
heart sound recordings with a speaker that was placed inside a
pork belly. The vibration signals propagate through this pork
belly, arriving at the earphones, as shown in Figure 17. These

vibration signals undergo multipath fading (e.g., human body)
as they travel to the earphone.
Dataset. The pathological heart sound recordings are from a
public heart sound dataset [81] that was originally used for
professional skill training by Umich Medicine. It contains 20
different types of pathological heart sound recordings, each
lasting one minute. To emulate different path lengths, we
place the speaker in different parts of the pork belly. More-
over, we play the heart sound recordings in different speaker
volume settings and the hydration status of the pork belly
to emulate human subject variability. In total, We collect 14
hours of PCG signals across 24 different environmental con-
ditions (4 of volume settings × 3 of path length settings × 2
of hydration status). For comparison purposes, an additional
14 hours of PCG signals are collected using HeadFi. Of these,
data from 20 conditions were used for training, while the
remaining 4 sets were reserved for evaluation.
Results. We categorize 20 pathological heart sounds into
four groups based on their pathological signal characteris-
tics, namely, G1, G2, G3, and G4. The explanation of each
group can be found in Table 1. Additionally, We include a
REF group collected from a healthy individual as a reference.
The emulation results for both HeadFi and Asclepius are de-
picted in Figure 18. For Asclepius, we observe the REF group
achieves 2.2% RMSE error on average, slightly worse than the
results from human subjects-based experiments (§5.2). Upon
examining the PCG waveforms, we find that this elevated
RMSE stems mainly from the time offset between the cap-
tured PCG signal and the ground truth – different from human
subject-based experiments where the ground truth and testing
data are collected simultaneously and naturally synchronized,
the PCG signals in the emulation are collected independently.
As a result, we have to align them to the ground truth audio
clips manually, which introduces inconsistency. On the other
hand, HeadFi’s REF group achieves an average RMSE er-
ror of 5.8%, which is substantially higher than Asclepius’s
performance. Furthermore, the RMSE variance for HeadFi
is notably higher. This is due to the fact that HeadFi will
naturally cancel the PCG signal received by the left-ear trans-
ducer and right-ear transducer, resulting in a low-SNR PCG
reception. Theoretical analysis can be found on our website.

Taking scrutiny of pathological PCG groups, we observe
Asclepius achieves similar signal quality on G1 and the REF
groups (with 2.3% RMSE on average), demonstrating that

https://asclepius-system.github.io/
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Figure 19: Example pathological signals recovered by
HeadFi, Asclepius, and ground-truth (Steth.).

Asclepius is capable to detect heart diseases specified in this
group. Asclepius achieves an average RMSE of 2.8% for
group G2, which is slightly worse than G1 and REF. This is
reasonable because murmurs in group G2 are high-frequency
components that suffer more from attenuation and multi-path
effects. We also find large RMSE variations between diastolic
and systolic murmurs in this group. Asclepius achieves the
worst performance on group G3 (i.e., average RMSE = 4.1%),
indicating the detection and reconstruction of S3 and S4 gal-
lop (lower signal amplitude compared to S1 and S2 peaks) is
challenging for Asclepius. As for other pathological sound
combinations specified in group G4, Asclepius achieves an
average RMSE of 2.7%, a comparable performance with REF
and G1 group. On the contrary, HeadFi consistently regis-
ters high RMSE values (i.e., averaging over 5%) across all
pathological groups.

To gain an in-depth understanding of the PCG signal quality
provided by both systems, we plot in Figure 19 two represen-
tative pathological examples from G2 and G4, each recorded
by both HeadFi and Asclepius. The comparison reveals that
Asclepius (second row) effectively captures and preserves
critical cardiac features, including S1 and S2, high-frequency
murmurs, and even the S4 sounds, with its software-hardware
co-design. Conversely, HeadFi (first row) predominantly em-
phasizes the S1 and S2 heart sounds after the signal recovery,
while other vital pathological heart features are largely absent.

5.5 UX Studies
To further validate the user acceptance and clinical efficacy of
Asclepius, we also run UX studies to get feedback from both
30 experiment participants and five cardiologists. Due to the
page limit, we put the user feedback part on our anonymous
link and only present the two-stage cardiologists’ study here:
• Stage I: Blind testing (objective evaluation). In stage I, we
devised a blind testing study wherein cardiologists were asked
to listen to 50 distinct heart sound clips and diagnose based on
each one. Among them, 25 audios are randomly selected from
Asclepius’s recording, and the other 25 audios with the same
cardiac features are from the stethoscope recording. Each
group of audio clips encompasses four different categories
of cardiac features, including healthy, pathological S1/S2,
heart murmurs, and pathological S3/S4. The audio clips are

(a) (b)

Figure 20: (a) The percentage of correctly recognized
heart sounds over 4 different categories; (b) Accuracy
variations among 5 different cardiologists.
shuffled before playing and the cardiologists are not aware of
the audio sources until the end of the blind testing session.
Result. Figure 20 (a) shows the percentage of correctly rec-
ognized heart sounds in each heart sound category. The result
is averaged over five cardiologists’ diagnosis results. Overall,
we observe that the diagnosis performance based on Ascle-
pius’s recordings is quite similar to the performance based
on the stethoscope’s recordings across all four categories of
heart sounds. The diagnosis of murmurs achieves the highest
correctness rate (CR) on both Asclepius and stethoscope,
followed by the diagnosis of pathological S1/S2 (Asclepius:
72% / stethoscope: 74%). This is because the murmurs are
in the high-frequency band and thus are relatively easier to
observe compared to S1 and S2 sounds.

Further scrutiny shows that Asclepius achieves a slightly
higher diagnosis correctness rate than the stethoscope (92%
versus 84%) in detecting the murmurs. One possible reason
could be that the stethoscope records may contain more noise
interference. In contrast, earphones are less likely to pick up
ambient noise when they are put inside the ear canal. The
diagnosis correctness rate then drops to 62% (Asclepius)
and 60% (stethoscope) for healthy heart sounds. It further
declined to a very low level (i.e., 10% for both Asclepius
and stethoscope) for pathological S3/S4. The interview with
cardiologists revealed that distinguishing S3/S4 sounds is
challenging in cardiac auscultation. So cardiologists are less
likely to rely on auscultations for diagnosing S3/S4 sounds.
They instead focus on S1/S2 and murmurs in auscultation.

Figure 20(b) further shows the diagnosis correctness rate
across these five cardiologists. All cardiologists achieve quite
similar performance in diagnosing heart sounds from As-
clepius’s readings and stethoscope’s readings. Among five
cardiologists, 𝐶 performs slightly worse than the others (i.e.,
CR <30%). One possible reason could be cardiologist C may
not yet have extensive clinical experience and his proficiency
in auscultation may be limited.
• Stage II: Cardiologist interview (subjective evaluation).
We further designed a UX study under the guidance of a UX
researcher and interviewed five cardiologists individually to
get their opinions on Asclepius. The interview process was
divided into five phases (P1-P5) and hosted online through
Zoom. Table 2 shows the dialogue sample from one of the
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cardiologists. Detailed procedures of interviews and complete
dialogues with cardiologists can be found on our website.
Summary of the interview. We initiated the interview by
briefing the cardiologists about Asclepius. In P1, we asked
them what are the most important cardiac features for auscul-
tation. All five cardiologists highlighted the S1 and S2 heart
sounds, and heart murmurs as critical features in cardiac aus-
cultation. In P2, cardiologists listened to a healthy individual’s
PCG signal captured by Asclepius and universally identified
the S1 and S2 heart features from the sound. P3 involved a
direct comparison between Asclepius’s recordings and tradi-
tional stethoscope recordings. While the majority found no
significant differences, a couple noted slight variations, with
descriptions like "less crisp" or "reverberated." P4 expanded
on this comparison, focusing on pathological heart sounds.
All cardiologists were able to recognize S1, S2, and murmurs
sounds in the Asclepius recordings, though one commented
on differences in sound intensity. The session wrapped up
with a discussion about the strengths and potential limitations
of Asclepius. Due to the page limitation, we put all interview
results on our website and released one sample in Table 2.
6 RELATED WORK
As the next milestone of wearable, earable devices [5, 10–
12, 16, 25, 33, 57, 62, 88, 89] have attracted a lot of at-
tention recently. A growing interest in exploring earable
techniques [6, 45] is for cardiac monitoring. For example,
hEARt [6] utilized an in-ear microphone to monitor heart
rate (HR) under both stationary and moving environments.
Earmonitor [77] probed FMCW signals to ear canal and cap-
tured the ear canal reflections to infer the HR. Similarly, Ear-
ACE [8] developed a versatile acoustic sensing platform that
is capable to extract PCG envelop and estimating the heart rate
variability with the customized ANC earbuds. However, dif-
ferent from Asclepius, these works adopt in-ear microphones
for physiological sensing, which are dedicated to costly ANC
headphones and are less accessible to the public.

Apart from these adds-on modalities, HeadFi [24], EarSens-
e [59], and other followup [69] explore the speaker transducer
on commodity earphones for physiological activity and ges-
ture sensing. However, EarSense achieves this goal by making
changes to the soundcard, which is usually prohibited on most
PCs and mobiles. HeadFi uses a Wheatstone bridge to remove
the music interference. As a side effect, the fine-grained car-
diac signals will also be canceled out. Accordingly, it is in-
feasible to use HeadFi to conduct cardiac auscultation, as we
experimentally demonstrated in §5.3. In contrast, Asclepius
takes a hardware-software co-design approach to maximize
the SNR of the PCG receptions on earphones and further
correct frequency distortions of raw PCG receptions due to
the multi-path propagation inside the human body, making
Asclepius eligible for capturing the detailed S1, S2 heart
sounds, as well as the potential heart murmurs.

Table 2: A sample of the dialog with an anonymous cardi-
ologist. Editing and translation are made for clarity.
⊲ P1: Introducing Asclepius to the clinician:

Q1: In your clinical experience, what do you consider to be the most crucial aspects of heart sounds
when making a diagnosis?
Answer: When evaluating heart conditions, it’s crucial to carefully assess the primary S1 and S2 heart
sounds, as well as any murmurs. While you might also hear S3 and S4 sounds during auscultation,
distinguishing between normal and abnormal variants can be challenging. Therefore, the primary
focus should always be on the clarity and consistency of the S1 and S2 heart sounds and any identified
murmurs.
⊲ P2: Playing PCG signals that Asclepius captured from a healthy individual, and informing

the cardiologist that the audio clips are a product of our technology:
Q2: Based on the heart sounds you’ve just heard, which specific cardiac features can you pinpoint?
Answer: I can clearly tell the S1 and S2 components.
Q3: How would you compare the heart sounds produced by Asclepius to those you’d typically hear
using a stethoscope? Are there any inconsistencies that stood out?
Answer: In my experience, I have not observed any discernible differences between the heart sounds
produced by your technology and those usually obtained using a stethoscope. The signal quality is
exceptional.
⊲ P3: Playing the same PCG signals captured by Asclepius again, then playing the stethoscope

recording immediately afterward so the clinician can compare:
Q4: After listening to both, can you tell any differences between the recordings from Asclepius and
those from the stethoscope?
Answer: Yes, I can tell some differences between these two recordings. Asclepius’s recordings are
somewhat less crisp compared to those from the stethoscope, and there seem to be some S3 sounds in
the background. The stethoscope recordings, on the other hand, have more distinct sounds and no S3
sounds.
⊲ P4: Playing pathological PCG sounds captured by Asclepius. The cardiologist is informed

that these clips were produced by our technology and sourced from a patient. After the cardiolo-
gist responds to Q5, recordings from the stethoscope are played for comparative analysis:
Q5: Based on these pathological heart sounds you just heard from our system, what cardiac features
caught your attention?
Answer: I picked up on the S1 and S2 components and also some evident murmurs.
Q6: After listening to both, can you pinpoint any differences between Asclepius’s recording and the
one from the stethoscope?
Answer: Honestly, I didn’t find any significant differences between the heart sounds from Asclepius
and those from the stethoscope.
⊲ P5: Engaging in a conversation with the cardiologist to discuss the advantages and disadvan-

tages of our technology:
Q7: From your expert viewpoint, can you share the benefits you see in using Asclepius?
Answer: Certainly. One potential benefit of your technology is that the earphone recording method
naturally produces less noise interference compared to a stethoscope. We often face challenges with
noise interference when using a stethoscope, which can be caused by factors such as sweat on the skin,
environmental noises, and improperly fitted chest contacts. In contrast, earphones are less likely to
pick up interference from the ear canal. Additionally, the visual representation of heart sounds in your
technology is a significant advantage. We are pleased to have the ability to observe the PCG signal,
which will aid in identifying pathological features during auscultation. Furthermore, your system could
serve as a valuable tool for remote visits, fostering trust between patients and clinicians by enabling
auscultation.
Q8: Any thoughts on the limitations and challenges of Asclepius?
Answer: A potential challenge I see is tied to the practice of auscultation. Typically, we move the
stethoscope to different spots on the chest to obtain better signal quality from specific areas of the
heart, such as the right ventricle, pulmonary valve, or tricuspid valve. This allows for an optimized
signal quality and comprehensive assessment. With earphones, such precise maneuvering isn’t feasible,
which might restrict their capacity to capture certain pathological heart activities in these specific
areas.

7 CONCLUSION
We have presented the design, implementation, and evalua-
tion of Asclepius, a novel PCG signal detection system using
commodity earphones. By listening to the acoustic cardiopul-
monary signals captured by Asclepius, the specialists can
assess the patient’s health condition and make the most in-
formed diagnosis in video visit settings. The evaluation based
on 30 participants with various ages and BMI factors con-
firms the efficacy of Asclepius. The UX studies with these
participants and five cardiologists are also positive: over 80%
of participants show a willingness to use Asclepius and all
cardiologists highly appreciate Asclepius and believe it holds
great potential for remote auscultation. Overall Asclepius
makes the very first step toward remote auscultation, and
we believe it will spark novel ideas in heart sound sensing,
pushing the whole field moving forward.



Exploring the Feasibility of Remote Cardiac Auscultation Using Earphones MobiCom’24, October 2024, Washington, D.C.

REFERENCES
[1] C. F. Anderson. Clinical auscultation of the cardiovascular system.

Mayo Clinic Proceedings, 1990.
[2] Anonymous. Anonymous poster.
[3] E. K. Antonsson, R. W. Mann. The frequency content of gait. Journal

of biomechanics, 1985.
[4] Bradycardia. https://en.wikipedia.org/wiki/Bradycardia.
[5] N. Bui, N. Pham, J. J. Barnitz, Z. Zou, P. Nguyen, H. Truong, T. Kim,

N. Farrow, A. Nguyen, J. Xiao, et al. ebp: A wearable system for
frequent and comfortable blood pressure monitoring from user’s ear.
The 25th annual international conference on mobile computing and
networking, 2019.

[6] K.-J. Butkow, T. Dang, A. Ferlini, D. Ma, C. Mascolo.
Motion-resilient heart rate monitoring with in-ear microphones. arXiv
preprint arXiv:2108.09393, 2021.

[7] N. E. Bylund, M. Ressner, H. Knutsson. 3d wiener filtering to reduce
reverberations in ultrasound image sequences. Scandinavian
Conference on Image Analysis. Springer, 2003.

[8] Y. Cao, C. Cai, A. Yu, F. Li, J. Luo. Earace: Empowering versatile
acoustic sensing via earable active noise cancellation platform.
Proceedings of the ACM on Interactive, Mobile, Wearable and
Ubiquitous Technologies, 2023.

[9] Cardiac cycle. https://en.wikipedia.org/wiki/Cardiac_cycle.
[10] J. Chan, N. Ali, A. Najafi, A. Meehan, L. R. Mancl, E. Gallagher,

R. Bly, S. Gollakota. An off-the-shelf otoacoustic-emission probe for
hearing screening via a smartphone. Nature Biomedical Engineering,
2022.

[11] J. Chan, A. Glenn, M. Itani, L. R. Mancl, E. Gallagher, R. Bly, S. Patel,
S. Gollakota. Wireless earbuds for low-cost hearing screening. arXiv
preprint arXiv:2212.05435, 2022.

[12] I. Chatterjee, M. Kim, V. Jayaram, S. Gollakota, I. Kemelmacher,
S. Patel, S. M. Seitz. Clearbuds: wireless binaural earbuds for
learning-based speech enhancement. Proceedings of the 20th Annual
International Conference on Mobile Systems, Applications and
Services, 2022.

[13] T. Chen, L. Shangguan, Z. Li, K. Jamieson. The design and
implementation of a steganographic communication system over
in-band acoustical channels. ACM Transactions on Sensor Networks,
2023.

[14] Z. Chen, T. Zheng, C. Cai, J. Luo. Movi-fi: Motion-robust vital signs
waveform recovery via deep interpreted rf sensing. Proceedings of the
27th Annual International Conference on Mobile Computing and
Networking, 2021.

[15] F. A. Choudhry, J. T. Grantham, A. T. Rai, J. P. Hogg. Vascular
geometry of the extracranial carotid arteries: an analysis of length,
diameter, and tortuosity. Journal of neurointerventional surgery, 2016.

[16] R. R. Choudhury. Earable computing: A new area to think about.
Proceedings of the 22nd International Workshop on Mobile Computing
Systems and Applications, 147–153, 2021.

[17] J. S. Dhillon, C. Ramos, B. C. Wünsche, C. Lutteroth. Designing a
web-based telehealth system for elderly people: An interview study in
new zealand. 2011 24th International Symposium on Computer-Based
Medical Systems (CBMS), 1–6. IEEE, 2011.

[18] A doctor’s touch.
https://www.ted.com/talks/abraham_verghese_a_doctor_s_touch.

[19] M. Doerbecker, S. Ernst. Combination of two-channel spectral
subtraction and adaptive wiener post-filtering for noise reduction and
dereverberation. 1996 8th European Signal Processing Conference
(EUSIPCO 1996). IEEE, 1996.

[20] J. Eargle. The Microphone Book: From mono to stereo to surround-a
guide to microphone design and application. Routledge, 2012.

[21] Headphone impedance demystified.
https://www.headphonesty.com/2019/04/headphone-impedance-
demystified/.

[22] Equivalent series resistance.
https://en.wikipedia.org/wiki/Equivalent_series_resistance.

[23] FAITH AND THE STETHOSCOPE. Website.
[24] X. Fan, L. Shangguan, S. Rupavatharam, Y. Zhang, J. Xiong, Y. Ma,

R. Howard. Headfi: bringing intelligence to all headphones.
Proceedings of MobiCom, 2021.

[25] A. Ferlini, D. Ma, R. Harle, C. Mascolo. Eargate: gait-based user
identification with in-ear microphones. Proceedings of the 27th Annual
International Conference on Mobile Computing and Networking, 2021.

[26] S. N. Gajarawala, J. N. Pelkowski. Telehealth benefits and barriers.
The Journal for Nurse Practitioners, 17(2), 218–221, 2021.

[27] S. K. Ghosh, R. K. Tripathy, R. Ponnalagu. Evaluation of performance
metrics and denoising of pcg signal using wavelet based decomposition.
IEEE 17th India Council International Conference, 2020.

[28] D. Gill, N. Gavrieli, N. Intrator. Detection and identification of heart
sounds using homomorphic envelogram and self-organizing
probabilistic model. Computers in Cardiology, 2005. IEEE, 2005.

[29] A. L. Goldberger, L. A. Amaral, L. Glass, J. M. Hausdorff, P. C. Ivanov,
R. G. Mark, J. E. Mietus, G. B. Moody, C.-K. Peng, H. E. Stanley.
Physiobank, physiotoolkit, and physionet: components of a new
research resource for complex physiologic signals. circulation, 2000.

[30] G. Grimmett, D. Stirzaker. Probability and random processes. Oxford
university press, 2020.

[31] Group delay and phase delay. Website.
[32] U. Ha, S. Assana, F. Adib. Contactless seismocardiography via deep

learning radars. Proceedings of the 26th Annual International
Conference on Mobile Computing and Networking, 2020.

[33] Y. Jin, Y. Gao, X. Guo, J. Wen, Z. Li, Z. Jin. Earhealth: an
earphone-based acoustic otoscope for detection of multiple ear
diseases in daily life. Proceedings of the 20th Annual International
Conference on Mobile Systems, Applications and Services, 2022.

[34] S.-H. Kang, B. Joe, Y. Yoon, G.-Y. Cho, I. Shin, J.-W. Suh, et al.
Cardiac auscultation using smartphones: pilot study. JMIR mHealth
and uHealth.

[35] E. Kaniusas. Acoustical signals of biomechanical systems. World
Scientific, 2007.

[36] R. Khusainov, D. Azzi, I. E. Achumba, S. D. Bersch. Real-time human
ambulation, activity, and physiological monitoring: Taxonomy of
issues, techniques, applications, challenges and limitations. Sensors,
2013.

[37] K. Kondo, Y. Takahashi, T. Komatsu, T. Nishino, K. Takeda.
Computationally efficient single channel dereverberation based on
complementary wiener filter. 2013 IEEE International Conference on
Acoustics, Speech and Signal Processing. IEEE, 2013.

[38] N. Koonjoo, B. Zhu, G. C. Bagnall, D. Bhutto, M. Rosen. Boosting the
signal-to-noise of low-field mri with deep learning image
reconstruction. Scientific reports, 11(1), 1–16, 2021.

[39] F. Kreuk, Y. Adi, B. Raj, R. Singh, J. Keshet. Hide and speak: Towards
deep neural networks for speech steganography. arXiv preprint
arXiv:1902.03083, 2019.

[40] F.-J. Kung, M. R. Bai. Estimation of the noise and reverberation
covariance matrices with application in speech enhancement using the
multichannel wiener filter. INTER-NOISE and NOISE-CON Congress
and Conference Proceedings. Institute of Noise Control Engineering,
2020.

https://sciencemeetsfaith.wordpress.com/2019/08/13/rene-laennec-faith-and-the-stethoscope/
https://en.wikipedia.org/wiki/Group_delay_and_phase_delay


MobiCom’24, October 2024, Washington, D.C. Paper #263: Revise-and-Resubmit

[41] A. Leatham. Auscultation of the Heart and Phonocardiography.
Churchill London, 1970.

[42] S. Leng, R. S. Tan, K. T. C. Chai, C. Wang, D. Ghista, L. Zhong. The
electronic stethoscope. Biomedical engineering online, 2015.

[43] M. Lewkowicz, M. Gitterman. Theory of heart sounds. Journal of
sound and vibration, 117(2), 263–275, 1987.

[44] A. A. Luisada, D. M. MacCanon. The phases of the cardiac cycle.
American heart journal, 83(5), 705–711, 1972.

[45] D. Ma, A. Ferlini, C. Mascolo. Oesense: employing occlusion effect
for in-ear human sensing. Proceedings of the 19th Annual
International Conference on Mobile Systems, Applications, and
Services, 2021.

[46] N. Mamorita, N. Arisaka, R. Isonaka, T. Kawakami, A. Takeuchi.
Development of a smartphone app for visualizing heart sounds and
murmurs. Cardiology, 2017.

[47] M. K. Mandal, S. Sanyal. Compact wideband bandpass filter. IEEE
microwave and wireless components letters, 2005.

[48] Max5402 datasheet.
https://pdfserv.maximintegrated.com/en/ds/MAX5402.pdf.

[49] S. McGee. Evidence-based physical diagnosis. Elsevier Health
Sciences, 2021.

[50] H. Møller, D. Hammershøi, C. B. Jensen, M. F. Sørensen. Transfer
characteristics of headphones measured on human ears. Journal of the
Audio Engineering Society, 1995.

[51] A. Mousavi, A. B. Patel, R. G. Baraniuk. A deep learning approach to
structured signal recovery. 2015 53rd annual allerton conference on
communication, control, and computing (Allerton), 1336–1343. IEEE,
2015.

[52] P. A. Ongley. Heart sounds and murmurs: A clinical and
phonocardiographic study. Grune & Stratton, 1960.

[53] C. J. Owen, J. P. Wyllie. Determination of heart rate in the baby at
birth. Resuscitation, 2004.

[54] S. Pascual, A. Bonafonte, J. Serra. Segan: Speech enhancement
generative adversarial network. arXiv preprint arXiv:1703.09452,
2017.

[55] Patient experience: The clinician connection with patients, matters.
https://www.littmann.com/3M/en_US/littmann-
stethoscopes/advantages/promotions/clinician-patient-connection/.

[56] A. N. Pelech. The physiology of cardiac auscultation. Pediatric
Clinics, 51(6), 1515–1535, 2004.

[57] N. Pham, T. Dinh, Z. Raghebi, T. Kim, N. Bui, P. Nguyen, H. Truong,
F. Banaei-Kashani, A. Halbower, T. Dinh, et al. Wake: a
behind-the-ear wearable system for microsleep detection. Proceedings
of the 18th International Conference on Mobile Systems, Applications,
and Services, 2020.

[58] Report shows overwhelming patient interest in post-pandemic virtual
care. Website.

[59] J. Prakash, Z. Yang, Y.-L. Wei, H. Hassanieh, R. R. Choudhury.
Earsense: earphones as a teeth activity sensor. Proceedings of the 26th
Annual International Conference on Mobile Computing and
Networking, 2020.

[60] C. M. van Ravenswaaij-Arts, L. A. Kollee, J. C. Hopman, G. B.
Stoelinga, H. P. van Geijn. Heart rate variability. Annals of internal
medicine, 1993.

[61] Reflection coefficient.
https://en.wikipedia.org/wiki/Reflection_coefficient.

[62] T. Röddiger, C. Clarke, P. Breitling, T. Schneegans, H. Zhao,
H. Gellersen, M. Beigl. Sensing with earables: A systematic literature
review and taxonomy of phenomena. Proceedings of the ACM on
Interactive, Mobile, Wearable and Ubiquitous Technologies, 2022.

[63] O. Ronneberger, P. Fischer, T. Brox. U-net: Convolutional networks for
biomedical image segmentation. International Conference on Medical
image computing and computer-assisted intervention. Springer, 2015.

[64] Safety sound level recommended by epa and who.
https://www.cdc.gov/nceh/hearing_loss/what_noises_cause_hearing_loss.html.

[65] S. E. Schmidt, C. Holst-Hansen, C. Graff, E. Toft, J. J. Struijk.
Segmentation of heart sound recordings by a duration-dependent
hidden markov model. Physiological measurement, 2010.

[66] V. Schoebel, C. Wayment, M. Gaiser, C. Page, J. Buche, A. J. Beck.
Telebehavioral health during the covid-19 pandemic: a qualitative
analysis of provider experiences and perspectives. Telemedicine and
e-Health, 27(8), 947–954, 2021.

[67] Z. Shi, T. Gu, Y. Zhang, X. Zhang. mmbp: Contact-free
millimetre-wave radar based approach to blood pressure measurement.
Proceedings of the 20th ACM Conference on Embedded Networked
Sensor Systems, 2022.

[68] N. Silverman, N. Schiller. Apex echocardiography. a two-dimensional
technique for evaluating congenital heart disease. Circulation, 1978.

[69] X. Song, K. Huang, W. Gao. Facelistener: Recognizing human facial
expressions via acoustic sensing on commodity headphones.
Proceedings of IEEE IPSN, 2022.

[70] Sound cards impedance.
https://audioxpress.com/article/practical-test-measurement-sound-
cards-for-data-acquisition-in-audio-measurements-part-4.

[71] Can a Speaker be Converted Into an Audio Microphone? Website.
[72] D. B. Springer, L. Tarassenko, G. D. Clifford. Logistic

regression-hsmm-based heart sound segmentation. IEEE transactions
on biomedical engineering, 2015.

[73] Stethoscope. Website.
[74] T. O. D. Stethoscope. https://store.thinklabs.com/products/thinklabs-

one-digital-stethoscope.
[75] A. Strazza, A. Sbrollini, M. Olivastrelli, A. Piersanti, S. Tomassini,

I. Marcantoni, M. Morettini, S. Fioretti, L. Burattini.
Pcg-decompositor: A new method for fetal phonocardiogram filtering
based on wavelet transform multi-level decomposition. Mediterranean
Conference on Medical and Biological Engineering and Computing,
2020.

[76] K. Sun, X. Zhang. Ultrase: single-channel speech enhancement using
ultrasound. Proceedings of the 27th annual international conference
on mobile computing and networking, 160–173, 2021.

[77] X. Sun, J. Xiong, C. Feng, W. Deng, X. Wei, D. Fang, X. Chen.
Earmonitor: In-ear motion-resilient acoustic sensing using commodity
earphones. Proceedings of the ACM on Interactive, Mobile, Wearable
and Ubiquitous Technologies, 2023.

[78] S. Swarup, A. N. Makaryus. Digital stethoscope: Technology update.
Medical Devices: Evidence and Research, 2018.

[79] Tachycardia. https://en.wikipedia.org/wiki/Tachycardia.
[80] D. Ulyanov, A. Vedaldi, V. Lempitsky. Instance normalization: The

missing ingredient for fast stylization. arXiv preprint
arXiv:1607.08022, 2016.

[81] Umhs michigan heart sound and murmur library.
https://www.med.umich.edu/lrc/psb_open/html/repo/primer_heartsound/
primer_heartsound.html.

[82] Understanding impedance.
https://www.soundonsound.com/techniques/understanding-
impedance.

[83] H. K. Walker, W. D. Hall, J. W. Hurst. Clinical methods: the history,
physical, and laboratory examinations, 1990.

[84] Y. Wang, D. Wang. A deep neural network for time-domain signal
reconstruction. 2015 IEEE International Conference on Acoustics,

https://www.healthcareitnews.com/news/report-shows-overwhelming-patient-interest-post-pandemic-virtual-care
https://www.youtube.com/watch?v=9X1JndFSjIA
https://en.wikipedia.org/wiki/Stethoscope


Exploring the Feasibility of Remote Cardiac Auscultation Using Earphones MobiCom’24, October 2024, Washington, D.C.

Speech and Signal Processing (ICASSP), 4390–4394. IEEE, 2015.
[85] H. Wu, K. H. K. Patel, X. Li, B. Zhang, C. Galazis, N. Bajaj, A. Sau,

X. Shi, L. Sun, Y. Tao, et al. A fully-automated paper ecg digitisation
algorithm using deep learning. Nature Scientific Reports, 2022.

[86] L. Xiang, Y. Chen, W. Chang, Y. Zhan, W. Lin, Q. Wang, D. Shen.
Deep-learning-based multi-modal fusion for fast mr reconstruction.
IEEE Transactions on Biomedical Engineering, 2018.

[87] Z. Xiao, T. Chen, Y. Liu, Z. Li. Mobile phones know your keystrokes
through the sounds from finger’s tapping on the screen. 2020 IEEE

40th International Conference on Distributed Computing Systems
(ICDCS), 2020.

[88] Z. Yang, R. R. Choudhury. Personalizing head related transfer
functions for earables. Proceedings of the 2021 ACM SIGCOMM 2021
Conference, 2021.

[89] Z. Yang, Y.-L. Wei, S. Shen, R. R. Choudhury. Ear-ar: indoor acoustic
augmented reality on earphones. Proceedings of the 26th Annual
International Conference on Mobile Computing and Networking, 2020.


	1 Introduction
	2 Background and Motivation
	2.1 Cardiac Auscultation Primer
	2.2 Remote Auscultation: Opportunities

	3 Asclepius's Hardware Design
	3.1 A Theoretical Model
	3.2 Inductive Voltage Detection Circuit
	3.3 Automatic Impedance Matching (AIM)
	3.4 Putting Them Together

	4 Asclepius's Software
	4.1 Signal pre-processing
	4.2 Segmentation
	4.3 PCG signal correction and recovery

	5 Evaluation
	5.1 Experiments Setup
	5.2 Overall Performance
	5.3 Comparison study
	5.4 Emulating Patient's Heart Recording
	5.5 UX Studies

	6 Related Work
	7 Conclusion
	References

