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Abstract
The requirements for many applications of state-of-the-art

speech recognition systems include not only low word error rate
(WER) but also low latency. Specifically, for many use-cases, the
system must be able to decode utterances in a streaming fashion
and faster than real-time. Recently, a streaming recurrent neural
network transducer (RNN-T) end-to-end (E2E) model has shown
to be a good candidate for on-device speech recognition, with
improved WER and latency metrics compared to conventional
on-device models [1]. However, this model still lags behind a
large state-of-the-art conventional model in quality [2]. On the
other hand, a non-streaming E2E Listen, Attend and Spell (LAS)
model has shown comparable quality to large conventional mod-
els [3]. This work aims to bring the quality of an E2E streaming
model closer to that of a conventional system by incorporating a
LAS network as a second-pass component, while still abiding
by latency constraints. Our proposed two-pass model achieves a
17%-22% relative reduction in WER compared to RNN-T alone
and increases latency by a small fraction over RNN-T.

1. Introduction
There continues to be a growing popularity with end-to-end mod-
els (E2E) for speech recognition [1, 3, 4, 5, 6, 7, 8, 9]. These
models, which fold the acoustic, pronunciation and language
models (AM, PM, LMs) into a single network, have shown com-
petitive results compared to conventional ASR systems which
have separate AM, PM, and LMs. E2E models are particularly
attractive for on-device ASR, as they can outperform on-device
conventional models [10] of comparable size.

Running ASR on-device with direct user interaction,
presents numerous challenges. First, the recognition results
must be streaming. That is, words should appear on the screen
as soon as they are spoken. Second, the model must have a small
latency (i.e., the delay between the user speaking and the text
appearing ), thus running at or faster than real-time on mobile
devices. Third, the model must be able to utilize user context
[11] (e.g., list of contacts, song names, etc.) to improve recog-
nition accuray. Recently, we presented a RNN-T E2E model
that satisfies these constraints [1]. However, the RNN-T model’s
quality still lags behind that of a large conventional model [2].

Non-streaming E2E models, such as Listen, Attend and
Spell (LAS) [7], have shown competitive performance to a large
conventional model [3]. However, LAS models are not stream-
ing as they must attend to the entire audio segment, making it
challenging to use them in interactive applications.

In two-pass decoding, the second pass model is often used
to improve the initial outputs from first-pass models by using
lattice rescoring [12] or n-best reranking [13]. Keeping user-
perceived latency low while obtaining the quality gains is the
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main challenge with applying second-pass models. Language
model rescoring is commonly been used for multi-pass decod-
ing [14, 15, 16, 17], but more recently has been used with a
LAS model to rescore hypotheses from a first-pass conventional
model [18]. We can think of LAS decoder, which takes acoustic
information from the encoder and language model information
from previous predictions, as being strictly stronger than second-
pass language models. Thus, in this work, we explore using the
LAS model for second-pass processing.

Specifically, we explore a two-pass architecture in which
an RNN-T decoder and a LAS decoder share an encoder net-
work. Sharing the encoder allows us to reduce model size and
computation cost compared with having dedicated encoders for
RNN-T and LAS. During inference, the RNN-T model produces
streaming predictions while in the end the LAS decoder finalizes
the prediction. We explore tradeoffs by running the LAS decoder
as a beam search versus rescoring hypotheses from RNN-T.

Our experiments are conducted on a ∼30,000 hour voice
search task. We find that with LAS second-pass beam search, we
can get a 15% relative improvement over first-pass RNN-T for a
shorter utterance (SU) test set, but the model degrades on longer
utterances (LU), a common problem for attention models [19].
In contrast, second-pass rescoring gives us a much better tradeoff
for SU and LU compared to beam-search. Next, we experiment
with ways to improve the rescoring model WER by changing
the training objective function to more closely match rescoring.
Specifically, we apply a minimum word error rate (MWER)
training strategy [20] where hypotheses from RNN-T are used
as inputs to the LAS decoder and the LAS decoder is trained
to minimize expected word error rates. In addition, we reduce
computation cost by running the first-pass RNN-T model with
an adaptive beam [21] and pruning the first-pass lattice before
rescoring. Overall, we find that our proposed LAS rescoring
model provides 17% to 22% relative improvement in WER com-
pared to a first-pass RNN-T model, without a degradation in
biasing accuracy. In addition, the second-pass LAS decoder in-
creases finalization latency by less than 200ms, which has been
considered the limit of acceptable interactive latency [22].

The rest of this paper is organized as follows. Section 2 de-
scribes the two-pass architecture and various inference strategies
explored in this paper. Experiments are presented in Section
3 while results are discussed in Section 4. Finally, Section 5
concludes the paper and discusses future work.

2. Two-Pass E2E ASR
2.1. Model Architecture

The proposed two-pass architecture is shown in Figure 1.
We denote the parameterized input acoustic frames as x =
(x1 . . .xT ), where xt ∈ Rd are log-mel filterbank energies
in this work (d = 80) and T denotes the number of frames in
x. In the first pass, each acoustic frame xt is passed through a



shared encoder, consisting of a multi-layer LSTM, to get output
et, which is passed to an RNN-T decoder for producing yr at
each time step in a streaming fashion. In the second pass, the
output of the shared encoder of all frames e = (e1 . . . eT ) is
passed to a LAS decoder. During training, the LAS decoder
computes output yl according to e. During decoding it may
additionally use yr as described below.

Figure 1: Two-Pass Architecture

2.2. Decoding

We explore using the LAS decoder in two different decoding
modes in this work. Specifically,

• In the “2nd beam search” mode, it produces output yl

from e alone, ignoring yr , the output of the RNN-T de-
coder.

• In the “rescoring” mode, we first pick the top-K hypothe-
ses from the RNN-T decoder. We then run the LAS
decoder on each sequence in the teacher-forcing mode,
with attention on e, to compute a score, which combines
log probability of the sequence and the attention coverage
penalty [23]. The sequence with the highest LAS score is
picked as the output sequence.

2.3. Training

In this section, we describe the training stategies for the two-pass
model.

2.3.1. Combined Loss

In theory we can train a two-pass model from random initializa-
tion with the following combined loss, where y∗ represents the
ground truth transcript:

Lcombined(x,y
∗) = λLRNNT(x,y

∗)+(1−λ)LLAS(x,y
∗) (1)

In the above equation, λ is a hyperparameter, which we set to be
0.5 in our setup to equally weight the RNN-T and LAS losses.
In practice we find training directly from scratch to be unstable,
mainly because the losses for RNN-T and LAS are in drastically
different ranges when training from scratch. Therefore, we take
a multi-step process to train the model:

1. Train an RNN-T model as in [1];

2. Take the encoder trained in step (1), freeze it, and train a
LAS decoder as in [3].

3. “Deep finetuning”: train the shared encoder and both
decoders at the same time with the combined loss.

2.3.2. MWER training

One of the drawbacks of the loss in Equation 1 is that the second-
pass LAS decoder is optimized independently of the RNN-T
decoder. This means that there is a mismatch between the train-
ing and decoding strategies outlined in Section 2.2.

To address this, we use an additional training step to further
refine the LAS decoder to minimize errors, following the MWER
training process introduced in [20]. Specifically, given input x,
groundtruth transcript y∗, the probability computed by LAS
P (ym|x) for any given target sequence ym with teacher-forcing
(where m = r if ym is given by RNN-T and m = l if ym

is given by LAS), we refine the pre-trained two-pass model as
follows.

First, we run a beam search with one of the decoders m
from the two-pass model to get a set of hypotheses Hm =
{h1, . . . , hb} where b is the beam-size. To make the MWER
training match decoding, the generation of Hm depends on the
target decoding mode. For a LAS decoder to be used in the
“2nd beam search” mode, we compute Hm by running beam
search with the LAS decoder itself on x (m = l). For a LAS
decoder to be used in the “rescoring” mode, on the other hand,
we compute Hm(x) by running beam search with the first-pass
RNN-T decoder (m = r).

For each sequence ym ∈ Hm, let W (y∗,ym) be
the number of word errors of ym, let W (y∗, Hm) =

1
|Hm|

∑
ym∈Hm

W (y∗,ym) be the mean number of word er-

rors forHm, and let Ŵ (y∗,ym) =W (y∗,ym)−W (y∗, Hm)
be the relative word error rate of ym in Hm. We also let
P̂ (ym|x, Hm) = P (ym|x)∑

yi∈Hm
P (yi|x)

represent the conditional

probability LAS decoder assigns to hypothesis ym among all
hypotheses in Hm. The MWER loss is defined as

LMWER(x,y
∗) =

∑
ym∈Hm(x)

P̂ (ym|x, Hm)Ŵ (y∗,ym) (2)

We train the LAS decoder to minimize a combination of the
MWER loss and the maximum-likelihood cross-entropy loss:

LMWER(x,y
∗) + λMLE logP (y∗|x) (3)

where λMLE is a hyperparameter that experimentally we set to be
λMLE = 0.01 following [20].

3. Experimental Details
3.1. Data Sets

Our experiments are conducted on a ∼30,000 hour training
set consisting of 43 million English utterances. The training
utterances are anonymized and hand-transcribed, and are repre-
sentative of Google’s voice search traffic in the United States.
Multi-style training (MTR) data are created by artificially cor-
rupting the clean utterances using a room simulator, adding
varying degrees of noise and reverberation with an average SNR
of 12dB [24]. The noise sources are drawn from YouTube and
daily life noisy environmental recordings. The main test sets we
report results on include ∼14K short utterances (SU) less than
5.5 seconds long and ∼16K long utterances (LU) greater than
5.5 seconds, both extracted from Google traffic.

To evaluate the performance of contextual biasing, we re-
port performance on a contacts test set, which consists of re-
quests to call/text contacts. This set is created by mining contact
names from the web, and synthesizing TTS utterances in each
of these categories using a concatenative TTS approach with



one voice [25]. Noise is then artificially added to the TTS data,
similar to the process described above [24]. To bias model pre-
dictions towards contacts, we construct a biasing FST on a list of
contact phrases and perform shallow-fusion between the biasing
FST and E2E model during inference. We refer the reader to
[26] for more details regarding E2E shallow-fusion biasing.

3.2. Model Architecture Details

All experiments use 80-dimensional log-Mel features, computed
with a 25ms window and shifted every 10ms. Similar to [2], at
the current frame, t, these features are stacked with 2 frames to
the left and downsampled to a 30ms frame rate.

The same encoder network described in [1] is used for all
experiments. It consists of 8 LSTM layers, where each layer has
2,048 hidden units followed by a 640-dimensional projection
layer. We insert a time-reduction layer with the reduction factor
N = 2 after the second LSTM layer of encoder.

The RNN-T decoder contists of a prediction network and
a joint network. The prediction network has 2 LSTM layers
of 2,048 hidden units and a 640-dimensional projection per
layer as well as an embedding layer of 128 units. The outputs
of encoder and prediction network are fed to a joint network
that has 640 hidden units. The LAS decoder consists of multi-
head attention [27] with four attention heads, which is fed into
2 LSTM layers of 2,048 hidden units and a 640-dimensional
projection layer. It has an embedding layer of 96 units. Both
decoders are trained to predict 4,096 word pieces [28], which
are derived using a large corpus of text transcripts.

The total size of the RNN-T model is 114M parameters,
and the additional second-pass LAS decoder is 33M parameters.
All models are trained in Tensorflow [29] using the Lingvo [30]
toolkit on 8 × 8 Tensor Processing Units (TPU) slices with a
global batch size of 4,096.

3.3. Measuring Latency

As computing devices may vary, we use a simplified model
of computation to estimate latency. First, we assume that the
bandwidth K on CPU is 10GB/second; this number is within the
range of modern mobile CPUs. We also make the non-optimal
assumption that each hypothesis is computed independently,
meaning that the major operations are matrix/vector multiplies,
the time of which will be dominated by the speed of loading
matrix parameters into the CPU.

Assuming no interrupts or batching across beam search hy-
potheses, the latency is calculated from Equation 4 when doing
fixed beam decoding/rescoring with H hypotheses over N to-
kens. When using an adaptive beam, where a lattice is generated,
we assume H ·N is now replaced by the number of lattice arcs
when calculating latency.

latency =
1

K
·H ·N ·Mdecoder (4)

where Mdecoder denotes the number of bytes in the decoder part
of the model.

We report latency on the 90%-tile LU set which has longer
utterances. We assume the 90%-tile contains roughly 295 audio
frames and a target sequence ofN = 28 tokens. Finally,Mdecoder

is 33MB, assuming 33M parameters of the LAS decoder which
are quantized, which we have found has a negligible degradation
in accuracy [1]. Our goal is to ensure that the second-pass latency
on the 90%-tile is under 200ms to that user-perceived latency is
minimized [22].

4. Results
4.1. 2nd Beam Search

Table 1 shows the results running the LAS decoder in the 2nd
beam-search mode. For comparison, the table also shows two
baselines B0-B1, namely an RNN-T only and a LAS-only
model, trained separately from scratch. All results are obtained
with fixed beam-size of H = 8.

Experiment E0 indicates that when the encoder is initialized
from an RNN-T model and held fixed, the LAS decoder performs
worse than a LAS-only model with a dedicated encoder (B1),
demonstrating the challenges in sharing a single encoder with
different types of decoders by adapting the LAS decoder alone.
When we jointly train the encoder and both decoders in a model
initialized from E0, the model quality (E1) improved in both SU
and LU over E0. Overall we find that 2nd beam search improves
over RNN-T (B0) on SU but degrades on LU, a common issue
with attention models for long utterances [19].

Table 1: WER Results, LAS Beam Search.

Exp-ID Model SU LU
B0 RNN-T 6.9 4.5
B1 LAS-only 5.4 4.5
E0 Frozen Shared Enc 6.4 5.3
E1 Deep Finetuned 6.1 4.8

4.2. Rescoring

We noticed that the RNN-T-only model (B0) has much lower
oracle WERs than its decoding WERs. This motivates us to ex-
plore rescoring RNN-T hypothesis with the LAS decoder. Table
2 compares the performance of running LAS with beam search
(E1) to with rescoring (E2). The table shows that rescoring takes
a small hit in WER on SU compared to beam search, probably
because the first-pass RNN-T decoder, with a much higher SU
WER of 6.9 (B0), generates a set of hypotheses with slightly
lower quality than those generated by the LAS decoder during
beam search. However, rescoring’s quality on LU is much better
than that of beam search, likely because RNN-T (B0) performs
much better on longer utterances compared to LAS. Overall,
LAS rescoring not only improves SU WER significantly upon
the first pass RNN-T, but also improves WER for LU, demon-
strating that rescoring is able to combine the strengths of RNN-T
and LAS. Since rescoring gives us the best tradeoff between
quality on SU and LU, we will focus only on rescoring and
present further improvements in the next section.

Table 2: WER results, LAS Rescoring.

Exp-ID Decoding SU LU
B0 RNN-T 6.9 4.5
B1 LAS-only 5.4 4.5
E1 Beam Search 6.1 4.8
E2 Rescoring 6.2 4.1

4.3. Further Rescoring Improvements

4.3.1. Adaptive Beam

To bridge the gap between two-pass 2nd beam search vs. rescor-
ing on SU, we first explore increasing the diversity of rescoring
candidates with a larger first-pass RNN-T beam. Table 3 shows
that as beam size is increased (E2-E4), the WER improves, but
naturally at cost of proportionally increased first-pass computa-



tion cost. To address this, we look at an adaptive beam search
strategy [21]. Specifically, we prune first-pass beam candidates
if they are too far in threshold from the current best candidate,
where the threshold optimizes first-pass latency following [1].
The table shows that with an adaptive beam (E5), we can achieve
similar WER to a fixed but large beam (E3).

Table 3: Rescoring WER with first-pass fixed vs. adaptive beam.

Exp-ID First-pass Max Beam Size SU LU
E2 Fixed, 8 6.2 4.1
E3 Fixed, 10 6.2 4.1
E4 Fixed, 16 6.1 4.1
E5 Adaptive, 10 6.2 4.0

The adaptive-beam also has the additional benefit that it
generates a lattice to use for rescoring, rather than an N-best list.
Rescoring a lattice is more efficient than rescoring an N-best
list, as it avoids duplicate computation on the common prefixes
between candidate sequences, and thus should reduce latency. As
a reminder, latency in Equation 4 is now calculated by looking
at the total arcs in the lattice. Table 4 compares adaptive beam
to a fixed beam with N-best rescoring, where we rescore all
first-pass hypotheses. The table show that with an adaptive beam
and lattice rescoring, we can reduce latency compared to a fixed
beam with N-best rescoring. However, the latency is still above
our budget.

Table 4: Latency vs. Rescoring Methods.

Strategy Latency (ms)
1st-pass Fixed, N-best Rescoring 369.6

1st-pass Adaptive, Lattice Rescoring 247.5

To reduce latency further, we explore reducing the number
of maximum arcs in the lattice rescored at each step. Table 5
shows we can limit the rescored hypotheses to 4, which we find
does not degrade accuracy and also reduces latency. Overall,
the second-pass decoder rescoring an adaptive-beam lattice fits
within our 200ms latency budget.

Table 5: Two-Pass Performance vs. Las Rescoring Beam Size.

Beam Size SU LU Contacts Latency (ms)
2 6.2 4.0 7.5 -
4 6.2 4.0 7.1 171.6
8 6.2 4.0 7.1 247.5

4.3.2. MWER

Finally, we report two-pass results after MWER training our
model. Since the LAS decoder will be used for rescoring, we use
RNN-T to provide the candidate hypotheses for LAS decoder
MWER training. Table 6 shows that MWER improves rescoring
WER for both SU and LU by 8% relative. Overall, the two-pass
rescoring model gives a 17% and 22% relative reduction in both
SU and LU, respectively.

Table 6: Two-pass rescoring results after MWER training.

Exp-ID Model SU LU Contacts
B0 RNN-T only 6.9 4.5 7.0
E6 No MWER 6.2 4.0 7.1
E7 MWER 5.7 3.5 7.0

4.4. Comparison To Large Conventional Model

A goal of our work is to achieve in an E2E system with compara-
ble performance to a large conventional model [2]. In this light,
we compare the performance of our proposed two-pass rescoring
model to a large conventional model through a “side-by-side”
(SxS) evaluation with previously unseen utterances. In this exper-
iment, each utterance is transcribed by both the conventional and
two-pass models. We collect 500 utterances where the transcrip-
tion differs between the two models, and send these utterances
to be rated by two human transcribers. Each transcript is rated
as either a win by two-pass over the conventional model (only
two-pass is correct), a loss in two-pass over the conventional
model (only the conventional model is correct), or neutral (both
models are correct or incorrect). Unlike automatic WER evalu-
ations, this side-by-side evaluation allows raters to decide that
two different transcripts are both correct; this sometimes leads
to different conclusions than an automatic evaluation would. We
report the following statistics to quantitatively evaluate the SxS:

• Changed: % of utterancs in which the two models pro-
duced different hypotheses

• Wins: # of utts the two-pass hypothesis is correct and
conventional model is incorrect

• Losses: # of utts the two-pass hypothesis is incorrect and
conventional model is correct

• Neutral: # of utts the two-pass and conventional model
are both correct or incorrect

• p-Value: Statical significance of WER change with two-
pass compared to conventional model

Table 7 shows that the two-pass model changes about 13%
of traffic. The two-pass model has slightly more losses (61) than
wins (48) compared to the conventional model, but the majority
of the hypotheses have a neutral rating (391) between the two
systems. Overall, the p-Value shows the performance difference
between the two models is statistically insignificant.

Table 7: SxS results for Conventional vs. Two-pass

Changed (%) Win Loss Neutral p-Value
13.2 48 61 391 10.0%-20.0%

A further analysis of errors is shown in Table 8. The two-
pass model is trained with an order of magnitude less text-only
data compared to the conventional model, and thus loses on
proper nouns (PN) and also due to a weak language-model
(wLM). On the contrary, since the two-pass model is trained
in the written domain and learns text normalization (TN) im-
plictly, it wins in this area compared to the conventional model
which has a separate rule-based text-norm step.

Table 8: Analysis of Errors of Conventional vs. Two-Pass Model.

Type Conventional Two-Pass
Loss PN alice’s restaurant allison’s restaurant

wLM 47-in sony plasma tv 47-in sony pricing tv
Win TN www nytimes.com www.nytimes.com

TN john smiths office john smith’s office

5. Conclusions
In this paper, we present a two-pass E2E solution. Specifically,
we use a second-pass LAS decoder to rescore hypotheses from
a first-pass RNN-T system. We find that this approach gives a
17% to 22% reduction in WER compared to RNN-T only, and
increases latency by less than 200ms.
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