
MLIR Primer:
A Compiler Infrastructure for the End of Moore’s Law

Presenting the work of many, many, people!

Chris Lattner
clattner@google.com

Jacques Pienaar
jpienaar@google.com

Compilers for Machine Learning Workshop, CGO 2019



TensorFlow

Huge machine learning community

Programming APIs for many languages

Abstraction layer for accelerators:
- Heterogenous, distributed, mobile, custom ASICs…
- Urgency is driven by the “end of Moore’s law”

Open Source: 
https://tensorflow.org

TensorFlow is a lot of things to different people, but we are here to talk about 
compilers.

TensorFlow is a very general system, and our work is a key part of TensorFlow future, 
so we cannot take simplifying assumptions - we have to be able to support the full 
generality of the tensor problem.

https://tensorflow.org


Why a new compiler infrastructure?

We have LLVM and many other great infras, why do we need something new?
Let’s take a short detour and talk about the state of the broader LLVM compiler 
ecosystem.



The LLVM Ecosystem: Clang Compiler

LLVM IR Machine IRClang AST
C, C++, ObjC, 

CUDA, OpenCL, ... Asm

                      are SSA IRs:
● Different levels of abstraction - operations and types are different
● Abstraction-specific optimization at both levels

Progressive lowering:
● Simpler lowering, reuse across other front/back ends

Green boxes

Clang follows a classic “by the book” textbook design.
Oversimplifying the story here, clang has a language-specific AST, generates LLVM 
IR.  LLVM does a lot of optimizations, then lowers to a machine level IR for code 
generation.



Azul Falcon JVM

LLVM IR Machine IRClang AST
C, C++, ObjC, 

CUDA, OpenCL, ... Asm

Java & JVM 
Languages Java BC

“Falcon: An Optimizing Java JIT” - LLVM Developer Meeting Oct’2017

Uses LLVM IR for high level domain specific optimization:
● Encodes information in lots of ways: IR Metadata, well known functions, intrinsics, …

● Reuses LLVM infrastructure: pass manager, passes like inliner, etc.

The Azul JIT is incredibly clever in the ways it [ab]uses LLVM.  This works well for 
them, but very complicated and really stretches the limits of what LLVM can do.

https://llvm.org/devmtg/2017-10/#talk12


Swift Compiler

LLVM IR Machine IRClang AST
C, C++, ObjC, 

CUDA, OpenCL, ... Asm

Swift

Java & JVM 
Languages Java BC

SIL IRSwift AST

3-address SSA IR with Swift-specific operations and types:
● Domain specific optimizations: generic specialization, devirt, ref count optzns, library-specific optzns, etc

● Dataflow driven type checking passes: e.g. definitive initialization, “static analysis” checks

● Progressive lowering makes each edge simpler!

“Swift's High-Level IR” - LLVM Developer Meeting Oct’2015

Swift has higher level abstractions than Java and requires data-flow specific type 
checking (which relies on ‘perfect’ location information).  As such, we came up with 
SIL, which is similar to LLVM IR but has Swift specific operations and types.  This 
makes it easy to do domain specific optimization, library specific optimizations and 
lots of other things.

https://llvm.org/devmtg/2015-10/#talk7


A sad aside: Clang should have a CIL!

LLVM IR Machine IRClang AST
C, C++, ObjC, 

CUDA, OpenCL, ... Asm

Swift

Java & JVM 
Languages Java BC

SIL IRSwift AST

3-address SSA IR with Clang-specific operations and types:
● Optimizations for std::vector, std::shared_ptr, std::string, …
● Better IR for Clang Static Analyzer
● Dataflow sensitive source tooling

Anyway, back to the talk...

  CIL IR 

With the benefit of experience, we should have built Clang this way too, with a high 
level IR.  Unfortunately now this is probably not going to happen as is, because a 
team has to build a complex mid-level SSA based optimization infra *and* know 
enough to reimplement Clang’s IRGen.  These are reasonably different skillsets and 
enough work that it has never happened despite the wins.



Rust and Julia have things similar to SIL

LLVM IR Machine IR Asm

Swift

Java & JVM 
Languages Java BC

SIL IRSwift AST

Rust MIR IRRust AST

Julia Julia IRJulia AST

“Introducing MIR”: Rust Language Blog, “Julia SSA-form IR”: Julia docs

● Dataflow driven type checking - e.g. borrow checker
● Domain specific optimizations, progressive lowering

Clang AST
C, C++, ObjC, 

CUDA, OpenCL, ...   CIL IR 

Swift isn’t alone here, many modern high level languages are doing the same thing.

https://blog.rust-lang.org/2016/04/19/MIR.html
https://docs.julialang.org/en/v1/devdocs/ssair/index.html


TensorFlow XLA Compiler

LLVM IR Machine IR Asm

Swift

Java & JVM 
Languages Java BC

SIL IRSwift AST

Rust MIR IRRust AST

Julia Julia IRJulia AST

XLA HLOTF GraphTensorFlow 
Ecosystem

“XLA Overview”: https://tensorflow.org/xla/overview (video overview)

● Domain specific optimizations, progressive lowering

Clang AST
C, C++, ObjC, 

CUDA, OpenCL, ...   CIL IR 

Many frameworks in the machine learning world are targeting LLVM.  They are 
effectively defining higher level IRs in the tensor domain, and lowering to LLVM for 
CPUs and GPUs.  This is structurally the same thing as any other language frontend.

Blue boxes are ML “graph” IRs

https://www.tensorflow.org/xla/overview
https://www.youtube.com/watch?v=2IOPpyyuLkc


Great!
● High-level domain-specific optimizations
● Progressive lowering encourages reuse between levels
● Great location tracking enables flow-sensitive “type checking”

Domain Specific SSA-based IRs

Not great!
● Huge expense to build this infrastructure
● Reimplementation of all the same stuff: 

○ pass managers, location tracking, use-def chains, inlining, constant folding, CSE, testing tools, ….

● Innovations in one community don’t benefit the others

Let’s summarize the situation here.

Type checking can be things in Swift like definitive initialization, things in Rust like 
affine types, or things like shape checking in an ML framework.



The TensorFlow compiler ecosystem

TensorFlow 
Graph

LLVM IR
XLA HLO

TPU IR

TensorFlow Lite

Several others
Tensor RT

nGraph

NNAPI

Many others

Core ML

Many “Graph IRs”, each with challenges:
● Similar-but-different proprietary technologies: not going away anytime soon

● Fragile, poor UI when failures happen: e.g. poor/no location info, or even crashes

● Duplication of infrastructure at all levels

Coming back to the challenges we face on the TensorFlow team, I actually fibbed - 
the world is a lot more complicated than what was described.  TensorFlow has a 
broad collection of graph based IRs, infrastructure for mapping back and forth 
between them, and very little code reuse across any of these ecosystems.



SSA-based designs to generalize and improve ML “graphs”:
● Better side effect modeling and control flow representation
● Improve generality of the lowering passes
● Dramatically increase code reuse
● Fix location tracking and other pervasive issues for better QoI 

Goal: Global improvements to TensorFlow infrastructure

No reasonable existing answers!
● … and we refuse to copy and paste SSA-based optimizers 6 more times!

Our team is looking at making across the board improvements to this situation, but 
there is no good existing solution.

What is a team to do?



Quick Tour of MLIR: Multi-Level IR

This brings us to MLIR.  “ML” expands in multiple ways, principally “Multi-Level”, but 
also Mid Level, Machine Learning, Multidimensional Loop, and I’m sure we’ll find 
other clever expansions in the future.



Many similarities to LLVM

func @testFunction(%arg0: i32) {
  %x = call @thingToCall(%arg0) : (i32) -> i32
  br ^bb1
^bb1:
  %y = addi %x, %x : i32
  return %y : i32
}

Module

Function

Block

Instruction

Instruction

Block

Instruction

Instruction

● SSA, typed, three address
● Module/Function/Block/Instruction structure
● Round trippable textual form
● Syntactically similar:

MLIR is highly influenced by LLVM and takes many great ideas unabashedly from it.



MLIR Type System: some examples

Scalars: 
● f16, bf16, f32, … i1, i8, i16, i32, … i3, i4, i7, i57, …

Vectors: 
● vector<4 x f32>, vector<4x4 x f16>, etc.

Tensors, including dynamic shape and rank:
● tensor<4x4 x f32>
● tensor<4x?x?x17x? x f32>     tensor<* x f32>

Others: 
● functions, memory buffers, quantized integers, other TensorFlow stuff, ...

MLIR has a flexible type system, but here are some examples to give you a sense of 
what it can do.  It has rich support for modeling the tensor domain, including dynamic 
shapes and ranks, since that is a key part of TensorFlow.



MLIR Instructions: an open ecosystem

No fixed / builtin list of globally known operations:
● No “instruction” vs “target-indep intrinsic” vs “target-dep intrinsic” distinction

○ Why is “add” an instruction but “add with overflow” an intrinsic in LLVM? 😿

Passes are expected to conservatively handle unknown instructions:
● just like LLVM does with unknown intrinsics

func @testFunction(%arg0: i32) -> i32 {
  %x = “any_unknown_operation_here”(%arg0, %arg0) : (i32, i32) -> i32
  %y = “my_increment”(%x) : (i32) -> i32
  return %y : i32
}

An open ecosystem is the biggest difference from LLVM - in MLIR you can define 
your own operations and abstractions in the IR, suitable for the domain of problems 
you are trying to solve.  It is *more* of a pure compiler infrastructure than LLVM is.



MLIR Instructions Capabilities

Instructions always have: opcode and source location info
Instructions may have:

- Arbitrary number of SSA results and operands
- Attributes: guaranteed constant values
- Block arguments: e.g. for branch instructions
- Regions: discussed in later slide
- Custom printing/parsing - or use the more verbose generic syntax

  %2 = dim %1, 1       : tensor<1024x? x f32>

  %x = alloc()         : memref<1024x64 x f32>
  %y = load %x[%a, %b] : memref<1024x64 x f32>

Dimension to extract is guaranteed integer constant, an “attribute”

So what can an instruction do?  They always have an opcode and always have 
location info (!!).

One thing to note is that operations can customize their printing, so you’ll see 
specialized printing for common ops like in this slide, and the default generic printer 
that uses double quotes.



Complicated TensorFlow Example

func @foo(%arg0: tensor<8x?x?x8xf32>, %arg1: tensor<8xf32>,
          %arg2: tensor<8xf32>, %arg3: tensor<8xf32>, %arg4: tensor<8xf32>) {

  %0 = "tf.FusedBatchNorm"(%arg0, %arg1, %arg2, %arg3, %arg4) 
        {data_format: "NHWC", epsilon: 0.001, is_training: false}
      : (tensor<8x?x?x8xf32>, tensor<8xf32>, tensor<8xf32>, tensor<8xf32>, tensor<8xf32>)
        -> (tensor<8x?x?x8xf32>, tensor<8xf32>, tensor<8xf32>, tensor<8xf32>, tensor<8xf32>)

  “use”(%0#2, %0#4 ...

To see what operations can do, let’s look at a more complicated example from 
TensorFlow, a fused batch norm.



Complicated TensorFlow Example: Inputs

func @foo(%arg0: tensor<8x?x?x8xf32>, %arg1: tensor<8xf32>,
          %arg2: tensor<8xf32>, %arg3: tensor<8xf32>, %arg4: tensor<8xf32>) {

  %0 = "tf.FusedBatchNorm"(%arg0, %arg1, %arg2, %arg3, %arg4) 
        {data_format: "NHWC", epsilon: 0.001, is_training: false}
      : (tensor<8x?x?x8xf32>, tensor<8xf32>, tensor<8xf32>, tensor<8xf32>, tensor<8xf32>)
        -> (tensor<8x?x?x8xf32>, tensor<8xf32>, tensor<8xf32>, tensor<8xf32>, tensor<8xf32>)

  “use”(%0#2, %0#4 ...

➔ Input SSA values and corresponding type info

As in LLVM, SSA values have types.  Here there are 5 inputs and their types.



Complicated TensorFlow Example: Results

func @foo(%arg0: tensor<8x?x?x8xf32>, %arg1: tensor<8xf32>,
          %arg2: tensor<8xf32>, %arg3: tensor<8xf32>, %arg4: tensor<8xf32>) {

  %0 = "tf.FusedBatchNorm"(%arg0, %arg1, %arg2, %arg3, %arg4) 
        {data_format: "NHWC", epsilon: 0.001, is_training: false}
      : (tensor<8x?x?x8xf32>, tensor<8xf32>, tensor<8xf32>, tensor<8xf32>, tensor<8xf32>)
        -> (tensor<8x?x?x8xf32>, tensor<8xf32>, tensor<8xf32>, tensor<8xf32>, tensor<8xf32>)

  “use”(%0#2, %0#4 ...

➔ This op produces five results
➔ Each result can be used independently with # syntax
➔ No “tuple extracts” get in the way of transformations

This op has 5 results as well, and multiple results can be directly referenced.  This 
makes analyses and transformations easier to write.



Complicated TensorFlow Example: Attributes

func @foo(%arg0: tensor<8x?x?x8xf32>, %arg1: tensor<8xf32>,
          %arg2: tensor<8xf32>, %arg3: tensor<8xf32>, %arg4: tensor<8xf32>) {

  %0 = "tf.FusedBatchNorm"(%arg0, %arg1, %arg2, %arg3, %arg4) 
        {data_format: "NHWC", epsilon: 0.001, is_training: false}
      : (tensor<8x?x?x8xf32>, tensor<8xf32>, tensor<8xf32>, tensor<8xf32>, tensor<8xf32>)
        -> (tensor<8x?x?x8xf32>, tensor<8xf32>, tensor<8xf32>, tensor<8xf32>, tensor<8xf32>)

  “use”(%0#2, %0#4 ...

➔ Named attributes
➔ “NHWC” is a constant, static entity, not an SSA value

Instruction can have a named dictionary of known-constant attribute values, used for 
things like the strides of a convolution, or the immediate value in a “load immediate” 
machine instruction.



Extensible Operations Allow Multi-Level IR

TensorFlow
%x = "tf.Conv2d"(%input, %filter)
          {strides: [1,1,2,1], padding: "SAME", dilations: [2,1,1,1]}
    : (tensor<*xf32>, tensor<*xf32>) -> tensor<*xf32>

XLA HLO

LLVM IR

%m = “xla.AllToAll"(%z)
          {split_dimension: 1, concat_dimension: 0, split_count: 2}
    : (memref<300x200x32xf32>) -> memref<600x100x32xf32>

%f = "llvm.add"(%a, %b) 
    : (f32, f32) -> f32

Also: TF-Lite, Core ML, other frontends, etc ...

Don’t we end up with the JSON of compiler IRs????  

Because of this flexible system, you can represent things at many different levels of 
abstraction, giving rise to the Multi-Level part of MLIR.

But doesn’t this mean that everything is stringly typed? doesn’t this mean that all 
transformations have to use magic numbers like getOperand(4)?  Doesn’t this mean 
that everything has to be written defensively to handle malformed IR?

In fact - no!



MLIR “Dialects”: Families of defined operations

Example Dialects:
- TensorFlow, LLVM IR, XLA HLO, TF Lite, Swift SIL...

Dialects can define:
- Sets of defined operations
- Entirely custom type system

Operation can define:
- Invariants on # operands, results, attributes, etc
- Custom parser, printer, verifier, ...
- Constant folding, canonicalization patterns, …

MLIR solves this by allowing defined oeprations, which have invariants placed on 
them - things like “this is a binary operator, the inputs and output has the same types”.  
This allows generation of verification and accessors, which give typed access to the 
operation.

Dialects can also define entirely custom types, which is how MLIR can model things 
like the LLVM IR type system (which has first class aggregates), the Swift type system 
(completely tied around Swift decl nodes), Clang in the future, and lots of other 
domain abstractions.



Nested Regions

➔ Functional control flow, XLA fusion node, closures/lambdas, parallelism 
abstractions like OpenMP, etc.

  %7 = tf.If(%arg0 : tensor<i1>, %arg1 : tensor<2xf32>) -> tensor<2xf32> {
    … “then” code...
    return ...
  } else {
    … “else” code...
    return ...
  }

  %2 = xla.fusion (%0 : tensor<f32>, %1 : tensor<f32>) : tensor<f32> {
  ^bb0(%a0 : tensor<f32>, %a1 : tensor<f32>):
    %x0 = xla.add %a0, %a1 : tensor<f32>
    %x1 = xla.relu %x0 : tensor<f32>
    return %x1
  }

One of the other really important things of MLIR instructions is the ability to have 
nested regions of code in an instruction.  This allows representation of “functional 
loops” in TensorFlow and XLO, parallelism abstractions like OpenMP, closures in 
source languages like Swift, etc.  This makes analyses and optimizations on these 
much more powerful because they are suddenly intraprocedural instead of 
interprocedural, and code within the region can directly refer to dominating SSA 
values in the enclosing code.



Bigger Example: Polyhedral IR Dialect

affine.for and affine.if represent polyhedral schedule trees:
● Polyhedral is a great match for ML kernels
● Includes systems of affine constraints, mappings, etc

func @matmul_square(%A: memref<?x?xf32>, %B: memref<?x?xf32>, %C: memref<?x?xf32>) {
  %n = dim %A, 0 : memref<?x?xf32>

  affine.for %i = 0 to %n {
    affine.for %j = 0 to %n {
      store 0, %C[%i, %j]       : memref<?x?xf32>
      affine.for %k = 0 to %n {
        %a    = load %A[%i, %k] : memref<?x?xf32>
        %b    = load %B[%k, %j] : memref<?x?xf32>
        %prod = mulf %a, %b     : f32
        %c    = load %C[%i, %j] : memref<?x?xf32>
        %sum  = addf %c, %prod  : f32 
        store %sum, %C[%i, %j]  : memref<?x?xf32> 
      }
    }
  }
  return
}

One of the ways we use this today is in our polyhedral codegen framework.  We don’t 
have time to talk about this today, but we have an innovative approach combining the 
advantages of structured polyhedral schedule trees with SSA.  We do not use ISL, 
ILP solvers, or exponential time polyhedral code generation like existing research 
systems.  

We are a production system that must scale to hundreds of thousands of statements 
in polyhedral regions.



MLIR vs LLVM: "Bugs" Fixed

● Constants can’t trap!
● Robust source location tracking!
● Dialect-defined structured metadata!
● Block arguments instead of PHI nodes!
● SSA use-def chains allow multithreading the compiler!
● etc. :-)

Of course, given the chance to build a new infra, we learned a lot of existing systems 
and the mistakes we’ve had to live with for a long time, and fixed them.  Notably, 
we’ve designed the compiler to support multithreaded compilation, because 100 
hardware threads in a modern system is not unusual, and they will continue to grow.



MLIR: Infrastructure

Next up, Jacques will take this high level of this system, dive deeper into some of the 
“how” it works, and give concrete examples.



Op definition: TensorFlow LeakyRelu

● Specified using TableGen
○ LLVM Data modelling language

● Dialect can create own hierarchies
○ "tf.LeakyRelu" is a "TensorFlow unary op"

● Specify op properties (open ended)
○ Side-effect free
○ "tf.Add" has broadcasting behavior
○ "pt.add" has (scalar, tensor) input

● Name input and output operands
○ Named accessors created

● Document along with the op
● Define optimization & semantics

def TF_LeakyReluOp : TF_UnaryOp<"LeakyRelu",
                     [NoSideEffect, SameValueType]>,
                     Results<(outs TF_Tensor:$output)> 
{
  let arguments = (ins
    TF_FloatTensor:$value,
    DefaultValuedAttr<F32Attr, "0.2">:$alpha
  );

  let summary = "Leaky ReLU operator";
  let description = [{
    The Leaky ReLU operation takes a tensor and returns
    a new tensor element-wise as follows:
      LeakyRelu(x) = x         if x >= 0
                   = alpha*x   else
  }];

  let constantFolding = ...;
  let canonicalizer = ...;
  let referenceImplementation = ...;
}

MLIR has an open op eco system so there is no need to define ops. But op definitions 
adds structure. The op definitions provide a central place (per dialect) to define ops. It 
allows us to define invariants/requirements, properties, attributes, textual format, 
documentation, reference implementation, … of an operation. Serving as a single 
source of truth for the operation.



Generated from op definition

● C++ class TF::LeakyReluOp  
○ Accessors (value() and alpha())
○ Builder methods

■ create<TF::LeakyReluOp>(loc, ….)

○ Verify function
■ Verify number of operands,

type of operands,
compatibility of operands

■ Write transforms for legal ops!

● Documentation
● Serialization/translate methods

○ Ops interact with different backends
○ Finally need to generate new graphs or code

namespace TF {
class LeakyReluOp
    : public Op<LeakyReluOp,
                OpTrait::OneResult,
                OpTrait::HasNoSideEffect,
                OpTrait::SameOperandsAndResultType,                                                                                            
                OpTrait::OneOperand> {
 public:
  static StringRef getOperationName() {
    return "tf.LeakyRelu";
  };
  Value* value() { … }
  APFloat alpha() const { … }
  static void build(…) { … }
  bool verify() const {
    if (…) return emitOpError(
        "requires 32-bit float attribute 'alpha'");
    return false;
   }
};
} // end namespace

From the op definition we can generate multiple different representation. Op definition 
serves multiple different purposes, among which

● removes unintuitive accessor methods (one can get the stride with stride() 
rather than GetOperand(3)),

● builder method generation (using source location information),
● this gets rid of scattered/repeated/non-existent op verification methods and 

instead gathers it all together.
Beyond the C++ we also generate documentation as well serialization/translation 
methods to interact with external systems from the op definition.



Specify simple patterns simply

● Support M-N patterns
● Support constraints on Operations, Operands and Attributes
● Support specifying dynamic predicates

○ Similar to advocated in "Fast and Flexible Instruction Selection With Constraints", CC18

● Support native C++ code rewrites
○ Always a long tail, don't make the common case hard for the tail!

Goal: Declarative, reduces boilerplate, easy to express for all

def : Pat<(TF_SqueezeOp StaticShapeTensor:$arg), ( TFL_ReshapeOp $arg)>;

Now we have ops, now we want to transform graphs of op. There are multiple 
different graph optimizations folks want to apply. Particularly common is rewrite 
patterns. In MLIR we want to make it simple to specify simple patterns simply. 
Transforms can be specified using simple DAG-to-DAG patterns. MLIR supports M-N 
patterns, constraints on the operations, operands and attributes, support specifying 
dynamic predicates on when to match a rule as well as allow native C++ code 
rewrites. These patterns are declarative and aims to reduces the boiler plate and 
make transforms easy to express.



General function/graph transformations

● Additionally module/function passes, function passes, utility matching 
functions, nested loop matchers ...

struct Vectorize : public FunctionPass {
  Vectorize() : FunctionPass(&Vectorize::passID) {}

  PassResult runOnFunction(Function *f) override;

  static char *passID;
};

 f->walk([&](Instruction *!inst) {
   foldInstruction(inst);
 });

  ...
  if (matchPattern(getOperand(1), m_Zero()))
    return getOperand(0);
  ...

Pattern rewrites are not the entire world of graph transformations.  We support all the 
standard things you’d expect, including a pass manager, the ability to walk code 
ergonomically, and pattern matchers similar to LLVM’s.



Location tracking

API requires location information on each operation:
- File/line/column, op fusion, op fission
- “Unknown” is allowed, but discouraged and must be explicit.

Integral to our test suite!

// RUN: mlir-opt %s -memref-dependence-check -split-input-file -verify
...
  %0 = alloc() : memref<100xf32>
  for %i0 = 0 to 10 {
    %1 = load %0[%i0] : memref<100xf32>
    // ...
    // expected-note@-2 {{dependence from 0 to 1 at depth 2 = true}}
    store %1, %0[%i0] : memref<100xf32>
  }
...

Location tracking is fundamentally baked into MLIR, and the API for creating and 
transforming operations requires source locations (unlike in LLVM, where they get 
implicitly dropped). There are multiple types of location in MLIR that is used to 
improve debuggability, traceability and the user experience in general. It is also 
integral to our test suite. For example here we show how the dependency pass 
reports a dependency between the load, which was assigned id 0, and store, id 1, 
within the same iteration of the loop, by adding a note at the location of the 
instruction.

Design for testability is an key part of our design, and we take it further than LLVM 
did.



mlir-opt

● Similar to LLVM's opt a tool for testing compiler passes
● Every compiler transformation is unit testable:

○ Including verification logic, without dependence on earlier passes
○ Policy: every behavior changing commit includes a test case
○ E.g., loop unrolling pass test

func @loop_nest_simplest() {
  // CHECK: affine.for %i0 = 0 to 100 step 2 {
  affine.for %i = 0 to 100 step 2 {
    // CHECK: %c1_i32 = constant 1 : i32
    // CHECK-NEXT: %c1_i32_0 = constant 1 : i32
    // CHECK-NEXT: %c1_i32_1 = constant 1 : i32
    // CHECK-NEXT: %c1_i32_2 = constant 1 : i32
    affine.for %j = 0 to 4 {
      %x = constant 1 : i32
    }
  }
  return
}

mlir-opt works the same way as llvm-opt, and we use FileCheck in the same way.



mlir-translate

● mlir-translate transforms MLIR ⇄ external format
● All the previous is transformations within MLIR

○ Progressive lowering of ops within same IR!

● Also need to
○ Transform from/back for different backends (TensorFlow, TensorFlow Lite, XLA, …)
○ Generate code

● Decouple function/graph transformations from data transformation
○ Principle: Keep data transformations simple/direct/trivially testable & correct
○ ~> Target dialect represents external target closely

● But what about codegen … ?

We are interoperating with a lot of proprietary systems and building translators 
between many different foreign representations.  We’ve seen many different 
translators which make representational lowering changes at the same time as 
making data structure changes.  We want to be able to test our lowering, and MLIR 
was designed to support this testability, but many foreign systems were not designed 
with this in mind - we don’t want to be diffing protobufs, for example.

The solution to this is the do all lowering within LLVM to a dialect that matches the 
foreign system as closely as possible (ideally completely isomorphic) and make the 
actual data-structure translation as trivial as possible.  This allows us to write great 
tests for all the lowering logic and makes the translation more trivially correct by 
construction.



LLVM dialect for codegen

● Represent LLVM IR as MLIR dialect
○ Represent LLVM types without duplicating

all type definitions
!llvm<"{ i32, double, i32 }">

○ Simple translation and codegen invocation
MLIR ops -> MLIR LLVM dialect -> LLVM IR

    Function lowered to LLVM dialect  

...
^bb2:  // pred: ^bb1
  %9 = "llvm.constant"() {value: 10 : index} :
      () -> !llvm<"i64">
  %11 = "llvm.mul"(%2, %9) :
      (!llvm<"i64">, !llvm<"i64">) -> !llvm<"i64">
  %12 = "llvm.add"(%11, %6) :
      (!llvm<"i64">, !llvm<"i64">) -> !llvm<"i64">
  %13 = "llvm.extractvalue"(%arg2) {position: [0]} :
      (!llvm<"{ float* }">) -> !llvm<"float">
  %14 = "llvm.getelementptr"(%13, %12) :
      (!llvm<"float*">, !llvm<"i64">) -> !llvm<"float">
  "llvm.store"(%8, %14) :
      (!llvm<"float">, !llvm<"float*">) -> ()
...

Of course, LLVM is great for C level optimization and code generation to CPUs and 
PTX, and as such we have an LLVM IR dialect in MLIR that we lower to, which is 
isomorphic to LLVM IR.  This is only used as a lowering step, we don’t expect people 
to be reimplementing existing LLVM IR optimizations on this representation (there is 
no point, LLVM is a good thing for what it does!!)



Applications to TensorFlow ecosystem

TensorFlow is moving to MLIR for its core infrastructure, let’s talk about a couple of 
the projects that are in the works.



TensorFlow Lite Translator

● TensorFlow to TensorFlow Lite translator
○ Two different graph representations

■ Different set of ops & types
○ Different constraints/targets

● Overlapping goals with regular compilation
○ Edge devices also can have accelerators (or a multitude of them!)
○ Same lowering path, expressed as rewrite patterns

● MLIR's pluggable type system simplifying transforms & expressibility
○ Quantized types is a first class citizen in dialect

TF
Graph

translate legalize optimize translate TFlite 
flatbuffer

TensorFlow Lite is another graph representation with a different interpreter.  The 
TensorFlow Lite Translator is a mini compiler that does a number of compiler passes. 

Moving it to MLIR makes it easier to test and develop, and the user experience is 
dramatically improved due to the location tracking in MLIR.



TF/XLA bridge

● Interop between TensorFlow and XLA
○ Consists of rewrite passes and transformation to XLA

● Large part is expanding subset of TensorFlow ops to 
XLA HLO

○ Many 1-M patterns
○ Simple to express as DAG-to-DAG patterns

● XLA targets from multi-node machines to edge devices
○ Not as distinct from TensorFlow Lite

Another project we are working on is to rework the integration of XLA into 
TensorFlow, rebuilding the lowering infrastructure that converts from TensorFlow 
graphs to XLA HLO.



TensorFlow

● Unify graph optimization frameworks
○ Collaboration with Grappler team
○ Unify, extend and improve TensorFlow graph 

optimizations

● TensorFlow has multiple backends (XLA, TF Lite, 
nGraph, TensorRT, Core ML, …) but duplicate 
integration paths:

○ Unifying integration paths (less code, maintenance 
burden, overhead for backend teams, …)

○ Focus on core contributions

XLA isn’t the only compiler in the TensorFlow ecosystem, we expect to use the same 
infra to support Tensor-RT, nGraph, etc.



Future Directions

While we’ve built a number of things, we think that there are a lot more future 
directions to explore than we will be able to tackle.



Hackability & HW/SW Research

Aiming for a super-extensible system, catalyzing next-gen accelerator research:

● domain-specific languages / annotations lower naturally to MLIR
● domain-specific HW constructs are first-class operations
● extend type system: support novel numerics, sparse types, trees (?)
● many classes of transformations have structured search spaces: algorithmic 

rewriting, graph rewriting, memory-recompute, polyhedral, and synthesis

Accelerate innovation in hardware, compiler algorithms, and applications thereof

We expect MLIR to have a long life, so we are investing heavily in getting the base 
infrastructure right, we expect and hope that this will catalyze the next generation of 
compiler research, including novel high level abstractions, parallism constructs, etc.



Applying machine learning to compilers

● Move past handwritten heuristics:
○ NP complete problems (full time employment theorem?)
○ Cost models that are hard or infeasible to characterize
○ Hardware explosion, model diversity, problem diversity, … can’t scale

● Autotuning, search and caching FTW
○ Separate algorithms and policy
○ Exploit structure in search space

Compilers are full of NP-complete problems and difficult/impossible to characterize 
problems - how can we characterize the performance of the code generated by the 
nvcc compiler?  The natural way to handle these are to go with simple heuristics (e.g. 
greedy algorithms) which are not optimal, or do more exhaustive searches, which are 
slow for compilation.  By offloading this to an offline service, you can use expensive 
search algorithms (e.g. RL, generic algorithms, brute force, …) to get great results, 
without impacting interactive turnaround time.



Open research topics

● Build a CIL for Clang! 
● Use MLIR as an AST?

○ or build an AST-equivalent of MLIR?

● New code generation / lowering strategies
● New concurrency constructs

A lot of interesting research topics that we want to explore, from building a CIL for 
Clang (volunteers?!?), MLIR as an AST, AST equivalent of MLIR, new code 
generation/lowering strategy, new concurrency constructs. 



Open research topics

● Build a CIL for Clang! 
● Use MLIR as an AST?

○ or build an AST-equivalent of MLIR?

● New code generation / lowering strategies
● New concurrency constructs

Open source soon!

We expect to open source MLIR this spring!



Thank you to the team!
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We are hiring!
mlir-hiring@google.com

This is work of large group of folks that I'd like the opportunity to thank.

One last note: we are hiring, so reach out!


