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Abstract

Watermarking is the process of embedding information

into an image that can survive under distortions, while re-

quiring the encoded image to have little or no perceptual

difference from the original image. Recently, deep learning-

based methods achieved impressive results in both visual

quality and message payload under a wide variety of im-

age distortions. However, these methods all require differ-

entiable models for the image distortions at training time,

and may perform poorly on unknown distortions. This is

undesirable since the types of distortions applied to water-

marked images are usually unknown and non-differentiable.

In this paper, we propose a new framework for distortion-

agnostic watermarking, where the image distortion is not

explicitly modeled during training. Instead, the robustness

of our system comes from two sources: adversarial training

and channel coding. Compared to training on a fixed set of

distortions and noise levels, our method achieves compara-

ble or better results on distortions available during training

and on unknown distortions.

1. Introduction

Digital watermarking [8] is the task of embedding in-

formation into an image in a visually imperceptible fash-

ion, where the message can be reliably extracted under im-

age distortions. There are two key factors to measure the

performance of a digital watermarking system, impercep-

tibility and robustness. Given an image and a message, a

good watermarking system produces an encoded image that

is nearly identical to the original image, while carrying a

message payload that will survive under a variety of dis-

tortions such as cropping, blurring, or JPEG compression.

Traditional approaches found creative ways of hiding infor-

mation in texture rich areas [5] or the frequency domain

[16].
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Known Distortions Unknown Distortions

100.0 50.2 53.0 81.3 71.8 74.6 65.1 93.4 85.3 65.0

99.0 80.8 85.7 87.0 86.1 87.7 71.0 95.2 78.7 90.6

100.0 49.9 99.3 51.0 62.5 50.3 64.3 92.1 81.1 63.3

93.1 50.0 51.3 99.4 51.0 51.0 54.3 89.0 75.4 63.8

53.0 49.8 51.8 50.5 99.9 50.3 61.4 69.6 76.3 52.6

100.0 77.0 99.1 98.7 99.1 93.5 70.8 94.2 84.9 88.6

100.0 81.7 93.5 97.9 92.8 95.6 94.0 98.5 88.4 91.7

Figure 1: Bit accuracy of our model compared to models trained

with explicit image distortions. Each column corresponds to a type

of image distortion at test time, and each row corresponds to the

image distortion used to train the watermarking model (with the

exception of our model which requires no distortion model). The

left half of the columns (separated by the black line) are known

distortions, i.e., distortions included in training for the HiDDeN

combined model [45], and the right half of the columns unknown

distortions, i.e., a held-out set of commonly used distortions not

used to train the HiDDeN combined model. See Section 4.1 for

more details.

Original Encoded Difference

Figure 2: Example of original image, encoded image and differ-

ence between the two images from our model.
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Figure 3: Overview of proposed architecture. The input message X is first fed through the channel encoder to produce a redundant message

X ′, which is then combined with the input image Ico to generate the encoded image Ien by the watermark encoder Fenc. The decoder Fdec

produces a decoded message X ′

dec, where it is further processed by the channel decoder to produce the final message Xdec. The attack

network generates adversarial examples Iadv , which are fed to the image decoder to obtain X ′

adv . Fenc, Fdec, are trained on a combination

of the image loss LI which includes both proximity to the cover image Ico and perceptual quality as in Equation 1, the message loss LM

as in Equation 2, and the message loss on the decoded adversarial message X ′

adv as in Equation 4. The attack network Gadv is trained to

minimize the adversarial loss Ladv as in Equation 3. The training updates Gadv and the Fenc, Fdec in an alternating fashion.

More recently, convolutional neural networks (CNNs)

have been used to provide an end-to-end solution to the wa-

termarking problem. Zhu et al. [45] proposed HiDDeN,

a CNN-based framework for image watermarking. These

learning-based methods [45, 1, 40] improve their model’s

robustness by including a diverse combination of distortions

during training. While effective, there are several issues

with this approach. First of all, the distortions included in

training must be differentiable in order to train the encoder-

decoder jointly. However, many practical distortions, such

as GIF compression, projector-camera distortion in Light

Field Messaging [40], etc., are non-differentiable and chal-

lenging to make differentiable. Secondly, in most cases,

distortions are not available during training. Selecting a

diverse and well-balanced set of distortions for training is

non-trivial and requires careful tuning.

To this end, we propose a framework for adding robust-

ness to a watermarking system without any prior knowledge

on the type of image distortions during training. We achieve

this by applying adversarial training with CNN generated

perturbations, and using channel coding to inject redun-

dancy in the encoded message. To our knowledge, this is

the first paper explore distortion agnostic methods for deep

watermarking. Our model achieves comparable or better

performance on a wide variety of distortions, without the

need to explicitly model the distortions at training time.

Our main contributions are the following.

• We apply adversarial training to improve model ro-

bustness in a distortion agnostic fashion. In particular,

our CNN generated adversarial examples implicitly in-

corporates a rich collection of image distortions that

co-adapt with training.

• We propose augmenting the watermarking system with

channel coding, adding an additional layer of robust-

ness through channel redundancy.

• We combine the two ideas above and achieve compa-

rable results to models trained with explicit distortion,

and better performance to unknown distortions.

2. Related Work

There are three main areas of research relevant to this

work: watermarking, adversarial training, and channel cod-

ing. We give a brief review for each topic in the subsections

below.

2.1. Watermarking

Digital watermarking [8, 15, 5, 14, 24, 31, 35, 12] has

been an active research area with many important applica-

tions such as content copyright protection. More recently,

deep learning based approaches have been applied to train

an end-to-end watermarking system [45, 23, 1, 21, 43] with

impressive results. HiDDeN [45] was one of the first deep

learning solutions for image watermarking. RedMark [1]

introduced residual connections with a strength factor for

embedding binary images in the transform domain. Deep

watermarking has since been generalized to video [39, 44]

as well. Modeling more complex and realistic image dis-

tortions also broadened the scope in terms of application

[40, 36].

There are several works that applied attacks to the en-

coded image when training the watermarking system. Mun
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Figure 4: Visualization of adversarial examples generated by the attack network Gadv . Top: Encoded image Ien. Bottom: Adversarial

examples Iadv generated from the attack network Gadv . We observe a diverse set of image manipulations generated from the attack

network, consisting of a combination of blur, color change, and other types of distortions.

et al. [23] iteratively simulated attacks to the watermark-

ing system. RedMark [1] introduced an attack layer which

consists of random combinations of a fixed set of distor-

tions. However, these attacks are not adversarial since they

do not adapt with the watermarking model during training.

Recently, ROMark [38] applied a simple form of adversar-

ial training where the distortion type and distortion strength

are adaptively selected to minimize the decoding accuracy.

One key distinction of our method from the above is that

we do not generate our attacks from a fixed pool of common

distortions. Instead, the adversarial examples are generated

from a trained CNN. This also has the benefit that the water-

marking training is end-to-end differentiable, which is not

true for ROMark [38].

2.2. Adversarial Training

Deep neural networks are susceptible to certain tiny per-

turbations in the input space. Since the discovery of adver-

sarial examples by Szegedy et al. [34], a variety of methods

have been proposed for both adversarial attack [3, 17, 25],

and adversarial defense [11, 13, 27, 42]. One of the earliest

and most effective defense mechanism against adversarial

attacks is adversarial training [11], but is computationally

expensive on large datasets. Many attempts have since been

made to reduce the cost of adversarial training, e.g., using

approximations to the optimization step [27], or using gen-

erative models in place of iterative optimization [4, 18].

2.3. Channel coding

Channel coding is a mechanism for detecting and cor-

recting errors during signal transmission [6]. Shannon’s

capacity theorem [28] gives the theoretical limit to trans-

fer data through a noisy channel, and channel coding is

designed to approach this limit. In implementation, var-

ious classical methods such as the Reed-Solomon (RS)

codes [41], low-density parity-check (LDPC) codes [26],

turbo codes [32], and polar codes [37], have been widely

applied in the field of telecommunication. More recently,

learning based solutions have gained attention in this field

as well [2, 7, 9].

3. Proposed Method

3.1. Motivation

In designing a general purpose watermarking model, the

distortions at test time could be any image manipulation

that still preserves some image content. A typical solution

would involve identifying a set of representative distortions,

and applying a carefully tuned combination of distortions

during training.

Motivated by the recent success of using CNNs to per-

form various image manipulation tasks, e.g., style trans-

fer [10], HDRNet [19], we propose automating the distor-

tion tuning process by training a CNN to generate distor-

tions that exploits the weakest link in the current water-

marking model. Figure 4 shows some samples of distorted

images generated by our attack CNN, which contain a rich

and complex combination of distortions.

The use of channel coding is motivated by the idea of

injecting extra redundancy to the system. Shannon’s capac-

ity theorem tells us that redundancy is necessary in order to

achieve robustness. In the HiDDeN architecture, spatially

repeating the input message is an example of adding redun-

dancy. Channel coding simply provides another alternative

on top of the current methods.
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3.2. Method Overview

Figure 3 gives an overview of our overall architecture.

Our method adds two key components on top of the water-

marking encoder / decoder networks Fenc and Fdec in [45]:

• We replace the distorted image with Iadv , where Iadv
is an adversarial example generated from a convolu-

tional neural network trained to maximize the message

loss.

• We replace the input message with a longer binary

message X ′ generated from channel coding.

3.3. Adversarial Training

Adversarial training generates distortions that co-adapt

with the training of our watermarking model, actively

strengthening the weakest point of the current model. Ad-

versarial training was first introduced by Goodfellow et

al. [11] as a method to defend against adversarial attacks.

In our context, adversarial training equates to minimizing

the message loss given the worst-case distortion in an ǫ-ball.

This is expressed as the following min-max problem,

min
Θenc,Θdec

max
‖δ‖≤ǫ

{LM (Fdec(Fenc(Ico; Θenc)+δ; Θdec), X)},

(1)

where Θenc,Θdec are the model parameters for watermark-

ing encoder/decoder networks Fenc, Fdec, and X is the

input message. Here we consider the L2 norm ‖ · ‖2 to

constrain δ, the perturbation to the encoded image Ien =
Fenc(Ico; Θenc). But more semantically meaningful mea-

sures such as L2 distance on VGG [30] activations could

also be used.

A direct optimization of Equation 1 is both computation-

ally expensive and overly restrictive for the watermarking

model. Instead, we relax Equation 1 by restricting the set

of distortions δ to be generated from some class of convo-

lutional neural network Gadv(I; Θadv).

min
{Θenc,dec}

max
{‖Gadv(Ien)−Ien‖≤ǫ}

{LM (Fdec(Gadv(Ien));X)}.

(2)

Using CNN generated adversarial examples have the benefit

of retaining the ability to generate a diverse set of image dis-

tortions, as shown in Figure 4. An alternative is to generate

the adversarial samples via the Fast Gradient Sign Method

(FGSM) as in [11]. But we found this yielded less diverse

examples compared to CNN generated examples, and re-

sulted in poorer overall robustness against distortion.

To train the attack network Gadv , we minimize the fol-

lowing adversarial training loss:

Ladv = αadv
1 ‖Iadv − Ien‖

2 − αadv
2 LM (Fdec(Iadv);X),

(3)

where Iadv = Gadv(Ien) is the adversarial example, LM is

the message loss which we set as the L2 loss in this paper,

and αadv
1 , αadv

2 are the scalar weights. αadv
1 controls the

strength of the distortion generated by the attack network

Gadv , while αadv
2 controls the strength of the message loss

for Gadv .

For the network Gadv , we use a two-layer CNN,

Gadv(I) = Conv3 ◦ Leaky ReLU ◦ Conv16(I). (4)

In general, we find that finding the right balance of attack

strength, controlled by the complexity of Gadv and the ra-

tio between αadv
1 and αadv

2 , is important for training. An

overly strong attack results in slow training and a failure of

the watermarking network to adapt to the adversarial exam-

ples, while an overly simple attack results in less robustness

of the trained model. A detailed analysis can be found in

Section 4.3.

3.4. Channel coding

Channel 
Encoder

Channel 
Decoder

Channel Noise
X

X’ X’
no

Xdec

Figure 5: Illustration of channel coding. Given an input mes-

sage X , the channel encoder produces a redundant message X ′ of

longer length. The redundant message X ′ is transmitted through

a noisy channel and received by the decoder as X ′

no. Finally the

decoder recovers the input X from the corrupted message X ′

no.

Channel coding provides an additional layer of robust-

ness through injecting redundancy to the system. Given

a binary message X ∈ {0, 1}D of length D, a channel

encoder produces a redundant message X ′ ∈ {0, 1}N of

length N > D, which can be used to recover X through

the channel decoder given reasonable amounts of channel

distortion to X ′, as shown in Figure 5.

In this paper, we generate a channel code X ′ from the

input message X , before passing X ′ to the watermarking

encoder as shown in Figure 3. The channel distortions in

this context are the errors from the watermarking model, be-

tween X ′ and X ′
dec. Given that we do not explicitly model

the image distortions, it is impossible to know the true chan-

nel distortion model. Instead, we use a binary symmetric

channel (BSC) to approximate the channel distortion. BSC

is a standard channel model which assumes each bit is in-

dependently and randomly flipped with probability p. Even

though this assumption is not strictly satisfied in our case,

we find using BSC works well in this application.

Conceptually, any standard error correcting code such as

low-density parity-check (LDPC) codes [26] can be used to

generate X ′. However, traditional codes such as LDPC re-

quire the decoder to have an estimate of the channel noise

strength, which is impractical in our application since the
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Figure 6: Channel noise strength versus decoder bit accuracy for

various redundant message lengths. The input message length is

fixed at D = 30, where the redundant message length N is varied

from 90 to 150. All models are trained on random binary input

with BSC noise. The training noise level is uniformly sampled

from [0, 0.3], and [0, 0.4] at test time.

noise strength can vary greatly from image to image. There-

fore, we use NECST [7], a learning based solution for joint

source and channel coding to cover a broad range of channel

distortion strengths. We use BSC for training the channel

model, where the input message X is randomly sampled,

and the channel noise strength is chosen from the interval

[0,maxstrength] uniformly at random. Figure 6 shows the

bit accuracy of the NECST model on a range of BSC chan-

nel noise.

We emphasize here that the channel coding model is not

jointly trained with the rest of the watermarking model.

This decoupling prevents the channel models from co-

adapting with the image models during training, which re-

sults in overfitting and less robustness across a wide spec-

trum of image distortions.

3.5. Watermarking Training and Losses

We give a detailed description of the algorithms for train-

ing the watermarking models. We first define the training

losses, using the same notations as in Figure 3.

Image loss

LI = αI
1‖Ico − Ien‖

2 + αI
2LG(Ien) (5)

Message loss

LM = αM‖X ′
dec −X ′‖2 (6)

Attack network training loss

Ladv = αadv
1 ‖Iadv − Ienc‖

2 − αadv
2 ‖X ′

adv −X ′‖2 (7)

Watermarking training loss

LW = LI + LM + αadv
W ‖X ′

adv −X ′‖2 (8)

The image loss in Equation 5 consists of an L2 loss, and

a GAN loss LG with spectral normalization [22] to control

the perceptual quality of the encoded image. This is simi-

lar to the adversarial loss defined in the HiDDeN network

[45]. For the message loss LM , we use the L2 loss between

the decoded message and input. Equation 7 defines the loss

used to train the attack network Gadv . Finally, Equation 8

defines the overall loss for training Fenc and Fdec. The var-

ious αs are the weights for each loss. Training alternates

between updating the attack network Gadv and the water-

marking networks Fenc, Fdec, detailed in Algorithm 1.

Algorithm 1 Watermarking Training

1: procedure WATERMARKING TRAIN

Input: Ico, X ′ ∼ Unif({0, 1}N ).
Output: Trained networks Gadv, Fenc, Fdec.

Training Variables: Θadv,Θenc,Θdec.

2: while Step < max steps do

3: Compute Ien = Fenc(Ico, X)
4: for i = 1 to num iter do

5: Compute Iadv = Gadv(Ien)
6: Update Θadv = Θadv + lr × Adam(Ladv)

7: Update Θdec = Θdec + lr × Adam(LW )
8: Update Θenc = Θenc + lr × Adam(LW )

4. Experiments

For comparison, we train two versions of HiDDeN [45]

as the baseline, one without image distortion which we

name the identity model, and another trained on a combi-

nation of standard image distortions which we name the

combined model. We note here that our methodology is ag-

nostic to the specific architecture of the watermarking net-

works. We use the original HiDDeN architecture through-

out the experiments since it is a well studied model and a

commonly used benchmark, but other architectures such as

RedMark [1] could also be used as well.

We compare the bit accuracy on distortions seen dur-

ing training and those that have not, and also report the

peak signal-to-noise ratio (PSNR) of the encoded images.

All models are trained and evaluated on the MS COCO

dataset [20] resized to 128 × 128, where a random selec-

tion of 3000 images are used for evaluation. Unless other-

wise stated, we use D = 30 for the encoded message size,

and N = 120 for the redundant message size. For the wa-

termarking networks, we use the same architecture as used

in HiDDeN, with the exception that the embedded message

size is 120 instead of 30 due to the increased message length

from channel coding. Detailed training parameters can be

found in the supplementary materials.

4.1. Comparison with HiDDeN

We compare our method with both the HiDDeN iden-

tity and combined models. For the combined model, we
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Figure 7: Comparison of our model with HiDDeN identity model and combined noise model for different types of image distortions.

Model Identity Combined Ours

RGB- PSNR 40.3 32.3 33.7

Y- PSNR 47.5 34.2 35.7

U- PSNR 44.5 39.7 40.7

V- PSNR 43.1 39.5 40.1

Table 1: Comparison of encoded image quality. The PSNR values

in both RGB and YUV are reported for our model, as well as the

HiDDeN identity and combined distortion model.

use JPEG (q = 50), dropout (q = 0.3), crop (p = 0.3),

Gaussian blur (σ = 1.0), where the JPEG distortion is ap-

proximated by the differentiable JPEG function [29]. We

also compare with specialized models trained only on a sin-

gle type of distortion with the noise levels in Figure 1. For

a fair comparison, we adjust αI
1 to obtain a slightly higher

PSNR compared to the combined model, as shown in Ta-

ble 1.

Figure 1 shows the bit accuracy of our model and those

trained with explicit image distortion. Each row corre-

sponds to a different watermarking model, and each column

a specific type of distortion applied at evaluation time. The

top five rows (specialized models) clearly show a diagonal

pattern, indicating poor generalization to other types of im-

age distortions. From the bottom two rows, we see that both

the combined model and our adversarially trained model are

robust to distortions used to train the combined model (first

five columns).

Figure 7 gives a more comprehensive comparison across

a range of distortion levels. Our model reaches compara-

ble performance on crop and dropout, outperforms the com-

bined model on JPEG, and underperforms on Gaussian blur.

For small distortion strengths, our accuracy is nearly iden-

tical to the combined model. On all noise levels and dis-

tortion types, we outperform the identity model by a wide

margin.

In terms of visual quality, our model is less prone to

small artifacts in flat regions of an image. A qualitative

comparison can be found in Figure 9.

4.2. Generalization to Unknown Distortions

A practical watermarking system must be robust to a

wide range of image distortions, not just the distortions

seen during training. Therefore, we compare the perfor-

mance of our model and the combined model on a held-

out set of commonly used image distortions. We choose

six types of distortions, i.e., saturation, hue, resize, Gaus-

sian noise, salt and pepper noise, GIF encoding from four

broad categories: color adjustment, pixel-wise noise, geo-

metric transformations, and compression. For each type of

distortion, we evaluate the models on three different values

of distortion strengths. Figure 8 gives a visualization of the

additional distortions. We choose the range of distortion

strength strong enough to differentiate the performance be-

tween different models, but in a regime where the distorted

image still resembles the original. We also test our method

on the StirMark benchmark [33] with the default parame-

ters.

Table 2 reports the bit accuracy of our model on these ad-

ditional distortions. Overall, our model performs better on

the unknown distortions, especially on the category of color

change. We also note that the overall variance of bit accu-

racy across distortions is less compared to both the identity

and combined model, indicating a more stable performance

across different types of distortions.
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Original Saturation (5.0) Hue(0.2) Resize (0.7)

GIF (16) S&P (0.05) Gaussian (0.06)

Figure 8: Visualization of additional image distortions.

Method Identity Combined Ours

Gaussian Noise (0.06) 74.6 93.5 95.6

Gaussian Noise (0.08) 67.7 87.2 93.5

Gaussian Noise (0.10) 63.2 80.4 89.5

Salt and Pepper (0.05) 99.1 97.2 95.7

Salt and Pepper (0.10) 93.1 89.4 85.0

Salt and Pepper (0.15) 83.4 79.6 77.1

Adjust Hue (0.2) 65.1 70.8 94.0

Adjust Hue (0.4) 34.0 45.3 70.7

Adjust Hue (0.6) 18.1 28.8 42.4

Adjust Saturation (5.0) 96.3 98.1 99.9

Adjust Saturation (10.0) 94.8 96.0 99.6

Adjust Saturation (15.0) 93.4 94.2 98.5

GIF (64) 87.1 96.5 97.6

GIF (32) 76.8 93.4 95.7

GIF (16) 65.0 88.6 91.7

Resize Width (0.9) 99.3 99.7 99.9

Resize Width (0.7) 85.3 84.9 88.4

Resize Width (0.5) 66.5 67.3 67.1

StirMark [33] 69.6 82.1 83.5

Average 77.91 84.15 88.05

Table 2: Comparison of our model with HiDDeN identity model

and combined noise model on additional image distortions. We

report the bit accuracy of our model, the HiDDeN combined and

identity model. When computing the average, results lower than

50% are truncated to 50% since they are no better than random

chance.

4.3. Detailed Analysis

4.3.1 Ablation Study

Table 3 reports the individual effect of channel coding and

adversarial training. We see that adversarial training con-

tributes to a large portion of the model robustness, while

channel coding further boosts performance in terms of ac-

curacy. Table 3 also shows that channel coding alone does

not provide enough robustness without a robust watermark-

ing model. However, combined with adversarial training

channel coding further boosts the performance of the wa-

termarking system especially if the bit accuracy is already

high.

JPEG

(Q=50)

Crop

(p=0.09)

Blur

(σ=1.0)

Dropout

(p=0.3)

Identity 50.2 53.0 59.6 81.3

Channel 51.3 60.5 50.2 90.3

Adv. 85.0 90.6 86.2 95.0

Both 81.7 93.5 92.8 97.9

Table 3: Model ablation study. We report the bit accuracy for

models trained with only channel coding, only adversarial train-

ing, both, and the identity model. For models trained with only

adversarial training, the input message length to the watermarking

model is 30 instead of 120.

4.3.2 Attack Complexity

We study the effect of varying the complexity and architec-

ture of the attack network Gadv . On top of adjusting the

network size and depth, we also consider two variants of

the attack network: the residual network (Res) where we

add a skip connection from the input, and a capped network

(Capped) where we limit the maximum pixel difference by

setting Gadv(I) = I + ǫ tanh(CNN(I)). We also report

the results from the fast gradient sign method (FGSM) for

completeness.

JPEG

(Q=50)

Dropout

(p=0.3)

Blur

(σ=1.0)

Acc.

(adv.)

Conv (3,16) 81.7 97.9 92.8 90.6

Conv (3,32) 80.5 98.0 84.9 78.7

Conv (3,32,32) 75.0 95.3 81.5 72.0

Res (3,16) 84.5 96.3 86.3 95.0

Capped (0.03) 57.3 93.9 77.3 96.5

Capped (0.06) 53.2 94.6 78.1 99.5

FGSM 50.1 86.2 50.1 98.0

Table 4: Performance when varying attack network complexity.

Each row corresponds to models trained with a different config-

uration of attack network. The first three columns show the bit

accuracy on various image distortions. The last column shows the

bit accuracy on adversarial message X ′

adv .

From Table 4, we observe that the bit accuracy on the

adversarial example decreases as the attack network com-

plexity increases, causing a slight degradation in the fi-

nal result. Capping the attack network yielded poor re-

sults on JPEG and Gaussian blur, indicating that this ap-

proach over-restricts the attack network. The residual net-

work yielded very similar performance to the regular convo-

lutional model, slightly underperforming on Gaussian blur.
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Figure 9: Samples of encoded and cover images for the watermarking algorithm. First row: Cover image with no embedded message.

Second row: Encoded image from HiDDeN combined distortion model. Third row: Encoded images from our model. Fourth row:

Normalized difference of the encoded image and cover image for the HiDDeN combined model. Fifth row: Normalized difference for our

model.

5. Conclusion

We propose a distortion agnostic watermarking method

that does not explicitly model the image distortion at train-

ing time. Our method consists of two core components, ad-

versarial training and channel coding, to improve the robust-

ness of our system. Compared with conventional methods

of improving model robustness, our methods do not require

the explicit modeling of the image distortions at training

time. Through empirical evaluations, we validate that our

model reaches comparable performance to the combined

distortion model on distortions seen during training, and

better generalization to unseen distortions. In future work,

we would like to improve upon our current methodology

to further increase model robustness, and explore deeper

the connections between watermarking and adversarial at-

tacks.
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