
Evolving Space-Time Neural Architectures for Videos

AJ Piergiovanni, Anelia Angelova, Alexander Toshev, Michael S. Ryoo
Google Brain

{ajpiergi,anelia,toshev,mryoo}@google.com

Abstract

In this paper, we present a new method for evolving
video CNN models to find architectures that more optimally
captures rich spatio-temporal information in videos. Pre-
vious work, taking advantage of 3D convolutional layers,
obtained promising results by manually designing CNN ar-
chitectures for videos. We here develop an evolutionary al-
gorithm that automatically explores models with different
types and combinations of space-time convolutional layers
to jointly capture various spatial and temporal aspects of
video representations. We further propose a new key com-
ponent in video model evolution, the iTGM layer, which
more efficiently utilizes its parameters to allow learning of
space-time interactions over longer time horizons. The ex-
periments confirm the advantages of our video CNN archi-
tecture evolution, with results outperforming previous state-
of-the-art models. Our algorithm discovers new and inter-
esting video architecture structures.

1. Introduction

Video understanding tasks, such as video object detec-
tion and activity recognition, are important for many so-
cietal applications of computer vision including robot per-
ception, smart cities, medical analysis, and more. Convolu-
tional neural networks (CNNs) have been popular for video
understanding. More specifically, representing a video in-
put as a 3D XYT tensor by concatenating frames along
time axis T, video CNNs learn intermediate representa-
tions as 4D XYTC tensors (where C is the feature dimen-
sion) using 3D conv. layers. Previous approaches includ-
ing C3D [29], I3D [1], R(2+1)D [32], S3D [37], and oth-
ers [3, 9] have been very successful particularly in video
classification. These approaches focused on manually de-
signing CNN architectures specialized for videos, for ex-
ample by extending known 2D architectures such as Incep-
tion [27] and ResNet [5] to 3D [1, 32]. However, designing
new, larger or more advanced architectures is a challeng-
ing problem, especially when the complexity of the tasks
(e.g., continuous activity recognition) requires deeper and

wider architectures with more complex layers, as the exact
configuration of layers is not clear. Furthermore, the avail-
able known network structures may not necessarily capture
joint space-time information in complex videos sufficiently,
which is needed to properly represent the fine-grained de-
tails that video understanding entails.

We here propose a new method for evolving video CNN
architectures to harness the rich spatio-temporal informa-
tion present in videos. We develop an evolutionary al-
gorithm that automatically explores models with different
types and combinations of space-time convolutional layers.
The mutations in our evolutionary algorithm are particularly
designed to search for CNN architectures that jointly cap-
ture various spatial and temporal aspects of video represen-
tations. This requires consideration of more diverse space-
time layer components, and searching for architectures with
heterogeneous modules with different roles. The proposed
algorithm results in novel architectures which present inter-
esting sub-structures, not known before (Figure 1). Further-
more, our approach encourages exploration of more diverse
architectures by applying nontrivial mutations at the earlier
stages of evolution while constraining the mutations at the
later stages. This enables discovering multiple very differ-
ent (but similarly good) architectures, allowing us to form a
better ensemble model by combining them.

Neural architecture search and evolution have been ap-
plied successfully previously, but were limited to text and
2D image classifications [28, 40]. A naive extension of
architecture search to video understanding will encounter
multiple challenges: 1) the additional time dimension in
video representations makes the architecture search space
prohibitively large, even with contemporary compute ca-
pabilities – smarter units and combinations are needed; 2)
training of each video model itself is computationally ex-
pensive, and architecture search requires training thousands
more efficiently – layers which utilize more efficiently pa-
rameters to allow faster training are needed. Our approach
addresses both these issues. To our knowledge this is
the first automated neural architecture search algorithm for
video understanding.

To enrich the search space for video inputs, we introduce
a new key element which is specifically designed to capture

ar
X

iv
:1

81
1.

10
63

6v
1 

 [
cs

.C
V

] 
 2

6 
N

ov
 2

01
8



11 5 1 5 3

1

1 9

1 3

11 1

C
o
n

c
a
t

1

19

19

15

111

31

31

C
o
n

c
a
t

3

1

13

15

15

71

111

31

C
o
n

c
a
t

1

15

13

71

C
o
n

c
a
t

1

111

19

51

C
o
n

c
a
t

1

15

15

17

19

91

31

C
o
n

c
a
t

1

1 9

1 3

1 3

1 9

9 1

C
o
n

c
a
t

9

1

1 5

1 5

1 3

5 1

C
o
n

c
a
t

1

1 5

1 7

1 5

7 1

C
o
n

c
a
t

2 1

Figure 1. An example new video CNN architecture obtained with evolution (using Charades dataset). Several interesting substructures were
discovered: modules combining multiple space-time pooling layers with different temporal intervals (middle row) or modules combining
multiple new Inflated TGM layers with (2+1)D or 3D layers (bottom row). Colored squares are different types of convolutional layers,
while grey squares are space-time pooling layers. The numbers in the squares indicate the temporal length of the filters. More details can
be found in the “architecture findings” paragraph of Section 5.4.

space-time features interactions. We introduce an Inflated
TGM (iTGM) layer as a possible component our video ar-
chitecture evolution considers and evolves. The iTGM layer
is a layer motivated by the original 1D TGM (Temporal
Gaussian Mixture) layer [20]. In our inflated TGM layer,
we learn 2D XY convolutional filters in addition to the tem-
poral Gaussian mixture values, and inflate the 2D filter tem-
porally to allow learning of joint features in 3D XYT (Fig-
ure 2). The 2D filter is inflated non-uniformly, by following
the weights according to the learned 1-D temporal Gaus-
sian mixture pattern. This allows to explore interaction be-
tween space and time more effectively and with much fewer
number of parameters, and at the same time capture longer
temporal information in videos.

Our approach outperforms previous state-of-the-art
numbers on all three public action recognition datasets we
tested (i.e., HMDB, Charades and Kinetcics), establishing
a new state-of-the-art. We also discover complex substruc-
tures from the evolved CNNs including modules with mul-
tiple parallel space-time conv/pooling layers focusing on
different temporal resolutions of video representations. Fi-
nally, unlike architecture search, independent evolution at-
tempts generate a diverse set and ensembling them (which
is for free as they are already available) increases recogni-
tion accuracy beyond what other homogeneous-architecture
ensembles can do. The main technical contributions of this
paper are:

• We propose an evolutionary approach for developing
convolutional modules, specifically designed for tar-
geting motion understanding in videos. To our knowl-
edge this is the first paper to consider neural architec-
ture search or evolution for video understanding.

• We introduce a new space-time convolutional layer,
the Inflated TGM layer, designed to capture longer-
term temporal information, and design the search
space to specifically explore space-time convolutional
layers and their combinations.

• New state-of-the-art on several video datasets and new
architectures and components which can be reused for
future work. Ensembling the discovered diverse archi-
tectures further increases the recognition accuracy.

2. Related work
CNNs for video understanding. Approaches consider-
ing a video as a space-time volume have been particularly
successful [1, 4, 29, 30], with a direct application of 3D
CNNs to videos. C3D [29] learned 3x3x3 XYT filters,
which was not only applied for action recognition but also
for video object recognition. I3D [1] extended the Inception
architecture to 3D, obtaining successful results on multiple
activity recognition video datasets including Kinetics. S3D
[37] investigated the usage of 1D and 2D convolutional lay-
ers in addition to the 3D layers. R(2+1)D [32] used the



2D conv. layers followed by 1D conv. layers while follow-
ing the ResNet structure. Two-stream CNN design is also
widely adopted in action recognition, which takes optical
flow inputs in addition to raw RGBs [3, 26]. There also are
works focusing on capturing longer temporal information
in continuous videos using pooling [18], attention [19], and
convolution [9]. Recurrent neural networks (e.g., LSTMs)
were also used to sequentially represent videos [18, 38].

Neural architecture search. Neural network architec-
tures have advanced significantly since the early convo-
lutional neural network concepts of LeCun et al. [13]
and Krizhevsky et al. [11]: from developing wider mod-
ules, e.g., Inception [27], or introducing duplicated mod-
ules [14], residual connections [5, 36], densely connected
networks [6, 7], or multi-task architectures: e.g., Faster-
RCNN and RetinaNet for detection, and many others [15,
16, 23]. Recently several ground-breaking approaches have
been proposed for automated learning/searching of neu-
ral network architectures, rather than manually designing
them [22, 28, 40, 41]. Successful architecture search has
been demonstrated for images and text [40, 41], includ-
ing object classification. Tran et al. [31] analyze action
recognition experiments with different settings, e.g., input
resolution, frame rate, number of frames, network depth,
all within the 3D ResNet architecture. In the context of
video understanding, we are not aware of any prior work
that has attempted developing an automated algorithm for
data-driven architecture search/evolution.

3. Convolutional layers for action recognition
In this section, we review standard space-time convolu-

tional layers and introduce a new efficient 3D space-time
convolutional layer named the Inflated Temporal Gaussian
Mixture (iTGM) layer. These convolutional layers take 4D
XYTC space-time tensors both as an input and output, and
they serve as basic components of the CNN architectures.

Standard 3D convolutional layer. The 3D convolutional
layer [8] learns a standard 3D XYT convolutional kernel. It
takes a T × Y ×X ×Cin input and learns Cout number of
filters to be convolved in 3D (XYT) directions. Each filter
size is L×H×W ×Cin, where Cin is the number of input
channels, W are H are spatial width/height of the kernel
and L is the temporal length of the kernel. Further, expand-
ing 2D kernels to 3D has been explored [17]. I3D expanded
kernels by stacking the 2D kernels L times, results in state-
of-the-art performance [1]. The 3D convolutional layer has
many parameters (i.e., L ×H ×W × Cin × Cout), which
makes it challenging to learn, especially for small datasets.

(2+1)D convolutional layer. Recently (2+1)D layers have
been proposed to decompose a 3D kernel into a 2D spatial
kernel followed by a 1D temporal kernel [32, 37]. It is im-
plemented as a 2D spatial convolution, followed by a 1D

2D
 Kernel

Inflated
TGM

Time

*

*

*

*

=

=

=

=

TGMs

Figure 2. Example of inflated TGM kernels.

convolution in time, thus learning fewer parameters than the
standard 3D convolution. It has H ×W × Cin × Cout +
L× Cout × Cout parameters.

3D Inflated TGM layer. Following a recent idea on Tem-
poral Gaussian Mixture (TGM) layers [20], we propose
to ‘inflate’ 2D image kernels into 3D kernels based on a
mixture of Gaussians. Rather than directly learning the
L × H × W × Cin × Cout parameters used in the stan-
dard 3D convolution, we learn a 2D kernel with a size of
H ×W ×Cin×Cout together with 1-D temporal Gaussian
mixture parameters whose size is 2×M×Cin+M×Cout.
We then temporally inflate this 2D kernel according to the
Gaussian mixture. M Gaussians are parameterized by a
center µ and width σ, and a set of soft-attention mixing-
weights, ai,m, where i ∈ [0, Cout], are learned (M is a
hyper-parameter, typically smaller than L). In practice, µ
is constrained to be between 0 and L and σ is positive:

µ = (L− 1) · tanh (µ̂) + 1

2
, σ2 = exp (σ̂). (1)

The temporal Gaussians are constructed as:

K̂m,l =
1

Z
exp− (l − µm)2

2σ2
m

(2)

where Z is a normalization constant such that∑L
l=0 K̂m,l = 1. We then apply the mixing weights,

Ki,l =
exp ai,m∑
j exp ai,j

K̂m,l. (3)

This results in K being a Cout × L kernel. Given S, a 2D
spatial kernel, we inflate S to a 3D as:

k = S ∗K (4)

by convolving S with K. This results in a L × H ×W ×
Cin×Cout kernel. The parameters of the inflated TGM (i.e.,
S, µm, σm, and ai,m) are differentiable; they are learned
from the training data and become optimized for the task.
Once learned, it behaves exactly like the standard 3D XYT
convolution. Note that this layer learns fewer parameters
than both 3D and (2+1)D convolution, and can learn longer
kernels as the number of parameters is independent of the
length, L. Examples of inflated TGMs are shown in Fig. 2.



4. Neural architecture evolution for videos

The objective of neural architecture evolution is to find
better-performing CNN architectures by iteratively modify-
ing a pool of architectures. It starts from a set of random, di-
verse architectures and continues to mutate them over multi-
ple rounds, while only letting the better performing models
survive. Recent studies [21] show that evolutionary algo-
rithms can find good object classification architectures from
a smaller number of samples, as opposed to model search
algorithms using reinforcement learning [40]. This makes
evolution more suitable for video CNN architecture search,
as training video CNNs is expensive. Further, it allows for
mutating architectures by selecting and combining various
space-time layers which more effectively process represen-
tations with much larger dimensionality. The evolution also
allows us to obtain multiple different (i.e., diverse) architec-
tures instead of a single architecture, enabling the construc-
tion of a powerful ensemble.

4.1. Search space and base architecture

We evolve our architecture to have heterogeneous mod-
ules (or layers), as opposed to repeating one identical mod-
ule multiple times. This is in contrast to many prior archi-
tecture search works on image-based CNNs (e.g., NasNet
[40] and AmoebaNet [21]). Having heterogeneous mod-
ules is motivated by the recent observations that video CNN
architectures may need differently sized temporal filters at
different layers (e.g., bottom-heavy vs. top-heavy [37]), and
this is important for representing videos. In order to keep
the entire search space manageable while evolving modules
heterogeneously, we use the Inception meta-architecture
with a fixed number of total modules. We also constrain the
complexity of the connections between the layers within a
module so that space-time layers are parallel, while making
the evolution to explore temporal aspects of the modules.

Our architecture evolution particularly focuses on pro-
viding answers to the following questions: 1) Which space-
time convolutional layer should the architecture use and
where, to best benefit recognition? 2) How should we mod-
ify the modules (composed of multiple layers) originally
designed for image classification for video recognition? 3)
How many frames should each convolutional filter consider,
depending on its layer type and location? That is, what are
the optimal temporal kernel sizes (i.e., L) for each layer?

The Inception meta-architecture we use is illustrated in
Figure 3. This meta architecture was also used in I3D and
S3D, and is composed of three initial (space-time) convo-
lutional layers (i.e., the ‘stem’) followed by nine Incep-
tion modules. Each Inception module originally has a two
space-time convolutional layers as well as a pooling layer
and multiple 1x1 convolutional layers (Figure 4). Our evo-
lutionary search starts from the initial pool of architectures
with such Inception modules, which is later modified based

Video
BxTxYxXxC

Stem

Lx7x7
Stride 2

Lx3x3
Max-Pool

Stride 
1,2,2

1x1x1
Stride 1

Lx7x7
Stride 1

Lx3x3
Max-Pool

Stride 
1,2,2

Inception 
Module 1

Inception 
Module 2

Lx3x3
Max-Pool

Stride 
2,2,2

Inception 
Module 2

Inception 
Module 2

Inception 
Module 2

Inception 
Module 2

Inception 
Module 2

Lx2x2
Max-Pool

Stride 
2,2,2

Inception 
Module 2

Inception 
Module 2

2x7x7
Avg-Pool 1x1x1

Figure 3. Inception meta-architecture.

Lx3x3

1x1x1

1x1x1 1x1x1 Lx3x3
Max-Pool

1x1x1Lx3x3

Concatenation

Input

Output

Figure 4. Structure of the base Inception module

on the mutations described in the following subsection.
The three convolutional layers mentioned in Section 3

are the layer types we consider in our architecture evolution,
and we use {1, 3, 5, 7, 9, 11} as the set of possible temporal
kernel sizes. As a result, the architecture search space size
becomes O((3 × 6 + 1)3+B×N + (6 + 1)D×N ) where B
and D are the maximum of number of space-time conv and
pooling layers we allow in each module and N = 9 is the
number of Inception modules in the architecture. There are
3 individual layers (often also called a ‘stem’) before the
N = 9 Inception modules. Each space-time conv. layer has
3× 6 possible options and each space-time pooling has has
6 options. Also, there could be an option to omit the layer,
making the total number of choices to be 3×6+1 and 6+1.
We fix the spatial size of the kernels to be 3× 3.

Although the search space is very big, the idea is that an
exhaustive search is not necessary and it is possible to find
good local optima by evolving from various initial samples
(i.e., architectures).

4.2. Evolutionary algorithm

We summarize our evolutionary algorithm in Algorithm
1. We follow the standard genetic algorithm setting: main-
taining a population of size P , where each individual in the
population is a particular architecture in our case. Archi-
tectures in the initial population are obtained by randomly
sampling from our large search space (Section 4.1), encour-



aging diversity and exploration.

Algorithm 1 Evolutionary search algorithm
function SEARCH

Randomly initialize the population, P
Evaluate each individual in P
for i < number of evolutionary rounds do

S = random sample of 25 individuals
parent = the most fit individual in S
child = parent
for max(dd− i

r e, 1) do
child = mutate(child)

end for
evaluate child and add to population
remove least fit individual from population

end for
end function

At each round of the evolution (which can also be paral-
lelized), our algorithm randomly selects a S number of sam-
ples from the entire population and compares their recogni-
tion performance. The architectures with the highest fitness
(i.e., validation accuracy) becomes the ‘parent’, and muta-
tion operators are applied to the selected parent to gener-
ate a new ‘child’ architecture to be added to the population.
Whenever a new architecture is added, it is trained with the
training set for a number of iterations, and is evaluated with
a separate validation set (different from the actual test and
validation sets) to measure the recognition accuracy. This
performance becomes the ‘fitness’ of the architecture.

Having S where 1 < S ≤ P controls the randomness
in the parent selection. It avoids the algorithm repeatedly
selecting the same parent, which might already be at a lo-
cal maximum. It also allows the algorithm to be more eas-
ily parallelized by avoiding such situations. Our algorithm
could be parallelized by distributing the loop over multi-
ple workers, each responsible selecting S random samples
from the population, deciding the parent, and mutating it to
get the child.

The mutation operators modify the parent architecture,
which we describe more in the subsubsection below. Impor-
tantly, we design the mutation in our algorithm to happen
by applying multiple randomly chosen mutation operators.
In order to encourage more diverse architectures, we devel-
oped the strategy of applying multiple mutation operators
in the early stage of the evolution while reducing their num-
bers at the later stages, which is analogous to controlling
the learning rate in a CNN model learning. As described in
Algorithm 1, we apply max(d − i

r , 1) number of mutation
operators where d is the maximum number of operators we
want to apply in the beginning, and r controls how quickly
we want to decrease their numbers linearly.

Once a child architecture is added to the population, in
order to maintain the size of the population to P , the evolu-

3DConv
3x7x7

1x1x1

1x1x1 1x1x1 3x3x3
Max-Pool

1x1x1TGM
7x7x7

Concatenation

Input

Output

(2+1)D
3x7x7

1x1x1

1x1x1 1x1x1 3x3x3
Max-Pool

1x1x1TGM
7x7x7

Concatenation

Input

Output

3DConv
3x7x7

1x1x1

1x1x1 1x1x1 3x3x3
Max-Pool

1x1x1TGM
7x7x7

Concatenation

Input

Output

3DConv
3x7x7

1x1x1

1x1x1 1x1x1 3x3x3
Max-Pool

1x1x1TGM
9x7x7

Concatenation

Input

Output

Change Layer 
Type

Mutation

Change 
Temporal Size 

Mutation

3DConv
3x7x7

1x1x1

1x1x1 1x1x1 3x3x3
Max-Pool

1x1x1TGM
7x7x7

Concatenation

Input

Output

3DConv
3x7x7

1x1x1

1x1x1 1x1x1 3x3x3
Max-Pool

1x1x1TGM
7x7x7

Concatenation

Input

Output

Add Layer
Mutation

1x1x1

(2+1)D
5x7x7

(a)

(b)

(c)

Figure 5. Example mutations applied to a module, including (a)
layer type change, (b) filter length change, and (c) layer addition.

tionary algorithm selects an individual to discard from the
pool. We tried different criteria including the lowest fit-
ness as well as discarding the oldest architecture (i.e., [21]),
which did not make much difference in our case. P and S
are the hyper-parameters of the algorithm, P = 100 and
S = 25 in the experiments.

Mutations. As described in Algorithm 1, once the parent
architecture is selected from the pool of architectures, our
approach applies ‘mutations’ to the parent architecture to
generate a new child architecture. In order to explore the
architecture search space we describe in Section 4.1 effi-
ciently, we consider the following three mutation operators:
(i) Select a space-time conv. layer within the parent archi-
tecture, and change its ‘type’. (ii) Select a space time conv.
layer or a pooling layer, and change the temporal size (i.e.,
L) of its filters. (iii) Select a module from the parent ar-
chitecture, and add/remove a space-time conv. layer within
it. We constrain the module so that its space-time convolu-
tional layers are applied in parallel, and combine the paral-
lel layers by averaging. Figure 5 illustrates examples of our
mutation operators applied to layers of a module.

Ensemble. We obtain a number of top performing archi-
tectures after the evolutionary search is completed. Because
of the design of our evolutionary algorithm to promote the
population to maintain diverse individual architectures, un-
like reinforcement learning-based search methods [40] that
optimize policies to generate the architecture. Thus a con-



struction of a good ensemble is very likely. We do late fu-
sion of the top few architectures (e.g., 3 or 5), adding the
outputs of their softmax layers: F ∗(x) =

∑
i Fi(x) where

x is the input video and Fi are the top CNN models. In
the experiments, we found our approach obtains very di-
verse top performing architectures, and further ensembling
allows us to improve the overall recognition meaningfully.

We named our final ensemble network as EvaNet
(Evolved Video Architecture).

5. Experiments
Although our evolutionary architecture search is applica-

ble for various different video understanding tasks, we par-
ticularly focus on the problem of human activity recognition
in our experiments. That is, our video CNN architectures
are evolved using public activity recognition video datasets
including HMDB [12] and Kinetics [10], with the architec-
ture fitness being the activity recognition accuracy on the
validation set (a held-out portion of the training set). In all
our experiments, our evolutionary algorithm never had any
access to the actual test set during its training and evolution.
Fitness of the architectures during evolution was measured
with the separate set generated from the training set.

5.1. Datasets

HMDB: HMDB [12] is a public video classification
dataset with ∼7000 videos of 51 action classes.

Kinetics: We use Kinetics-400 dataset [10] with the
videos available on YouTube in November 2018. Note that
this version has less training videos than the initial version
of Kinetics-400, making the dataset more difficult. This ver-
sion has 225,946 training, 18,584 validation and 36,500 test
videos, about 25k videos smaller than the original Kinetics-
400 dataset (i.e., missing about 8% of train/val/test data).
We report our numbers on this version, and compare ours
with other works tested on the new version as well as the
reported numbers on the original version.

Charades: Charades [25] is an activity recognition
dataset with ∼10K videos, whose durations are 30 sec-
onds on average. We use Charades particularly to confirm
whether our architecture evolution finds structures different
from those found with shorter videos like Kinetics. We use
the classification evaluation.

5.2. Experimental setup and details

Our architecture evolution was done with multiple par-
allel workers. A smaller input size and a fewer number of
iterations were used when training each architecture to mea-
sure their relative performances, which become the sample
‘fitness’. Please check the appendix in the supplementary
material for more details.

We continued our evolution for 2000 rounds, newly gen-
erating, training/evaluating, and discarding 2000 CNN ar-

chitectures. Note that ∼300 rounds were often sufficient
to find good architectures (Figure 7). Once the architec-
ture evolution is complete and the top performing CNNs are
found, we fully trained the models with higher resolution
inputs (64x224x224 for HMDB/Kinetics and 128x224x224
for Charades) and with more training iterations (120k for
Kinetics and 64k for Charades).

ImageNet pre-training. ImageNet pretraining is stan-
dard practice for video recognition [1]. Taking advantage
of 2D filters learned from ImageNet allows a model to start
its training with more reasonable initial 3D filters. This is
done by uniformly inflating the ImageNet-trained 2D filters
to 3D in the case of standard 3D conv. layers (i.e., as in [1]),
and is done by initializing the 2D kernel part in (2+1)D and
inflated TGM layers with such filters (i.e., as in [37]). This
not only allows the training of models to converge faster
but also provides better final performances, benefiting from
millions of images.

Although our video CNN evolution approach itself is
general and it allows mutations generating various architec-
tures/modules without any constraint, two constraints were
used in our experiments to make our evolved architectures
directly benefit from ImageNet pre-trained weights more
easily: (1) We constrained the space-time convolutional lay-
ers and pooling layers in our modules to be parallel. We
also always inserted a 1x1x1 conv. layer before each space-
time conv. layer and after each pooling layer, just as was
done in the basic Inception module (Fig. 4). (2) We forced
each of our module to have at least two space-time convo-
lutional layers and one space-time pooling layer as in the
basic Inception module. The outputs of multiple space-time
conv. or pooling layers were combined by element-wise av-
eraging (i.e., Fig. 5(c)), essentially allowing our modules to
have the same input/output channel size as the modules in
the pre-trained basic Inception model.

5.3. Baselines

We compare our results to the state-of-the-art on activ-
ity recognition, and further implemented those following
the same Inception meta-architecture for direct comparison.
We trained (1) the original I3D with standard 3D convolu-
tional layers. We also trained the Inception models with: (2)
3D conv. layers with L = 3, (3) (2+1)D conv. layers, and
(4) the proposed iTGM layers. The difference between (1)
and (2) is that (1) uses L = 7 in the first 3D conv. layer and
L = 3 in all the other 3D layers (which was a handcrafted
design), while (2) uses L = 3 in all its layers.

5.4. Results

The architecture evolution was conducted with each
dataset individually, finding the optimal architecture for
each dataset. Below summarizes the classification accura-



Table 1. HMDB split 1 comparison to baselines, with and without
Kinetics pre-training. The models were all initialized with Ima-
geNet weights. ‘3D-Ensemble’ was formed by combining 3 3D
Conv baselines (trained separately), and ‘iTGM-Ensemble’ was
formed by combining 3 3D Conv baselines and 2 iTGM baselines.

HMDB HMDB(pre-train)
RGB Flow RGB+F RGB Flow RGB+F

Baselines
I3D 49.5 61.9 66.4 74.8 77.1 80.1
3D Conv 47.4 60.5 65.9 74.3 76.8 79.9
(2+1)D Conv 27.8 56.4 51.8 74.4 76.5 79.9
iTGM Conv 56.5 62.5 68.2 74.6 76.7 79.9
3D-Ensemble 67.6 80.4
iTGM-Ensemble 69.5 80.6

Top individual models from evolution
Top 1 60.7 63.2 70.3 74.4 78.5 81.2
Top 2 63.4 62.5 71.2 75.6 78.4 80.5
Top 3 60.5 63.1 70.5 75.5 78.6 79.8
Top 4 59.0 60.9 69.8 - - -
Top 5 61.6 62.5 70.3 - - -
EvaNet 72.8 82.4

Table 2. HMDB performances averaged over the 3 splits.

Two-stream [26] 59.4
Two-stream+IDT [3] 69.2
R(2+1)D [32] 78.7
Two-stream I3D [1] 80.9
PoTion [2] 80.9
Dicrim. Pooling [34] 81.3
DSP [33] 81.5

3D-Ensemble (our baseline) 79.9
iTGM-Ensemble (our baseline) 80.1
EvaNet (ours) 82.1

cies of the video CNN architectures our evolution automat-
ically found and their ensembles.

HMDB: Table 1 shows the accuracy of our evolved
CNNs compared to the baseline architectures following the
same Inception meta-architecture. Furthermore, because of
the diverse nature of the evolved architectures, we were able
to form their ensemble and increase their performance fur-
ther. As we can confirm, our heterogeneous ensemble was
superior to the ensembles obtained by training the same
architecture (e.g., I3D) multiple times. Table 2 compares
our performance with the previous state-of-the-arts. To our
knowledge, we are obtaining the highest HMDB video clas-
sification accuracy: 82.1%

Kinectics: Table 3 shows the classification accuracy of
our evolved CNNs on Kinetics-400. Similar to Table 1 we
are able to confirm that our architecture evolution finds bet-
ter performing models than any prior models with the same
meta-architecture. Table 4 compares our algorithm with the

3 3 1 3 3

1

1 7

1 9

1 3

7 1

11 1

9 1

C
o
n

c
a
t

1

111

19

31

C
o
n

c
a
t

3

1

13

15

19

51

C
o
n

c
a
t

1

13

15

111

C
o
n

c
a
t

1

19

13

17

31

C
o
n

c
a
t

1

15

13

91

51

31

C
o
n

c
a
t

1

1 11

1 7

7 1

7 1

C
o
n

c
a
t

11

1

1 11

1 11

1 9

5 1

11 1

3 1

C
o
n

c
a
t

1

1 7

1 11

1 11

1 11

5 1

C
o
n

c
a
t

2 1

11 5 1 3 3

1

1 7

1 7

9 1

C
o
n

c
a
t

1

17

111

91

C
o
n

c
a
t

3

1

13

19

15

111

71

51

C
o
n

c
a
t

1

13

19

91

71

51

C
o
n

c
a
t

1

17

13

111

71

C
o
n

c
a
t

1

19

19

15

111

51

C
o
n

c
a
t

1

1 5

1 11

1 3

1 3

3 1

7 1

C
o
n

c
a
t

11

1

1 9

1 11

1 3

1 9

3 1

C
o
n

c
a
t

1

1 3

1 9

3 1

C
o
n

c
a
t

2 1

Figure 6. Example architectures: Kinetics RGB (top); Charades
(bottom).

Table 3. Kinetics performance comparison to baselines, all initial-
ized with ImageNet weights.

RGB Flow RGB+F

Baselines
3D Conv 70.6 62.1 72.6
(2+1)D Conv 71.1 62.5 74.3
iTGM Conv 71.2 62.8 74.4
3D-Ensemble 74.6
iTGM-Ensemble 74.7

Top individual models from evolution
Top 1 71.9 63.8 75.8
Top 2 71.7 64.9 75.2
Top 3 72.9 64.8 75.4
EvaNet 76.8

state-of-the-arts. Here too we can see that the evolved ar-
chitectures outperform the previous ones. Note that the per-
formances reported on the older version of Kinetics-400 are
not directly comparable to our numbers.

Charades: We also test our algorithms on the popular
Charades dataset. Table 5 compares our approach against
the previously reported performances. As shown, we out-
perform the state-of-the-art and establish a new one. Our
CNNs only use RGB (i.e., one-stream) in this experiment.

Smaller search space (i.e., fewer mutation ops). We
conducted an experiment with a simpler version of our evo-
lution with fewer mutation operators. Reducing the number
of mutation operators restricts possible architectures, essen-
tially making the architecture search space to be smaller.



Table 4. Kinetics-400 accuracy. Note that * are the reported num-
bers on the initial Kinetics dataset, which is no longer available.
We report the numbers based on the new Kinetics version from
Nov 2018. The new version has 8% less training/validation videos.

Method Kinetics-400
new old

Two-stream I3D [1] 72.6 74.1∗

Two-stream (2+1)D [32] - 75.4∗

Two-stream S3D-G [37] 76.2 77.2∗

Non-local NN [35] - 77.7∗

EvaNet (ours) 76.8 -

Table 5. Charades classification results against state-of-the-arts.
Similar to [35], we use Kinetics pre-training.

mAP

Two-Stream [24] 18.6
Two-Stream + LSTM [24] 17.8
Async-TF [24] 22.4
TRN [39] 25.2
Dicrim. Pooling [34] 26.7
Non-local NN [35] 37.5

3D-Ensemble (our baseline) 35.2
iTGM-Ensemble (our baseline) 35.7
EvaNet (ours) 38.1

We implemented a version of our architecture evolution
only using the mutation operators (i) and (ii), while also
constraining each module to share the same space-time
conv. type and temporal filter length across its layers. On
Kinetics, this simpler evolution gave us the performance of
75.5, which is lower than our 76.8. The result suggests that
it is meaningful to have our ‘layer addition mutation’.

Evolution vs. random search. We compared our archi-
tecture evolution with the random architecture search (Fig-
ure 7). We observe that both the evolution and the random
search accuracies improve as they explore more samples
(benefiting from our search space designed). However, our
architecture evolution obtains much higher accuracy and
much more quickly with few initial rounds of evolution,
suggesting our mutations are being effective. The evolu-
tion was done on a smaller subset of Kinetics-400 dataset
and for 1000 iterations.

Architecture findings. Figures 1 and 6 show examples of
the architectures found. The grey blocks are max-pooling,
blue is 3D conv, red is (2+1)D conv, green is iTGM, pink is
1x1x1, and purple is element-wise averaging. The numbers
represent the temporal size (L) of the kernel. More archi-
tecture examples can also be found in Appendix in the sup-
plementary material. Although the top architectures found
by our evolutionary algorithm are similarly good in terms of
classification accuracy, they turned out to be extremely di-

verse (e.g., Fig. 1 vs. Fig. 6-bottom, both from Charades).
This directly suggest forming their ensemble would bene-
fit the recognition even further, which is exactly what we
observed in Tables 1 and 3.

Interesting substructures discovered include: (1) mod-
ules combining multiple space-time pooling layers with dif-
ferent temporal intervals and (2) modules heavily relying on
Inflated TGM or (2+1)D conv. layers instead of standard 3D
conv. layers. Such modules were commonly observed at
the middle-level and the bottom-level of the architectures.
The top-most module more commonly relied on 3D conv.
layers, suggesting that they can be used to capture subtle
spatio-temporal patterns once the representation becomes
more abstract and their dimensionality decrease

Video CNN architectures evolve differently depending
on the datasets. This is very natural, and we were able to
explicitly confirm this. The architectures have many more
layers with longer space-time filters (e.g., 9 or 11) when
evolved for Charades, while they only had a small number
of them when evolved for HMDB or Kinetics. An average
activity duration in Charades videos are around 12 seconds,
while HMDB and Kinetics videos are on the average of 3
to 5 seconds. Different architectures are needed for dif-
ferent datsets/tasks, and we are providing an evolutionary
approach to automate the architecture design.

6. Conclusion

We presented the new approach of evolving video CNN
architectures. Our evolutionary algorithm starts with a pool
of randomly generated architectures, and they are evolved
over multiple rounds using the mutation operators we intro-
duced. We particularly focused on making the algorithm
explore architectures capturing space-time information in
videos using combinations of standard 3D conv. layers,
(2+1)D conv. layers, and newly introduced inflated TGM
layers. The resulting architecture outperformed handcrafted
architectures, and we also found interesting substructures
including the modules with parallel space-time layers fo-
cusing on different temporal intervals.

References
[1] J. Carreira and A. Zisserman. Quo vadis, action recognition?

a new model and the kinetics dataset. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recogni-
tion (CVPR), 2017.

[2] V. Choutas, P. Weinzaepfel, J. Revaud, and C. Schmid. Po-
tion: Pose motion representation for action recognition. In
Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), 2018.

[3] C. Feichtenhofer, A. Pinz, and A. Zisserman. Convolutional
two-stream network fusion for video action recognition. In
Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), pages 1933–1941, 2016.



0 500 1000 1500 2000
0.20

0.25

0.30

0.35

0.40

0.45

0.50

0.55
Evolutionary Search

Random Search

Figure 7. Random search vs. our evolutionary algorithm.

[4] K. Hara, H. Kataoka, and Y. Satoh. Learning spatio-temporal
features with 3d residual networks for action recognition. In
Proceedings of the ICCV Workshop on Action, Gesture, and
Emotion Recognition, volume 2, page 4, 2017.

[5] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning
for image recognition. In Proceedings of the IEEE Confer-
ence on Computer Vision and Pattern Recognition (CVPR),
2016.

[6] G. Huang, Z. Liu, L. van der Maaten, and K. Q. Weinberger.
Densely connected convolutional networks. In Proceedings
of the IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 2017.

[7] S. Jegou, M. Drozdzal, D. Vazquez, A. Romero, and Y. Ben-
gio. One hundred layers tiramisu: Fully convolutional
densenets for semantic segmentation. 2016.

[8] S. Ji, W. Xu, M. Yang, and K. Yu. 3d convolutional neu-
ral networks for human action recognition. In International
Conference on Machine Learning (ICML), pages 495–502,
2010.

[9] A. Karpathy, G. Toderici, S. Shetty, T. Leung, R. Sukthankar,
and L. Fei-Fei. Large-scale video classification with convo-
lutional neural networks. In Proceedings of the IEEE Confer-
ence on Computer Vision and Pattern Recognition (CVPR),
pages 1725–1732, 2014.

[10] W. Kay, J. Carreira, K. Simonyan, B. Zhang, C. Hillier, S. Vi-
jayanarasimhan, F. Viola, T. Green, T. Back, P. Natsev, et al.
The kinetics human action video dataset. arXiv preprint
arXiv:1705.06950, 2017.

[11] A. Krizhevsky, I. Sutskever, and G. Hinton. Imagenet classi-
fication with deep convolutional neural networks. 2012.

[12] H. Kuehne, H. Jhuang, E. Garrote, T. Poggio, and T. Serre.
HMDB: a large video database for human motion recogni-
tion. In Proceedings of the IEEE International Conference
on Computer Vision (ICCV), 2011.

[13] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-
based learning applied to document recognition. 1998.

[14] M. Lin, Q. Chen, and S. Yan. Network in network. 2013.
[15] T.-Y. Lin, P. Goyal, R. Girshick, K. He, and P. Dollar. Focal

loss for dense object detection. 2017.
[16] W. Luo, B. Yang, and R. Urtasun. Fast and furious: Real

time end-to-end 3d detection, tracking and motion forecast-
ing with a single convolutional net. 2018.

[17] E. Mansimov, N. Srivastava, and R. Salakhutdinov. Ini-
tialization strategies of spatio-temporal convolutional neural
networks. arXiv preprint arXiv:1503.07274, 2015.

[18] J. Y.-H. Ng, M. Hausknecht, S. Vijayanarasimhan,
O. Vinyals, R. Monga, and G. Toderici. Beyond short snip-
pets: Deep networks for video classification. In Proceed-
ings of the IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), pages 4694–4702. IEEE, 2015.

[19] A. Piergiovanni, C. Fan, and M. S. Ryoo. Learning latent
sub-events in activity videos using temporal attention filters.
In Proceedings of the American Association for Artificial In-
telligence (AAAI), 2017.

[20] A. Piergiovanni and M. S. Ryoo. Temporal gaussian mixture
layer for videos. arXiv preprint arXiv:1803.06316, 2018.

[21] E. Real, A. Aggarwal, Y. Huang, and Q. V. Le. Regular-
ized evolution for image classifier architecture search. arXiv
preprint arXiv:1802.01548, 2018.

[22] E. Real, S. Moore, A. Selle, Y. L. S. Saurabh Saxena, Q. Le,
and A. Kurakin. Large-scale evolution of image classifiers.
In International Conference on Machine Learning (ICML),
2017.

[23] S. Ren, K. He, R. Girshick, and J. Sun. Faster r-cnn: To-
wards real-time object detection with region proposal net-
works. 2015.

[24] G. A. Sigurdsson, S. Divvala, A. Farhadi, and A. Gupta.
Asynchronous temporal fields for action recognition. arXiv
preprint arXiv:1612.06371, 2016.

[25] G. A. Sigurdsson, G. Varol, X. Wang, A. Farhadi, I. Laptev,
and A. Gupta. Hollywood in homes: Crowdsourcing data
collection for activity understanding. In Proceedings of Eu-
ropean Conference on Computer Vision (ECCV), 2016.

[26] K. Simonyan and A. Zisserman. Two-stream convolutional
networks for action recognition in videos. In Advances in
Neural Information Processing Systems (NIPS), pages 568–
576, 2014.

[27] C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna.
Rethinking the inception architecture for computer vision.
In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), pages 2818–2826, 2016.

[28] M. Tan, B. Chen, R. Pang, V. Vasudevan, and Q. V. Le.
Mnasnet: Platform-aware neural architecture search for mo-
bile. arXiv preprint arXiv:1807.11626, 2018.

[29] D. Tran, L. D. Bourdev, R. Fergus, L. Torresani, and
M. Paluri. C3d: generic features for video analysis. CoRR,
abs/1412.0767, 2(7):8, 2014.

[30] D. Tran, J. Ray, Z. Shou, S.-F. Chang, and M. Paluri. Con-
vnet architecture search for spatiotemporal feature learning.
arXiv preprint arXiv:1708.05038, 2017.

[31] D. Tran, J. Ray, Z. Shou, S.-F. Chang, and M. Paluri. Con-
vnet architecture search for spatiotemporal feature learning.
arXiv preprint arXiv:1708.05038, 2017.

[32] D. Tran, H. Wang, L. Torresani, J. Ray, Y. LeCun, and
M. Paluri. A closer look at spatiotemporal convolutions for
action recognition. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), 2018.

[33] J. Wang and A. Cherian. Learning discriminative video rep-
resentations using adversarial perturbations. In Proceedings
of European Conference on Computer Vision (ECCV), 2018.



[34] J. Wang, A. Cherian, F. Porikli, and S. Gould. Video repre-
sentation learning using discriminative pooling. In Proceed-
ings of the IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), pages 1149–1158, 2018.

[35] X. Wang, R. Girshick, A. Gupta, and K. He. Non-local neural
networks. In Proceedings of the IEEE Conference on Com-
puter Vision and Pattern Recognition (CVPR), 2018.

[36] S. Xie, R. Girshick, P. Dollar, Z. Tu, and K. He. Aggregated
residual transformations for deep neural networks. In Pro-
ceedings of the IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), 2017.

[37] S. Xie, C. Sun, J. Huang, Z. Tu, and K. Murphy. Rethink-
ing spatiotemporal feature learning for video understanding,
2018.

[38] S. Yeung, O. Russakovsky, N. Jin, M. Andriluka, G. Mori,
and L. Fei-Fei. Every moment counts: Dense detailed label-
ing of actions in complex videos. International Journal of
Computer Vision (IJCV), pages 1–15, 2015.

[39] B. Zhou, A. Andonian, and A. Torralba. Temporal relational
reasoning in videos. arXiv preprint arXiv:1711.08496, 2017.

[40] B. Zoph and Q. Le. Neural architecture search with rein-
forcement learning. In International Conference on Learn-
ing Representations (ICLR), 2017.

[41] B. Zoph, V. Vasudevan, J. Shlens, and Q. V. Le. Learn-
ing transferable architectures for scalable image recognition.
In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), 2018.

A. Evolution training details
Our architecture evolution was done with 50 parallel

workers. Each worker selects S = 25 random samples from
the population to generate one new child architecture based
on the individual with the highest fitness (i.e., the parent).
The architecture is trained using 12 GPUs on the training
data. As training video CNNs is computationally expen-
sive, during the search, we train the models with video seg-
ments of size 32 × 176 × 176 (for HMDB and Kinetics)
or 64 × 176 × 176 (for Charades) where 32 and 64 are the
number of frames. We use the batch size of 144 (12 per
GPU). Each newly generated child architecture is trained
for 1000 iterations (i.e., it looks at 144000 samples), then
evaluated with a separate validation set of 1000 examples.
The classification accuracy measured using the validation
becomes the ‘fitness’ used in our algorithm. We observed
that relative recognition performances of the models (on the
validation set) is stable after training for 1000 iterations, and
we used this setting in our evolutionary algorithm to reduce
the model training time necessary for the architecture eval-
uation.

B. Mutation Rate
In Fig. 8, we compare the architecture evolution done

with a constant mutation rate of 1 or 3 (per round) and our
annealed mutation rate. As we described in the main sec-
tion of the paper, our evolutionary algorithm applies a set of

0 200 400 600 800 1000 1200 1400 1600 1800
0.20

0.25

0.30

0.35

0.40

0.45

0.50

0.55
Annealed Mutation Rate

Constant Mutation Rate (r=1)

Constant Mutation Rate (r=3)

Figure 8. Comparison of the architecture search with various mu-
tation rates. We observe that the constant rate takes longer to reach
higher performance while the higher mutation rate initially learns
faster, but plateaus at a lower value. Annealing the mutate rate
based on the number of architectures evaluated provides the best
performance.

random mutation operators at each round. In our annealed
mutation rate strategy, the number of the mutation operators
to apply is decided based on the evolution round i: it starts
with d = 7 mutations initially and it is linearly decreased
by bi/rc where r is 100 in our experimental setting. That
is, at the ith round, a total of max(dd − i/re, 1) random
mutations were applied to the parent. We find that the an-
nealed mutation rate performs the best. Our strategy allows
the search to explore more diverse architectures based on
the best initial models, but then refine the top performing
models after many evolution rounds.

C. Discovered Architectures
We illustrate the architectures found in the following fig-

ures. The color of each layer corresponds to a specific layer
type, as illustrated in Fig. 9. More specifically, blue, green,
red are for space-time 3D conv layer, (2+1)D layer, and
iTGM layer. Pink is for 1x1x1 conv layer, and grey is for
max pooling. Average pooling layer and channel concate-
nation layer are indicated with purple and organge colors.

In Figures 10, 11, and 12, we show the architectures
found when searching on Kinetics using RGB inputs. We
observe that the networks learn quite different architectures.
For example, the third inception module is quite different
in all three networks. In Figures 13, 14, and 15, we illus-
trate the models found when searching on Kinetics using
optical flow as input. When using optical flow as input,
we observe that the architectures perfer to use layers with
shorter temporal durations, using very few layers with size
11 and 9 when compared to the RGB networks. (2+1)D
conv layers and iTGM layers were used much more com-
monly in both RGB and optical flow architectures. Parallel
space-time conv and pooling layers with different temporal



TGM

1x1x1

Max-Pool

Concatenation

Averaging

(2+1)D

3D 
Conv

Figure 9. The color for each layer type.

lengths were also very commonly observed.
In Figures 16, 17, and 18, we illustrate the architectures

found when searching on Charades. We observe that on
Charades, the architectures generally capture longer tempo-
ral intervals (e.g., the first layer has size 11) and many layers
contain longer kernels (i.e., 9 and 11) especially compared
to the architectures found on Kinetics.



3 3 1 3 3

1

1 7

1 9

1 3

7 1

11 1

9 1

C
o
n

c
a
t

1

111

19

31

C
o
n

c
a
t

3

1

13

15

19

51

C
o
n

c
a
t

1

13

15

111

C
o
n

c
a
t

1

19

13

17

31

C
o
n

c
a
t

1

15

13

91

51

31

C
o
n

c
a
t

1

1 11

1 7

7 1

7 1

C
o
n

c
a
t

11

1

1 11

1 11

1 9

5 1

11 1

3 1

C
o
n

c
a
t
1

1 7

1 11

1 11

1 11

5 1

C
o
n

c
a
t

2 1

Figure 10. Kinetics RGB Model 1.

3 3 1 7 3

1

1 7

1 9

1 9

1 7

7 1

9 1

C
o
n

c
a
t

1

111

13

111

91

C
o
n

c
a
t

3

1

19

19

13

111

C
o
n

c
a
t

1

19

15

13

111

C
o
n

c
a
t

1

19

19

71

C
o
n

c
a
t

1

15

111

111

51

C
o
n

c
a
t

1

1 11

1 7

7 1

7 1

C
o
n

c
a
t

3

1

1 11

1 11

1 9

9 1

C
o
n

c
a
t

1

1 5

1 9

1 9

5 1

C
o
n

c
a
t

2 1

Figure 11. Kinetics RGB Model 2.



3 3 1 3 3

1

1 7

1 9

1 3

7 1

11 1

9 1

C
o
n

c
a
t

1

111

19

31

C
o
n

c
a
t

3

1

13

111

13

51

C
o
n

c
a
t

1

13

15

111

C
o
n

c
a
t

1

19

13

31

C
o
n

c
a
t

1

15

13

91

51

31

C
o
n

c
a
t

1

1 11

1 7

7 1

C
o
n

c
a
t

7

1

1 11

1 11

1 9

5 1

11 1

3 1

C
o
n

c
a
t
1

1 7

1 9

1 11

1 11

5 1

C
o
n

c
a
t

2 1

Figure 12. Kinetics RGB Model 3.

7 3 1 7 3

1

1 3

1 9

1 5

1 7

7 1

9 1

C
o
n

c
a
t

1

19

15

71

C
o
n

c
a
t

7

1

17

19

71

C
o
n

c
a
t

1

15

13

51

C
o
n

c
a
t

1

13

17

13

13

51

51

C
o
n

c
a
t

1

111

15

13

13

51

C
o
n

c
a
t

1

1 9

1 3

5 1

C
o
n

c
a
t

5

1

1 5

1 9

1 11

1 7

1 7

5 1

C
o
n

c
a
t

1

1 5

1 3

1 5

1 3

3 1

C
o
n

c
a
t

2 1

Figure 13. Kinetics optical flow Model 1.



7 3 1 7 3

1

1 3

1 9

1 5

1 9

7 1

9 1

C
o
n

c
a
t

1

19

15

71

C
o
n

c
a
t

7

1

111

19

31

C
o
n

c
a
t

1

13

13

15

51

C
o
n

c
a
t

1

13

15

13

19

51

51

C
o
n

c
a
t

1

111

15

13

51

C
o
n

c
a
t

1

1 9

1 7

5 1

C
o
n

c
a
t

5

1

1 5

1 9

1 11

1 7

1 7

5 1

C
o
n

c
a
t
1

1 5

1 3

1 3

1 5

1 3

3 1

C
o
n

c
a
t

2 1

Figure 14. Kinetics optical flow Model 2.

7 3 1 7 3

1

1 3

1 9

1 5

1 7

7 1

9 1

C
o
n

c
a
t

1

19

15

71

C
o
n

c
a
t

7

1

17

19

71

C
o
n

c
a
t

1

15

13

51

C
o
n

c
a
t

1

13

17

13

13

51

51

C
o
n

c
a
t

1

111

15

13

13

51

C
o
n

c
a
t

1

1 9

1 3

5 1

3 1

C
o
n

c
a
t

5

1

1 5

1 9

1 11

1 7

1 7

5 1

C
o
n

c
a
t

1

1 5

1 3

1 5

1 3

3 1

C
o
n

c
a
t

2 1

Figure 15. Kinetics optical flow Model 3.



11 5 1 5 3

1

1 9

1 3

11 1

C
o
n

c
a
t

1

19

19

15

111

31

31

C
o
n

c
a
t

3

1

13

15

15

71

111

31

C
o
n

c
a
t

1

15

13

71

C
o
n

c
a
t

1

111

19

51

C
o
n

c
a
t

1

15

15

17

19

91

31

C
o
n

c
a
t

1

1 9

1 3

1 3

1 9

9 1

C
o
n

c
a
t

9

1

1 5

1 5

1 3

5 1

C
o
n

c
a
t
1

1 5

1 7

1 5

7 1

C
o
n

c
a
t

2 1

Figure 16. Charades RGB Model 1.

11 5 1 3 3

1

1 7

1 7

9 1

C
o
n

c
a
t

1

17

111

91

C
o
n

c
a
t

3

1

13

19

15

111

71

51

C
o
n

c
a
t

1

13

19

91

71

51

C
o
n

c
a
t

1

17

13

111

71

C
o
n

c
a
t

1

19

19

15

111

51

C
o
n

c
a
t

1

1 5

1 11

1 3

1 3

3 1

7 1

C
o
n

c
a
t

11

1

1 9

1 11

1 3

1 9

3 1

C
o
n

c
a
t

1

1 3

1 9

3 1

C
o
n

c
a
t

2 1

Figure 17. Charades RGB Model 2.



7 5 1 5 11

1

1 9

1 3

11 1

C
o
n

c
a
t

1

19

19

15

111

31

31

C
o
n

c
a
t

3

1

13

15

15

71

111

31

C
o
n

c
a
t

1

15

15

71

C
o
n

c
a
t

1

19

19

13

51

C
o
n

c
a
t

1

15

15

17

19

91

31

C
o
n

c
a
t

1

1 11

1 5

1 3

1 11

9 1

C
o
n

c
a
t

9

1

1 3

1 5

1 3

5 1

C
o
n

c
a
t

1

1 5

1 7

1 5

7 1

C
o
n

c
a
t

2 1

Figure 18. Charades RGB Model 3.


	1 . Introduction
	2 . Related work
	3 . Convolutional layers for action recognition
	4 . Neural architecture evolution for videos
	4.1 . Search space and base architecture
	4.2 . Evolutionary algorithm

	5 . Experiments
	5.1 . Datasets
	5.2 . Experimental setup and details
	5.3 . Baselines
	5.4 . Results

	6 . Conclusion
	A . Evolution training details
	B . Mutation Rate
	C . Discovered Architectures

