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ABSTRACT
Modern commercial Heating, Ventilation, and Air Conditioning
(HVAC) devices form a complex and interconnected thermody-
namic system with the building and outside weather conditions,
and current setpoint control policies are not fully optimized for
minimizing energy use and carbon emission. Given a suitable train-
ing environment, a Reinforcement Learning (RL) model is able to
improve upon these policies, but training such a model, especially
in a way that scales to thousands of buildings, presents many real
world challenges. We propose a novel simulation-based approach,
where a customized simulator is used to train the agent for each
building. Our open-source simulator1 is lightweight and calibrated
via telemetry from the building to reach a higher level of fidelity. On
a two-story, 68,000 square foot building, with 127 devices, we were
able to calibrate our simulator to have just over half a degree of drift
from the real world over a six-hour interval. This approach is an
important step toward having a real-world RL control system that
can be scaled to many buildings, allowing for greater efficiency and
resulting in reduced energy consumption and carbon emissions.
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1 INTRODUCTION
Energy optimization and management in commercial buildings
is a very important problem, whose importance is only growing
with time. Buildings account for 39% of all US carbon emissions
[13]. Reducing those emissions by even a small percentage can
have a significant effect, especially in more extreme climates. Our
contributions include a highly customizable and scalable HVAC and
building simulator, a rapid configuration method to customize the

1Available online: https://github.com/google/sbsim
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simulator to a particular building, a calibration method to improve
this fidelity using real world data, and an evaluation method to
measure the simulator fidelity.

Overview of the HVAC problem Most office buildings are
equipped with advanced HVAC devices, like Variable Air Volume
(VAV) devices, Hot Water Systems (HWS), Air Conditioner (AC)
and Air Handlers that are configured and tuned by the engineers,
manufacturers, installers, and operators to run efficiently with the
device’s local control loops [15]. However, integrating multiple
HVAC devices from diverse vendors into a building “system” re-
quires technicians to program fixed operating conditions for these
units, which may not be optimal for every building and every poten-
tial weather condition. If existing setpoint control policies are not
optimal under all conditions, the possibility exists that an MLmodel
may be trained to continuously tune a small number of setpoints
to achieve greater energy efficiency and reduced carbon emission
[22].

RL for HVAC systemsWe define the state of the office building
𝑆𝑡 at time 𝑡 as a fixed length vector ofmeasurements from sensors on
the building’s devices, such as a specific VAV’s zone air temperature,
gas meter’s flow rate, etc. The action on the building 𝐴𝑡 is a fixed-
length vector of device setpoints selected by the agent at time 𝑡 ,
such as the boiler’s supply water temperature setpoint, etc. We
also define a custom feedback signal, or reward, that indicates the
quality of taking an action in the current state, as a weighted sum of
negative cost functions for carbon emission, energy consumption,
and zone-level setpoint deviation. The goal of RL is to maximize the
expected long-term cumulative reward [18]. In order to converge
to the optimal policy, the agent requires many training iterations,
making training directly on the building from scratch inefficient
and impracticable. Therefore, it is necessary to train in an offline
sandbox environment that adequately emulates the dynamics of
the building before being deployed on the actual building.

2 RELATEDWORK
Considerable attention has been paid to HVAC control in recent
years, and a growing portion of that has considered how RL and its
various associated algorithms can be leveraged [8, 14, 20, 23, 24].
A central requirement in RL is the offline environment that trains
the RL agent. Several methods for this have been proposed, largely
falling under three broad categories.

Data-driven Emulators: Some works attempt to learn a dy-
namics model as a multivariate regression model from real world
data [25, 29], often using recurrent neural network architectures,
such as LSTMs [16, 19, 28]. The difficulty here is that data-driven
models often do not generalize well to circumstances outside the
training distribution, especially since they are not physics based.
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Physics-based Simulation: EnergyPlus [7], a high-fidelity sim-
ulator developed by the Department of Energy, is commonly used
[2, 21, 22, 27], but suffers from the scalability issues outlined above.

Offline RL: The second approach is to train the agent directly
from the historical real world data, without ever producing an in-
teractive environment [4–6]. While the real world data is obviously
of high accuracy and quality, this presents a major challenge, since
the agent cannot take actions in the real world and interact with
any form of an environment, severely limiting its ability to improve
over the baseline policy that produced the real world data [10].

To overcome the limitations of each of the above three methods,
some work has proposed a hybrid approach [3, 26], and this is the
category our work falls under. Our approach uses a physics-based
simulator that achieves an ideal balance between speed and fidelity,
which is sufficient to train an effective control agent off-line.

3 A SIMPLE CALIBRATED SIMULATION
Design Considerations A fundamental tradeoff when designing a
simulator is speed versus fidelity. Fidelity is the simulator’s ability to
reproduce the building’s true dynamics that affect the optimization
process. Speed refers to both simulator configuration time, and
agent training time, i.e., the time necessary for the agent to optimize
its policy using the simulator. Every building is unique, due to
its physical layout, equipment, and location. Fully customizing
a high fidelity simulation to a specific target building requires
nearly exhaustive knowledge of the building structure, materials,
location, etc., some of which is unknowable. Also, the configuration
time required for high-fidelity simulations limits their utility for
deploying RL-based optimization to many buildings. Our goal is to
develop a method for applying RL at scale to commercial buildings.
To this end, we must have a simulated environment to train the
agent, as real world training is not possible. In order to scale tomany
buildings it must be easy for our simulator to be configured to a
new building, with enough fidelity to the real world to be useful. We
note that while RL is the control method proposed in this work, our
calibrated simulator is useful as well for other controller methods
such as Model Predictive Control [9]. To meet these requirements
we designed a lightweight simulator based on Finite Differences
approximation of heat exchange, with a novel automated procedure
to go from building floor plans to a custom simulator with little
manual effort. For improved fidelity, we designed a calibration and
evaluation pipeline based on real telemetry.

Building ThermalModelWe developed our simulation around
our abstract thermal model for office buildings, shown in Figure 1.
A building consists of conditioned zones, where the measured zone
temperature,𝑇𝑧 , should be within upper and lower setpoints,𝑇𝑧,𝑚𝑎𝑥

and𝑇𝑧,𝑚𝑖𝑛 . Thermal power for heating or cooling is supplied to each
zone, ¤𝑄𝑠 , and recirculated from the zone, ¤𝑄𝑟 from the HVAC system,
with additional thermal exchange ¤𝑄𝑧 from walls, doors, etc. The
Air Handler supplies the building with air at supply air temperature
setpoint 𝑇𝑠 drawing fresh air, ¤𝑚𝑎𝑚𝑏 at ambient temperatures, 𝑇𝑎𝑚𝑏

and returning exhaust air ¤𝑚𝑒𝑥ℎ𝑎𝑢𝑠𝑡 at temperature 𝑇𝑒𝑥ℎ𝑎𝑢𝑠𝑡 to the
outside using intake and exhaust fans: ¤𝑊𝑎,𝑖𝑛 and ¤𝑊𝑎,𝑜𝑢𝑡 . Some of
the return air can be recirculated, ¤𝑚𝑟𝑒𝑐𝑖𝑟𝑐 . Central air conditioning
is achievedwith a chiller and pump that joins a refrigeration cycle to
the supply air, consuming electrical energy for the AC compressor

¤𝑊𝑐 and coolant circulation, ¤𝑊𝑐,𝑝 . The hot water cycle consists of a
boiler that maintains the supply water temperature at 𝑇𝑏 heated by
natural gas power ¤𝑄𝑏 , and a pump that circulates hot water through
the building, with electrical power ¤𝑊𝑏,𝑝 . Supply air is delivered to
the zones through VAV devices.

We selectedwater supply temperature𝑇𝑏 and the air handler
supply temperature 𝑇𝑠 as agent actions because they affect the
balance of electricity and natural gas consumption, they affect
multiple device interactions, and they affect occupant comfort.

Finite Differences Approximation The diffusion of thermal
energy in time and space of the building can be approximated using
the method of Finite Differences (FD)[12, 17], and applying an
energy balance. This method divides each floor of the building into
a grid of three-dimensional control volumes and applies thermal
diffusion equations to estimate the temperature of each control
volume. By assuming each floor is thermally isolated, (i.e., no heat
is transferred between floors), we can simplify the three-spatial
dimensions into a spatial two-dimensional heat transfer problem.
Each control volume is a narrow volume bounded horizontally,
parameterized by Δ𝑥2, and vertically by the height of the floor. The
energy balance, shown below, is applied to each discrete control
volume in the FD grid, and consists of the following components:
(a) the thermal exchange across each face of the four participating
faces control volume via conduction or convection 𝑄1, 𝑄2, 𝑄3, 𝑄4,
(b) the change in internal energy over time in the control volume
𝑀𝑐 Δ𝑇Δ𝑡 , and (c) an external energy source that enables applying
local thermal energy from the HVAC model only for those control
volumes that include an airflow diffuser, 𝑄𝑒𝑥𝑡 . The equation is
𝑄𝑒𝑥𝑡 +𝑄1 +𝑄2 +𝑄3 +𝑄4 = 𝑀𝑐

Δ𝑇
Δ𝑡 , where𝑀 is the mass and 𝑐 is the

heat capacity of the control volume, Δ𝑇 is the temperature change
from the prior timestep and Δ𝑡 is the timestep interval.

Figure 1: Building Thermal Model

The thermal exchange in (a) is calculated using Fourier’s law
of steady conduction in the interior control volumes (walls and
interior air), parameterized by the conductivity of the volume, and
the exchange across the exterior faces of control volumes is cal-
culated using the forced convection equation, parameterized by
the convection coefficient, which approximates winds and currents
surrounding the building. The change in internal energy (b) is pa-
rameterized by the density, and heat capacity of the control volume.
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Finally, the thermal energy associated with the VAV (c) is equally
distributed to all associated control volumes that have a diffuser.

Thermal diffusion within the building is mainly accomplished
via forced or natural convection currents, which can be notoriously
difficult to estimate accurately. We note that heat transfer using air
circulation is effectively the exchange of air mass between control
volumes, which we approximate by a randomized shuffling of air
within zones, parameterized by a shuffle probability.

HVAC Model The HVAC system is modeled as an energy bal-
ance with a lossy thermal exchange between the hot water and air
circuits, evaluating temperature differences, and air and water flow
rates with efficiency parameters. Aggregate heating and cooling
demands at the AC and HWS are governed by thermostats that
create demand when its zone temperature is near zone air tempera-
ture setpoints. Special control volumes associated with air diffusers
allow thermal energy exchange between the HVAC model and the
FD grid, ¤𝑄𝑠 .

Simulator Configuration For RL to scale to many buildings, it
is critical to be able to easily and rapidly configure the simulator
to any arbitrary building. To configure the simulator, we require
floorplans, and HVAC metadata. We preprocess the detailed floor-
plan blueprints of the building, and extract a grid that gives us an
approximate placement of walls. We also employ a user interface
to label the location of each HVAC device on the floorplan grid.
We tested this pipeline on our pilot building, which consisted of
two floors with combined surface area of 68,000 ft2, and 127 HVAC
devices. Given floorplans and HVAC layout information, a single
technician was able to generate a fully specified simulation in under
3 hours that matched the real building in every device and room.

Simulator Calibration and Evaluation In order to calibrate
the simulator to the real world using data, we must have a metric
with which to evaluate our simulator, and an optimization method
to improve our simulator on this metric. We proposed a novel
evaluation procedure, based on 𝑁 -step prediction. Each iteration
step of our simulator was designed to represent a five minute in-
terval, and our real world data is also sampled in five minute in-
tervals. To evaluate the simulator, we take a chunk of real data
of 𝑁 observations. We then initialize the simulator so that its ini-
tial state matches that of the starting observation, and run the
simulator for 𝑁 steps, replaying the same HVAC policy as was
used in the real world observations. Next, we calculate our sim-
ulation fidelity metric, which is the mean absolute error of the
measured zone air temperatures, at the 𝑁 th timestep. More for-
mally, we define the spatial Mean Absolute Error (MAE) of 𝑍 zones
at timestep 𝑡 as 𝜖𝑡 = 1

𝑍

∑𝑍
𝑧=1 |𝑇𝑟𝑒𝑎𝑙,𝑡,𝑧 − 𝑇𝑠𝑖𝑚,𝑡,𝑧 |, where 𝑇𝑟𝑒𝑎𝑙,𝑡,𝑧

is the measured zone air temperature for zone 𝑧 at timestamp 𝑡 ,
and 𝑇𝑠𝑖𝑚,𝑡,𝑧 = 1

𝐶𝑧

∑𝐶𝑧

𝑐=1𝑇𝑡,𝑐 is the mean temperature of all control
volumes 𝐶𝑧 in zone 𝑧 at time 𝑡 . Thus, to evaluate the simulator on
𝑁 -step prediction, we run the simulator for timesteps 0 to 𝑁 − 1,
and calculate the above metric for 𝑡 = 𝑁 − 1.

Simulator Calibration Once we defined our simulation fidelity
metric, we can minimize the error by searching over the physical
parameters that affect the simulation response. The variables tuned
during the parameter search included the following: (a) the forced
convection coefficient quantifying outside wind and air currents
against the building exterior surfaces; (b) the thermal conductivity,

heat capacity, and density of exterior and interior walls; and (c)
the shuffle probability that controls how likely an air volume will
be exchanged with another within the zone to approximate the
internal air circulation and interior forced convection.

4 EXPERIMENT RESULTS
We now demonstrate the results of how our simulator, when tuned
and calibrated, is able to make real-world predictions.

Experiment SetupTo test out our simulator, we obtained teleme-
try recordings from our pilot building, a commercial office building
located in Mountain View, California. The building has two stories
with a combined surface area of 68,000 square feet, and has 127
HVAC devices. We obtained floor plan blueprints and used them to
configure a customized simulator for the building, a process that
took a single human less than three hours to complete.

Calibration Data To tune and evaluate our simulator, we took
three, non-overlapping intervals of telemetry: (a) Thursday, July
6 2023, from 1:40 AM to 7:40 AM (𝑁 = 72), (b) Friday, July 7 2023,
from 1:40 AM to 7:40 AM (𝑁 = 72), and (c) from Friday, July 7 2023,
from 11:40 AM to 5:40 PM (𝑁 = 72). The first telemetry interval,
(a), was used to tune the simulator for calibration. The second and
third telemetry intervals, (b) and (c), were used for validation.

Table 1: Hyperparameter ranges and chosen values

Hyperparameter range best

exterior convection coefficient (𝑊 /𝑚2/𝐾 ) 5 - 800 800
exterior wall conductivity (𝑊 /𝑚/𝐾 ) 0.01 - 1 0.01

exterior wall density (𝑘𝑔/𝑚3) 1 - 3000 2748
exterior wall heat capacity (𝐽/𝐾𝑔/𝐾) 100 - 2500 2500
interior wall conductivity (𝑊 /𝑚/𝐾 ) 5 - 800 780

interior wall density (𝑘𝑔/𝑚3) 0.5 - 1500 0.5
interior wall heat capacity (𝐽/𝐾𝑔/𝐾) 500 - 1500 500
interior air volume shuffle probability 0 - 1 1

Calibration Procedure We tuned for 100 iterations on our
simulator. The parameters varied, the sweep range limits, and the
values found that minimized the calibration metric are shown in
Table 1. Because of our focus on speed, we can similate a five
minute interval in about 15 seconds on one CPU, allowing for very
rapid tuning. We reviewed the parameters that yielded the lowest
simulation error from calibration. Densities, heat capacities, and
conductivities plausibly matched common interior and exterior
building materials. However, the external convection coefficient
was higher than under normal weather conditions, and likely is
compensating for radiative losses and gains, whichwere not directly
simulated.

Calibration Results Table 2 shows the 𝑁 -step prediction fi-
delity, as MAE, over a six-hour prediction window (𝑁 = 72). We
calculated the spatial mean absolute temperature error, as defined
above. We also present a second metric, the median spatial temper-
ature error. This was not used in the tuning process, but gives us
some insight into how well the calibration process is performing.
As indicated in Table 2, our tuning procedure drifts only 0.6◦ on
average over a 6 hour period on the tuning set, and we get good
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generalization: almost identical error for the same time period of a
different day. It should be noted that an uncalibrated model had a
much larger error of 2.1◦. Furthermore, the median temperature in
these two cases is near zero, indicating that even despite drift, our
prediction remains a mostly unbiased estimator. For the different
time of day scenario, we observe a larger drift of 1.2◦, and the me-
dian is shifted as well, indicated that tuning on one time of day is
not as useful when making predictions on another.

Table 2: Mean and Median Absolute Error on 𝑁 = 72 predic-
tion window

Metric Tuning Data (a) Validation (b) Validation (c)

MAE 0.64 ◦𝐶 0.63 ◦𝐶 1.18 ◦𝐶
Median 0.01 ◦𝐶 0.18 ◦𝐶 0.98 ◦𝐶

Figure 2: Temperature Drift Over 6 hours, from validation
(b).

Visualizing Temperature Drift Over Time Figure 2 illustrates
temperature drift over time. At each time step, we plot the real world
temperatures in a blue boxplot and the simulator ones in orange.

Visualizing Spatial Errors Figure 3 is a heatmap of the spatial
temperature difference across both floors after six hours. Red re-
gions indicate the simulator was warmer than the validation data,
blue regions indicate cooler, and white regions had no temperature
difference. The ring of blue around the building indicates that our
simulator is too cold on the perimeter, which implies that the heat
exchange with the outside is happening more rapidly than it would
in the real world. The inside of the building remains red, which
means that despite the simulator perimeter being cooler than the
real world, the inside is warmer. The white band region running
along the perimeter is where the temperature achieved a perfect
fit with the validation data. The interior red regions are due to
slight errors in modeling interior heat exchange, and the blue re-
gions indicate errors due to high thermal losses with the outside.
We suspect these errors are largely due to assuming thermal isola-
tion between floors and assuming no radiative exchange with the
outside. Consequently, the calibration process compensates with
a high convection coefficient. Internal thermal exchange seems
slower than the real world, and the calibration compensates with
more rapid outside thermal exchange.

Figure 3: Heatmap representing the temperature difference
between the simulator and the real world after 6 hours, with
red indicating the simulator is hotter, and blue colder.

5 DISCUSSION AND FUTUREWORK
Developing a simulator is an important step toward achieving our
objective of training and deploying an RL agent on the actual build-
ing. We already have a real building that we have the ability to
control, and using our pipeline produced a calibrated simulator
that perfectly matches all of its devices, setpoints and sensors. Our
future goal, showing how an agent trained on this simulator is able
to produce a useful RL policy on the real building, will require a few
more components. In future live trials on the real building, we will
train an RL agent on our simulator, and measure its performance
in the real world. Care must be taken in this process, as RL agents
are prone to learning false patterns from the simulator [1, 11].

We also have outlined several approaches that we intend to use
to further improve our simulator and fine tuning process

(1) Tuning on data from multiple seasons, various times of day,
and longer time windows, to improve generalizability.

(2) Updating our simulation by adding in a radiative heat trans-
fer model that enables solar gains during the daytime and
losses at night.

(3) Expanding the action space to include AC static pressure
and HWS differential pressure that govern the air and water
flow rates.

(4) Adding a data-driven predictor-corrector to improve fidelity.
We are optimistic that our novel simulation tuning process will
allow us to develop a useful and transferable, HVAC control solution,
and we hope our work will inspire further effort in this field.
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