
Recommendations for All : Solving Thousands of
Recommendation Problems Daily

Bhargav Kanagal #1, Sandeep Tata ∗2

Google, USA
1 bhargav@google.com

2 tata@google.com

Abstract—Recommender systems are a key technology for
many online services including e-commerce, movies, music, and
news. Online retailers use product recommender systems to
help users discover items that they may like. However, building
a large-scale product recommender system is a challenging
task. The problems of sparsity and cold-start are much more
pronounced in this domain. Large online retailers have used
good recommendations to drive user engagement and improve
revenue, but the complexity involved is a roadblock to widespread
adoption by smaller retailers.

In this paper, we tackle the problem of generating product rec-
ommendations for tens of thousands of online retailers. Sigmund
is an industrial-scale system for providing recommendations as
a service. Sigmund was deployed to production in early 2014
and has been serving retailers every day. We describe the
design choices that we made in order to train accurate matrix
factorization models at minimal cost. We also share the lessons
we learned from this experience – both from a machine learning
perspective and a systems perspective. We hope that these lessons
are useful for building future machine-learning services.

I. INTRODUCTION

Recommendations are an important part of several online
experiences. Product recommendations have been used to
great effect by several large online retailers. Well designed
recommender systems can help the user both before and after
the purchase decision is made. For instance, by appropriately
surfacing substitutes for a product being considered, recom-
mendations can help the user make a better decision. After the
decision is made (say, the item is added to the shopping cart),
one can recommend suitable accessories and complements.
Figure 1 shows an example of both cases.

Building a good product recommender system is a dif-
ficult task. Several challenges have been described in the
literature [1], [2]. The problems of sparsity and cold-start
are much more pronounced in the product recommendation
domain. Product catalogs, even for a moderately sized re-
tailer, contain several million diverse items. In the popularly
researched movie domain a poor recommendation is merely a
movie or a TV-show that users are likely to ignore. Arguably,
a bad product recommendation carries a steeper penalty –
recommending auto parts to a user who does not own a car
would harm the user experience more than recommending
an action movie to someone who usually watches romantic
comedies. Furthermore, a growing retailer needs to perform

Nexus 5X

Nexus 5X
Case

Ear phonesCharging
Cable

Before purchase
decision

After purchase
decision

iPhone 6Nexus 6P Nexus 6

Fig. 1. Sample Recommendations generated for a user interested in a Nexus
5X phone before and after making a purchase decision.

well for new users and new products which tend to be the
hardest because of the lack of data. A retailer may only know
about a small number of purchases for a given user, as opposed
to tens (or even hundreds) of preference ratings for movies
gathered over time.

While latent-factor based recommender systems have per-
formed really well in contests [3], they are generally consid-
ered difficult to build, deploy, and maintain [1]. Large retailers
like Amazon can marshal a sophisticated team of engineers to
design and deploy a recommender system that does well for
such a setting. This is often too expensive for a typical online
retailer.

In this paper, we describe Sigmund, a system that allows us
to solve instances of recommendation problems as a service.
This system has been in production since early 2014 and
serves tens of thousands of retailers daily by serving product
recommendations. The system allows these retailers access
to sophisticated product recommendations without having to
design and deploy a recommender system. The objective of
Sigmund is to provide the best possible recommendations
at a low cost to thousands of retailers using a self-serve
infrastructure. This raises several interesting challenges.

First, a service that processes sensitive user data such as
purchases, clicks, and views of products needs to provide
strong privacy guarantees. In particular, retailers want to know
that their data will not be used to improve the recommenda-

tions for competitors. Sigmund guarantees this by completely
separating the data and models for each of the retailers, and
treating them as entirely separate instances of recommendation
problems.

Second, we need to deal with the heterogeneity of the
retailers in the modeling. In Sigmund, we have retailers that
range from hundreds of items in the catalog all the way to
retailers with tens of millions of items. As anyone who has
deployed a recommender system knows, getting good quality
recommendations in production often requires carefully tuning
several hyper-parameters (e.g., number of factors) to fit the
data characteristics. We describe how Sigmund automates this
process in a cost-effective manner, and discuss how recom-
mendation quality is monitored and maintained in Section III.

Third, to deal with the extreme sparsity in this domain,
we need to make use of side information available about
the items like product taxonomies, item brands, and item
prices. We use a combination of several algorithms proposed
in the recommendations literature [4], [5], [6] to compute high-
quality product recommendations.

Fourth, the training and inference pipelines for Sigmund
need to address the heterogeneity in the size of the retailer.
Generating recommendations for smaller retailers is fairly fast,
while it is takes much longer for the bigger retailers. We
need to carefully design our parallelization strategy so as to
handle the skew in the retailer sizes and minimize the overall
makespan at low cost. We describe several techniques adopted
to deal with this in Section IV.

Fifth, over 10s of thousands of retailers use Sigmund to
generate recommendations on a daily basis. To keep the
computational costs small, we use inexpensive pre-emptible
resources (like Amazon spot instances) and carefully manage
fault-tolerance. Further, we design our system to do as much of
the computation as possible offline and have very lightweight
computation at serving-time.

Finally, this is a continuous service – new data arrives every
day, new products are introduced, and new users start shopping
at these retailers. Also, new retailers sign up for the service
each day. To seamlessly address this scenario, Sigmund needs
to be designed to be easily manageable – we need to be
able to deploy all tasks easily, understand and debug problems
efficiently.

Note that this paper does not try to advance the state of
the art in solving a single instance of a recommendation
problem. In fact, approaches that leverage additional signals
like product descriptions and review texts [7], [8] may of-
fer better recommendations for items where we have little
view/click/purchase data. Our contribution in this paper is to
highlight the alternatives we considered for various design
decisions and describe the rationale for our choices. Our
choices were guided by the constraints of trying to provide
the best possible recommendations for thousands of retailers
at a very low cost with a small engineering team. We hope
this is helpful in inspiring future academic research in this area
and informative for practitioners building large-scale services
using machine-learning.

II. BACKGROUND

A. Data Flow

Sigmund uses views, clicks, and purchases associated with
each user to train various recommendation models. In addition
to this information a retailer may provide additional metadata
about each of their products (images, description, attributes,
etc.). The user-interaction data and product attribute data are
the two main inputs to the Sigmund pipeline.

Sigmund trains different models for substitute recommen-
dation (for use before the purchase decision) and acces-
sory/complement recommendation (for use after the purchase
decision). Once training is complete, an offline inference
process materializes the recommendations for each item and
retailer (using cheaper pre-emptible resources) in order to
offset consuming more expensive CPU cycles at serving time.
The recommendations are loaded into a distributed serving
system that leverages main-memory and flash to serve low-
latency requests for recommendations given a user and the
associated context. Similar trade-offs have been made in
previous industrial systems [2].

B. Infrastructure

The Sigmund pipeline leverages several pieces of Google
infrastructure including the Google File System [9] for dis-
tributed fault-tolerant storage, and Map-Reduce [10] for scal-
able data processing pipelines. Section IV assumes basic
familiarity with the notion of Map and Reduce tasks, and
how data is accessed from a shared distributed filesystem. The
features of MapReduce we describe and exploit have been
discussed in the literature [10] and many are present in open-
source implementations like Hadoop.

Another critical piece of underlying infrastructure is
Borg [11], Google’s global cluster management infrastructure.
Borg provides a specification language where a service like
Sigmund may describe the resources required for each of its
jobs. Similar to the public cloud offerings from Google [12]
and Amazon [13], it is often substantially cheaper to run
offline computations such as training and inference using pre-
emptible resources. In order to increase utilization, modern
cluster management systems offer up unused resources at a
substantial discount to regular VMs (Virtual Machines) with
the caveat that these VMs can be torn down (pre-empted)
with a much higher probability. When new requests arrive,
the cluster management algorithm may schedule a regular VM
by pre-empting low-priority VMs on a shared machine. The
cost advantage of this approach over using regular VMs can
be nearly 70%. However, one needs to carefully consider the
overheads from fault-tolerance and recovery mechanisms to
understand if the application indeed benefits from using pre-
emptible resources. Section IV goes into details about how we
made these choices for Sigmund.

III. MODELING CHOICES

Due to the extreme data sparsity in our training data, we
choose a factorization-based model, which has been shown to

work effectively [14]. As described in Section I, we train a
separate factorization model for each retailer.

A. Training Data

For each retailer, we use the traditional user-item matrix
as training data. An entry in the matrix denotes an interac-
tion between a user and an item. We consider user inter-
actions of increasing strengths: view < search < cart
< conversion. Product views have the lowest strength. A
search event leading to a product view indicates more explicit
intent, and therefore carries more importance. Similarly, a
cart event indicates more strength than a search event, and
a conversion event indicates that user bought the product. As
expected, the number of conversions and cart events is orders
of magnitude fewer than views and searches. Note that all of
this feedback is implicit, we do not receive any explicit rating
information from users.

B. Recommendation Model

Traditional matrix factorization algorithms e.g., Koren et
al. [14] that won the Netflix challenge, do not work for implicit
feedback data since we cannot contrast items liked by the user
from the irrelevant items (since all known entries are ones).
The only information we have is from user interaction which
could indicate a like or a dislike. Two distinct approaches have
been presented in the literature to handle implicit feedback:
(1) pairwise ranking-based algorithms such as Rendle et al. [6]
that distinguish items of positive intent (items bought, viewed,
searched, etc.) from carefully sampled negative items, and
(2) weighted SVD-based algorithms such as Hu et al. [15]
that work on the complete matrix by exploiting structure
(all unobserved entries are negative). In Sigmund, we choose
BPR [6], a pairwise ranking model mainly due to its ease of
implementation and its ability to model side features.

1) BPR: Pairwise Ranking Model: In BPR, a training
example consists of a triple (u, i, j) user with embedding u, a
positive item i with embedding vi (this is an item that the user
has previously interacted with), and a (sampled) negative item
j with embedding vj . (For convenience we use u to denote
both the user and the embedding for the user.) The affinity xui
between a user u and an item i is defined as the dot product
between the user and the item embeddings.

xui = 〈u, vi〉

The BPR model learns that the user’s affinity toward the
positive item is more than the user’s affinity toward the
negative item, i.e., xui > xuj . The embeddings are learned
such that the likelihood function below is maximized. (The
Gaussian priors on the user and item embeddings are omitted
for clarity.)

argmax
∏
u∈U

∏
i∈I

∏
j∈I\{i}

σ(xui − xuj)

Here, U denotes the set of users and I denotes the set of items.
Essentially, the logistic function σ(z) = 1

1+exp(−z) is used

to approximate the non-continuous, non-differential function:
xui > xuj .

In Sigmund, we use BPR to impose the constraint that items
interacted are more important to the user than the items that are
not interacted. For each interacted item, we select an unseen
item as a negative (Section III-B3). Additionally, we enforce
that items searched be more important than views. For every
searched item, we sample a negative item that is viewed but
not searched. Similarly, we also impose constraints for cart
> search and convert > cart. Training a BPR model is
simple with stochastic gradient descent. For a training example
(u, i, j), we update the embeddings corresponding to u, i and j
based on the loss for this example. Following the update step,
the loss is guaranteed to be strictly smaller for the example.
For a detailed overview of the update rules and other aspects
of BPR, please refer to Rendle et al. [6]. In Sigmund, we
implemented a single-machine, multi-threaded version of the
update algorithm (Details in Section IV).

2) User Context: To deal with the cold start problem and
generalize to new users, we choose to not represent users by
their identifiers, but instead represent users using the history
of actions performed. We refer to this as the user context in
the rest of the paper. An example of a user context is (view:
Nexus 5X, search: iPhone 6, cart: Nexus 6P)), which
indicates that the user viewed a ”Nexus 5X”, searched for an
”iPhone 6”, and subsequently added a ”Nexus 6P” to cart.
We do not generate an explicit embedding for user u, but
represent the embedding u using a linear combination of item
embeddings in the context. This model allows us to generalize
to new users without having to re-train the model, which is
useful in complex production environments. We maintain the
sequence of the past K user actions (usually about 25).

Formally, the user embedding u is computed as indicated
below. Suppose that the user context is given by the sequence
(I1, I2, . . . , IK), where Ij is the (action, item pair) at the jth

previous step.

u =

K∑
j=1

wjv
C
Ij (1)

As indicated in Equation 1, we determine the user embedding
using the corresponding items in the context. Note that we use
a separate embedding vC (context embedding for the item) and
not the item embedding v. Also, we use weight wj to decay
the effect of user actions that are in the past.

In Figure 2, we illustrate our methodology of constructing
training examples based on the user context. Here, we have
four time steps and the user performs four view actions. The
user context after the first time step is given by (a). Similarly,
the user context after the second time step is (a, b). At the end
of t1, the user chooses to view item b. Suppose we sample the
negative item to be item c. In this case, the BPR training
example corresponds to the triple: ((a), b, c). Similarly, at the
end of time t2, a training example is ((a, b), c, d). Note that
using Equation 1, we can compute the user embedding at time
t2 using the linear combination of vCa and vCb .

Phone (a)
t0

Case (b)
t1

Charger (c)
t2

Ear phones (d)
t3

Before t1, User context = a Context = (a,b) Context = (a,b,c)

Training example at t2 (a,b) c d

Positive item (Sampled) Negative item

Fig. 2. Illustrating user context and how training examples are constructed.

3) Negative item sampling: The BPR model is sensitive
to the choice of negative items that are sampled during the
update step. We use a combination of several heuristics to
sample good negative items:
• Use the item taxonomy [4] to choose items that are

far away in the taxonomy (in terms of tree distance,
Section III-D1).

• Exclude items that are highly co-bought/co-viewed items
from negative item list.

• Sample negative items based on their affinity values as
in Rendle et al. [16].

4) Features: To combat sparsity of the user-item matrix,
we incorporate available auxiliary features into the model. The
BPR model allows us to easily augment features on both the
user and item side. Since our problem is to rank-order items,
we use auxiliary features corresponding to item attributes. The
list of features we use are given below.

1) Item taxonomy: We use the item taxonomy to generalize
the item embeddings across other items that belong to
the same category. For example, the item embedding for
an “iPhone 6” needs to be similar to the embedding for
an “iPhone 6s”, and for the upcoming “iPhone 7s”. Item
taxonomies also help in dealing with new (cold) items.
We use a hierarchical additive model similar to the one
outlined in Kanagal et al. [4].

2) Item brands & prices: Most online shoppers are either
brand-aware, i.e., they show affinity to a particular
brand, or are price-conscious, i.e., they have a limited
budget for a given purchase. To exploit this insight, we
add the item’s brands and prices as features to the BPR
model (Ahmed et al. [5]). Combining this with the item
taxonomy enables us to smooth spendiness and brand-
awareness over the taxonomy.

C. Training & Model Selection

Training a BPR model involves determining values for the
item embeddings v for each item, context embeddings vC

for each item, and corresponding parameters for the auxiliary
features - taxonomy, brands and prices. One of the key
challenges while training a recommendation model is to select
the right features and hyper-parameters for the model. This
includes selecting the right number of factors, learning rate,
regularization parameters etc., all of which are critical to the

performance of the model. In fact, in our experiments, we
found that a model with randomly chosen hyper-parameters
can be a hundred times worse (on hold-out metrics) than the
best model.

In Sigmund, we need to determine the best hyper-parameters
for each of the retailers in the model. The best hyper-
parameters vary across retailers since they have very different
data characteristics – in terms of inventory size, number of
users visiting the retailer, their visitation patterns, etc. The
largest retailer in our system has tens of millions items (and
users), whereas the smallest retailer only has a few dozen items
in the inventory. The data characteristics are also different in
terms of the feature coverage. For instance, item category and
brand features is missing for many small retailers. In many
retailers, we found the brand coverage to be less than 10%,
which makes it detrimental to add it in as a feature [17]. This
means that we also need to do feature-selection separately for
each retailer.

1) Grid Search: We design a scalable grid search for each
of the retailers in the system in order to figure out the best
possible hyper-parameter combination. For each retailer, we
experiment with a range of values for each of the hyper-
parameters:
• F : number of factors – To account for the wide range of

retailer sizes (number of items), we experiment between
5 to 200 dimensions.

• Regularization parameters – We use separate regulariza-
tions for the item factor λV and for the context factor
λV C .

• Feature switches – use brand to determine if we need
to use the brand attribute as a feature, use price,
use taxonomy, etc.

• In addition, we experiment with initialization seed for
RNGs, values for the prior variance, etc.

We construct a cross-product of all the parameters above and
train a separate model for each of the resulting configurations
(we typically restrict to around a hundred for each retailer),
and select the best configuration (by hold-out metrics) for each
retailer. Naturally, the grid search is expensive and consumes a
significant amount of resources in our system. We discuss our
approach to make this more efficient with incremental training
in Section III-C3.

To set learning rates, we use the well known Adagrad [18]
algorithm in conjunction with stochastic gradient descent
(SGD). The Adagrad algorithm damps the learning rates of
frequently updated items, and relatively increases the rate for
the rare items. It works by keeping around, for each parameter,
the sum of the norms of its updates. Empirically we found that
Adagrad converges faster and is more reliable than the basic
SGD, even for non-convex problems [19].

Bayesian methods to automatically tune hyper-parameters
have been proposed in recent literature [20]; although we
note that this would complicate our serving stack (having to
maintain several models) and increase serving cost.

Services like Vizier [21] hold promise to improve on simple
grid-search based techniques for black-box hyperparameter

optimization – both for managing trials more easily and for
finding better models. If we were to rebuild the hyperparameter
search today, we would design it to integrate deeply with such
a service to manage the various trials. The design of such an
integration is beyond the scope of this paper.

2) Goodness Metrics: For every user with more than 2
interactions, we hold out the last item in the sequence from
the training data, and construct a hold out set. Note that this is
a separate dataset for each retailer. In general, the higher the
predicted position of the held-out item in the ranked list, the
better the model’s performance. There are several metrics that
have been proposed for ranking-based objectives, these include
AUC [22], Precision/Recall@K, n-DCG [23], and MAP (mean
average precision) [22], etc.

In Sigmund, we use the MAP metric since it assigns
more importance to items at the top of the ranked list. Most
recommender applications are constrained to show fewer than
10 items to the user, so we use MAP@10 to evaluate our
models. The naive method of computing MAP (or any other
metric) requires us to compute the ranks of all the held-out
items. This involves making one pass over the entire list of
items (for every example in the hold-out data set), which
is expensive for very large merchants. To save CPU cost,
we sample 10% of the items and only estimate the MAP.
We verified that this approximation does not hurt our model
selection criterion. Note that we do not need to approximate
MAP for small retailers.

We disregard AUC since it considers all positions on the
ranked list with equal importance, which is problematic for
our application. Also, for large merchants, the magnitude of
the AUC difference between a good model and a mediocre
one is very small (often in the fourth or fifth significant digit)
and difficult to interpret.

3) Incremental training: To ensure the recommendations
for the users are fresh, we need to retrain the models periodi-
cally for each of the retailers. Often, retailers add new items to
the catalog, modify the sale prices on items, etc. Further, items
may run out of stock. For best results, we found that we needed
to refresh our models on a daily basis. Building thousands of
models daily is expensive since it consumes a lot of CPU
and memory. We therefore developed an incremental training
strategy to save computational resources. The idea is to store
the models from the previous day and continue training from
there instead of starting from scratch. The embeddings for the
existing items are copied over and new items are initialized
with random embeddings. Note that in the incremental runs,
we do not perform a complete grid search for a retailer, instead
we only train the top-K most promising models (usually 3-5)
from the previous day. We also note that incremental runs
require much fewer iterations to converge [24]. To ensure that
the incremental runs work well with Adagrad, we reset all the
stored norms to 0 before the incremental update.

Periodically we restart the full model selection for all retail-
ers in order to guarantee that the models only reflect recent
history (instead of long-term history), which is a constraint
imposed by the terms-of-service. Furthermore, this periodic

restart helps us deal better with churn in the product inventory
and locate better hyper-parameters if there is a significant
change in the retailer data.

D. Inference

Inference is the problem of ranking all possible items for
a given user context. A naive method is to compute affinity
scores w.r.t every item and select the top-K items by score.
However, this does not scale to retailers that have several
millions of items. We therefore employ heuristics below, to
select a subset of likely candidates (about a thousand) to
recommend for each context, and only rank these items.

1) Candidate selection: We distinguish two types of recom-
mendation tasks, given a context (shown below), and develop
candidate selection strategies for each of them.

1) View-based: Here, we need to make a recommendation
given that the user has only viewed the item page, but
has not made any purchases. It is useful to recommend
items that are very similar to the item (also called
substitutes in recent literature [7]).

2) Purchase-based: Here, we need to make a recommenda-
tion given that the user has already purchased the item. It
is useful to recommend related items such as accessories
(or complements as described in the literature [7]).

Our candidate selection heuristics are based on a combina-
tion of item taxonomy, co-occurring items, re-purchasability,
item brands and other item-specific facets such as color (e.g.,
for apparel), weight (e.g., for laptops), etc.

Candidates from taxonomy: A product taxonomy is a tree
of categories that describe product families. A given item has
ancestors that extend to the root. See Figure 3 for an example.
We use the least common ancestor distance (LCA) on the
taxonomy as a notion of distance between items. For instance,
in Figure 3, the lca distance between the items Nexus 5X and
Nexus 6P is 1. Similarly the distance between Nexus 5X and
iPhone 6 is 2. Denote lcak(i) as the set of items that are at
an LCA distance at most k from item i. Given an item e.g.,
an LG Nexus 5X, we can choose as candidates, items at lca1,
i.e., other Android phones, or we can return items at lca2, i.e.,
all smart phones in general or use lca3, i.e., all cell phones.

Candidates from co-occurrence: We use items that are co-
viewed and co-bought along with the query item as candidates.
cv(i) denotes items that are co-viewed with item i, and cb(i)
denotes items co-bought with item i.

Suppose the context is given by a single item i. For view-
based recommendation, we choose the set C, given by the
following equation:

C = ∪j∈cv(i)lcak(j)

Essentially, we look at all the co-viewed items and look at
other items that are similar to it in terms of the taxonomy.
Using a small value of k keeps the recommendations precise,
but will decrease coverage for tail items. On the other hand,
using a large value of k provides a larger coverage at the risk

Android
Phones

Smart
Phones

Cell
Phones

Apple
Phones

Nexus 6P Nexus 5x iPhone 6

Other

Fig. 3. Illustrating LCA: Least Common Ancestor distance. distance(Nexus
5X, Nexus 6P) = 1, distance(Nexus 5X, iPhone 6) = 2 and distance(Nexus
5X, other) = 3.

of quality. Empirically we found that setting k = 2 provides
a good trade-off between quality and coverage.

For purchase-based recommendation we replace cv(i) with
cb(i) in the above equation and in addition, remove items that
are substitutes of i. For this setting, we empirically found that
expanding with lca1 provides the best recommendations for
this case.

C = ∪j∈cb(i)lca1(j) \ lca1(i)

Re-purchasing: Certain categories, e.g., diapers, water are
generally repurchased. We estimate these re-purchasable cate-
gories by counting the number of users that repeat purchases
from the same category. For such categories, we do not apply
the set difference above. Instead we estimate the average time
between purchases for such categories, and make periodic
recommendations. In practice, we also distinguish between
early funnel and late funnel users. For late funnel users, we
focus very close to the viewed item, i.e., we select candidates
that are further constrained to have the same item facets.

E. Co-occurrence models

Item-item collaborative filtering methods and their variants
based on PMI (pointwise mutual information) have been suc-
cessfully used in the industry [1], [25], [2] to recommend prod-
ucts on Amazon, movies on Netflix, and videos on YouTube.
These methods are simple, general, and very scalable. They
enable instantly updating recommendations, and are efficient
to recompute. Empirically we found that the best way to
combine the co-occurrence models along with factorization
is to use the co-occurrence model for the popular items (for
which we have more data) and augment the recommendations
for the tail items (more sparse) from factorization. This lets
us combine the best aspects of both recommenders.

IV. SYSTEMS CHOICES

In this section, we describe the design of the training and
inference pipelines in Sigmund. We assume basic familiarity
with Map-Reduce infrastructure [10] – most of the discussion
is relevant to open-source implementations like Hadoop. A
basic assumption in Sigmund is that a single model fits in the
memory of a single machine. Since it is not uncommon to

have machines with more than 128GB of memory as of the
writing of this paper, this is not a serious constraint for all but
the very largest retailers. Such large retailers typically build
their own recommendation systems, and therefore are not the
target customers for Sigmund.

We focus on the choices we made to keep the computa-
tional costs small and the pipeline manageable. While we
run on Google’s internal clusters, much like the public cloud
offerings [12], [13], it is often substantially cheaper to run
offline computations such as training and inference using pre-
emptible resources. However, one needs to carefully consider
the overheads from fault-tolerance and recovery mechanisms
to understand if the application indeed benefits from using
pre-emptible resources.

A. Model Selection

Choosing the right configuration of hyper-parameters for
each retailer is one of the critical steps in Sigmund. The
training infrastructure is set up to sweep over a specified set of
combinations of hyper-parameters. A full sweep training run
kicks off training for every combination of hyper-parameters
for every retailer. This is only required when starting up
Sigmund for the very first time, or when restarting the training
and inference infrastructure after a catastrophic loss of all the
models. An incremental sweep, as the name suggests, only
trains a small set of models (typically 3) for each retailer
corresponding to the best performing combinations of hyper-
parameters. The models are ordered by MAP@10 on a hold-
out set. Further, incremental sweep uses the models trained
in the previous run to initialize the parameters, and therefore
often converges faster than random initialization. Since starting
the Sigmund service, we have only had to resort to a full-sweep
after planned temporary turn-downs in the incremental sweep
pipeline. An incremental sweep may include a new retailer
that has signed up for the service, in which case Sigmund
trains all possible combinations of hyper-parameters for that
retailer alone. The sweep step determines the overall set of
models to train, and outputs a set of config records containing
the model number, training and validation dataset locations,
and the values assigned to each of the hyperparameters. These
config records form the input to the training step.

B. Training

Conceptually, the design of the training job is simple. The
input collection of config records specifies the list of models
that need to be trained – we simply need to call a Train()
function on each input. This function reads the data at the
location specified, trains a model, and writes it out to the
specified location. After training, Train() also evaluates the
learned model on a specified hold-out set and writes out
the goodness metrics (Section III-C2) in an output config
record. Training is implemented as a MapReduce job where
the map phase executes training and evaluation, and the reduce
phase writes out the output config records to disk. The main
challenge in designing the training pipeline comes from having
to balance efficiency concerns with manageability. Figure 4

shows a schematic of how Sigmund structures the training
process.

1) Low-Cost Resources: In order to execute the training
job at low cost, we schedule the map tasks in the MapReduce
as low priority tasks that are pre-emptible. Fault-tolerance
approaches for dealing with pre-emptions are described in
Section IV-B3. We identify data centers that have unused
resources, and break down the job into several independent
MapReduces so that there is one for each data center. Since
training using SGD iterates over the data multiple times, we
simply migrate the training data to the data center where the
computation is run. The cost of training is dominated by the
CPU cost of making SGD steps, and the network cost of
moving the data usually ends up producing a net benefit.

The input config records are randomly permuted before
being written so that training tasks are randomly divided across
different MapReduces. We also rely on this randomization
strategy to balance the work within a MapReduce job. Workers
assigned small retailers process more training tasks, and those
with larger retailers process fewer training tasks in a single
job.

2) Multi-threading: Using multiple threads effectively can
greatly reduce the cost of training. The trivial way to take
advantage of multi-core processors is to schedule several map
tasks on the same physical machine. Each map task on a
machine processes a separate chunk of the input, independent
of the processing in other tasks. These tasks can either be
scheduled as separate processes or as separate threads within
a process to potentially take advantage of shared data struc-
tures (such as dictionaries, codecs, etc.). Google’s MapReduce
implementation supports this and several other options for
taking advantage of modern multi-core processors. However,
this is not the most efficient way to use the resources at
hand for training. Recall that we make the assumption that a
single retailer’s model fits in the memory of a single machine.
The trivial approach of scheduling multiple map tasks on a
machine may end up scheduling models from more than one
retailer on the same machine. While this may work for smaller
retailers, scheduling two large retailers on the same machine
could exceed the available memory. Specifying this scheduling
constraint is difficult since we need a mechanism to estimate
the memory footprint of each task by inspecting the contents
of the config records within the chunk of input assigned to it.
This requires user-code to be executed by the scheduler, and
can be brittle in the face of evolving code, and prevents many
advanced MapReduce features like dynamic resizing of input
chunks for better load-balancing.

Instead of implementing a complex and brittle scheduling
constraint, we chose to train only a single retailer on a physical
machine at a time, and instead use multiple threads to train
faster. We use Hogwild-style multi-threaded training [26].
Instead of relying on the MapReduce framework to manage
multi-threading, we train each model corresponding to each
input config record using multiple threads that are managed in
the user code. We rely on a dynamically sized virtual machine
to use small amounts of memory for tasks that are training

Fig. 4. Training Schematic

small retailers, and large amounts of memory for tasks with
larger retailers.

Note that training requires allocating memory for all the
model parameters that are going to be learned. This takes
up the same amount of memory whether we run a single
training thread or multiple threads. Once we have allocated
the memory, we want to make the most of it, and requesting
CPUs to run additional training threads helps us make more
efficient use of the memory already requested.

Much like with public cloud machine types, high-memory
instances tend to be correlated with high CPU. For instance, it
is often more cost-effective to get four CPUs and 32GB rather
than one CPU with 32GB for the training job.

3) Fault-tolerance: A direct consequence of using cheap
pre-emptible VMs is that the design needs to consider pre-
emptions, failures and machine restarts. During training, we
asynchronously checkpoint the model learned to a shared
filesystem. We use the strategy of scheduling checkpoints
on a fixed time-interval (e.g., every few minutes) instead
of scheduling them after a fixed number of iterations. This
choice was motivated by the heterogeneity of the retailers
in terms of size and complexity – from small retailers with
a few thousand user-item interactions to large retailers with
hundreds of millions of interactions (time per iteration across
retailers varies significantly). This approach gives us a way to
control the amount of work lost on pre-emption. Furthermore,
we only need to keep the latest checkpoint around, so as
soon as a new checkpoint is written, we garbage-collect the
previous checkpoint. The checkpointing itself is very fast and
is negligible compared to the training time.

C. Inference

We run an offline inference job to materialize item-item
recommendations. This enables us to keep the computational
cost of serving low, and deal quickly with new users without
having to retrain the model. Inference proceeds by examining
the output config records emitted by the training job to identify
the best model for each retailer. Conceptually, for each retailer,
the job considers each item in the inventory, and produces the
corresponding top ranked items predicted by the model. Like
the training job, this is also implemented using MapReduce.

Fig. 5. Inference Schematic

The inference step is done in the map phase. The reduce
phase writes out the computed recommendations for each item.
Figure 5 shows a schematic of how the inference pipeline is
organized.

The input consists of the union of all the items from each
retailer. Item IDs contain the retailer ID, so the same item sold
by different retailers will have a different ID.

1) Parallelization: Once again, we split the input into
several distinct sets so that the computation can take advantage
of resources in multiple cells. This is the same principle as
in the training job, however, there is an important difference
in how the computation is parallelized. While training is
parallelized in a way that limits the computation of a given
model for a given retailer to be executed on a single machine,
this is not the case for inference. For a large retailer with
many items, inference may be parallelized over hundreds of
machines, while for a small retailer, it may happen on a single
machine.

Inference is complete when the MapReduces in each of the
data centers finish. To minimize the total running time of the
job, we use a greedy first-fit bin-packing heuristic to partition
the retailers. The computational cost of inference is roughly
linearly proportional to the number of items. This is because
the candidate selection logic(Section III-D1) limits the number
of candidates we need to consider for each item. We therefore
use the number of items in each retailer’s inventory as the
weight for that retailer in the bin-packing problem. In contrast,
a naive approach that computed the affinity for every pair of
items would use the square of the number of items in the
retailer’s inventory.

2) Multi-threading: Similar to the training job, we manage
multi-threading in the application code. MapReduce processes
one record at a time, which in the case of inference is an item
record. Since we produce a union of all the input data, the
next record could come from a different retailer. We organize
the input data in such a way that data from a single retailer is
in one contiguous chunk. The map function loads the model
for the current retailer into memory (if it is not already there).
A load should only get triggered if this is the first record
being processed by the mapper or if it is processing an input

split that contains the boundary between two retailers. We
configure MapReduce to run a single map thread in a task
so that it doesn’t have to load more than one model into
memory at once. Without this restriction, it is likely that a
single machine may process two different large retailers and
run out of available main memory. However, in order to make
full use of the fact that we have the model in memory, we use
multiple threads to evaluate concurrently. This is accomplished
by writing a multi-threaded function within the map task
while the MapReduce framework is configured not to process
multiple splits concurrently in a task.

The ideal system would allow us to use multi-threaded
map tasks such that a mapper would either be assigned tasks
corresponding to the same retailer or multiple retailers such
that the models fit in memory. This is difficult to accomplish
within the constraints of MapReduce. We decided that the
complexity of testing and deploying a new task-scheduling
algorithm was not worth the additional efficiency we may have
been able to obtain.

V. DISCUSSION

We considered many alternatives to the design described
above to organize the computational work of model selection,
inference and serving. One key choice was the use of MapRe-
duce to structure and distribute our computation even though
Sigmund is not a conventional data-parallel pipeline. While
this choice implied we gave up some potential efficiencies,
the gains in manageability made it worthwhile. The choice of
MapReduce allowed us to quickly scale from a few hundred
retailers in the program when we first started the service to
tens of thousands within 18 months.

One possibility we considered was to build a custom
scheduling and monitoring service that would schedule the
training and inference for each retailer in a data center with
free resources. Building this service in a fault-tolerant way
would have taken considerable effort. Furthermore, we decided
early on that the system would not require support for charge-
backs, where each retailer would be charged for computational
resources consumed and would therefore need to be metered
separately. This allowed us to simplify the design substantially.
Finally, the serving infrastructure can now be optimized for
batch-updates every time we have the inference job complete
for all the retailers in the system. While this constrains how
often the serving stack is updated, it does away with having
to design it for real-time updates for millions of items across
thousands of retailers.

We do believe there are many other ways to build such a
service if presented with other constraints like higher costs
from the computational platform, lower bar for recommenda-
tion quality, or even the necessity to implement charge-backs
to each retailer in proportion to the resources consumed to
compute and serve recommendations for them.

Offline metrics do not directly translate to improvements in
online metrics (e.g., conversions on recommendations). Our
training data only allows us to optimize for clicks and views
since the conversions are too sparse to model accurately. So,

Fig. 6. Cross-retailer plot of an item’s popularity in terms of impressions
per day and the CTR of that item when it is showed as a recommendation

we relied on a series of carefully structured online experiments
to inform our design choices as we improved the models. Some
aspects that we’d have liked to model, such as the quality
of the images provided by a retailer, budgets of the retailers,
inventory levels, were beyond the scope of this project.

Since the model for each retailer is optimized independently,
our approach treats large and small retailers fairly – producing
the best possible model for the data they provide. We observe
that Sigmund improves engagement heavily for the long tail
of products, and has little impact on the extremely popular
products. Figure 6 shows the impact of Sigmund on the long
tail. The graph plots the average CTR for an item with its
popularity (measured as the number of times it is shown daily)
across all retailers we serve averaged over a 7-day period.
The CTR values are scaled to accurately represent the rela-
tive improvements without disclosing absolute numbers. The
baseline chosen for comparison is to a simple co-occurrence
model. As the graph shows, Sigmund’s recommendations see
significantly higher engagement for less popular items (the
long tail) while they have virtually no effect on highly popular
items.

VI. RELATED WORK

Recent papers [27] provide a broad overview of recommen-
dation techniques in industry. In practical settings, implicit
feedback data (click, view, etc. rather than ratings) is much
cheaper to obtain than explicit feedback. Approaches based on
pair-wise ranking [16], [6], [28]), and least-squares [15], [29]
have been proposed in the literature. Although we chose BPR
for its simplicity and extensibility with feature engineering,
we can easily substitute it with the least-squares approach.

Using auxiliary features is a useful method to combat spar-
sity in the training data and help with the cold-start problem.
Agarwal et al. [30] propose a joint regression and factorization
model to include auxiliary features, Koeningstein et al. [31]
model hierarchies such as movie taxonomies and the temporal
nature of user behavior. Basilico and Raimond [32] argue
to incorporate time as a first-class element when modeling
a user’s interests. In recent years, McAuley et al. [33] and

Agarwal et al. [8] propose techniques to use the sentiment of
user reviews to tweak recommendations. McAuley et al. [7]
have used auxiliary information to identify substitutes and
complements for items.

While our recommendation engine was custom-built based
on matrix factorization, models that use neural networks [34]
have shown significant promise. Replacing our core engine
with a neural recommender using a framework like Tensor-
flow [35] while retaining the infrastructure to solve thousands
of instances in parallel is an engineering exercise.

Recent years have seen many Machine Learning services
being offered in the Cloud. Google Prediction API [36],
Amazon Machine Learning [37], and Microsoft Azure [38]
provide services for classification and regression and general
purpose machine learning. To the best of our knowledge
Sigmund is the first industrial scale product recommendation
service described in the literature.

VII. CONCLUSIONS

On the modeling front, we observed from thousands of
instances that co-occurrence based recommendations work
well with large amounts of data; more sophisticated techniques
rarely outperform it. This is congruent with claims made
by other practitioners in industry [39]. Having said that, we
were able to empirically demonstrate the value of matrix-
factorization-style approaches for the long tail of product
inventories which are increasingly important in online retail.
Using co-occurrence based recommendations for the popular
items, and augmenting them with factorization-derived recom-
mendations allows us to cover a much larger fraction of the
inventory with good recommendations.

When building a service like Sigmund, it is critical to
design away any manual per-retailer configuration and tuning.
Without this, we would not have been able to design, build, and
deploy this system with a team of just two engineers working
over a few months. A key early assumption we made, to use
a non-distributed implementation for the solver did not prove
to be a problem. Given the size of main memories today, we
were able to solve instances with several million items in the
product inventory.

We solved a particularly hard problem, one of model
selection, through a carefully engineered and self-managed
grid search over the space of hyper-parameters. While on the
surface this seems expensive, we pay for this search only once.
Incremental training only considers the top few models for
each retailer. The choices we made to increase manageability
at the cost of potentially sacrificing efficiency also turned out
to be prudent.

One of the interesting opportunities for future work is to
further refine the settings for which recommendations are
produced and displayed. For instance, the recommendations
that are most useful for a casual shopper who’s trying to
explore options for a couch in their living room are different
from those for a user who knows they want a certain style of
couch, which are in turn are different from those for a user
who has determined the exact couch she wants and is looking

for matching accessories. Providing this additional level of
tailoring of recommendations while keeping the overall system
manageable is ongoing work.

Our choice of using a ranking objective function (like
BPR) lets us optimize using a simple gradient-descent solver.
This approach makes it easy to produce a ranked list of
recommendations, but it is difficult to estimate the absolute
relevance of the recommendation, particularly if we want to
make a decision on whether to display to the user. We are
considering future approaches that combine the advantages of
a BPR-style ranking objective with the ability to provide a
relevance score that can be compared to a threshold.

REFERENCES

[1] X. Amatriain and J. Basilico, “Netflix Recommendations:
Beyond the 5 Stars,” http://techblog.netflix.com/2012/04/
netflix-recommendations-beyond-5-stars.html.

[2] G. Linden, B. Smith, and J. York, “Amazon.com recommendations:
Item-to-item collaborative filtering,” IEEE Internet Computing, vol. 7,
no. 1, pp. 76–80, Jan. 2003. [Online]. Available: http://dx.doi.org/10.
1109/MIC.2003.1167344

[3] J. Bennett, C. Elkan, B. Liu, P. Smyth, and D. Tikk, “Kdd cup and
workshop 2007,” SIGKDD Explor. Newsl., vol. 9, no. 2, pp. 51–52, Dec.
2007. [Online]. Available: http://doi.acm.org/10.1145/1345448.1345459

[4] B. Kanagal, A. Ahmed, S. Pandey, V. Josifovski, J. Yuan, and L. Garcia-
Pueyo, “Supercharging recommender systems using taxonomies for
learning user purchase behavior,” PVLDB, vol. 5, no. 10, pp. 956–967,
Jun. 2012. [Online]. Available: http://dx.doi.org/10.14778/2336664.
2336669

[5] A. Ahmed, B. Kanagal, S. Pandey, V. Josifovski, L. G. Pueyo, and
J. Yuan, “Latent factor models with additive and hierarchically-smoothed
user preferences,” in WSDM, 2013.

[6] S. Rendle, C. Freudenthaler, Z. Gantner, and L. Schmidt-Thieme, “BPR:
bayesian personalized ranking from implicit feedback,” in UAI, 2009.

[7] J. McAuley, R. Pandey, and J. Leskovec, “Inferring networks of substi-
tutable and complementary products,” in KDD, 2015.

[8] D. Agarwal and B. Chen, “flda: matrix factorization through latent
dirichlet allocation,” in WSDM, 2010.

[9] S. Ghemawat, H. Gobioff, and S.-T. Leung, “The google file system,”
SIGOPS Oper. Syst. Rev., vol. 37, no. 5, pp. 29–43, Oct. 2003. [Online].
Available: http://doi.acm.org/10.1145/1165389.945450

[10] J. Dean and S. Ghemawat, “Mapreduce: simplified data processing on
large clusters,” CACM, vol. 51, no. 1, pp. 107–113, 2008.

[11] A. Verma, L. Pedrosa, M. Korupolu, D. Oppenheimer, E. Tune, and
J. Wilkes, “Large-scale cluster management at google with borg,” in
EuroSys, 2015.

[12] Google, “Preemptible VMs,” https://cloud.google.com/
preemptible-vms/.

[13] Amazon, “Spot Instances,” https://aws.amazon.com/ec2/spot/.
[14] Y. Koren, R. M. Bell, and C. Volinsky, “Matrix factorization techniques

for recommender systems,” IEEE Computer, vol. 42, no. 8, pp. 30–37,
2009. [Online]. Available: http://dx.doi.org/10.1109/MC.2009.263

[15] Y. Hu, Y. Koren, and C. Volinsky, “Collaborative filtering for implicit
feedback datasets,” in ICDM, 2008.

[16] S. Rendle and C. Freudenthaler, “Improving pairwise learning for item
recommendation from implicit feedback,” in WSDM, 2014. [Online].
Available: http://doi.acm.org/10.1145/2556195.2556248

[17] D. Sculley, G. Holt, D. Golovin, E. Davydov, T. Phillips, D. Ebner,
V. Chaudhary, and M. Young, “Machine learning: The high interest
credit card of technical debt,” in SE4ML: Software Engineering for
Machine Learning, 2014.

[18] J. C. Duchi, E. Hazan, and Y. Singer, “Adaptive subgradient methods
for online learning and stochastic optimization,” Journal of Machine
Learning Research, vol. 12, pp. 2121–2159, 2011. [Online]. Available:
http://dl.acm.org/citation.cfm?id=2021068

[19] M. R. Gupta, S. Bengio, and J. Weston, “Training highly multi-class
linear classifiers,” Journal Machine Learning Research, 2014. [Online].
Available: http://jmlr.org/papers/volume15/gupta14a/gupta14a.pdf

[20] S. Rendle, “Learning recommender systems with adaptive regulariza-
tion,” in WSDM, 2012.

[21] D. Golovin, B. Solnik, S. Moitra, G. Kochanski, J. Karro, and
D. Sculley, “Google vizier: A service for black-box optimization,”
in Proceedings of the 23rd ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining, ser. KDD ’17. New
York, NY, USA: ACM, 2017, pp. 1487–1495. [Online]. Available:
http://doi.acm.org/10.1145/3097983.3098043

[22] C. D. Manning, P. Raghavan, and H. Schütze, Introduction to informa-
tion retrieval. Cambridge University Press, 2008.

[23] W. B. Croft, D. Metzler, and T. Strohman, Search Engines - Information
Retrieval in Practice. Pearson Education, 2009.

[24] S. Bengio and G. Heigold, “Word embeddings for speech recognition,”
in ISCA, 2014.

[25] J. Davidson, B. Liebald, J. Liu, P. Nandy, T. Van Vleet, U. Gargi,
S. Gupta, Y. He, M. Lambert, B. Livingston, and D. Sampath, “The
youtube video recommendation system,” in RecSys, 2010.

[26] F. Niu, B. Recht, C. Ré, and S. Wright, “Hogwild: A lock-free approach
to parallelizing stochastic gradient descent,” in NIPS, 2011.

[27] B. Smith and G. Linden, “Two decades of recommender systems at
amazon.com,” IEEE Internet Computing, vol. 21, no. 3, pp. 12–18, 2017.

[28] J. Weston, S. Bengio, and N. Usunier, “Large scale image annotation:
Learning to rank with joint word-image embeddings,” in ECML,
2010. [Online]. Available: http://www.kyb.mpg.de/bs/people/weston/
papers/wsabie-ecml.pdf

[29] M. Weimer, A. Karatzoglou, Q. V. Le, and A. J. Smola, “COFI RANK
- maximum margin matrix factorization for collaborative ranking,” in
NIPS, 2007, pp. 1593–1600.

[30] D. Agarwal and B. Chen, “Regression-based latent factor models,” in
SIGKDD, 2009.

[31] N. Koenigstein, G. Dror, and Y. Koren, “Yahoo! music recommen-
dations: modeling music ratings with temporal dynamics and item
taxonomy,” in RecSys, 2011.

[32] J. Basilico and Y. Raimond, “Déjà vu: The importance of time and
causality in recommender systems,” in Proceedings of the Eleventh
ACM Conference on Recommender Systems, ser. RecSys ’17. New
York, NY, USA: ACM, 2017, pp. 342–342. [Online]. Available:
http://doi.acm.org/10.1145/3109859.3109922

[33] J. McAuley and J. Leskovec, “Hidden factors and hidden topics:
Understanding rating dimensions with review text,” in RecSys, 2013.

[34] P. Covington, J. Adams, and E. Sargin, “Deep neural networks
for youtube recommendations,” in Proceedings of the 10th ACM
Conference on Recommender Systems, ser. RecSys ’16. New
York, NY, USA: ACM, 2016, pp. 191–198. [Online]. Available:
http://doi.acm.org/10.1145/2959100.2959190

[35] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin,
S. Ghemawat, G. Irving, M. Isard et al., “Tensorflow: A system for
large-scale machine learning.” in OSDI, vol. 16, 2016, pp. 265–283.

[36] Google, “Google Prediction API,” https://cloud.google.com/prediction/
docs.

[37] Amazon, “Amazon Machine Learning,” https://aws.amazon.com/
machine-learning/.

[38] Microsoft, “Azure Machine Learning,” https://azure.microsoft.com/
en-us/services/machine-learning/.

[39] D. Agarwal, “Scaling machine learning and statistics for web
applications,” in SIGKDD, 2015, p. 1621. [Online]. Available:
http://doi.acm.org/10.1145/2783258.2790452

