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Abstract
Sanitizers are a relatively recent trend in software engineer-
ing. They aim at automatically finding bugs in programs,
and they are now commonly available to programmers as
part of compiler toolchains. For example, the LLVM project
includes out-of-the-box sanitizers to detect thread safety
(tsan), memory (asan,msan,lsan), or undefined behaviour
(ubsan) bugs.

In this article, we present nsan, a new sanitizer for locating
and debugging floating-point numerical issues, implemented
inside the LLVM sanitizer framework. nsan puts emphasis
on practicality. It aims at providing precise, and actionable
feedback, in a timely manner.
nsan uses compile-time instrumentation to augment each

floating-point computation in the program with a higher-
precision shadow which is checked for consistency during
program execution. This makes nsan between 1 and 4 orders
of magnitude faster than existing approaches, which allows
running it routinely as part of unit tests, or detecting issues
in large production applications.

CCS Concepts: • Software and its engineering → Dy-
namic analysis; Software verification.

Keywords: Floating Point Arithmetic, Numerical Stability,
LLVM, nsan
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1 Introduction
Most programs use IEEE 754[9] for numerical computation.
Because speed and efficiency are of major importance, there
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is a constant tension between using larger types for more pre-
cision and smaller types for improved performance. Nowa-
days, the vast majority of architectures offer hardware sup-
port for at least 32-bit (float) and 64-bit (double) precision.
Specialized architectures also support even smaller types
for improved efficiency, such as bfloat16[7]. SIMD instruc-
tions, whose width is a predetermined byte size, can typically
process twice as many floats as doubles per cycle. There-
fore, performance-sensitive applications are very likely to
favor lower-precision alternatives when implementing their
algorithms.

Numerical analysis can be used to provide theoretical guar-
antees on the precision of a conforming implementation with
respect to the type chosen for the implementation. However,
it is time-consuming and therefore typically applied only to
the critical parts of an application. To automatically detect
potential numerical errors in programs, several approaches
have been proposed.

2 Related Work
2.1 Probabilistic Methods
The majority of numerical verification tools use probabilistic
methods to check the accuracy of floating-point computa-
tions. They perturbate floating-point computations in the
program to effectively change its output. Statistical analysis
can then be applied to estimate the number of significant
digits in the result. They come in two flavors: Discrete Sto-
chastic Arithmetic (DSA)[13] runs each floating-point oper-
ation N times with a randomization of the rounding mode.
Monte Carlo Arithmetic (MCA)[12] directly perturbates the
input and output values of the floating-point operations.

2.2 Manual Instrumentation
Early approaches to numerical checking, such as CADNA [13],
required modifying the source code of the application and
manually inserting the DSA or MCA instrumentation. While
this works on very small examples, it is not doable in prac-
tice for real-life numerical applications. This has hindered
the widespread adoption of these methods. To alleviate this
problem, more recent approaches automatically insert MCA
or DSA instrumentation automatically.

2.3 Automated Instrumentation
Verificarlo [8] is an LLVM pass that intercepts floating-point
instructions at the IR level (fadd, fsub, fmul, fdiv, fcmp)
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and replaces them with calls to a runtime library called back-
end. The original paper describes a backend that replaces
the floating-point operations by calls to an MCA library.
Since the original publication, the Verificarlo has gained
several backends1, including an improved MCA backend:
mca is about 9 times faster than than the original mca_mpfr
backend2.

VERROU [4] and CraftHPC [10] are alternative tools that
work directly from the original application binary. VERROU
is based on the Valgrind framework [11], while CraftHPC
is based on DyninstAPI [3]. In both cases, the application
binary is decompiled by the framework into IR, and instru-
mentation is performed on the resulting IR. This has the
advantage that the tool does not require re-compilation of
the program. However, this makes running the analysis rela-
tively slow. In terms of instrumentation, VERROU performs
the same MCA perturbation as the mca backend of Verifi-
carlo, while CraftHPC detects cancellation issues (similar to
Verificarlo’s cancellation backend). A major downside of
working directly from the binary is that some semantics that
are available at compile time are lost in the binary. For exam-
ple, the compiler knows about the semantics of math library
functions such as cos , and knows that it has been designed
for a specific rounding mode. On the other hand, dynamic
tools like VERROU only see a succession of floating-point
operations, and blindly apply MCA, which will result in false
positives.

2.4 Debuggability
The main drawback of approaches based on probabilistic
methods, such as Verificarlo and VERROU, is that they mod-
ify the state of the application. Just stating that a program
has numerical instabilities is not very useful, so both rely
on delta-debugging [14] for locating instabilities. Delta de-
bugging is a general framework for locating issues in pro-
grams based on a hypothesis-trial-result loop. Because of its
generality, it is not immediately well adapted to numerical
debugging. This puts a significant burden on the user who
has to write a configuration for debugging3.
FpDebug [2] takes a different approach. Like VERROU,

FpDebug is a dynamic instrumentation method based on
Valgrind. However, instead of using MCA for the analysis,
it maintains a separate shadow value for each floating-point
value in the original application. The shadow value is the
result of performing operations in higher-precision floating-
point arithmetic (120 bits of precision by default). By com-
paring the original and shadow value, FpDebug is able to
pinpoint the precise location of the instruction that intro-
duces the numerical error.

1https://github.com/verificarlo/verificarlo
2132 and 1167 ms/sample respectively for the example of section 4.1
3https://github.com/verificarlo/verificarlo#pinpointing-errors-with-delta-
debug

3 Our Approach
3.1 Overview
Based on the analysis in section 2, we design nsan around
the concept of shadow values:

• Every floating-point value v at any given time in the
program has a corresponding shadow value, noted
S(v), which is kept alongside the original value. The
shadow value S(v) is typically a higher precision coun-
terpart of v . A shadow value is created for every pro-
gram input, and any computation on original values
is applied in parallel in the shadow domain. For exam-
ple, adding two values: v3 = add(v1,v2) will create a
shadow value S(v3) = addshadow (S(v1), S(v2)), where
addshadow is the addition in the shadow domain.

• At any point in the program, v and S(v) can be com-
pared for consistency. When they differ significantly,
we emit a warning (see section 3.3).

In our implementation, S(v) is simply a floating point
value with a precision that is twice that of v: float values
have double shadow values, double values have quad (a.k.a.
fp128) shadow values. In the special case of X86’s 80-bit
long double, we chose to use an fp128 shadow. Note that
this does not offer any guarantees that the shadow computa-
tions will themselves be stable. However, the stability of the
application computations implies that of the shadow compu-
tations, so any discrepancy between v and S(v) means that
the application is unstable. This allows us to catch unstable
cases, even though we might be missing some of them. In
other words, in comparison to approaches based on MCA,
we trade some coverage for speed and memory efficiency,
while keeping a low rate of false positives. In our experi-
ments, doubling the precision was enough to catch most
issues while keeping the shadow value memory reasonably
small.
Conceptually, our design combines the shadow compu-

tation technique of FpDebug with the compile-time instru-
mentation of Verificarlo. Where our approach diverges sig-
nificantly from that of FpDebug is that we implement the
shadow computations in LLVM IR, alongside the original
computations. This has several advantages:

• Speed: Most computations do not emit runtime library
calls, the code remains local, and the runtime is ex-
tremely simple. The shadow computations are opti-
mized by the compiler. This improves the speed by
orders of magnitude (see section 4.1), and allows ana-
lyzing programs that are beyond the reach of FpDebug
in practice (see section 4.2.1).

• Scaling: FpDebug runs on Valgrind, which forces all
threads in the application to run serially 4. Using com-
pile time instrumentation means that nsan scales as

4https://www.valgrind.org/docs/manual/manual-core.html#manual-
core.pthreads
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well as the original applications. This is a major ad-
vantage in modern hardware with tens of cores.

• Semantics: Contrary to dynamic approaches based on
Valgrind, most of the semantics of the original program
are still known at the LLVM IR stage. For example, an
implementation that does not know the semantics of
the program would compute the shadow of a float
cosine as S(cos f (v)) = S(cos f (S(v))). This would in-
troduce numerical errors as cosf’s implementation is
written for single-precision. Instead, nsan is able to
replace the cosf by its double-precision counterpart
cos: S(cos f (v)) = cos(S(v)), .

• Simplicity: From the software engineering perspective,
this reduces the maintenance burden by relying on the
compiler for the shadow computation logic. Where
FpDebug requires modified versions of the GNU Mul-
tiple Precision Arithmetic Library and GNU Multiple
Precision Floating-Point Reliably in addition to the
FpDebug Valgrind tool itself, in our case, LLVM han-
dles the lowering (and potential vectorization) of the
shadow code.

The following sections detail how we construct, track, and
check shadow values in our implementation.

3.2 Shadow Value Tracking
A floating-point value is any LLVM value of type float,
double, x86_fp805, or a vector thereof (e.g. <4 x float>).
We classify floating-point values into several categories:
• Temporary values inside a function: These are typi-
cally named variables or artifacts of the programming
language. They have an IR representation (and we also
call them IR values). During execution, these values
typically reside within registers.

• Parameter (resp. argument) values: These are the val-
ues that are passed (resp. received) through a func-
tion call. Because numerical instabilities can span sev-
eral functions, it is important that shadow values are
passed to functions alongside their original counter-
parts.

• Return values: are similar in spirit to parameter values,
as the shadow must be returned alongside the original
value.

• Memory values are values that do not have an IR rep-
resentation outside of their materialization through a
load instruction.

3.2.1 Temporary Values. Temporary values are the sim-
plest case: every IR instruction that produces a floating-point
value gets a shadow IR instruction of the same opcode, but
the type of the instruction is different and parameters are re-
placed by their shadow counterparts.We give a few examples
in Table 1.

5https://llvm.org/docs/LangRef.html#t-floating

3.2.2 Parameter and Return Values. Parameter values
are maintained in a shadow stack. During a function call,
for each floating-point parameter v , the caller places S(v)
on the shadow stack before entering the call. On entry, the
callee loads S(v) from the shadow stack. The only complex-
ity comes from the fact that a non-instrumented function
can call an instrumented function. Blindly reading from the
shadow stack in the callee would result in garbage shadow
values. To avoid this, the shadow stack is tagged by the ad-
dress of the callee. Before calling a function f, the caller tags
the shadow stack with f. When reading shadow stack val-
ues, the callee checks that the shadow stack tag matches its
address. If it does, the shadow values are loaded from the
shadow stack. Else, the parameters are extended to create
new shadows. In practice, the introduced branch does not
hurt performance as it’s typically perfectly predicted.
Return values are handled in similar manner. The frame-

work has a return slot with a tag and a buffer. Instrumented
functions that return a floating-point value set the tag to
their address and put the return value in the shadow return
slot. Instrumented callers check whether the tag matches the
callee and either read from the shadow return slot or extend
the original return value (see Table 1). Note that because the
program can be multithreaded, the shadow stack and return
slot are thread-local.

3.2.3 Memory Values. These are a bit special because
they do not have a well-defined lifetime and can persist for
the lifetime of the program.

Shadow Memory: Like most LLVM sanitizers, we main-
tain a shadow memory alongside the main application mem-
ory. The nsan runtime intercepts memory functions (e.g.
malloc, realloc, free). Whenever the application allocates
a memory buffer, a corresponding shadow memory buffer is
allocated. The shadow buffer is released when the applica-
tion buffer is released. The shadow memory is in a different
address space than that of the application, which ensures
that shadow memory cannot be tampered with from the
application. Shadow memory is conceptually very simple:
for every floating point value v in application memory at ad-
dressA(v), we maintain its shadow S(v) at addressMs (A(v)).
A load from A(v) to create a value v is instrumented as a
shadow load from Ms (A(v)) to create S(v); a store to A(v)
creates a shadow store of S(v) toMs (A(v)).

Shadow Types: We have to handle an extra complexity:
memory is untyped, so there is no guarantee that the applica-
tion does not modify the value at A(v) through non-floating-
type stores or partial overwrites by another float. Consider
the code of Fig. 1, which modifies the byte representation
of a floating-point value in memory. It’s unclear how this
should translate in the shadow space. In that case, we choose
to resume computations by re-extending the original value:
S(∗f ) = ∗f .
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Table 1. Example nsan instrumentation.

Operation Example Added Instrumentation
binary/unary operation %c = fadd float %a, %b %s_c = fadd double %s_a, %s_b

cast %b = fpext <2 x float> %a to <2 x double> %s_b = fpext <2 x double> %s_a to <2 x fp128>

select %d = select i1 %c, double %a, double %b %s_d = select i1 %c, fp128 %s_a, fp128 %s_b

vector operation %c = shufflevector <2 x float> %a, %s_b = shufflevector <2 x double> %s_a,
<2 x float> %b, <2 x i32> <i32 1, i32 3> <2 x double> %s_b, <2 x i32> <i32 1, i32 3>

known function call %b = call float @fabsf(float %a) %s_b = call double @llvm.fabs.f64(double %s_a)

fcmp %r = fcmp oeq double %a, 1.0 %s_r = fcmp oeq fp128 %s_a, 1.0
%c = icmp eq i1 %r, %s_r
br i1 %c, label 2, label 1
1:
call void @__fcmp_fail_double(...)
br label 2
2:

return ret float %a store i64 i64 %fn_addr, i64* @__ret_tag, align 8
%rp = bitcast ([64 x i8]* @__ret_ptr to double*)
store double %s_a, double* %rp, align 8

function call %a = call float @returns_float() %tag = load i64, i64* @__ret_tag, align 8
%fn_addr = ptrtoint (float ()* @returns_float to i64)
%m = icmp eq i64 %tag, i64 %fn_addr
%rp = bitcast ([64 x i8]* @__ret_ptr to double*)
%l = load double, double* %rp), align 8
%e = fpext float %a to double
%s_a = select i1 %m, double %l, %e

1 float UntypedMemory(float* f) {

2 *f = 1.0;

3 *(( char*)f + 2) = 2;

4 return *f;

5 }

Figure 1. A function that modifies the binary representation
of a floating point value in memory. How to extend this
operation to the shadow domain is unclear.

To handle this case correctly, we track the type of each byte
in application memory. We maintain shadow types memory.
For a floating point value v in application memory at ad-
dressA(v), each byte in the shadow types memory at address
Mt (A(v)) + k contains the type of the floating point value
(unknown, float, double, x86_fp80), as well as the position
k of the byte within the value (see Fig. 2). A shadow value in
memory is valid only if the shadow type memory contains a
complete position sequence [0,...,sizeof(type)-1], of
the right type.
When storing a floating point value, the shadow instru-

mentation retrieves the shadow pointer via a call to a func-
tion __shadow_ptr_<type>_load, which sets the shadow
memory type to <type> and returns the shadow value ad-
dress. When loading a floating-point value, the shadow in-
strumentation calls a function __shadow_ptr_<type>_load
which returns the shadow pointer if the shadow value is valid,
and null otherwise. If the shadow is valid, it is loaded from
the shadow address; else, the instrumentation creates a new
shadow by extending the original load. Copying bytes from

0x00123400: f0 f1 f2 f3 d0 d1 d2 d3

0x00123408: d4 d5 d6 d7 __ __ __ __

0x00123410: l0 l1 l2 l3 l4 l5 l6 l7

0x00123418: l8 l9 __ __ __ __ __ __

0x00123420: d0 d1 d2 f0 f1 f2 f3 d7

0x00123428: f0 f1 f2 f3 f0 f1 f2 f3

0x00123430: __ __ __ __ __ __ __ __

Figure 2. Shadow type memory example: The left column is
the address in application memory. For each byte in shadow
type memory, the first character denotes the type: float
(f), double (d), long double (l), unknown (_); and
the second character is the position of the byte inside the
corresponding floating point value. In this example, the
shadow memory contains valid shadows for aligned floats
at addresses 0x00123400, 0x00123428, 0x0012342c, and
0x00123423; a double at address 0x00123404; and a long
double at address 0x00123410. Note that the double at ad-
dress 0x00123420 is not valid as it has been overwritten by
the float at address 0x00123423.

one memory location to another (either through memcpy()
or an untyped load/store pair) copies both the shadow types
and shadow values. Untyped stores and functions with the
semantics of an untyped store (e.g. memset) set the shadow
memory type to unknown.
In practice, subtle binary representation manipulations

such as that of figure 1 are very uncommon, and most un-
typed memory accesses fall in two categories:
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• Setting a memory region to a constant value (typically
zero), e.g. memset(p, 0, n * sizeof(float)). In
that case, the nsan framework sets the shadow types
to unknown, and any subsequent load from this mem-
ory region will see a correct shadow value of 0, re-
extended from the original value 0.

• Copying a memory region (typically, an array of floats
or a struct containing a float member), e.g. struct S
{ int32_t i; float f; }; void CopyS(S& s2,
const S& s1) { s2 = s1; }. In this case, LLVM
might choose to do the structure copy with a single un-
typed 8-byte load/store pair. nsan copies the shadow
types from Mt (A(s1)) to Mt (A(s2)) (8 bytes) and the
shadow values fromMs (A(s1)) toMs (A(s2)) (16 bytes).
Therefore, assuming that Mt (A(s1. f )) contains valid
types, any subsequent load from s2.f will see the cor-
rect shadow types inMt (A(s2. f )) and load the shadow
value fromMs (A(s2. f ))

In the SPECfp2006 benchmark suite, all the floating-point
loads that are done from a location with invalid or unknown
types have a corresponding application value of +0.0, which
is a strong indication that shadow types are either correctly
tracked or come from an untyped store (or memset) of the
value 0. However, shadow type tracking is necessary for
correctness and we have found it to be necessary in several
places in Google’s large industrial codebase.

Memory Usage: All allocations/deallocations are mir-
rored, and each original byte uses one byte in the shadow
types block and two bytes in the shadow values block: quad
(resp. double) is twice as big as double (resp. float). So an
instrumented application uses 4 times as much memory as
the original one.

3.3 Precise Diagnostics
We check for several types of shadow value consistency:

• Observable value consistency: By default, we check con-
sistency between v and S(v) every time a value can
escape from a function, that is: function calls, return,
and stores to memory. These values are the only one
that are observable by the environment (the user, or
other code inside the application). This is different
from the approach of FpDebug, and we’ll see later that
this decision has an influence on the terseness of the
output and reduces false positives.

• Branch consistency: For every comparison between
floating-point values, we check that the comparison of
the shadow values yields the same result. This catches
the case when, even though the values are very close,
they can drastically affect the output of the program
by taking a different execution path. This approach is
also implemented in Verificarlo and VERROU.

• Load consistency: When loading a floating-point value
from memory, we check that its loaded shadow is con-
sistent. If not, this means that some uninstrumented
code modified memory without nsan being aware.
This can happen, for example, when the user used
hand-written assembly code which could not be instru-
mented. By default, this check does not emit a warning
since this is typically not an issue of the code under
test. It simply resumes computation with S(v) = v . In
practice, we found that this happened extremely rarely,
and we provide a flag to disable load tracking when
the user knows that it cannot happen.

In each case, we print a warning with a detailed diagnostic
to help the user figure out where the issue appeared. The
diagnostic includes the value and its shadow, how they differ,
and a full stack trace of the execution complete with symbols
source code location. An example diagnostic is given in Fig. 3.

3.4 User Control
Runtime Flags. Determining whether two floating-point

values are similar is a surprisingly ill-defined problem [6].
nsan implements the epsilon and relative epsilon strategies
from [6], and allows the user to customize their tolerances.

Sanitizer Interface. We provide a set of functions that
can be used to interact explicitly with the sanitizer. This is
useful when debugging instabilities:

• __nsan_check_float(v) emits a consistency check
ofv . Note that this is a normal function call: the instru-
mentation automatically forwards the shadow value
to the runtime in the shadow stack.

• __nsan_dump_shadow_mem(addr, size) prints a rep-
resentation of shadow memory at address [addr,
addr+size]. See Fig. 2 for an example.

• __nsan_resume_float(v) Resumes the computation
from the original value from that point onwards:
S(v) = v .

Suppressions. The framework might produce false pos-
itives. This can happen, for example, when an application
performs a computation that might be unstable, but has
ways to check for and correct numerical stability afterwards
(see section 4). We provide a way to disable these warnings
through suppressions. Suppressions are specified in an ex-
ternal file as a function name or a source filename. If any
function or filename within the stack of the warning matches
a suppression, the warning is not emitted. Suppressions can
optionally specify whether to resume computation from the
shadow or the original value after a match.

3.5 Interacting with External Libraries
Most applications will at one point or other make use of
code that is not instrumented. This might be because they
are calling a closed-source library, because they are calling
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WARNING: NumericalSanitizer: inconsistent shadow results while checking store to address 0xffda3808

double precision (native): dec: 0.00000000000002309503 hex: 0x1.a00b086c4888f0000000p -46

__float128 precision (shadow): dec: 0.00000000000005877381 hex: 0x8.458 cb4531bef87a00000p -47

shadow truncated to double : dec: 0.00000000000005877381 hex: 0x1.08 b1968a637df0000000p -44

Relative error: 60.70% (2^51 epsilons) (6344632558530384 ULPs == 15.8 digits == 52.5 bits)

#0 0x7f55c33486b5 in void operations_research ::glop:: TriangularMatrix :: TransposeLowerSolveInternal <

false >( operations_research ::glop:: StrictITIVector <gtl::IntType <operations_research ::glop::

RowIndex_tag_ , int >, double >*) const lp_data/sparse.cc :857:32

#1 0x7f55c3d40104 in operations_research ::glop:: BasisFactorization :: RightSolveForProblemColumn(gtl

::IntType <operations_research ::glop:: ColIndex_tag_ , int >, operations_research ::glop::

ScatteredColumn *) const glop/basis_representation.cc :452:21

[...]

#17 0x55a0f2c43981 in main testing/base/internal/gunit_main.cc :77:10

Figure 3. An example nsan warning in a real application. Note that the warning pinpoints the exact location of the issue in
the original source code. The full stack trace was collapsed for clarity.

a hand-coded assembly routine, or because they are calling
into the C runtime library (e.g. memcpy(), or for math func-
tions. nsan interacts seamlessly with these libraries thanks
to the shadow tagging system described in section 3.2.

4 Results and Discussion
In this section, we start by taking a common example of
numerical instability and compare how Verificarlo, FpDebug
and nsan perform in terms of diagnostics and performance.
Then, we show how nsan compares in practice on real-life
applications, using the SPECfp2006 suite. In particular, we
discuss how the improved speed allows us to analyze binaries
that are not approachable with existing tools, while reducing
the number of false positives (and therefore the burden on
the user).

4.1 An Example: Compensated Summation
Summation is probably the best known example of an al-
gorithm which is intrinsically unstable when implemented
naively. Kahan’s compensated summation [9] works around
the unstabilityof the naive summation by introducing a com-
pensation term. Example code for both algorithms can be
found on Fig. 4.

4.1.1 Diagnostics. For each tool, we ran the two summa-
tion algorithms of Fig. 4, on the same randomly generated
vector of 10M elements. A perfect tool would warn of an
instability on line 4 in the naive case. Whether it should
produce no warnings in the stable case is up for debate: On
the one hand, the operations on line 13 and 15 result in loss
of precision. On the other hand, the only thing that really
matters in the end is the observable output of the function.
All three tools were able to detect the numerical issue

when compiled with compiler optimizations. The tools differ
quite a lot in the amount of diagnostic that they produce:

• Verificarlo produces an estimate of the number of cor-
rect significant digits in both modes. The number of

1 float NaiveSum(const vector <float >& values) {

2 float sum = 0.0f;

3 for (float v : values) {

4 sum += v;

5 }

6 return sum;

7 }

8
9 float KahanSum(const vector <float >& values) {

10 float sum = 0.0f;

11 float c = 0.0f;

12 for (float v : values) {

13 float y = v - c;

14 float t = sum + y;

15 c = (t - sum) - y;

16 sum = t;

17 }

18 return sum;

19 }

Figure 4. Naive summation and Kahan compensated sum-
mation.

significant digits is lower for the naive case (5.8 vs 7.3),
which shows the issue. By default, no source code in-
formation is provided, though the user can optionally
provide a debugging script to locate the issue 6.

• FpDebug evaluates the error introduced by each in-
structions, and sorts them by magnitude. In the naive
case, FpDebug reports 1, 000, 008 discrepancies, the
largest of which (line 4) has a relative error of 3.6 ×
10−5, which is the error introduced by the summation.
In the stable case, it reports 1, 000, 010 discrepancies
between application and shadow value, the largest 2
being on line 15 and 13, with errors of about 1028 and

6https://github.com/verificarlo/verificarlo#pinpointing-errors-with-delta-
debug
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10−3 respectively. This makes sense because the com-
pensation term c is somehow random. The relative
error for sum is reported to be 3.3 × 10−8.

• nsan produces a single warning (10 lines of output)
in naive mode, reporting a relative error of 3.6 × 10−5

on line 6 (return sum). In stable mode, it produces no
output. On the one hand, nsan avoids producing false
positives in stable mode, as the temporary variables
c, y, t, and sum are only checked when producing ob-
servable value (see section 3.3). On the other hand, the
diagnostic is made on the location where the observ-
able is produced (l.6) instead of the specific location
where the error occurs (l.4). We believe that while this
produces less precise diagnostics, the gain in terseness
(in particular, the reduction in what we argue are false
positives) benefits the user experience.

4.1.2 Single-Threaded Performance. To detect the is-
sue, Verificarlo needs to run the program N times, where
N is a large number, and run analysis on the output. In the
original article, the authors use N = 1000; it’s unclear how
one should pick the right value of N . In contrast, FpDebug
and nsan are able to detect the issue with a single run of the
program, and they can pinpoint the exact location where the
issue happens.

Table 2 compares the performance of running the program
without instrumentation, with Verificarlo, VERROU, FpDe-
bug, and nsan respectively. Simply enabling instrumentation
in Verificarlo 7 makes the program run about 6 times slower.
This is because all instrumentation is done as function calls.
Before every call, registers have to be spilled to respect the
calling convention. The function call additionally prevents
many optimizations because the compiler does not know
what happens inside the runtime. Performing the random-
ization on top with the MCA backend 8 makes each sample
run about 40 times slower in total. The dynamic approach
of FpDebug is also quite slow as it does not benefit from
compiler optimizations.
In contrast, nsan slows down the program by a factor of

2.3 when shadowing float computations as double: shadow
double computations are done in hardware, and are as fast as
the original ones, and the framework adds a small overhead.
When shadowing double computations as quad, the slow-
down is around 17: this is because shadow computations
are done in software, and are therefore much slower (some
architectures supported by LLVM, such as POWER9[5], have
hardware support for quad-precision floats; nsan would be
much faster on these). Note that all these times are given per
sample. A typical debugging session in Verificarlo requires
running the mca backend for a large number of samples (the
Verificarlo authors use 1000 samples). Therefore, analyzing
even this trivial program slows it down by a factor 40000.
7libinterflop_ieee.so
8libinterflop_mca.so --mode=mca

Table 2. Performance of various approaches on the Kahan
Sum. The second column shows the time (in milliseconds)
to run one sample of the compensated sum algorithm from
Fig. 4, with 1M elements. The third and fourth columns re-
spectively show the slowdown compared to the original
program for a single sample, and for the whole analysis (us-
ing 1000 samples for probabilistic methods). The experiment
was performed on a 6-core Xeon E5@3.50GHz with 16MB
L3 cache.

Version ms/sample Slowdown Slowdown
(1 sample) (full)

original program 3.3 1.0x 1.0x
Verificarlo, ieee 18.4 5.6x 5600x
Verificarlo, mca 132.3 40.0x 40000x
Verrou, nearest 96.5 29.2x 29200x
Verrou, random 117.0 35.4x 35400x
FpDebug, precision=64 1573.3 476.6x 476.6x
nsan (double shadow) 7.7 2.3x 2.3x
nsan (quad shadow) 56.7 17.2x 17.2x
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Figure 5. Parallel Scalability: Speedup of running one sam-
ple of the compensated sum algorithm from Fig. 4 (100M
elements) vs. number of threads.

4.1.3 Multi-Threaded Performance. If ordering is not
important, the compensated sum of Fig. 4 can be trivially
parallelized: Each thread is given a portion of the array, and a
last pass sums the results for each thread. Figure 5 shows how
each approach scales with the number of threads. Because
Valgrind serializes all threads, both Verrou and FpDebug can-
not take advantage of additional parallelism. Methods based
on compile-time instrumentation (Verificarlo and nsan) scale
with the application. An exception is Verificarlo with the
MCA backend, which is actively hurt by multithreading.

4.2 SPECfp2006
4.2.1 Performance. Table 3 shows the time it takes to an-
alyze each of the C/C++ benchmarks of SPECfp2006 (test
set) with FpDebug and nsan. As shown on the simple ex-
ample above, Verificarlo and Verrou take too much time to
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analyze large application, so we only provide compare with
FpDebug. All experiments were performed on a 6-core Xeon
E5@3.50GHz with 16MB L3 cache. In practice, debugging
a floating-point application is likely to involve running the
analysis with the application compiled in debug mode (with-
out compiler optimizations), so we include results when the
application is compiled with compiler optimizations (opt
rows) or without them (dbg rows).

Note that all programs in SPECfp2006 are single-threaded,
so this is the best case for FpDebug.

Table 3. Performance of analyzing SPECfp2006 applications
(test set) with fpdebug and nsan, with compiler optimizations
turned on and off. For each experiment, we show the runtime
in seconds for each and the speedup factor of nsan vs fpdebug.
Note that as noted in [2], the dealII benchmark cannot run
under FpDebug due to limitations in Valgrind.

Benchmark Original FpDebug nsan Speedup
milc (opt) 3.73 3118.2 505.4 6.2x
namd (opt) 8.33 5679.8 519.8 10.9x
dealII (opt) 7.60 - 356.4 -
soplex (opt) 0.01 1.9 0.1 19.0x
povray (opt) 0.31 171.8 12.7 13.5x
lbm (opt) 1.47 1343.0 105.4 12.7x
sphinx3 (opt) 0.88 304.0 26.7 11.4x
milc (dbg) 13.80 4721.1 502.2 9.4x
namd (dbg) 20.20 11445.2 529.0 21.6x
dealII (dbg) 85.40 - 621.6 -
soplex (dbg) 0.33 41.0 0.8 52.5x
povray (dbg) 0.85 286.6 18.0 15.9x
lbm (dbg) 2.00 1785.0 105.5 16.9x
sphinx3 (dbg) 1.79 649.0 27.3 23.8x

To investigate what made nsan much faster, we profiled
FpDebug and nsan runs using the Linux perf tool [1]. Table 4
shows where the analyzed program spends most of its time.
For nsan, we base the breakdown on calls into the compiler
runtime (for quad computation) and nsan runtime (shadow
value load/stores and checking). This underestimates what
happens in reality as the breakdown does not include addi-
tional time spent in the original application such as shadow
value creation, shadow double computations for float values,
or register spilling when calling framework functions.
For nsan, most time is spent on shadow computations,

shadow value tracking is secondary, and checking is neg-
ligible. For FpDebug, shadow value computation (calls to
mpfr_*) is a much smaller part of the total. Shadow memory
tracking is somehow significant, in particular the memory
interceptions (calls to vgPlain_*). Most time is spent exe-
cuting Valgrind.
Because nsan only adds a constant of work per opera-

tion, it scales linearly with respect to problem size. To assess
this experimentally, we used the milc benchmark, which is
interesting because it can scale independently in terms of

Table 4. Approximate breakdown of where time is spent in
an instrumented application (with compiler optimizations).

Benchmark Shadow Memory Value
Computation Tracking Checking

nsan
milc 75.5% 4.7% 0.2%
namd 83.2% 3.0% 0.7%
dealII 73.7% 5.7% 1.2%
soplex 39.6% 11.4% 0.4%
povray 71.8% 8.3% 0.2%
lbm 79.6% 2.3% 1.6%
sphinx3 71.2% 7.5% 0.2%

FpDebug
milc 49.3% 14.2% 0.0%
namd 51.6% 9.0% 0.01%
soplex 14.6% 4.0% 0.1%
povray 34.5% 7.6% 0.01%
lbm 49.1% 10.6% 0.7%
sphinx3 34.2% 9.7% 0.1%
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Figure 6. Scaling of the milc benchmark with respect to
problem size. We run the benchmark uninstrumented (base)
and instrumented (nsan) and measure the runtime while
varying the input problem size in each dimension. Each
point represents a benchmark run with a particular value
of steps_per_trajectory (s) and the grid resolution in
the time domain (nt). Trend lines are represented for each
dimension.

memory (grid size, parameter nt) and number of steps (pa-
rameter steps_per_trajectory). Figure 6 shows that nsan
scales linearly with the problem size in both dimensions.

4.2.2 Diagnostics. Table 5 shows, for each tool, the num-
ber of instructions reported as introducing a relative error
larger than 10−5 (a.k.a positives). This threshold is arbitrary,
and corresponds to the default for nsan. For this experiment,
compiler optimizations are enabled as this is likely to be the
configuration of choice when debugging a whole application.
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Table 5. Number of instructions introducing a relative error
larger than 10−5. The first two columns show the number of
warnings for FpDebug with and without counting the false
positives from libm. Note that for the value marked with 1

the number of warnings is a lower bound as FpDebug reports
unsupported vector operations Max64Fx2 and Min64Fx2.

Benchmark FpDebug FpDebug ¬ libm nsan
milc 140 0 0
namd 100 72 415
dealII - - 21
soplex 53 50 2
povray 7721 2301 1182
lbm 87 87 0
sphinx3 383 27 22

An important source of false positives for FpDebug (up
to 100% of the positives can be false positives) are mathe-
matical functions such as sine or cosine. For example, for the
milc benchmark, all warnings happen inside the libm. This
is because the implementation of (e.g.) sin(double) uses
specific constants tailored to the double type. Reproducing
the same operations in quad precision is unlikely to produce
a correct result. As mentioned in 3.1, LLVM is aware of the
semantics of the functions of the libc and libm, which al-
lows nsan to process the shadow value using the extended
precision version of these functions (e.g. sin(double) for
sin(float)), avoiding the false positives.
If we ignore the false positives from libm, nsan tends

to reports fewer issues than FpDebug9. Unfortunately, as
seen in section 4.1.1, whether a warning is a true or false
positive is subject to interpretation. We inspected a sample
of positives from FpDebug and nsan. They can roughly be
classified in three buckets:

• False positives due to temporary values. This is simi-
lar to the false positives in the Kahan sum from 4.1.1.
These are mostly from FpDebug, though nsan can also
produce them when memory is used as temporary
value: Writing a temporary to memory makes it an
observable value. Fig. 7 gives examples of such a false
positives.

• False positives due to incorrect shadow value tracking
in FpDebug. FpDebug has issues dealing with integer
stores that alias floating-point values in memory (a.k.a
type punning). Because nsan tracks shadow memory
types (see 3.2)), it does not suffer from this problem.
Fig. 8 gives an example of this issue.

• Computations that are inherently unstable, and the
instability is visible on a partial computation. However,
the input is such that the observable output value does
not differ significantly from its shadow counterpart.

9The large number of warnings for the namd benchmark is due to the
existence of multiple warnings inside a macro: FpDebug reports one issue
for the macro, while nsan reports an issue for each line inside the macro.

1 // (1).

2 void equal(double x, double y) {

3 double d = x - y;

4 if ( d > 0.00001 || d < -0.00001 ) {

5 printf("error: numeric test failed! (error

= %g)\n",d);

6 exit (-10);

7 }

8 }

9
10 // (2).

11 Real delta = 0.1 + 1.0 / thesolver ->basis().

iteration ();

12 ...

13 x = coPenalty_ptr[j] += rhoVec[j]*( beta_q*

rhoVec[j]-2* rhov_1*workVec_ptr[j]);

14 if (x < delta)

15 coPenalty_ptr[j] = delta;

Figure 7. Example false positives from the soplex and namd
benchmark. For (1), note how a large relative error can be
created by cancellation on line 3. However, all that matters
is the absolute value compared to 0.00001. FpDebug incor-
rectly warns on that case, while nsan is silent. (2) is similar
in spirit, though more complex. The cancellation potentially
introduced on line 14 is handled on line 15 − 16, but both
FpDebug and nsan report an issue on line 13 − 14.

Fig. 10 illustrates this. Because FpDebug checks partial
computations, it warns about this case. nsan does not,
as it only checks observables. The best tradeoff here
is debatable: On one hand, the computation might
become unstable with a different input. On the other
hand, the code might be making assumptions about
the data that the instrumentation does not know about.
Until the instrumentation sees data that changes the
observable behaviour of the function, it can assume
that the implementation is correct.

4.3 Limitations
We have mentioned earlier that nsan only checks observable
values within a function, and we have seen previous sections
that this approach helps prevent false positives. However,
this also makes nsan susceptible to compiler optimizations
such as inlining (resp. outlining). Because these optimiza-
tions change the boundaries of a function, they change its
observable values. For example, given the code of Fig. 11,
a compiler might decide to inline NaiveSum into its caller
Print.

In that case, the sum value will not be checked by nsan on
line 6, because sum is not an observable value of NaiveSum.
This is not an issue for detecting numerical stability, as
the sum variable is still tracked within Print. However, it
changes the source location where nsan reports the error.
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1 void __attribute__ (( noinline)) Neg(double* v) {

2 *(( unsigned char*)v + 7) ^= 0x80;

3 }

4
5 double Example(double v) {

6 double d = v / 0.2 - 3.0;

7 Neg(&d);

8 return d;

9 }

Figure 8. Example false positive with type punning. FpDe-
bug can be made to report an arbitrarily large error, as it
uses a non-negated shadow value for S(d) after the call to
Neg. In Example, the computation is unstable around v=0.6,
and FpDebug returns an error of 260% instead of the correct
value of 60%. nsan is able to detect that the last two bytes
of the shadow value have been invalidated by the untyped
store thanks to shadow type tracking.
Note: the code was adapted from more complex application
code, noinline added to prevent some compiler optimiza-
tions.

1 // Unstable loop.

2 for (i = 2; i <= Octaves; i++) {

3 ...

4 result[Y] += o * value[Y];

5 result[Z] += o * value[Z];

6 if (i < Octaves) {

7 ...

8 o *= Omega;

9 }

10 }

11
12 // Division by small value.

13 if (D[Z] > EPSILON) {

14 ...

15 t = (Corner1[Z] - P[Z]) / D[Z];

16 }

Figure 9. Example true positives from the povray bench-
mark. The loop accumulates values of widely different mag-
nitudes, which is known to produce large numerical errors.
The first one is caught only by nsan, likely because it’s vec-
torized by the compiler, and FpDebug does not handle some
vector constructs. Both tools catch the second.

While the user can easily circumvent the issue by using
__nsan_check_float() function to debug where the error
happens exactly, this degrades the user experience as it re-
quires manual intervention.
However, LLVM internally tracks function inlining in its

debug information. In the future we plan to to correct the is-
sue above by emitting checks for observable values of inlined
functions within their callers.

1 Real SSVector :: length2 () const {

2 Real x = 0.0;

3 for(int i = 0; i < num; ++i)

4 x += val[idx[i]] * val[idx[i]];

5 return x;

6 }

Figure 10. Example code from the soplex benchmark.
While the elements of the sum and the partial sum diverge
from their shadow counterpart, the eventual result does not.
FpDebug reports an issue on line 4, but not on line 5. nsan
does not report an issue.

1 float NaiveSum(const vector <float >& values) {

2 float sum = 0.0f;

3 for (float v : values) sum += v;

4 return sum;

5 }

6
7 void Print(const vector <float >& values) {

8 float v = NaiveSum(values) + 1.0;

9 printf("%f", v);

10 }

Figure 11. Example code where inlining might change the
output of nsan. The only observable value of NaiveSum is
its return value. The only observable value of Print is the
second argument to the printf call. Depending on whether
NaiveSum is inlined, the warning is emitted on line 6 column
10, or line 11 column 16.

5 Conclusion
Even though nsan offers less guarantees than numerical
analysis tools based on probabilistic methods, it was able to
tackle real-life applications that are not approachable with
these tools in practice due to prohibitive runtimes.

We’ve shown that nsan was able to detect a lot of numeri-
cal issues in real-life applications, while drastically reducing
the number of false positives compared to FpDebug. Our san-
itizer provides precise and actionable diagnostics, offering a
good debugging experience to the end user.
Because nsan works directly in LLVM IR, shadow com-

putations benefit from compiler optimizations, and can be
lowered to native code, which reduces the analysis cost by at
least an order of magnitude compared to other approaches.
We believe that user experience, and in particular execu-

tion speed and scalability, was a major factor for the adoption
of toochain-based sanitizers over Valgrind-based tools, and
we aim to emulate this success with nsan. We think that this
new sanitizer is a step towards wider adoption of numerical
analysis tools.

We intend to propose nsan for inclusion within the LLVM
project, complementing the existing sanitizer suite.
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