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ABSTRACT
In performance based digital advertising, one of the key technical
tools is to predict the expected value of post ad click purchases
(a.k.a. conversions). Some of the salient aspects of this problem
such as having a non-binary label and advertisers reporting the label
in different scales make it a much harder problem than predicting
probability of a click. In this paper we ask what is a good way to
model the label and extract as much information as possible from
the features. We investigate three main issues that arise from adver-
tiser reported labels and come up with new techniques to address
them. The first issue is that the label scale can affect how the model
capacity is devoted to different advertisers. The second issue is how
outlier labels can cause over-fitting. Finally, we also show that the
distribution of the label contains vital information and the we train
our models to use them and not just rely on the mean.
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1 INTRODUCTION
The holy grail of advertising is to maximize its’ net effect, while
simultaneously spending as little as possible. Over many decades, the
advertising industry has repeatedly changed to be able to achieve this.
Historically, advertising included print and billboard messaging, and
its effectiveness was measured via surveys. These were at best good
proxies. While the introduction of radio and television increased the
overall reach and effectiveness, they still suffered from the same
measurement issues as previous forms. With the advent of internet
advertising, we are able to measure engagement through more direct
proxies or even end goals.

The most popular form of advertising on internet was based on
“pricing per view” impression which is most suitable for “Brand”
advertising. A breakthrough change was the introduction of pay-
per-click ads where the advertiser only pays if the user clicks on an
ad( [24]). This was substantially more effective as users who click
on the ad are typically more valuable for the advertiser. This also
allows for better optimization in showing relevant ads as one can
predict click through rates. While pay-per-click ads are indeed better
for performance advertising, it still suffered from some nontrivial
challenges. These challenges include advertisers manually specify-
ing a bid for each segment of the population which is computed
painstakingly, lack of automation due to manually specifying which
users to target and paying for users who are unlikely to buy on
advertisers website.

Over the last few years, the industry has shifted towards optimiz-
ing end goals. In this case, advertisers report conversions (purchase
events etc) which happen on their website back to RTB (real time

bidding) platforms along with an associated value for these conver-
sions (see [1]). In a CPA (cost per acquisition) product, there is a
model to predict the probability of a conversion per click which is
used to proportionally adjust bids for these advertisers. In a ROAS
(return on advertiser spend) product there is instead a model to pre-
dict expected value of conversions per click which is also used to
proportionally adjust bids for these advertisers; i.e. in both cases,
bid proportionally higher on users whose prediction is higher.

We observe that conversions and their purported value are both
advertiser reported data and are not observed by the search engine
directly. As a result a number of issues that present themselves in
this setting that are not present in more traditional models which
predict for e.g. click through rates. As a result, building a machine
learning model to predict expected value turns out to be a lot more
challenging than building a model to predict the probability of a
click or a conversion. In this paper, our main goal is to construct a
highly accurate model which predicts the advertiser reported value.

The first salient issue in value prediction is that the label reported
by each advertiser is in an arbitrary (but consistent) scale. As an
example one advertiser can report labels in the range of 10000, while
another in the range of 0.00001. This doesn’t necessarily mean that
dollar value generated per conversion by the first advertiser is larger
than the second advertiser. As a result, if we train a generalized linear
regression model, the model capacity is allocated disproportionately
to the first advertiser in the above example (and more generally to
advertisers who report labels in larger scale). Our first idea is to
normalize the labels such that the average label is 1 across different
advertisers.

The resulting normalized label still has two important issues. First,
the range of normalized label is still quite wide due to the presence
of many outliers. Secondly, the distribution is biased towards having
many more zero-valued labels than any other. To handle the outliers,
we take inspiration from robust statistics and utilize a technique
known as winsorized mean and merge it with multi-task learning.
To fix the excess of zero’s in the conversion data, we take inspiration
from the zero inflated models. Traditionally one would incorporate
these new ideas into a single objective. One of our main ideas is to
instead create new auxilary objectives and use this multi-objective
approach to learn these properties of the resulting distribution.

Our final observation is while predicting the expected value, most
standard models just predict the mean of the distribution and neglect
the information in the complete distribution. We further use multi-
task learning to predict different properties of the distribution which
further improves accuracy of predicting label. In particular, by asking
the model to solve an additional classification task, we find that the
model quality improves further. Note that this is not like the use of
reducing a regression task into a classification task but rather adding
new tasks which are only used in training and not used in computing
the final prediction. The use of multi-task learning here is not like



the classical use where we train on different tasks (for example CTR
and CVR prediction). The additional tasks don’t correspond to any
other natural product objective and solely drive performance gains.

2 RELATED WORK
Internet advertising has a very rich literature. This started with a
long line of work on models for predicting clicks [25, 27, 34] and
continued with topics such as designing auctions [4, 12, 30]. There
also have been a series of papers studying conversion prediction
in [3, 21, 26, 28]. While conversion prediction has several aspects
common with classical click prediction, it also has many unique
aspects such as delayed label [7], attribution [10] and computing the
causal effect [22].

Another line of work which is quite relevant is on loss functions.
In these works (see [6, 14, 29, 32]), there is a complete charac-
terization of proper scoring rules – i.e. loss functions which re-
sult in unbiased estimators. At a very high level, these loss func-
tions are exactly the functions whose gradient 𝜕𝑙𝑜𝑠𝑠/𝜕𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠 =

𝑓 (𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛) · (𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛−𝑙𝑎𝑏𝑒𝑙) for some reasonably “nice” func-
tion 𝑓 . These loss functions have gradient 0 (in expectation) when
the prediction is exactly the (expected) label. Throughout this pa-
per, we will use Poisson regression which belongs to the class of
proper scoring rules. This is quite standard and is used for predicting
positive float labels throughout literature (see [2]). We won’t be
concerned with other class of loss functions. Note that while Poisson
regression can be derived using Maximum likelihood for integer
labels, the loss function is well defined for arbitrary positive real
valued labels and gives an unbiased estimator irrespective of the
underlying distribution that the label comes from.

A second line of work has been on mean estimation with heavy
tails distributions, both in the setting of i.i.d random variables and in
the setting of regression. An excellent survey of existing techniques
and relevant references can be found in [23]. The setting relevant for
us is that of regression and they describe and analyze median of mean
tournaments. Today a number of different techniques have been
developed in the literature. Modern techniques such as [9, 15, 18]
use more sophisticated tools and produce robust estimators but are
not very practical.

A third line of work is on using information in the distribution
of label and not just predicting the mean of the distribution. One
example of this is the work on Zero-Inflated Poisson (ZIP) regression
[17, 20, 33] which assumes that the label is generated via a mixture
distribution where we generated 0 with probability p and a Poisson
random variable with probability 1-p. There are two challenges with
this approach, one being that a ZIP model is not a proper scoring
rule and hence might not give an unbiased estimator and the second
being that it works only for integer labels and isn’t defined for float
labels.

A fourth line of work which is very relavant is how offline ac-
curacy relates to final business metrics. While traditional machine
learning research used various metrics for comparing offline accu-
racy of models such as log likelihood, l2 error etc, there was a need
for better evaluation of models used in internet advertising due to
how they can affect final metrics such as revenue. This was studied
in [8, 16]. This was later extended by [31] to also allocate model
capacity for different advertisers to optimize for final metric. The

solution in [31] is to weight the examples by CPA and works for
binary label. This work is orthogonal to our work and can work in
conjunction to the label normalization, where can do CPA weighting
on top of label normalization. But we won’t be touching upon this
topic in the rest of this paper.

3 PRELIMINARIES
In this section we list the notation used in this paper and also discuss
offline evaluation metrics.

Notation. We will use 𝑋 to denote the set of features used for
prediction. For each click the advertiser reports to RTB a set of post
click conversions denoted by 𝐶 = {𝑐1, 𝑐2, . . .}. For each conversion
𝑐𝑖 the advertiser also reports a corresponding value ℓ𝑖 . Hence the
total value of the click for the advertiser is

∑
𝑖 ℓ𝑖 which we denote by

ℓ . We will denote the advertiser by 𝐴 which is also a feature included
in the general set of features 𝑋 , i.e 𝐴 ∈ 𝑋 . The goal of the prediction
problem is to predict the quantity 𝐸 [ℓ |𝑋 ]. Let 𝑐𝑝𝑐 be the cost per
click that advertiser needs to pay for that specific click.

Regression formulation as Poisson regression. There are several
ways to predict a real valued random variable and we use one of the
most popular formulations to predict this value. In particular, we
model it as a Poisson regression task. Poisson Regression is a type of
generalized linear regression model, where the corresponding label
follows the expression

log(E[𝑌 | 𝑋 ]) = ⟨\, 𝑋 ⟩.
While one can derive Poisson regression via maximum likelihood
for a integer Poisson random variable, it belongs to the class of
proper scoring rules [6] which give unbiased estimators even when
the corresponding label is real valued. We will have a deep neural
network output parameter \ of Poisson regression and the prediction
is 𝑒\ . If 𝑙 is the label for the regression formulation then Poisson log
likelihood for the example is

𝑙 · \ − 𝑒\ . (1)

Offline metric as Negative Poisson log likelihood (NPLL) with
respect to normalized label. When training a Poisson regression
model we maximize the Poisson log likelihood or minimize the
negative Poisson log likelihood (NPLL). So it is natural to evaluate
the accuracy of different models by comparing NPLL on a held out
dataset. Since we will be normalizing our label we will be evaluating
our ideas by comparing NPLL with respect to normalized label.

4 LABEL NORMALIZATION
If we look at the gradient of Poisson log likelihood it is exactly equal
to label minus prediction (see eq. (1)). As a result, gradients for
advertisers who report in a larger scale will be larger and more model
capacity will be devoted to these advertisers. Large gradients affect
the model capacity as it will take many examples from smaller labels
to compensate for the one large gradient from a large label. While
labels for different clicks do represent their relative value for a given
advertiser (i.e. they are consistent), across different advertisers they
don’t necessarily correlate with dollar spent. In particular, advertisers
who spend a small amount but report large labels will contribute
disproportionately to the loss. As a result, the model will allocate
more capacity to predict their labels correctly. Such a system is not

2



incentive compatible as each advertiser now has an incentive to scale
up their labels to a very large scale.

A naive method to resolve the above issue would be to try and pick
a loss function whose gradients are scale invariant. Unfortunately,
this introduces a different issue. If gradients are scale invariant then
the model will take a large number of steps to learn the mean predic-
tion for advertisers with large scale, and not converge (i.e. bounce
around) for advertisers who report labels on a small scale.

Figure 1: A heatmap of avg label per customer vs avg cpc for that cus-
tomer.

We solve the above issues by using label normalization, where
we multiplicatively normalize the label for each advertiser to 1. To
do this, we compute a normalization constant for each advertiser
[𝐴 = 𝐸 [ℓ |ℓ > 0, 𝐴]. Then the final normalized label is ℓ𝑛 = ℓ/[𝐴.
Our final prediction will be normalization constant times the model
prediction, i.e [𝐴 · 𝐸 [ℓ𝑛 |𝑋,𝐴].

Note that the above design fixes both issue of model capacity
allocation as well as learning the mean for each advertiser. Since we
do a per advertiser normalization, the average label E[ℓ |ℓ > 0, 𝐴]
is easily computed online. Since the normalized label for all adver-
tisers in the same range, the model converges in a few steps for all
advertisers. As a result, it is easy to see why the final prediction of
𝐸 [ℓ |ℓ > 0, 𝐴] · 𝐸 [ℓ𝑛 |𝑋,𝐴] becomes calibrated for each advertiser
within a few gradient steps. Furthermore, we can see that the gra-
dients are now scale invariant and as a result the model capacity is
allocated evenly to all advertisers.

We note that there are several alternatives to using multiplicative
normalization. We discuss a few of them below:

• We note that another way to normalize the labels is to use an
additive normalizer rather than a multiplicative normalizer.
However, this approach doesn’t yield favorable results for
two reasons. Advertisers use the relative values of the labels
to indicate the relative value of conversions. Secondly, the
wide range which causes poor predictions is still an issue.

• Another way is to try to weight each sample by 1
E[ℓ |ℓ>0,𝐴] .

This approach leads to numerical issues as the gradient can be
arbitrarily large. This is because even if the label is small (say
ℓ ≈ 0), the prediction could be a constant and the resulting
gradient would be enormous.

• Another idea is to simply not try to normalize the label.

We show that the above performs poorly in the experimental section.

5 LEARNING PROPERTIES OF THE
DISTRIBUTION

In this section, we construct a model to predict the normalized
label as accurately as possible. We notice that these distributions
have unique properties and we show ways of exploiting them in the
subsections below.

5.1 Outlier handling via Winsorized mean and
Multi task learning

Even after normalization of the mean, the relative value of the label
compared to its mean can take on large values. While this could be
due to multiple effects which may be unique to each advertiser, the
most salient hypothesis is that these are caused by outliers. There is
a rich literature on the ability to handle outliers in machine learning
models. However, many techniques such as “median-of-means” is
hard to implement in online systems for two reasons.

(1) Simple techniques such as partitioning the input into smaller
buckets does make the resulting median quite robust, however
the accuracy suffers due to the reduced batch size in each
partition.

(2) More sophisticated techniques such as [9, 18] are not very
efficient to implement at scale in a distributed manner and
make it difficult to estimate the median in an online fashion.

Figure 2: Distribution of normalized label.

Instead we leverage a paradigm from statistics commonly referred
to as the Winsorized Mean which is known to perform well in the
precence of outliers(see [5, 13]). To compute the mean of a random
variable, we first winsorize the sample set – replace the extremes of
the sample space with truncated values. Observe that this is quite
difficult to do with extremes in the distribution directly, as each
advertiser might have a different extreme due to the large range in
their values. By normalizing the mean of each advertiser, we can
truncate the relative value (the ratio of the label to the mean) for all
advertisers simultaneously.

Simply predicting a truncated advertiser can result in a very poor
poisson logloss. This is because some advertisers may indeed have
a higher normalized label and may not be outliers. However, it is
not easy to distinguish these advertisers than those for whom large
labels are outliers. Instead, we take a two-pronged approach.

(1) Create a separate objective (by introducing a new head) that
tries to minimize the winsorized relative label.

(2) We down-weight the objective for the un-truncated value
which is used for prediction.
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The success of the above approach can be interpreted in two different
ways. First, by having a capped label is that it more evenly allocates
the model capacity. Secondly, we can view the winsorized mean
objective is used to regularize the objective value and forces the
model to pick an equilibrium that can better allocate model capacity
for all advertisers.

5.2 Handling zero inflation
One common problem faced in modelling advertiser reported values
is that most of the labels are zero. This is a common problem that
is faced in many real-world datasets. One technique that is used to
handle this issue is to use a model this distribution using a “Zero-
Inflated Model”. This suggests that observed phenomenon arise as
the composition of two separate processes: the first chooses the
probability of being zero and the second arise from some natural
probabilistic process, in our case a Poisson Model.

Perhaps the most natural way to capture this in a machine learning
model to split the label generating process as E[ℓ] = Pr[ℓ > 0] ·E[ℓ |
ℓ > 0]. Surprisingly the resulting model has poorer performance.
We find that it is better to have the model predict the value directly
and have a separate head predict Pr[ℓ > 0]. This is due to two com-
pounding effects. The first is that it is inherently harder to optimize
the product of two labels as both models have to be accurate. The
second is that the model can allocate its own capacity between these
objectives as it sees fit rather than having it artificially decide weight
both objectives equally. Lastly, the additional head can serve as a
regularizer for the serving objective.

Remark 1. Note that the splitting of the label (as mentioned above)
is also compatible with the other ideas in our paper. For example,
we can easily incorporate label normalization by predicting E[ℓ] =
Pr[ℓ > 0|𝑋 ] · E

[
ℓ
[𝐴

| ℓ > 0, 𝑋
]
· [𝐴 where [𝐴 = E[ℓ | 𝐴, ℓ > 0].

Figure 3: A pictorial representation of DNN along with all the ideas in
this paper.

As we show in our experiments, the addition of a new head that
predicts this probability results in an improvement in the Poisson
log loss (see table 3).

5.3 Teaching label distribution
A novel aspect that we introduce in this work is to improve the
regression task with the use of additional objectives which recast the
problem as a classification task. In particular, we believe that this

provides an additional regularization technique that helps to sort out
the outlier and focus the model’s capacity into more useful regions
of the latent space. While training, most models aim to predict just
the mean of the distribution. However, one can make the model
learn various aspects of the distribution. We show that learning the
quantiles of the distribution can help the overall accuracy of the
mean prediction.

To do this, we add an additional objective that asks the model to
predict the quantile of the label of the normalized label. The number
of quantiles to predict, is a hyperparameter that can be tuned. We
find that the addition of these heads improves the model performance
especially as the model size increases. In particular, a larger model
with these additional heads outperforms a larger model without these
additional heads.

One reason why this model improves performance is that the
additional head is further able to distinguish between extreme out-
liers. Secondly, deep models are very good at classification tasks
as evidenced by their performance on a number of classification
tasks (for e.g. [19]). By breaking the regression problem into smaller
classification tasks, we can leverage the improved performance in
classification.

6 EXPERIMENTS
We have performed both live experiments and experiments on offline
historical data. We report only the latter due to the propriety nature
of live experiments.

Data-set. We train the models on data from a commercial search
engine’s logs. Each example is a click and the label is total value of
conversions for that click as reported by the advertisers. Like [7], we
assume last click attribution where conversions are attributed to the
most recent click. We train on XX-Billion training examples.

Features and Model. Similar to most machine learning models
in advertising, we use several categorical features. In particular we
embed these features, concatenate the embeddings for each of these
features and then pass it through several layers of a fully connected
feed forward deep neural network.

Optimizer and Training Model. For each of the objectives sug-
gested, we append a final layer that is attached to the appropriate
objective. For the classification objective, we use a simple softmax
function. For predicting whether the Pr[ℓ > 0], we use a sigmoid-
loss function.

All models use the Ada-Grad optimizer [11] with the same hyper-
parameters (including the same learning rate). With the exception
of the down-weighting on the final objective, all other objectives
are weighted uniformly. Lastly, these models are trained in an on-
line fashion [25]. In online training you start training on the oldest
examples and then train on examples in the order of time that they
occurred. This allows the models to continuously capture any drifts
in the distribution in either the mean or the actual value reported by
the advertisers. Online training is quite standard in the industry and
is widely used to train a wide variety of machine learning models.
Note that in online training, each example is evaluated and the loss is
noted. As a result, there is no need for a separate test set to evaluate
the models.
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Evaluation and metrics. We primarily consider negative Poisson
log likelihood (NPLL) as the evaluation metric. This is also the same
metric used in the loss function. Typically for a machine learning
model trained in batch setting we evaluate either using a hold out
set or via cross validation. But in the case of online training we can
instead evaluate the model on the example before training on that
example. That way we get exactly the performance that you would
get at serving time. We will use this form of evaluation in reporting
all our metrics. While we train over several months of data and show
plots over the complete period we report aggregate numbers in the
table over the final 3 months.

6.1 Models Trained
We considered the following models and evaluate NPLL over a
period of X months.

• Baseline Model (BN) We start a baseline model that con-
tains a simple model that trains on the normalized label. We
also have a simple counting model to compute running aver-
age of the labels seen for each advertiser for computing the
normalization constant, i.e. [𝐴 = E[ℓ | 𝐴, ℓ > 0].

• Simple - (S) We consider a model that contains no additional
heads and directly tries to predict the final label. We re-weight
each example by the same number for all events. This ensures
that the learning rate is comparable across the baseline model
and the simple model (due to difference in global average
label).

• Median of Means - (MM) We also take 3 copies of the base-
line model, with each model training on a third of the data.
We output the median prediction of the three towers. Observe
that this model is 3 times more expensive as it contains a 3
copies of the baseline model.

• Plain Model with Weighted Training - (PW) We also con-
sider a model where each event is weighted by 1/[𝐴 instead
of normalizing the label.

• Full Model - (F): A model with label normalization and all
improvements from learning the distribution. These include
an additional head to predict the winsorized label, an addi-
tional head to predict if the Pr[ℓ > 0] and a softmax head to
predict the quantile of the normalized label.

• Full model without ℓ > 0 head - (FP) A model with the
same configuration as F except the head predicting the proba-
bility Pr[ℓ > 0].

• Full model without Softmax Head - (FS) A model with
the same configuration as F except the softmax head which
predicts the quantile.

• Full model without Winsorized Label Head - (FW1) A
model with the same configuration as F except the capped
head and head predicting the original value is weighted nor-
mally.

• Full model without Winsorized Label Head - (FW2) A
model with the same configuration as F except the capped
head and head predicting the original value is downweighted
by 10x.

• Zero Inflated FullModel - (ZI) A model with the same
configuration as F except the following change. We split the
normalized label into a product of two normalized labels:

E[ℓ[ ] = Pr[ℓ[ > 0] · E[ℓ[ | ℓ[ > 0]. We have two heads
predicting each component. The first component uses sigmoid
loss function and the second one uses a poisson log loss.

6.2 Results For Label Normalization
In this subsection, we compare the models S, BN and PW. We
begin by noting that PW doesn’t even train and has severe numerical
issues. The reason is because the gradient for this formulation is
(ℓ − 𝑒\ )/𝐸 [ℓ |𝐴, ℓ > 0]) and while ℓ/𝐸 [ℓ |𝐴, ℓ > 0] is numerically
stable we find that 𝑒\ /𝐸 [ℓ |𝐴, ℓ > 0] cannot be numerically stabilized.
We see that this quantity explodes when we consider an advertiser
for whom 𝐸 [ℓ |𝐴, ℓ > 0] is very very small.

Models Relative NPLL
for un-normalized

labels

Relative NPLL
for normalized

labels
S 0.0% 0.0%

BN +1.53% -38.02%
Table 1: Poisson log likelihood for label changes

Increasing
value of

bucketized
𝐸 [ℓ |𝐴, ℓ > 0]

S un-
normal-

ized
label

BN un-
normal-

ized
label

S
normal-

ized
label

BN
normal-

ized
label

Bucket0 2.36 1.04 17.94 0.99
Bucket1 1.29 0.85 1.75 0.99
Bucket2 1.03 1.0 1.03 1.0
Bucket3 1.02 1.0 1.02 1.0
Bucket4 1.01 1.01 1.01 1.0
Bucket5 1.03 1.10 1.11 1.04
Bucket6 1.0 1.04 1.01 1.01

Table 2: Avg Prediction/Avg Label

Now we compare S and BN. As we can see from table 1, S
does better on PLL with respect to un-normalized label since it
directly trains on un-normalized labels. But when we consider the
results with respect to normalized labels it does terribly. To further
showcase the issue we look at bias of both the models on data sliced
by bucketized values of avg per advertiser label, i.e 𝐸 [ℓ |𝐴, ℓ > 0].
If we look at table 2 we see that S has terrible overprediction for
smaller values of 𝐸 [ℓ |𝐴, ℓ > 0]. This is true even though we have
advertiser as a feature in the model.

6.3 Learning Properties of the Distribution.
In this section, we will evaluate the performance of each of the
improvements that we added. The plot from 4 shows how the relative
accuracy of each model with respect to BN changes over time. To
compare the total accuracy improvement of all the improvements
that we added we compare baseline model BN to the fullmodel F and
we see an overall improvement of 0.87% NPLL which is significant.

The next step in the evaluation is to show that each of the improve-
ments we added is necessary. To do so we run ablation by removing
1 change at a time and compare F with the models FP, FS, FW1,
FW2. We can see in table 3 that the model is indeed worse if we
exclude any of the improvements that we add.
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We further show why our results are better than what is in the
literature. In table 3 we see that MM is neutral with respect to BN
showing that median of means doesn’t seem to solve the outlier
problem. In addition, we see that splitting the prediction as 𝑃𝑟 (ℓ𝑛 >

0)𝐸 [ℓ |ℓ𝑛 > 0] in ZI is stricly worse than directly predicting 𝐸 [ℓ𝑛]
and adding an additional head for 𝑃𝑟 (ℓ𝑛 > 0) in F.

On top of the above aggregate analysis we also look at metrics
on an interesting slice of the dataset. More specifically, we look at
examples which belong to advertisers who have more than 2% of
positive labels which are winsorized. We see that our models tend to
do better on these set of advertisers.

Models Relative
NPLL

Relative NPLL for
advertisers with > 2%
winsorized +ve labels

BN 0.0% 0.0%
MM +0.04% 0.12%
ZI -0.47% -0.75%
F -0.87% -1.23%

FP -0.67% -1.19%
FS -0.79% -1.07%

FW1 -0.50% -0.81%
FW2 -0.50% -0.33%

Table 3: NPLL improvements of various model variants with respect to
normalized label

Figure 4: Comparison of relative poisson log likelihood improvement
over time.
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