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ABSTRACT
Correctly manipulating program terms in a compiler is surprisingly
difficult because of the need to avoid name capture. The rapier from
Peyton Jones and Marlow [9] is a cutting-edge technique for fast,
stateless capture-avoiding substitution for expressions represented
with explicit names. It is, however, a sharp tool—its invariants are
tricky and need to be maintained throughout the whole compiler
that uses it. We describe the foil, an elaboration of the rapier that
uses Haskell’s type system to enforce the rapier’s invariants stati-
cally, preventing a class of hard-to-find bugs, but without adding
any run-time overheads.
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There are only two hard things in Computer Science: cache
invalidation and naming things.

Phil Karlton

1 INTRODUCTION
Names turn out to be one of the Hard Things in writing compilers
as well. In the Dex compiler, for instance, we’ve been following
GHC’s version of the Barendregt convention, “the rapier” [9]. It‘s
elegant and it’s fast. It’s also stateless, which is crucial for caching
and concurrency.

But it‘s really easy to screw up. We’ve been working on an exper-
imental compiler for a functional language Dex and we’ve messed it
up again1 and again2 and again3 and again4 and again5 and again.6
This had become one of the biggest barriers to implementing new
language ideas and onboarding new people. Worse, it made us hes-
itate to use name-based indirection in places it would have been
helpful.

Here, we describe a design, “the foil”, that implements the same
naming discipline as the Simons’ rapier but enforces it usingHaskell’s
1https://github.com/google-research/dex-lang/commit/e979cae84c9b0cd612bed1013cdecf71e8c0d917
2https://github.com/google-research/dex-lang/commit/a6425c60a70b5db8871ea05185c30995d24bfbb8
3https://github.com/google-research/dex-lang/commit/c34ff0865306198aa9ed0c9ae1949325b6754dd7
4https://github.com/google-research/dex-lang/commit/b96dbddba09bbd1e84f988da597bb350892c7fbd
5https://github.com/google-research/dex-lang/commit/82c7edbde29c43e66eda8657de8853752709f11b
6https://github.com/google-research/dex-lang/commit/c154995fa5eea42acef69d39b8247da5e455c8c1
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type system. The design adds a phantom type parameter to every
AST, representing the set of allowable free variables. We keep the
benefits of the rapier—speed and statelessness—but we make it
harder to stab your own foot.

Anecdotally, after adopting the foil, formerly pervasive name
handling bugs disappeared from the Dex compiler. We have sig-
nificantly more confidence in the quality of our implementation.
Much more of our time is spent on a productive discussion with
the compiler, instead of puzzle-solving through ad-hoc debugging.

2 REVIEWING THE RAPIER
The rapier [9] is a discipline for fast and stateless namemanagement.
The rapier applies when we are working with explicit names, as op-
posed to De Bruijn indices [5] or another expression representation
such as locally-nameless [4] or higher-order abstract syntax [10].

The canonical example task for name management is capture-
avoiding substitution. To implement this in rapier style wemaintain,
in addition to the substitution itself, the scope, which is the set of
variables that might appear free in the result. In particular, all free
variables of the terms we are substituting with should be contained
in that scope.

The scope serves two purposes. When performing substitution
under a binder, the bound name might need to get refreshed so as
to avoid capturing the free variables of terms in the substitution.
Having a scope lets us easily check whether a name might occur
in those free variables, and with a well-chosen representation lets
us efficiently generate fresh names if needed. We therefore need
neither a global name supply, nor to traverse terms repeatedly
to compute their free variables, since the scope can be cheaply
maintained during the substitution traversal.

Furthermore, not only can we refresh the binder, we can also be
lazy about it! Having access to the scope, we can deduce that certain
binders are guaranteed to not capture any relevant variables, and
we can avoid renaming them at all.

Using an explicit scope, capture-avoiding substitution on a sim-
ple expression language looks like Figure 1, with straightforward
backing data structures such as in Figure 2.

The advantages of the rapier are substantial:

• It’s fast: a multi-name capture-avoiding substitution happens
in a single pass over the input expr, and we often do not even
need to traverse the terms being substituted for their free
variables, because we may already have the scope on hand
when we start.

• It’s stateless (no name supply), so it’s parallelizable and
cacheable.

• We do not change names that are already fresh, so substitut-
ing with the empty substitution does not change the term.

Unfortunately, it’s also very easy to get wrong. Here are four
obvious sharp edges:
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1 substitute :: Scope -> Substitution Expr -> Expr -> Expr

2 substitute scope subst = \case

3 Var v -> case lookup subst v of

4 -- missing names imply identity substitution

5 Nothing -> Var v

6 Just x -> x

7 App f x -> App (recur f) (recur x)

8 where recur = substitute scope subst

9 Lam v body -> if occursIn v scope

10 then

11 let v' = freshNm scope

12 subst' = extendSubst v (Var v') subst

13 scope' = extendScp v' scope in

14 Lam v' (substitute scope' subst' body)

15 else

16 Lam v (substitute (extend v scope) subst body)

Figure 1: Substitutionwielding the rapier on a simple expres-
sion language, showing multiple sharp edges.

• In the Var case, we could just return Var v instead of first
checking to see if it’s in the substitution.

• In the App case, we could forget to apply the substitution to
f or x, or we could apply it more than once. We could also
make a similar error in the Lam case.

• In the Lam case, we could forget to extend the scope or extend
it incorrectly.

• In the Lam case, we could forget to extend the substitution or
extend it incorrectly.

Substitution itself is the simplest illustration of the problem, but
the real headaches come from the more complicated passes: type in-
ference, normalization, linearization (for automatic differentiation),
transposition (also for automatic differentiation), optimizations,
lowering to imperative IRs, and so forth. These all include logic
that looks a lot like substitution. For example, the linearization
pass carries an environment that maps each name in the input
program to the corresponding primal and tangent terms for the
output program. Alongside the actual logic for each pass we have
to deal with the petty bureaucracy of name scopes and renaming
to avoid clashes. That’s where we make mistakes.

And the situation is far worse for the abstract syntax of a large
language like Dex, which has dozens of constructors instead of
just three. The trickiest are those that introduce new binders and
lexical scopes: lambda, pi types, let bindings, “for” expressions, case
expressions, effect handlers, AD transformations, and dependent
data constructors. Some have nested lists of scoped binders, like
the binders in a dependent data constructor pattern.

Dex is also dependently typed, such that the names that can
appear in types are in the same namespace as the names that appear
in terms. So even a type-preserving compiler pass can nonetheless
trigger renames in types (to avoid name capture), and other such
examples; so one has to pay attention to applying substitutions in
places that have nothing to do with the business logic of the code
transformation one is trying to implement. All while taking care
not to apply each substitution more than once.

1 import qualified Data.IntSet as Set

2 import qualified Data.IntMap as IM

3

4 -- The Int is an ID, not a De Bruijn index

5 newtype RawName = RawName Int

6 deriving (Eq, Ord)

7 newtype RawScope = RawScope Set.IntSet

8 deriving (Eq)

9

10 rawEmptyScope :: RawScope

11 rawEmptyScope = RawScope Set.empty

12

13 rawFreshName :: RawScope -> RawName

14 rawFreshName (RawScope s) | Set.null s = RawName 0

15 | otherwise = RawName (Set.findMax s + 1)

16

17 rawExtendScope :: RawName -> RawScope -> RawScope

18 rawExtendScope (RawName i) (RawScope s) = RawScope (Set.insert i s)

19

20 rawMember :: RawName -> RawScope -> Bool

21 rawMember (RawName i) (RawScope s) = Set.member i s

22

23 newtype RawSubst a = RawSubst (IM.IntMap a)

24

25 rawIdSubst :: RawSubst a

26 rawIdSubst = RawSubst IM.empty

27

28 rawLookup :: RawSubst a -> RawName -> Maybe a

29 rawLookup (RawSubst env) (RawName i) = IM.lookup i env

30

31 rawExtendSubst :: RawName -> a -> RawSubst a -> RawSubst a

32 rawExtendSubst (RawName i) val (RawSubst env) =

33 RawSubst (IM.insert i val env)

Figure 2: Raw names, scopes and substitutions that the foil
makes safer to use.7

What‘s more, bad substitutions are the worst kinds of errors. If
we’re lucky, the buggy compiler pass will produce an ill-typed object
program that we’ll catch at the next internal type checking step.
More often, we just get very confusing behavior in a downstream
pass. It’s also hard to find minimal reproducers and small tests for
these sorts of errors, because whether you get a name collision
depends on all the other names in the program.

So, what would a safer rapier look like?

3 FORGING THE FOIL
The big idea of the foil is to annotate the types of expressions with
a type parameter indicating the in-scope variables that may occur
in the expression, Expr n. For a given n, there is only one Scope n,
the actual in-scope set.

The type systemwill guarantee that if x::Scope n and y::Scope n

then x == y, and also that any variables occurring in an expression

7Here we newtype-wrap a representation of names as uninterpreted Ints, but any-
thing that makes a good map key will work.
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1 data S = VoidS

2

3 newtype Name (n::S) = UnsafeName RawName

4 deriving (Eq, Ord)

5

6 newtype Scope (n::S) = UnsafeScope RawScope

7 deriving (Eq)

8

9 emptyScope :: Scope VoidS

10 emptyScope = UnsafeScope rawEmptyScope

11

12 member :: Name l -> Scope n -> Bool

13 member (UnsafeName name) (UnsafeScope s) = rawMember name s

Figure 3: Safer names, scopes and basic operations on them.

Expr n appear in that Scope n. With that guarantee, if we find a
name that doesn’t occur in Scope n, we know it doesn’t occur in
Expr n, without needing to check.

Likewise, we will define structures like substitutions to ensure
that we can’t forget to extend them appropriately.

3.1 Safer Scopes
We start by defining

(1) a kind S (for “Scope”) of scope-indexing types,
(2) an S-indexed type Name n, representing a name subject to the

foil, and
(3) another S-indexed type Scope n, representing a scope con-

taining exactly the inhabitants of type Name n.
By only allowing Name n and Scope n objects to be created in a

limited set of ways, we enforce the Scope Invariant:

Definition 3.1 (Scope Invariant). For every n of kind S:
• If x :: Scope n and y :: Scope n then x == y.
• If x :: Scope n and name :: Name n then member name x is
true.

We will mostly be introducing S-kinded variables with rank-2
polymorphism, but we do use one constructor for the S kind to get
started. A Scope VoidS is the empty scope that contains no names,
and the type Name VoidS is uninhabited.

1 data S = VoidS

While our type indexing statically proves that every Name n is a
member of Scope n, we do also need a runtime representation for
names and scopes—for instance, a Name l may shadow a name in
Scope n, and we need to be able to check whether that happens.

We reuse the raw name and scope operations from Figure 2. For
simplicity, we implement Names as Ints at runtime here, but of course
a more sophisticated system could store any desired information in
them. For practical use, we strongly recommend extending the APIs
we present with a notion of “name hints”, which are the information
that one would like a name to carry other than its identity.8

8In the Dex compiler, runtime names are integers, but we pack the first several char-
acters of the user-facing variable name into the high bits of the integer to make
intermediate representation dumps more readable. This also reduces renaming churn,
because user-facing variable names are usually already locally unique.

1 -- n is the scope above the binder

2 -- l (for "local") is the scope under the binder

3 newtype NameBinder (n::S) (l::S) = UnsafeBinder (Name l)

4

5 nameOf :: NameBinder n l -> Name l

6 nameOf (UnsafeBinder name) = name

7

8 extendScope :: NameBinder n l -> Scope n -> Scope l

9 extendScope (UnsafeBinder (UnsafeName rn)) (UnsafeScope s) =

10 UnsafeScope (rawExtendScope rn s)

11

12 withFreshBinder :: Scope n

13 -> (forall l. NameBinder n l -> r) -> r

14 withFreshBinder (UnsafeScope rs) cont = cont binder where

15 binder = UnsafeBinder (UnsafeName (rawFreshName rs))

Figure 4: Name binders andhow to safely allocate names and
extend scopes.

So, how do we type the raw operations from Figure 2 to maintain
the scoping invariant? The first step, in Figure 3, is to add the
phantom S-kinded type parameter to the raw representation. The
empty scope gets tagged VoidS, proving to the type system that it
is, indeed, empty, and membership testing can ignore the phantoms
because it’s always safe.

The interesting operation is creating a fresh name. If Haskell
supported existential types9, we could type it as

1 -- Need existentials

2 freshName :: Scope n -> (exists l. Name l)

but as it stands, we have to transform it to continuation-passing
style

1 withFreshCPS :: Scope n -> (forall l. Name l -> r) -> r

That’s still not good enough, though, because we also want to be
able to create a Scope l that includes the new Name, while proving
that it cannot include any other names. For this, Figure 4 introduces
another new type with its own invariant:

Definition 3.2 (Binder Invariant). A NameBinder n l only exists if
the scope indexed by l extends the scope indexed by n by exactly
the single name contained in the NameBinder n l.

The binder invariant is what allows a Scope n to be extended
safely: a NameBinder n l can only be created by withFreshBinder at
index n, so it carries the proof that the new Scope l is unique and
satisfies the Scope Invariant.

Here and throughout, we give unsafely-implemented foil oper-
ations more restrictive types than would be inferred—indeed, the
type annotations are what make them safe to use!

3.2 Safer Expressions
Now that we have names and scopes obeying the Scope Invariant,
we can use them to define well-scoped expressions. A well-scoped
expression is one that obeys the Expression Invariant:
9Technically speaking we could use GADTs here, but the continuation encoding is
more lightweight.
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Definition 3.3 (Expression Invariant). For n of kind S, every expres-
sion of type Expr n has free variables contained in Scope n (which,
as we recall, is uniquely determined by the index n).

The expression type is of course specific to the object language to
be implemented with the foil; and this is actually a place where the
user has to take care to define their Expr ADT to actually obey that
invariant. The benefit from the foil, though, is that the invariant
follows (or doesn’t follow) from the data definition for Expr, and
uses of it will be scope-correct as long as they type-check in Haskell.

What does a user have to do to make sure their expression type
enforces the Expression Invariant? Just three rules:

(1) Free variables are exposed as Names parameterized with their
scope;

(2) Binders are exposed as NameBinders; and
(3) Sub-expressions (that might have free variables) are parame-

terized by their scope.

For example, a simple untyped lambda calculus has all those
constructs and pretty much nothing else:

1 data Expr n =

2 Var (Name n)

3 | Lam (LamExpr n)

4 | App (Expr n) (Expr n)

5

6 data LamExpr n where

7 LamExpr :: NameBinder n l -> Expr l -> LamExpr n

Note that the binder form uses a GADT to existentially hide the
local scope parameter l.

Of course, if all you wanted to implement was the lambda cal-
culus, you wouldn’t need the foil. Figure 5 shows an expression
type for a more involved language. We see from the definition of
Expr that this is a dependently typed language, where the type of a
function’s result is allowed to depend on the argument. If we had
written retTy :: Type n, however, we would disallow this, because
Haskell would prove that the name bound by arg never appears in
retTy.

Likewise, if we wanted to statically enforce that, say, type vari-
ables and term variables occupied different name spaces, we could
define a language where Expr was parameterized by two S-kinded
variables, one for the term scope and one for the type scope. Et
cetera.

3.3 Safer Sinking
Now that we have established the Scope, Binder, and Expression
Invariants that describe expressions at rest, let’s consider expres-
sions in motion. To wit, suppose we are looking to substitute some
term term :: Expr n into some expression expr :: Expr n. If expr
is a non-binding form such as a Var or an App everything is fine,
but what do we do when expr is a binding form? We now have in
our hands a new scope parameter l, a binder :: NameBinder n l,
and an inner expression Expr l. We can’t just recur, because the
new binder might capture a name from term; and indeed, the foil
prevents this potential mistake, because there is no way to insert
term :: Expr n into expr' :: Expr l.

1 data Type n

2 = TyType | TyInt | TyReal

3 | TyVar (Name n) | TyFun (TyFunType n)

4

5 data TyFunType n where

6 TyFunType ::

7 { tyArg :: NameBinder n l

8 , tyArgTy :: Type n

9 , tyRetTy :: Type l

10 } -> TyFunType n

11

12 data DepExpr n = DepVar (Name n)

13 | IntLit Int | RealLit Float

14 | DepLam (DepLamExpr n) | DepApp (DepExpr n) (DepExpr n)

15

16 data DepLamExpr n where

17 DepLamExpr ::

18 { arg :: NameBinder n l

19 , argTy :: Type n

20 , body :: DepExpr l

21 , retTy :: Type l

22 } -> DepLamExpr n

Figure 5: An example scope-indexed abstract syntax, follow-
ing the Expression Invariant called for by the foil.

What we want is to check that the new name introduced by
binder :: NameBinder n l does not capture any of the free vari-
ables of term :: Expr n, and then reinterpret it as term :: Expr l.
We call such reinterpretation sinking. It merits its own discussion
because it occurs all the time in compilers—whenever you want
to interpret anything from higher in the expression tree in some
lower context that may have more binders in scope, you have to
sink it.

So, when is it safe to sink a term :: Expr n to term' :: Expr l?
We need

(1) Every name that appears free in termmust appear in Scope l

(2) Every name that appears free in term must mean the same
thing in Scope l that it does in Scope n; in other words,
names new to l must not shadow bindings of names of term.

The free variables of term are a runtime property, but we can over-
approximate it statically by turning it into a property of scopes: if
Scope l contains all the names of Scope n, and the extension from
n to l shadows none of them, then any term :: Expr n is safe to
sink to l, regardless of its free variables. This is the critical insight
used in the rapier [9].

We represent these two properties separately as Haskell type-
classes. First, we define a class Ext n l that guards the Extension
Invariant:

Definition 3.4 (Extension Invariant). If n :: S and l :: S have
an instance of Ext n l, then Scope n is a subset of Scope l (not
necessarily strict, and not necessarily without shadowing).

The Ext class itself has no methods; we will just be using it to
justify coercions in unsafe implementations of functions of the foil.
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We do, however, take the opportunity to use its definition to have
GHC automatically deduce reflexivity and transitivity of Ext.

1 class ExtEndo (n::S)

2

3 class (ExtEndo n => ExtEndo l) => Ext (n::S) (l::S)

4 instance (ExtEndo n => ExtEndo l) => Ext n l

The idea is that ExtEndo n => ExtEndo n is always true, so GHC can
synthesize Ext n n for any n on its own; and GHC can also syn-
thesize Ext n1 n3 from Ext n1 n2 and Ext n2 n3 by hypothesizing
ExtEndo n1, deducing ExtEndo n3 from it, and concluding the impli-
cation. This definitional trick isn’t strictly necessary, but makes Ext
considerably more ergonomic in practice.

A user could break the foil by defining their own instances of Ext
(or ExtEndo); please don’t. On the plus side, new instances are not
needed to use the foil correctly, so there is little risk of accidental
mis-use.

Second, we define a class Distinct n that guards the Distinctness
Invariant:

Definition 3.5 (Distinctness Invariant). If n :: S has an instance
of Distinct n, then all the names in n are distinct, i.e., none of them
shadow any others.

Like Ext, the Distinct class is also a method-less marker that the
user need not (and must not) define their own instances for. The
definition is straightforward:

1 class Distinct (n::S)

2 instance Distinct VoidS

Since Distinct and Ext often (but not always) travel together,
we also define DExt as a constraint alias that means both of them.

1 type DExt n l = (Distinct l, Ext n l)

We now have the machinery we need to type and define sink:
1 concreteSink :: DExt n l => Expr n -> Expr l

2 concreteSink = unsafeCoerce

One of the major advantages of using a name-based representation
of expressions in the first place (as opposed to De Bruijn indices) is
that sinking is free at runtime; all this machinery is about teaching
Haskell’s type system to keep track of when it’s safe.10

In particular, we do not define a variant of sink that would
dynamically check the safety of a given sinking. While such a
variant is certainly possible, the place to handle a name clash is
not at the point of sinking, but at the point where one can rename
the offending binder to avoid the clash. We thus prefer to define
fresh-name producers to statically prove distinctness (Section 3.4)
and sinking to statically require it.

3.4 Safer Scopes Again
Where do we get instances of Ext and Distinct?We provide them at
the same time as we create new scope indices with rank-2 polymor-
phism. To wit, we know l is an extension of n when we constructed
it by adding names to n; and we know l is all-distinct when the
10The S-kinded type parameters are always phantom, so this coercion is entirely safe.
If we allowed them to have a phantom role, we could use the safe coercions from
Breitner et al. [3], but they have to be declared as nominal to make it impossible to
accidentally change namespace parameters through safe APIs. Hence, we fall back to
a safe unsafe coercion.

1 withFresh :: Distinct n => Scope n

2 -> (forall l. DExt n l => NameBinder n l -> r) -> r

3 withFresh scope cont = withFreshBinder scope \binder ->

4 unsafeAssertFresh binder cont

5

6 unsafeAssertFresh :: forall n l n' l' r. NameBinder n l

7 -> (DExt n' l' => NameBinder n' l' -> r) -> r

8 unsafeAssertFresh binder cont =

9 case unsafeDistinct @l' of

10 Distinct -> case unsafeExt @n' @l' of

11 Ext -> cont (unsafeCoerce binder)

12

13 data DistinctEvidence (n::S) where

14 Distinct :: Distinct n => DistinctEvidence n

15

16 unsafeDistinct :: DistinctEvidence n

17 unsafeDistinct = unsafeCoerce (Distinct :: DistinctEvidence VoidS)

18

19 data ExtEvidence (n::S) (l::S) where

20 Ext :: Ext n l => ExtEvidence n l

21

22 unsafeExt :: ExtEvidence n l

23 unsafeExt = unsafeCoerce (Ext :: ExtEvidence VoidS VoidS)

24

25 withRefreshed :: Distinct o => Scope o -> Name i

26 -> (forall o'. DExt o o' => NameBinder o o' -> r) -> r

27 withRefreshed scope name cont = if member name scope

28 then withFresh scope cont

29 else unsafeAssertFresh (UnsafeBinder name) cont

Figure 6: Fresh names in full, including synthesizing in-
stances for the Distinct and Ext marker classes.

names are fresh and n was all-distinct to begin with. We capture
both of these with the type of our main name introduction function:

1 withFresh :: forall n r. Distinct n => Scope n

2 -> (forall l. DExt n l => NameBinder n l -> r) -> r

Where withFreshBinder from Section 3.1 gave us a binder that was
fresh at runtime, withFresh also gives us a static proof that this
binder is fresh.

Note that with this type we cannot generate a static freshness
proof with respect to a scope we do not statically know to be all-
distinct. This is a cost of using our relatively imprecise Distinctness
Invariant, but it’s not actually a very serious cost in practice. Guar-
anteeing Distinct n is not hard in a top-down traversal of a closed
term.

Implementing withFresh just reuses withFreshBinder, except we
also need a bit of unsafeCoerce trickery to synthesize the Ext and
Distinct classes for the continuation. Synthesizing these classes
here preserves their invariants because the semantics of withFresh
guarantees them, and is safe at runtime because the classes have no
methods. The code appears in Figure 6. We also add a withRefreshed
variant of withFresh (which must also be implemented unsafely)
which reuses the underlying name if it’s already fresh, reducing
renaming churn.
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3.5 Generic safe sinking
The type we gave to concreteSink in Section 3.3 is specialized to a
concrete Expr type. But that type belongs to a hypothetical compiler
being written using the foil, whereas the concept of sinking belongs
to the foil system itself.

What’s the right generalization? Not all types of kind S -> * are
safe to sink—Expr is OK, but Scope is not. The reason sinking Expr

is safe is that it’s covariant in the scope index: an expr :: Expr n

contains references to a bunch of names in the n scope; if we can
understand all names from a larger (and non-shadowing) scope,
then we can still understand all names in expr.

We capture this constraint with a typeclass:
1 class Sinkable (e :: S -> *) where

2 sinkabilityProof :: (Name n -> Name l) -> e n -> e l

3

4 instance Sinkable Name where

5 sinkabilityProof rename = rename

6

7 sink :: (Sinkable e, DExt n l) => e n -> e l

8 sink = unsafeCoerce

The sink function is implemented as a coercion, so it never
actually calls sinkabilityProof; but conceptually, the logic is

(1) The Ext n l instance tells us that the identity function on
rawnames can be safely typed idRename :: Name n ->Name l.

(2) The Distinct l instance tells us that this function ismeaning-
preserving.

(3) The Sinkable e instance tells us that e is covariant in the
scope index.

(4) So sink expr conceptually remaps every Name n in expr to the
corresponding Name l, but because we know their runtime
representations are the same, that takes zero runtime work.

Since the foil never calls any sinkabilityProof methods, the
client can just leave the implementation thereof undefined if they
convince themselves that a given type should be Sinkable. How-
ever, writing such proofs out and type-checking them adds a layer
of safety. Since safety is what the foil is all about, we present a
sinkability proof for our example Expr type in Appendix A.

4 SAFER SUBSTITUTION
We are now ready to see how the foil helps us write substitu-
tion with fewer bugs. How do we model names in a substitution?
We have an expression-like thing of some scope-indexed type,
expr :: (e :: S ->*). It may contain names of type Name i (i for
“input”), and we want to replace some of them with other terms,
also of type e. To make sure we apply the substitution exactly once,
we index the replacement terms by a (potentially) different scope,
let’s say o for “output”. So applying substitution has this type:

1 substitute :: Distinct o

2 => Scope o -> Substitution e i o

3 -> e i -> e o

(We require the output scope to be distinct because we may need
to use withFresh to allocate names that are fresh with respect to it,
to avoid variable capture.)

The Substitution data structure needs to carry the actual map
of input names to terms being substituted for them. We also add a

1 data Substitution (e::S -> *) (i::S) (o::S) =

2 UnsafeSubstitution (forall n. Name n -> e n) (IM.IntMap (e o))

3

4 lookupSubst :: Substitution e i o -> Name i -> e o

5 lookupSubst (UnsafeSubstitution f env) (UnsafeName (RawName name)) =

6 case IM.lookup name env of

7 Just e -> e

8 Nothing -> f (UnsafeName (RawName name))

9

10 idSubst :: (forall n. Name n -> e n) -> Substitution e i i

11 idSubst f = UnsafeSubstitution f IM.empty

12

13 addSubst :: Substitution e i o -> NameBinder i i' -> e o

14 -> Substitution e i' o

15 addSubst (UnsafeSubstitution f env)

16 (UnsafeBinder (UnsafeName (RawName name))) e =

17 UnsafeSubstitution f (IM.insert name e env)

18

19 addRename :: Substitution e i o -> NameBinder i i' -> Name o

20 -> Substitution e i' o

21 addRename s@(UnsafeSubstitution f env)

22 b@(UnsafeBinder (UnsafeName name1))

23 n@(UnsafeName name2)

24 | name1 == name2 = UnsafeSubstitution f (IM.delete name1 env)

25 | otherwise = addSubst s b (f n)

26

27 instance (Sinkable e) => Sinkable (Substitution e i) where

28 sinkabilityProof rename (UnsafeSubstitution f env) =

29 UnsafeSubstitution f (fmap (sinkabilityProof rename) env)

Figure 7: Safer substitutions, including the performance op-
timization of eliding names mapped to themselves.

performance optimization for the common case where a name is
being changed to itself. This happens when the substitution occurs
in a local scope (e.g., in the scope of the top-level environment of the
object language), and when going under a binder that turned out
to be non-shadowing at runtime (withRefreshed from Section 3.4).
In this case, we will not add it to the runtime substitution, and
instead just coerce it to the output index and turn it into a Varwhen
looked up. However, since Var is at the level of the library user,
we dependency-inject it: the Substitution abstraction accepts that
constructor as the Name n ->e n function f.11

Figure 7 defines the Substitution type and implements the basic
operations on it, taking care to maintain the Substitution Invariant:

Definition 4.1 (Substitution Invariant). If a Substitution e i o

exists, then it gives semantics to every name :: Name i, and lookupSubst
implements those semantics. Namely,

(1) If name was last added with an addSubst whose third argu-
ment was e, then lookupSubst returns sink e.

11Note that this optimization has to be under the Substitution abstraction bound-
ary, because implementing it requires unsafe manipulation of the scope indices. With-
out this optimization the API can be simpler, for instance eliding addRename, but
we include it to make sure the foil can replicate the rapier’s performance tricks. In
particular, we have to delete name1 from the substitution on line 24, for the same
reason as in the rapier ([9], pg 5).
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1 substituteExpr :: Distinct o => Scope o -> Substitution Expr i o

2 -> Expr i -> Expr o

3 substituteExpr scope subst = \case

4 Var name -> lookupSubst subst name

5 App f x -> App (recur f) (recur x)

6 where recur = substituteExpr scope subst

7 Lam (LamExpr binder body) ->

8 withRefreshed scope (nameOf binder) (\binder' ->

9 let subst' = addRename (sink subst) binder (nameOf binder')

10 scope' = extendScope binder' scope

11 body' = substituteExpr scope' subst' body in

12 Lam (LamExpr binder' body'))

Figure 8: Substitution wielding the foil

(2) If name was last added with an addRename whose third argu-
ment was name', then lookupSubst returns f name'.

(3) Otherwise, name was present in the root scope at which we
called idSubst and lookupSubst returns f (unsafeCoerce name).

With those (unsafely implemented) pieces, we can now code
substitution on any expression type that obeys the Expression In-
variant, and the foil will prevent us from making mistakes. For
example, Figure 8 implements substitution on the Expr n lambda
calculus we’ve been working with. The only real difference from
Figure 1 is that the object language Expr n is well-indexed. Other-
wise the code is essentially the same, just harder to cut oneself on.

How does the typing discipline help us get this right?
• We can’t forget to recur in App because the only way to make
an Expr o out of an Expr i is to call substituteExpr scope subst.

• We can’t recur more than once on the same term because
substituteExpr with subst doesn’t accept Expr o as input.

• We can’t forget to look up a Var because the only way to
get an Expr o out of a Name i is lookupSubst. (Notably, if we
wrote Var name for that case, that would be an Expr i.)

• When we go under a binder, the body doesn’t have type
Expr i any more, but rather Expr i' for some index i' that
was existentially hidden in the LamExpr. So we can’t forget to
extend subst, becausewe need a Substitution e i' something

to recur.
• The only way to get a Substitution e i' something is with
either addSubst or addRename. We wouldn’t use addSubst be-
cause we have no plausible e o to pass to it. That leaves
addRename, which requires a NameBinder o o'. The input binder
has type NameBinder i i', sowe can’t forget to use withFresh
to create a new binder in the output scope.

• Extending the substitution with addRename changes the type
of the output scope to o' as well, so we can’t forget to extend
the scope argument (which would otherwise still have type
Scope o).

• We also can’t accidentally rebuild the result Lam with the
input binder, because the returned body' has type Expr o',
and the only binder that is directly above it (as required by
the LamExpr GADT) is binder'.

For example, here’s the error message that GHC version 8.10.7
emits when we modify the substituteExpr function from Figure 8
to try to erroneously use subst instead of subst':
main.lhs:834:47: error:
- Couldn't match type 'l' with 'i'

'l' is a rigid type variable bound by
a pattern with constructor:

LamExpr :: forall (n :: S) (l :: S).
NameBinder n l -> Expr l -> LamExpr n,

in a case alternative
at main.lhs:830:8-26

'i' is a rigid type variable bound by
the type signature for:

substituteExpr :: forall (o :: S) (i :: S).
Distinct o => Scope o

Substitution Expr i o -> Expr i -> Expr o
at main.lhs:(824,1)-(825,21)

Expected type: Expr i
Actual type: Expr l

- In the third argument of 'substituteExpr', namely 'body'
In the expression: substituteExpr scope' subst body
In an equation for 'body'':

body' = substituteExpr scope' subst body

This kind of error message certainly doesn’t teach the foil, but it
does, once one learns to read it, indicate what the problem is. To
wit, we’re trying to substitute body, which has type Expr l, with a
substitution of type Substitution Expr i o, and we shouldn’t do
that, because body may refer to names that we did not define a
substitution for.

5 DISCUSSION
Other expression representations. Our discussion has been con-

fined entirely to representing expressions with binders in terms of
explicit names. Other expression representations exist—the more
popular ones are De Bruijn indices [5], implemented in Haskell by
Ed Kmett’s excellent Bound library [6, 7]; the locally-nameless rep-
resentation [4]; and variants of higher-order abstract syntax [10].

None, however, completely avoid the fundamental issue of name
capture, as evidenced by the length and incompleteness of the
preceding list. We refer the curious reader to Weirich [12, 13] for
recent and ongoing discussions on the relative merits of expression
representations. Our contribution with the foil is to show that
explicit names can be not only fast and stateless, per the rapier [9],
but also relatively error-free.

Approaches almost identical to the one used here (such as tagging
expressions by their scopes) can be found in compilers and pub-
lications written using richer, dependently-typed host languages
[1, 2, 11]. Our contribution is to show how similar approaches can
be productively embedded in a language with a more classical type
system such as Haskell.

And it turns out that the way we embed those approaches re-
sembles the ideas of Noonan [8], only specialized to proving the
scoping properties of terms. We also use phantom type variables to
attach type-level identifiers to expressions, in our case denoting the
scopes they’re in. Our work can be seen as a productive application
of that approach, beyond the ones presented in the original work.
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Parsing and name resolution. If the object language is not itself
embedded in Haskell, how does one get an Expr n indexed by the
correct scope to start applying compiler passes to? Using the foil
implies an explicit name resolution pass near the beginning of a
compiler’s pipeline, looking something like this:

1 resolveNames :: (Distinct n) => Scope n -> Map String (Name n)

2 -> UExpr -> Expr n

3 resolveNames scope env = \case

4 UVar str -> case M.lookup str env of

5 Just name -> Var name

6 Nothing -> error ("Unbound variable " ++ str)

7 UApp f x -> App (recur f) (recur x)

8 where recur = resolveNames scope env

9 ULam str body -> withFresh scope \binder ->

10 let scope' = extendScope binder scope

11 env' = M.insert str (nameOf binder) (fmap sink env)

12 body' = resolveNames scope' env' body in

13 Lam (LamExpr binder body')

The idea is that UExpr is a variant of Expr that contains strings
(or whatever the previous stage of parsing produces) instead of
foil-managed Names, and we carefully implement one substitution-
like function to convert them. Note that this function can fail if the
input program was not scope-correct; but if it succeeds, the foil will
guarantee scope correctness of all downstream compiler passes.

The resolveName function itself is only partly protected by the
foil: forgetting to extend the scope (and thus producing spurious
shadowing) doesn’t type-check in Haskell, but forgetting to extend
the envmap (and thus producing a spurious unbound variable error)
does. However, this is just one function, and dealing with names is
its whole focus, so the error surface is much smaller than it would
be without the foil.

How shadowing happens. All the names the foil generates are
fresh relative to the enclosing scope. However, they need not be
globally distinct, so sinking one binding form past another may
introduce shadowing if the bound variable happens to be the same.

Name uniqueness invariants. The foil allows name shadowing
in expressions at rest—there is nothing stopping a NameBinder n l

that appears as the binder in a LamExpr n from shadowing one of
the names in the n scope. We pay for this during substitutions, by
having to (i) check whether such shadowing actually happens, and
(ii) renaming that name if so.

Perhaps we could save ourselves the trouble by forbidding shad-
owing at rest, i.e., requiring that all scopes are always Distinct?
That would save us from renaming a binder that clashes with the
free variables of the substituend, because that would never happen.
However, we would still have to contend with name clashes, be-
cause to maintain the no-shadowing invariant we would have to
check whether a binder collided with any bound variables of the
term being sunk. Perhaps a variant of the foil could be developed
to make that safe, but it’s not clearly advantageous.

Can we go further in this vein and just require all names to
be globally unique? That would certainly prevent name clashes,
but still comes at a cost: now, duplicating an expression (e.g., to
inline it to more than one site) would require work renaming all the
binders in the copy to keep them distinct from the binders in the

original. Making that discipline safe seems to require the expression
to be typed linearly in the host language, and again for an unclear
performance profile relative to the shadow-permitting rapier.

Distinctness constraints. The Distinct constraint we introduced
in Section 3.3 is arguably too strong: the only thing we need to
be able to sink is knowing that the new names introduced in the
extension from n to l do not shadow names in n. The assertion that
all the names in l are distinct certainly implies this; would the foil
work with a more precise version of the Distinctness Invariant?

One attemptwould be to use Distinct n l tomean that no names
introduced between n and l shadow each other. This representation,
however, is not transitive! It can be easily seen that Distinct a b

and Distinct b c doesn’t imply Distinct a c: consider two adja-
cent binders with the same name.

One way to fix the transitivity problem is to additionally require
Distinct n l to prove that no names introduced between n and
l shadow Scope n (but say nothing about distinctness in Scope n

itself). This would be less stringent than the invariant used in our
presentation, and would be sufficient to prove sink safe. However,
the extra condition still requires reasoning about the entire scope
and hence does not seem to simplify the implementation signif-
icantly (while introducing even more type parameters to think
about).

Abstract binder types. Similarly to how we have generalized
sink to work over arbitrarily (S -> *)-kinded types, in practice it is
often useful to use a richer set of binders than only NameBinder. For
example, binder pairs:

1 data PairB (b1 :: S -> S -> *) (b2 :: S -> S -> *) (n::S) (l::S)

2 where PairB :: b1 n h -> b2 h l -> PairB b1 b2 n l

Just like all expression-like things have an S -> * kind, all binder-
like things have an S -> S -> * kind (e.g. PairB does not act like a
binder, but PairB NameBinder NameBinder does).

Generic implementations. We have found that in practice it is
possible to define a small-ish language of expression and binder
combinators (PairB is one example), a combination of which can
express the naming discipline used in other custom types used in
language syntax trees. This trick has an added benefit that many of
the typeclasses used by the foil (substitutability, sinkability, . . . ) are
derivable generically once an isomorphism from a custom type to
a composition of those combinators is specified.

Other useful operations. In this work we have focused on sub-
stitution (and sinking as its crucial component), but those are not
the only useful operations to perform on expressions and binders.
The foil can of course be used to express those as well. To give two
examples, we display the types of two such functions. Here is a
type for a function that hoists an expression above a binder (but
might fail if the expression mentions the bound name):

1 hoist :: _ => b n l -> e l -> Maybe (e n)

This function exchanges two binders (but again might fail, if the
lower binder has the other name free e.g. in its annotation):

1 exchangeBinders :: _ => PairB b1 b2 n l

2 -> Maybe (PairB b2 b1 n l)
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In both cases we omit typeclass constraints for simplicity.
Without the discipline of the foil, hoist in particular looks like

the identity function, and is very easy to forget. For example, con-
sider inferring the type of a lambda expression. In a dependently
typed object language, the inferred type of the result could, in
principle, depend on an intermediate value; but the type of the
whole lambda expression must only depend on the argument, and
on variables in scope where the lambda is defined. Type inference
must therefore check for such leaks and deal with them. The hoist

function performs this leak check, by testing whether any of the
names free in the e l argument are bound by the b n l argument;
and the foil reminds the user that they need to apply it to reconcile
scope indices.

Builder monads. While in all examples provided here, we’ve man-
ually used the low-level naming implementation, elaborations in
large languages (such as Dex) are very conveniently expressed in a
monadic style, where the monad is responsible for building up a
program based on the “emitted instructions”. For example:

1 emit :: Expr -> Builder Var

2

3 -- Simplify the expression to a fully

4 -- evaluated value, or emit a simpler expr.

5 simplify :: Expr -> Builder (Either Var Value)

6 simplify expr = case expr of

7 Multiply x y -> case (x, y) of

8 (Lit xl, Lit yl) -> return $ Right $ xl * yl

9 (_ , Lit 2 ) -> liftM Left $ emit $ ShiftLeft x (Lit 1)

10 _ -> liftM Left $ emit $ Multiply x y

11 ...

However, having developed the presented naming system,wewould
like the terms built by the monad to always be well-scoped.

While not trivial, this (unsurprisingly?) can be achieved through
the use of S-indexed monads. Instead of Builder a, we would use
Builder n a, which would place an additional namespace restric-
tion on emit:

1 emit :: Expr n -> BuilderM n (Var n)

An interesting concern when using such a monad is that the
type parameter n is in fact mutable: emit modifies the scope by
binding the expression to a fresh variable, but it still runs in n!
What happens here is that all n-scoped values are implicitly sunk,
which is why it is so important for sink to have no effect on the
run-time representation of terms.

Of course, one has to be careful so that no non-sinkable n-indexed
values can be provided to the user, but since the names are generated
by the monad, this can be done by restricting its interface. For
example, it shouldn’t be possible to ask Builder n a for Scope n,
but it is ok to provide a Builder method for querying whether a
given name is in scope: its result type, Bool, is (trivially) considered
sinkable.

Thinking in types. A more qualitative benefit we experienced
from using the foil in the Dex compiler is that the more informative
type signatures are easier to think with. For instance, if I give you
a pair of a name and an expression, did I mean a let binding or an
abstraction? When names and expressions are scope-indexed, you

can tell immediately: the RHS of a binding of b :: NameBinder n l

is an Expr n, whereas the body of an abstraction of b is an Expr l.
This kind of distinction shows up all over the place, and we find
ourselves missing it when reading the implementations of other
programming languages.

6 CONCLUSION
We presented the foil, a technique for managing explicit names in
a program representation that is fast, stateless, and hard to misuse.
Speed and statelessness come from the foil being an exact reim-
plementation of the rapier from Peyton Jones and Marlow [9]; our
addition was to spell out what invariants correct use of the rapier
requires, and to use a phantom type to get a Haskell type-checker to
enforce them. Because the type is phantom, adjusting types where
it is safe is done by unsafeCoerce, so imposes no runtime cost. We
hope that future (or current) compilers written in Haskell (or an-
other language with a sufficiently powerful type system) can use
the foil to avoid name-handling bugs.
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1 instance Sinkable Expr where

2 sinkabilityProof rename (Var v) = Var (rename v)

3 sinkabilityProof rename (App f e) =

4 App (sinkabilityProof rename f) (sinkabilityProof rename e)

5 sinkabilityProof rename (Lam lam) =

6 Lam (sinkabilityProof rename lam)

7

8 instance Sinkable LamExpr where

9 sinkabilityProof rename (LamExpr binder body) =

10 extendRenaming rename binder \rename' binder' ->

11 LamExpr binder' (sinkabilityProof rename' body)

Figure 9: Sinkability proof for Expr
This is boilerplate, and could be generated based on a variant of

the Generic class for (S -> *)-kinded types.

3 -> r

4 extendRenaming _ (UnsafeBinder name) cont =

5 cont unsafeCoerce (UnsafeBinder name)

The sinkability proof for our lambda calculus Expr n is in Figure 9.
The only subtlety is going under a binder in a sinking proof, which
requires extending the renaming map to apply to the local scope.
Luckily that subtlety is generic, so the extendRenaming function
need only be implemented once.

We know of no safe implementation for this function, but here
is the argument for why the function (with the given type) is safe
even if implemented unsafely.

Let the name in the binder be x. The scopes are related thus:
1 l = n ++ [x]

2 l' = n' ++ [x]

We are given a renaming from n to n', and wish to produce a
renaming from l to l'. Any name in l must be either

(1) x itself, in which case it’s also in l', or
(2) in n, in which case it can be renamed to n'. The only issue

would be if it were shadowed by x, but it can’t be because
then we’d be in case (1).

The resulting renaming itself is of course irrelevant, because the
only purpose of sinkability proofs is to be type-checked.

B HASKELL EXTENSIONS
For the record, the presented code compiles in GHC 8.10, with the
extensions

• BlockArguments
• LambdaCase
• ConstraintKinds
• DataKinds
• FlexibleContexts
• FlexibleInstances
• GADTs
• KindSignatures
• MultiParamTypeClasses
• QuantifiedConstraints
• RankNTypes
• ScopedTypeVariables

• TypeApplications
• UndecidableInstances

UndecidableInstances is only used for the ExtEndo trick from
Section 3.3.
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