
Trends in Very Large Scale
Continuous Integration

By Dr. Tim A. D. Henderson
Build, Test, Release

Google LLC
tadh@google.com
hackthology.com

linkedin.com/in/tadh/

Agenda

● What is Continuous Integration

● The Goals of Continuous Integration

● What is "Very Large Scale"

● Challenges Posed by Large Scale CI

● Solutions Space

● Trends

What is Continuous Integration?

A system and practice of
automatically merging changes

into a source of truth for your
organization's source code and

related artifacts.

Merging Changes

 for idx, param := range fn.params {
- r := g.newRegister()
+ r := g.newRegister(param.ptype)
 g.symbols.Put(param.name, r)
 entry.add(&Instruction{
- Op: ops.PRM, A: &Constant{value: idx}, Result: r})
+ Op: ops.PRM,
+ A: &Constant{value: idx, ctype: param.ptype},
+ Result: r})
 }

@@ -133,18 +133,18 @@ func (g *gen) fnStmt

Change A

Merging Changes

 if inner, is := operand.(*Closure); is {
 operand, blk = g.createClosure(blk, inner)
 rewrite[inner.fn.String()] = &ClosureRegister{
- id: len(registers),
+ id: len(registers),
+ rtype: operand.Type(),
 }
 }

@@ -160,18 +160,22 @@ func (g *gen) createClosure

Change B

Existing versions in your source of truth (main
branch)

3 F 5 W C

The new changes are merged using a text based
merge

3 F 5 W C
 for idx, param := range fn.params {
- r := g.newRegister()
+ r := g.newRegister(param.ptype)
 g.symbols.Put(param.name, r)
 entry.add(&Instruction{
- Op: ops.PRM, A: &Constant{value: idx}, Result: r})
+ Op: ops.PRM,
+ A: &Constant{value: idx, ctype: param.ptype},
+ Result: r})
 }

@@ -133,18 +133,18 @@ func (g *gen) fnStmt

Change A

{Textual Merge

These changes are linearized into a specific order

3 F 5 W C

Change B

@@ -160,18 +160,22 @@ func (g *gen) createClosure

 if inner, is := operand.(*Closure); is {
 operand, blk = g.createClosure(blk, inner)
 rewrite[inner.fn.String()] = &ClosureRegister{
- id: len(registers),
+ id: len(registers),
+ rtype: operand.Type(),
 }
 }

A

{Textual Merge

Just merging isn't enough, we need to run tests.

3 F 5 W C A B
Builds

&
Tests

P

F

P

P

P

F

P

P

P

F

F

P

F

F

P

F

P

P

P

P

P

P

P

P

P

P

P

P

Changes

T0

T1

T2

T3

Tests should be run both before the merge and after.

3 F 5 W C A B
Builds

&
Tests

P

F

P

P

P

F

P

P

P

F

F

P

F

F

P

F

P

P

P

P

P

P

P

P

P

P

P

P

Changes

T0

T1

T2

T3

What is Continuous Integration?

A system and practice of automatically merging changes into a source of truth for
your organization's source code and related artifacts.

1. Automatically integrates new changes into the main branch in your source
code management system.

2. Runs builds and tests to ensure the code still compiles and the tests pass.

3. May include additional functionality.

Goals of Continuous Integration

Goals of Continuous Integration

1. Happy Developers!
a. Main branch is not constantly broken
b. Provides quick "dev loop" feedback
c. Provides tools for managing debugging and fixing breakages
d. Handle flaky tests

2. Trustworthy Releases
a. Runs all tests which could affect the result for a release
b. Provides results on-time at team defined frequency (ex. 1 per hour, 4 per day, 2 per week)
c. Ensures releases can be made reliably
d. Handle flaky tests

What is "Very Large Scale"?

Prerequisite for Very Large Scale:

All code being integrated is integrated into the
same branch in the same repository. Code

which integrates into different branches or
different repositories can be efficiently

sharded into separate CI instances.

Very Large Scale

1. Supports commit submission rates exceeding the minimum time it takes to
run a single build or test on the code base.

2. Multiple resource management techniques have been applied to manage
resource demand.

3. Scale continues to grow and it remains an ongoing organizational priority to
manage.

Scaling Factors

● Size of code base (# of lines)

● # of tests

● # of test configurations

● # of test environments (server, web, iOS,
android, etc…)

● Frequency of commits

● Frequency of releases

● # of developers (users)

● # of distinct "projects" or "release artifacts"

● # of flaky (non-deterministic) tests

● # of flaky machines

● Complexity of test environment:
hermetic unit test ⇒ multi-machine and
platform end-to-end system tests.

Solutions Space for Scaling Scenarios

Solutions Space for Scaling Scenarios

1. Limit the number of commits which get tested.

2. Limit the number of tests which get run.

Research and Industrial Trends

Understand which tests need to be run.

Use static analysis coarse (build dependencies) ⇒ fine (program dependence
graph) grained to determine which tests are affected by a change.

Pooja Gupta, Mark Ivey and John Penix. Testing at the speed and scale of Google. 2011.
http://google-engtools.blogspot.com/2011/06/testing-at-speed-and-scale-of-google.html

John Micco. Tools for Continuous Integration at Google Scale. Google Tech Talk.
Google NYC. June 19 2012. https://youtu.be/KH2_sB1A6lA [Google]

S. Ananthanarayanan et al., “Keeping master green at scale,” Proc. 14th EuroSys Conf.
2019, 2019, https://dx.doi.org/10.1145/3302424.3303970. [Uber]

Milos Gligoric, Lamyaa Eloussi, and Darko Marinov. 2015. Practical Regression Test
Selection with Dynamic File Dependencies. In International Symposium on Software
Testing and Analysis (ISSTA). 211–222.

http://google-engtools.blogspot.com/2011/06/testing-at-speed-and-scale-of-google.html
https://youtu.be/KH2_sB1A6lA
https://dx.doi.org/10.1145/3302424.3303970

Understand which tests need to be run.

from: http://google-engtools.blogspot.com/2011/06/testing-at-speed-and-scale-of-google.html

changed.

http://google-engtools.blogspot.com/2011/06/testing-at-speed-and-scale-of-google.html

Not every test needs to be run every change

3 F 5 W C A B
Builds

&
Tests

P

F

P

P

P

F

P

P

P

F

F

P

F

F

P

F

P

P

P

P

P

P

P

P

P

P

P

means test was
affected by the
change

P

Changes

T0

T1

T2

T3

Huge savings to be had by skipping unaffected tests

3 F 5 W C A B
Builds

&
Tests

P

F

F

P P

P

means test was
affected by the
change

P

Changes

P

PT0

T1

T2

T3

Throttling test executions to prevent delays

In order to manage the finite resource of build and test execution machines, do not
run tests at every commit. Wait until the execution system will have resources and
then schedule (enqueue) all tests which need to be run. Execution system should
prioritize latency sensitive builds and tests.

John Micco and Developer Infrastructure. "Continuous integration at google scale."
Eclipse Con 2016. [slides] [Google]

A. Memon et al., “Taming Google-scale continuous testing,” International Conference on
Software Engineering: Software Engineering in Practice Track ICSE-SEIP, 2017.
https://dx.doi.org/10.1109/ICSE-SEIP.2017.16. [Google]

https://www.eclipsecon.org/2013/sites/eclipsecon.org.2013/files/2013-03-24%20Continuous%20Integration%20at%20Google%20Scale.pdf
https://dx.doi.org/10.1109/ICSE-SEIP.2017.16

Throttling test executions to prevent delays

3 F 5 W C A B
Builds

&
Tests

P

F

P

P

F

P

P

P

Changes

T0

T1

T2

T3

Throttling test execution: requires culprit finding

3 F 5 W C A B
Builds

&
Tests

P

F

P

P

P

F

P

F

F

P

F

P

P

P

Changes

T0

T1

T2

T3

In practice: parallel binary search is often used

3 F 5 W C A B
Builds

&
Tests

P

F

P

F

F

P

F

P

Fixing CL is W for T1

Culprit CL is W for T0

P

F

Changes

T0

T1

T2

T3

But, watch out for flaky tests!

3 F 5 W C A B
Builds

&
Tests

P

F P

P

F

F

P

F

P Wait! This test wasn't broken it was
just flaky!!

Changes

T0

T1

T2

T3

Combining dependency based selection and throttling

3 F 5 W C A B
Builds

&
Tests

test was affected
by the changeP

F

P

F

P

P

Changes

T0

T1

T2

T3

Dependency information speeds up culprit finding

3 F 5 W C A B
Builds

&
Tests

P F

P

test was affected
by the changeP

F

P

F

P

P

Changes

T0

T1

T2

T3

Predicting which tests are most likely to fail.

Academic work includes a broad categories of techniques from precise static
analysis to coarse grained heuristics + machine learning. Industrial
implementations tend to use heuristics as analysis based approaches is
challenging. Must account for flakiness.

M. Machalica, A. Samylkin, M. Porth, and S. Chandra, “Predictive Test Selection,”
International Conference on Software Engineering: Software Engineering in Practice,
ICSE-SEIP, 2019, doi: https://dx.doi.org/10.1109/ICSE-SEIP.2019.00018. [Facebook]

C. Leong, A. Singh, M. Papadakis, Y. Le Traon, and J. Micco, “Assessing Transition-Based
Test Selection Algorithms at Google,” International Conference on Software Engineering:
Software Engineering in Practice (ICSE-SEIP). 2019.
https://dx.doi.org/10.1109/ICSE-SEIP.2019.00019. [Google]

https://dx.doi.org/10.1109/ICSE-SEIP.2019.00018
https://dx.doi.org/10.1109/ICSE-SEIP.2019.00019

Combining dependency based selection and throttling

3 F 5 W C A B
Builds

&
Tests

test was affected
by the changeP

F

P

F

P

P

Changes

T0

T1

T2

T3

Adding in Predictive Selection

3 F 5 W C A B
Builds

&
Tests

T0

T1

T2

T3

test was affected
by the changeS

F

S

F

P

S

Changes

S
test was skipped
as it was
predicted to pass

Predicting which tests are most likely to fail.

C. Leong, A. Singh, M. Papadakis, Y. Le Traon, and J. Micco, “Assessing Transition-Based Test Selection Algorithms at Google,” International Conference on Software
Engineering: Software Engineering in Practice (ICSE-SEIP). 2019. https://dx.doi.org/10.1109/ICSE-SEIP.2019.00019. [Google]

https://dx.doi.org/10.1109/ICSE-SEIP.2019.00019

Manage the flaky tests
Flaky tests are tests with non-deterministic outcomes. These must be managed at
every stage in a CI system. They should be automatically identified and triaged,
potentially excluded from release gating, and surfaced to developers with tooling
support to identify the root causes of the nondeterminicity.

C. Leong, A. Singh, M. Papadakis, Y. Le Traon, and J. Micco, “Assessing Transition-Based
Test Selection Algorithms at Google,” International Conference on Software Engineering:
Software Engineering in Practice (ICSE-SEIP). 2019.
https://dx.doi.org/10.1109/ICSE-SEIP.2019.00019.

W. Lam, K. Muslu, H. Sajnani, and S. Thummalapenta, “A Study on the Lifecycle of Flaky
Tests,” International Conference on Software Engineering ICSE, 2020. Available:
https://www.microsoft.com/en-us/research/publication/a-study-on-the-lifecycle-of-flaky-tests/.

J. Bell et al., DeFlaker: Automatically Detecting Flaky Tests. International Conference on
Software Engineering ICSE, 2018. https://dx.doi.org/10.1145/3180155.3180164.

https://dx.doi.org/10.1109/ICSE-SEIP.2019.00019
https://www.microsoft.com/en-us/research/publication/a-study-on-the-lifecycle-of-flaky-tests/
https://dx.doi.org/10.1145/3180155.3180164

PPPF

FF

Detecting flakes with re-runs of failures and known flaky tests

3 F 5 W C A B
Builds

&
Tests

T0

T1

T2

T3

test was affected
by the changeS

N

S

F

P

S

P

Changes

S
test was skipped
as it was
predicted to pass

test was run mul-
tiple times to
deflake

N test is flaky (aka.
nondeterministic)

Manage the flaky tests

C. Leong, A. Singh, M. Papadakis, Y. Le Traon, and J. Micco, “Assessing Transition-Based Test Selection Algorithms at Google,” International Conference on Software
Engineering: Software Engineering in Practice (ICSE-SEIP). 2019. https://dx.doi.org/10.1109/ICSE-SEIP.2019.00019. [Google]

Flaky tests are a significant source
of transitions at Google:

in our data over 80% of observed
transitions were caused by

confirmed flaky results.
“

”

https://dx.doi.org/10.1109/ICSE-SEIP.2019.00019

Managing demand through economics
It is important to ensure the end user is aware of the costs of their usage of CI. In
large integrated organizations using a monorepo this can be challenging. One
approach is to force each product to internally pay for their expected usage and
then throttle them based on how many resources they actually bought. This will
encourage developers to optimize their tests.

T. Bach, R. Pannemans, and S. Schwedes, “Effects of an economic approach for test
case selection and reduction for a large industrial project,” International Conference on
Software Testing, Verification and Validation Workshops ICSTW 2018. 2018.
https://dx.doi.org/10.1109/ICSTW.2018.00076.

https://dx.doi.org/10.1109/ICSTW.2018.00076

PPPF

FF

Predefined limits throttle the execution of certain tests

3 F 5 W C A B
Builds

&
Tests

T0

T1

T2

T3

test was affected
by the change

S

N

S

F

P

S

T

Changes

S
test was skipped
as it was
predicted to pass

test was run mul-
tiple times to
deflake

N test is flaky (aka.
nondeterministic)

T
test was throttled
due to predefined
limits.

Understanding what CI model works best

There are many different CI models. Some organization enforce correctness by
serializing the merge and test operations to bad commits are not allowed into be
integrated. Others allow a small percentage of "collisions" and then apply culprit
finding and automatic rollback. There are many open questions, here are three:

1. At what stages (pre-merge, post-merge, release) do the various options for
test selection work most effectively?

2. What merge-gating techniques are most cost effective?

3. Are there ways to estimate the economic cost of test failure and prioritize
tests with higher costs — not just tests which are predicted to be failure
prone?

Complexity

As CI systems grow in features and smart capabilities the complexity of the
system needs to be actively managed. Some techniques the system used a few
years ago may be moderately effective but be too costly in either resources or CI
developer time to scale with the growing demands of your organization.

Trade-offs between resources spent on testing and CI infrastructure have to be
made against implementation, scaling, and maintenance costs of better and
smarter algorithms.

Questions?
mail me: tadh@google.com
visit me: hackthology.com

mailto:tadh@google.com
https://hackthology.com

Citations
Pooja Gupta, Mark Ivey and John Penix. Testing at the speed and scale of Google. 2011.
http://google-engtools.blogspot.com/2011/06/testing-at-speed-and-scale-of-google.html

John Micco. Tools for Continuous Integration at Google Scale. Google Tech Talk.
Google NYC. June 19 2012. https://youtu.be/KH2_sB1A6lA [Google]

John Micco and Developer Infrastructure. "Continuous integration at google scale."
Eclipse Con 2016. [slides] [Google]

A. Memon et al., “Taming Google-scale continuous testing,” International Conference on
Software Engineering: Software Engineering in Practice Track ICSE-SEIP, 2017.
https://dx.doi.org/10.1109/ICSE-SEIP.2017.16.

J. Bell et al., DeFlaker: Automatically Detecting Flaky Tests. International Conference on
Software Engineering ICSE, 2018. https://dx.doi.org/10.1145/3180155.3180164.

T. Bach, R. Pannemans, and S. Schwedes, “Effects of an economic approach for test
case selection and reduction for a large industrial project,” International Conference on
Software Testing, Verification and Validation Workshops ICSTW 2018. 2018.
https://dx.doi.org/10.1109/ICSTW.2018.00076.

S. Ananthanarayanan et al., “Keeping master green at scale,” Proc. 14th EuroSys Conf.
2019, 2019, https://dx.doi.org/10.1145/3302424.3303970. [Uber]

M. Machalica, A. Samylkin, M. Porth, and S. Chandra, “Predictive Test Selection,”
International Conference on Software Engineering: Software Engineering in Practice,
ICSE-SEIP, 2019, doi: https://dx.doi.org/10.1109/ICSE-SEIP.2019.00018. [Facebook]

C. Leong, A. Singh, M. Papadakis, Y. Le Traon, and J. Micco, “Assessing Transition-Based
Test Selection Algorithms at Google,” International Conference on Software Engineering:
Software Engineering in Practice (ICSE-SEIP). 2019.
https://dx.doi.org/10.1109/ICSE-SEIP.2019.00019.

W. Lam, K. Muslu, H. Sajnani, and S. Thummalapenta, “A Study on the Lifecycle of Flaky
Tests,” International Conference on Software Engineering ICSE, 2020. Available:
https://www.microsoft.com/en-us/research/publication/a-study-on-the-lifecycle-of-flaky-tests/.

Milos Gligoric, Lamyaa Eloussi, and Darko Marinov. 2015. Practical Regression Test
Selection with Dynamic File Dependencies. In International Symposium on Software
Testing and Analysis (ISSTA). 211–222.

Mário Luís Guimarães and António Rito Silva. 2012. Improving Early Detection of
Software Merge Conflicts. In International Conference on Software Engineering (ICSE).
342–352.

Anita Sarma, Gerald Bortis, and Andre van der Hoek. 2007. Towards Supporting
Awareness of Indirect Conflicts Across Software Configuration Management
Workspaces. In International Conference on Automated Software Engineering (ASE).
94–103.

http://google-engtools.blogspot.com/2011/06/testing-at-speed-and-scale-of-google.html
https://youtu.be/KH2_sB1A6lA
https://www.eclipsecon.org/2013/sites/eclipsecon.org.2013/files/2013-03-24%20Continuous%20Integration%20at%20Google%20Scale.pdf
https://dx.doi.org/10.1109/ICSE-SEIP.2017.16
https://dx.doi.org/10.1145/3180155.3180164
https://dx.doi.org/10.1109/ICSTW.2018.00076
https://dx.doi.org/10.1145/3302424.3303970
https://dx.doi.org/10.1109/ICSE-SEIP.2019.00018
https://dx.doi.org/10.1109/ICSE-SEIP.2019.00019
https://www.microsoft.com/en-us/research/publication/a-study-on-the-lifecycle-of-flaky-tests/

