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Abstract. We propose a lightweight real-time sign language detection
model, as we identify the need for such a case in videoconferencing. We
extract optical flow features based on human pose estimation and, using
a linear classifier, show these features are meaningful with an accuracy
of 80%, evaluated on the Public DGS Corpus. Using a recurrent model
directly on the input, we see improvements of up to 91% accuracy, while
still working under 4ms. We describe a demo application to sign language
detection in the browser in order to demonstrate its usage possibility in
videoconferencing applications.
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1 Introduction

Sign language detection [3] is defined as the binary-classification task for any
given frame of a video if a person is using sign-language or not. Unlike sign
language recognition [8, 9], where the task is to recognize the form and meaning
of signs in a video, or sign language identification, where the task is to identify
which sign language is used, the task of sign language detection is to detect when
something is being signed.

With the recent rise of videoconferencing platforms, we identify the problem
of signers not “getting the floor” when communicating, which either leads to
them being ignored or to a cognitive load on other participants, always checking
to see if someone starts signing. Hence, we focus on the real-time sign language
detection task with uni-directional context to allow for videoconferencing sign
language prominence.

We propose a simple human optical-flow representation for videos based on
pose estimation (§3.1), which is fed to a temporally sensitive neural network
(§3.2) to perform a binary classification per frame — is the person signing or
not. We compare various possible inputs, such as full-body pose estimation,
partial pose estimation, and bounding boxes (§4), and contrast their acquisition
time in light of our targeted real-time application.

We demonstrate our approach on the Public DGS Corpus (German Sign
Language) [11], using full-body pose estimation [27] collected through OpenPose
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[5, 28]. We show results of 87%-91% prediction accuracy depending on the input,
with per-frame inference time of 350−3500µs (§5), and release our training code
and models1.

2 Background

The computational sign language processing (SLP) literature rarely addresses
detection [3] and mainly focuses on sign language recognition [8, 9, 17] and iden-
tification [10, 19].

2.1 Sign Language Detection

Previous work [3] introduces the classification of frames taken from YouTube
videos as either signing or not. They take a spatial and temporal approach
based on VGG-16 CNN [29] to encode each frame and use a GRU [7] to encode
the sequence of frames, in a window of 20 frames at 5fps. In addition to the raw
frame, they also either encode optical flow history, aggregated motion history,
or frame difference. However, for our use case, 5fps might not be enough, as it
introduces an artificial 200ms delay from when a person starts signing to when
they could be detected. Furthermore, this network takes upwards of 3 seconds
to run on CPU per inference.

Most recently, Apple [2] announced sign language detection for group Face-
Time calls in iOS 14, iPadOS 14, and macOS Big Sur. They did not share any
implementation details of their detection model, which makes it hard to compare
their model to the one we propose in this paper. Nonetheless, as FaceTime group
calls are encrypted end-to-end, we assume that the detection happens on-device
rather than on the server-side.

2.2 Sign Language Recognition

Sign language recognition has been widely studied across different domains and
sign languages. As sign language corpora are usually small [4], previous works
take one of two approaches to reduce the network’s parameters: (1) using pose
estimation on the original videos [16, 32, 17]; or (2) using pre-trained CNNs to
get a feature vector per frame [9, 8]. While different, both methods can encode
adequate features to be used for recognition. Studies of human signers have
shown that detailed information like exact descriptions of the hand shape are
not always required for humans to interpret sign language [25, 31].

Looking at examples of sign videos, we hypothesize that the most challenging
part of this task is to identify when a person starts signing, because a signer might
initiate hand movement for other purposes, for example, to touch their face.
Distinguishing this type of ambient motion from actual linguistic sign movement
is not always straightforward. Although not explicitly studied on signers, studies

1
https://github.com/google-research/google-research/tree/master/sign language detection
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find the average person touches their face between 15.7 and 23 times per hour [20,
18]. Further complicating this issue, people in different cultures exhibit different
face-touching patterns, including frequency, area, and hand preference [12].

2.3 Sign Language Identification

A study [10] finds that a random-forest classifier can distinguish between British
Sign Language (BSL) and Greek Sign Language (ENN) with a 95% F1 score.
This finding is further supported by more recent work [19] which manages to
differentiate between British Sign Language and French Sign Language (Langue
des Signes Française, LSF) with 98% F1 score in videos with static backgrounds,
and between American Sign Language and British Sign Language with 70% F1
score for videos mined from popular video sharing sites. The authors attribute
their success mainly to the different fingerspelling systems, which is two-handed
in the case of BSL and one-handed in the case of ASL and LSF.

3 Model

For a video, for every frame given, we would like to predict whether the person
in the video is signing or not.

3.1 Input Representation

As evident by previous work [3], using the raw frames as input is computationally
expensive, and noisy. Alternatively, in computer vision, optical flow is one way
to calculate the movement of every object in a scene. However, because signing
is inherently a human action, we do not care about the flow of every object,
but rather only the flow of the human. Optimally, we would like to track the
movement of every pixel on the human body from one frame to another, to
gauge its movement vector. As a proxy to such data, we opt for full-body human
pose estimation, defining a set of points detected in every video frame that
marks informative landmarks, like joints and other moving parts (mouth, eyes,
eyebrows, and others).

Getting the optical flow F for these predefined points P at time t is then
well defined as the L2 norm of the vector resulting from subtracting every two
consecutive frames. We normalize the flow by the frame-rate in which the video
was captured for the representation to be frame-rate invariant (Equation 1).

F (P )t = ||Pt − Pt−1||2 ∗ fps (1)

We note that if a point p was not identified in a given frame t, the value of
F (p)t and F (p)t+1 automatically equals to 0. This is done to avoid introducing
fake movements from a poor pose estimation system or unknown movement from
landmarks going out-of-frame.

An additional benefit of using full-body pose estimation is that we can nor-
malize the size of all people, regardless of whether they use a high-/low-resolution
camera and the distance at which they are from the camera.
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Fig. 1: Optical-flow norm representation of a conversation between two signers.
The x-axis is the progression of time, 1,500 frames over 30 seconds in total. The
yellow marks are the gold labels for spans when a signer is signing.

3.2 Temporal Model

Figure 1 demonstrates our input representation for an example video. It shows, to
the naked eye, that this representation is meaningful. The movement, indicated
by the bright colors, is well aligned with the gold spans annotation. Thus, we
opt to use a shallow sequence tagging model on top of it.

We use a uni-directional LSTM [14] with one layer and 64 hidden units
directly on this input, normalized for frame rate, and project the output to a
2-dimensional vector. For training, we use the negative-log-likelihood loss on
the predicted classes for every frame. For inference, we take the arg-max of the
output vector (Equation 2).

signing(P ) = arg maxLSTM(F (P )) ∗W (2)

Note that this model allows us to process each frame as we get it, in real-
time, by performing a single step of the LSTM and project its output. Unlike
autoregressive models, we do not feed the last-frame classification as input for the
next frame, as just classifying the new frame with the same tag would almost get
100% accuracy on this task, depending on gold labels to be available. Instead, we
rely on the hidden state of the LSTM to hold such information as a probability.

4 Experiments

The Public DGS Corpus [11] includes 301 videos with an average duration of
9 minutes, of two signers in conversation2, at 50fps. Each video includes gloss
annotations and spoken language translations (German and English). Using this
information, we mark each frame as either “signing” (50.9% of the data) or
“not-signing” (49.1% of the data) depending on whether it belongs to a gloss
segment. Furthermore, this corpus is enriched with OpenPose [5] full-body pose
estimations [27] including 137 points per frame (70 for the face, 25 for the body,
and 21 for each hand). In order to disregard video resolution and distance from

2 There are also monologue story-telling, but both signers are always shown.
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(a) Pose-All (b) Pose-Body (c) Pose-Hands (d) BBOX

Fig. 2: Visualization of our different experiments inputs.

the camera, we normalize each of these poses such that the mean distance be-
tween the shoulders of each person equals 1. We split this dataset into 50:25:25
for training, validation, and test, respectively. For every “part” (face, body, left
and right hands), we also calculate its bounding box based on the minimum and
maximum value of all of the landmarks.

We experiment with three linear baselines with a fixed context (Linear-1,
Linear-25, Linear-50) and four experimental recurrent models with different
counts of input features:

1. Pose-All—including all of the landmarks from the poses. (f. 2a)
2. Pose-Body—including only the body landmarks. (f. 2b)
3. Pose-Hands—including only the left- and right-hand landmarks. (f. 2c)
4. BBOX—including the bounding boxes of the face, body, and hands. (f. 2d)

Finally, we measure the execution time of each model on CPU, using an
Intel(R) Xeon(R) CPU E5-2650 v4 @ 2.20GHz. We measure the execution time
per frame given a single frame at a time, using multiple frameworks: Scikit-Learn
(sk) [24], TensorFlow (tf) [1] and PyTorch (pt) [23].

5 Results

Table 1 includes the accuracy and inference times for each of our scenarios. Our
baseline systems show that using a linear classifier with a fixed number of context
frames achieves between 79.9% to 84.3% accuracy on the test set. However, all
of the baselines perform worse than our recurrent models, for which we achieve
between 87.7% to 91.5% accuracy on the test set. Generally, we see that using
more diverse sets of landmarks performs better. Although the hand landmarks
are very indicative, using just the hand BBOX almost matches in accuracy,
and using the entire body pose, with a single point per hand, performs much
better. Furthermore, we see that regardless of the number of landmarks used,
our models generally perform faster the fewer landmarks are used. We note that
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the prediction time varies between the different frameworks, but does not vary
much within a particular framework. It is clear, however, that the speed of these
models’ is sufficient, as even the slowest model, using the slowest framework,
runs at 285 frames-per-second on CPU.

We note from manually observing the gold data that sometimes a gloss seg-
ment starts before the person actually begins signing, or moving at all. This
means that our accuracy ceiling is not 100%. We did not perform a rigorous
re-annotation of the dataset to quantify how extensive this problem is.

Model Points Params Dev Acc Test Acc ∂t (sk) ∂t (tf) ∂t (pt)

Linear-1 25 25 79.99% 79.93% 6.49µs 823µs 2.75µs

Linear-25 25 625 84.13% 83.79% 6.78µs 824µs 5.10µs

Linear-50 25 1, 250 85.06% 83.39% 6.90µs 821µs 7.41µs

BBOX 8 18, 818 87.49% 87.78% — 3519µs 367µs

Pose-Hands 42 27, 522 87.65% 88.05% — 3427µs 486µs

Pose-Body 25 23, 170 92.17% 90.35% — 3437µs 443µs

Pose-All 137 51, 842 92.31% 91.53% — 3537µs 588µs

Table 1: Accuracy and inference-time (∂t) results for the various experiments.

6 Analysis

As we know that different pose landmarks have varying importance to the clas-
sification, we use the Linear-1 model’s coefficients magnitude to visualize how
the different landmarks contribute. Figure 3 visualizes the average human pose
in the dataset, with the opacity of every landmark being the absolute value of
the coefficient.

Fig. 3: The average pose in the dataset. The opacity of every landmark is deter-
mined by its coeffient in the Linear-1 model.
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Fig. 4: Visualization of the different types of errors. The first row contains the
gold annotations, and the second row contains a model’s prediction.

First, we note that the model attributes no importance to any landmark
below the waist. This makes sense as they both do not appear in all videos, and
bare no meaning in sign language. The eyes and nose seem to carry little weight,
while the ears carry more. We do not attribute this to any signing phenomenon.

Additionally, we note hands asymmetry. While both wrists have a high
weight, the elbow and shoulder for the right hand carry more weights than their
corresponding left counterparts. This could be attributed to the fact that most
people are right handed, and that in some sign languages the signer must decide
which hand is dominant in a consistent manner. We see this asymmetry as a
feature of our model, and note that apps using our models could also include a
“dominant hand” selection.

To further understand what situations our models capture, we check multiple
properties of them on the test set. We start by generally noting that our data is
conversational. 84.87% of the time, only one participant is signing, while 8.5% of
the time both participants are signing, and in the remaining 6.63% of the time
no one is signing, primarily when the participants are being instructed on the
task.

Our test set includes 4, 138 signing sequences with an average length of 11.35
seconds, and a standard deviation of 29.82 seconds. It also includes 4, 091 not-
signing sequences with an average length of 9.95 seconds, and a standard devi-
ation of 24.18 seconds.

For each of our models, we compare the following error types (Figure 4):

– Bridged—Cases where the model bridged between two signing sections, still
predicting the person to be signing while the annotation says they are not.

– Signing Detected Incorrectly—Cases where the model predicted a sign-
ing span fully contained within a not-signing annotation.

– Signing Overflow—Cases where signing was still predicted after a signing
section ended.

– Started Pre-Signing—Cases where signing was predicted before a signing
section started.

– Skipped—Cases where the model did not detect entire signing sections.

– Signing Undetected Incorrectly—Cases where the model predicted a
not-signing span fully contained within a signing annotation.

– Started Post-Signing—Cases where the signing section started before it
was predicted to start.
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– Signing Underflow—Cases where the signing section was predicted to end
prematurely.

linear-1 linear-25 linear-50

Bridged 107 (0.10± 0.15) 308 (0.34± 0.40) 426 (0.45± 0.46)

Signing Detected Incorrectly 132151 (0.04± 0.07) 8773 (0.30± 0.81) 6594 (0.34± 1.06)

Signing Overflow 4094 (0.09± 0.15) 3893 (0.32± 0.43) 3775 (0.46± 1.17)

Started Pre-Signing 873 (0.09± 0.13) 345 (0.45± 0.68) 257 (0.88± 4.27)

Skipped 50 (1.41± 1.95) 298 (1.38± 1.43) 446 (1.49± 1.60)

Signing undetected incorrectly 219531 (0.05± 0.10) 26185 (0.27± 0.50) 18037 (0.32± 0.66)

Started Post-Signing 4199 (0.17± 0.23) 3951 (0.48± 0.57) 3803 (0.60± 0.77)

Signing Underflow 1677 (0.15± 0.26) 1092 (0.58± 0.91) 827 (0.71± 0.96)

BBOX Pose-Hands Pose-Body Pose-All

Bridged 754 (0.97± 1.94) 861 (1.26± 2.63) 747 (1.12± 2.35) 573 (0.75± 1.08)

Signing Detected Incorrectly 5697 (0.64± 1.93) 12919 (0.33± 1.33) 6286 (0.38± 1.29) 11384 (0.25± 1.14)

Signing Overflow 3337 (0.95± 2.10) 3230 (1.01± 2.46) 3344 (0.67± 1.29) 3518 (0.48± 0.87)

Started Pre-Signing 402 (1.33± 2.73) 558 (1.59± 5.15) 298 (1.48± 3.87) 408 (0.70± 1.97)

Skipped 199 (1.31± 1.40) 115 (1.45± 1.54) 243 (1.31± 1.30) 146 (1.41± 1.42)

Signing undetected incorrectly 4089 (0.48± 0.76) 3526 (0.26± 0.51) 4786 (0.32± 0.60) 5526 (0.23± 0.44)

Started Post-Signing 3939 (0.34± 0.44) 4023 (0.24± 0.34) 3895 (0.37± 0.49) 3992 (0.29± 0.36)

Signing Underflow 370 (0.82± 1.08) 297 (0.55± 0.68) 506 (0.63± 0.97) 666 (0.44± 0.66)

Table 2: We evaluate every model on the different error types, and show number
of sequences with that error, including average sequence length in seconds and
standard deviation.

Table 2 includes the number of sequences, including average length and stan-
dard deviation in seconds, for each of the error types. Most notably, we see that
the less context the model has, the more sporadic its predictions and thus it will
generally completely bridge or skip less sequences. The same locality however
introduces many signing detected / undetected incorrectly errors, albeit of short
lengths.

In the sequential models, we generally see a lower number of sequences as
they can incorporate global features in the classification. As indicated by the
accuracy scores, we see fewer errors of most types the more diverse the input
points are, with one notable exception for the Pose-All model which under-
performs Pose-Body on all errors except for Bridged and Skipped.

7 Demo Application

With this publication, we release a demo application working in the browser for
computers and mobile devices. Pragmatically, we choose to use the “Pose-Body”
model variant, as it performs almost on par with our best model, “Pose-All”,
and we find it is feasible to acquire the human body poses in real-time with
currently available tools.

We use PoseNet [22, 21] running in the browser using TensorFlow.js [30].
PoseNet includes two main image encoding variants: MobileNet [15], which is a
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lightweight model aimed at mobile devices, and ResNet [13], which is a larger
model that requires a dedicated GPU. Each model includes many sub-variants
with different image resolution and convolutional strides, to further allow for
tailoring the network to the user’s needs. In our demo, we first tailor a network
to the current computation device to run at least at 25fps. While using a more
lightweight network might be faster, it might also introduce pose estimation
errors.

The pose estimation we use only returns 17 points compared to the 25 of
OpenPose; hence, we map the 17 points to the corresponding indexes for Open-
Pose. We then normalize the body pose vector by the mean shoulder width the
person had in the past 50 frames in order to disregard camera resolution and
distance of the signer from the camera.

Onward, there are two options: either send the pose vector to the videocon-
ferencing server where inference could be done or perform the inference locally.
As our method is faster than real-time, we chose the latter and perform inference
on the device using TensorFlow.js. For every frame, we get a signing probability,
which we then show on the screen.

In a production videoconferencing application, this signing probability should
be streamed to the call server, where further processing could be done to show the
correct people on screen. We suggest using the signing probability as a normal-
ized “volume”, such that further processing is comparable to videoconferencing
users using speech.

While this is the recommended way to add sign language detection to a
videoconferencing app, as the goal of this work is to empower signers, our demo
application can trigger the speaker detection by transmitting audio when the
user is signing. Transmitting ultrasonic audio at 20KHz, which is inaudible for
humans, manages to fool Google Meet, Zoom and Slack into thinking the user
is speaking, while still being inaudible. One limitation of this method is that
videoconferencing app developers can crop the audio to be in the audible human
range and thus render this application useless. Another limitation is that using
high-frequency audio can sound crackly when compressed, depending on the
signer’s internet connection strength.

Our model and demo, in their current forms, only allow for the detection of
a single signer per video stream. However, if we can detect more than a single
person, and track which poses belong to which person in every frame, there is
no limitation to run our model independently on each signer.

8 Discussion

8.1 Limitations

We note several limitations to our approach. The first is that it relies on the pose
estimation system to run in real-time on any user’s device. This proves to be
challenging, as even performing state-of-the-art pose estimation on a single frame
on a GPU with OpenPose [5, 6] can take upwards of 300ms, which introduces
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two issues: (1) If in order to get the optical-flow, we need to pose two frames, we
create a delay from when a person starts signing to when they could be accurately
detected as signing, equal to at least two times the pose processing time. (2)
Running this on mobile devices or devices without hardware acceleration like a
GPU may be too slow.

As we only look at the input’s optical flow norm, our model might not be
able to pick up on times when a person is just gesturing rather than signing.
However, as this approach is targeted directly at sign language users rather than
the general non-signing public, erring on the side of caution and detecting any
meaningful movements is preferred.

8.2 Demographic Biases

The data we use for training was collected from various regions of Germany, with
equal number of males and females, as well as an equal number of participants
from different age groups [26]. Although most of the people in the dataset are
European white, we do not attribute any significance between the color of their
skin to the performance of the system, as long as the pose estimation system is
not biased.

Regardless of age, gender, and race, we do not address general ethnic biases
such as different communities of signers outside of Germany signing differently
- whether it is the size, volume, speed, or other properties.

9 Conclusions

We propose a simple human optical-flow representation for videos based on pose
estimation to perform a binary classification per frame — is the person signing
or not. We compare various possible inputs, such as full-body pose estimation,
partial pose estimation, and bounding boxes and contrast their acquisition time
in light of our targeted real-time videoconferencing sign language detection ap-
plication.

We demonstrate our approach on the Public DGS Corpus (German Sign
Language), and show results of 87%-91% prediction accuracy depending on the
input, with per-frame inference time of 350− 3500µs.
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