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Abstract—Recommender system research suffers from a dis-
connect between the size of academic data sets and the scale of
industrial production systems. In order to bridge that gap, we
propose to generate large-scale user/item interaction data sets by
expanding pre-existing public data sets. Our key contribution
is a technique that expands user/item incidence matrices to
large numbers of rows (users), columns (items), and non-zero
values (interactions). The proposed method adapts Kronecker
Graph Theory to preserve key higher order statistical properties
such as the fat-tailed distribution of user engagements, item
popularity, and singular value spectra of user/item interaction
matrices. Preserving such properties is key to building large
realistic synthetic data sets which can be employed reliably to
benchmark recommender systems and the systems employed to
train them.

We further apply our stochastic expansion algorithm to the
binarized MovieLens 20M data set, which comprises 20M in-
teractions between 27K movies and 138K users. The resulting
expanded data set has 1.2B ratings, 2.2M users, and 855K
items, which can be scaled up or down. Furthermore, we
present collaborative filtering experiments demonstrating that the
generated synthetic data entails valuable insights for machine
learning at scale in recommender systems. We provide code
pointers to reproduce our data and our experiments.

Index Terms—Machine Learning, Deep Learning, Recom-
mender Systems, Graph Theory, Simulation

I. INTRODUCTION

Machine Learning (ML) benchmarks compare the capa-
bilities of models, distributed training systems and linear
algebra accelerators on realistic problems at scale. For these
benchmarks to be effective, results need to be reproducible by
many different groups which implies that publicly shared data
sets need to be available.

Unfortunately, while recommendation systems constitute a
key industrial application of ML at scale, large public data
sets recording user/item interactions on online platforms are
not yet available. For instance, although the Netflix data set
[4] and the MovieLens data set [13] are public, they are orders
of magnitude smaller than proprietary data [2], [8], [36].

TABLE I: MovieLens 20M [13] vs industrial dataset in [36].

MovieLens 20M Industrial

#users 138K Hundreds of Millions

#items 27K 2M

#topics 19 600K

#observations 20M Hundreds of Billions

Proprietary data sets and privacy: While releasing large
anonymized proprietary recommendation data sets may seem
an acceptable solution from a technical standpoint, it is a non-
trivial problem to preserve user privacy while still maintaining
useful characteristics of the dataset. For instance, [27] shows a
privacy breach of the Netflix prize dataset. More importantly,
publishing anonymized industrial data sets runs counter to user
expectations that their data may only be used in a restricted
manner to improve the quality of their experience on the
platform.

Therefore, we decide not to make user data more broadly
available to preserve the privacy of users. We instead choose
to produce synthetic yet realistic data sets whose scale is
commensurate with that of our production problems while only
consuming already publicly available data.

Realistic MovieLens 1 billion+ dataset: In this work, we
focus on the MovieLens dataset which only entails movie
ratings posted publicly by users of the MovieLens platform
and is now a standard benchmark in recommender system
research. A binarized version of this dataset is obtained
when all the ratings are substituted by 1.0 as in the Neural
Collaborative Filtering (NCF) experiments [14]. Although the
binarized version is representative of industrial Collaborative
Filtering (CF) aiming at predicting which item a given user
is most likely to view [8], the data set still only entails few
observed interactions and more importantly a small catalogue
of users/items, compared to industrial recommendation data.

Industrial recommender systems for user generated content
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Fig. 1: We validate our expansion method numerically by
checking that the distributions of row-wise sums, column-
wise sums and singular values are similar between the original
data set R (left column) and the synthetic data set R̃ (middle
column). We can observe the preservation of the linear log-
log correspondence for the higher values in the distributions
of interest as well as the accelerating decay for smaller values.
The intermediate reduced matrix R̂ is also designed to be
similar to R which is confirmed here as well (right column).
Detailed notation is presented in sections III and IV.

platforms (e.g. Pinterest, Instagram, Youtube) typically have
to nominate items from catalogues comprising several million
distinct elements. The corresponding recommenders typically
learn a vector valued embedding in Rd (with d ∼ 102 or 103)
for each of the millions of users and items of the catalog.
Storing, accessing and training such vast embedding tables
presents unique challenges as large tables will no longer easily
fit in the memory of a single machine. Furthermore, the
abundance of data asks for a higher training throughput to
serve less stale models. By scaling up the public MovieLens
data set, we want to move the problem into a regime where
such issues are critical so that the corresponding benchmark
is helpful for the industry.

In order to provide a new data set — more aligned with
the needs of production scale recommender systems — we
therefore aim at expanding publicly available data by creating
a realistic surrogate abiding by the following constraints:
orders of magnitude more users and items are present in the
synthetic data set whose first and second order statistics match
those of the original data set. Figure 1 presents the match
between such properties of the original MovieLens 20M and
our synthetic MovieLens 1B.

Adapting Kronecker Graph expansions to binarized

user/item interactions: We employ the Kronecker Graph The-
ory introduced in [22] to achieve a suitable fractal expansion of
recommendation data to benchmark user/item factorization ap-
proaches for CF [14], [19]. Consider a recommendation prob-
lem comprising m users and n items. Let (Ri,j)i=1...m,j=1...n

be the sparse matrix of binarized recorded interactions (i.e. 1 if
user i has consumed item j and 0 otherwise). The key insight
we develop is that a fractal expansion of R can preserve high
level statistics of the original data set while scaling its size up
by multiple orders of magnitudes. To that end, we present the
following contributions to help recommender system research
scale up in public benchmarks:
• we introduce a randomly shuffled Kronecker product and

take steps to prevent test data from leaking into the data
set employed to train CF models;

• we produce a synthetic yet realistic MovieLens 1.2 billion
dataset and demonstrate that key properties of the original
dataset are preserved by our technique;

• we illustrate through Matrix Factorization (MF) [19] and
NCF [14] experiments that the synthetic data constitutes
a valuable benchmark at scale.

II. RELATED WORK

In the present paper we assume a recommender system has
to suggest relevant items to users. Although other approaches
are very popular such as content based recommendations [29]
or social recommendations [6], collaborative filtering remains
a prevalent approach for recommenders [25], [28], [30].

Collaborative filtering (CF): The key insight behind CF is
to learn affinities between users and items based on previously
collected user/item interaction data. CF exists in different
flavors. Neighborhood methods group users by inter-user sim-
ilarity and will recommend items to a given user that have
been consumed by neighbors [29]. Latent methods try to
decompose user/item affinity as the result of the interaction of
a few underlying representative factors characterizing the user
and the item (e.g. Principal Component Analysis [17], Latent
Dirichlet Allocation [5]). Matrix Factorization [19] is a Latent
Factor Method that relies on solving the matrix completion
problem to recommend items for users.

Given a sparse matrix user/item interaction matrix R =
(ri,j)i=1...m,j=1...n, user and item latent factors are classically
learned by approximating R with a low rank matrix XY T

where X ∈ Rm,d entails the user factors and Y ∈ Rn,d
contains the item factors. The data set R represents ratings as
in the unmodified MovieLens dataset [13] or item consumption
(ri,j = 1 if and only if the user i has consumed item j [4])
— the latter being considered here. A key determiner of the
number d of latent factors needed to accurately approximate
R is the singular value spectrum of R. Therefore we try to
preserve the spectral properties of the original data.

Deep Learning for recommender systems: CF has known
many recent developments which motivate our objective of
expanding public data sets in a realistic manner. Deep Neural
Networks (DNNs) are now becoming common in both non-
linear matrix factorization tasks [8], [14], [35] and sequen-



tial recommendations [12], [32], [37]. The mapping between
user/item pairs and ratings is generally learned by training the
neural model to predict user behavior in previously observed
user/item interactions.

DNNs consume large quantities of data and are com-
putationally expensive to train, therefore they give rise to
commonly shared benchmarks aimed at speeding up train-
ing. For training, a Stochastic Gradient Descent method is
employed [21] which requires forward model computation
and back-propagation on many mini-batches of (user, item,
score) examples. The matrix completion task still consists in
predicting an interaction between user i and item j although
ri,j has not been observed. The model typically iterates over
billions of examples during training.

Freshness in recommender systems and training accel-
eration: Model freshness is generally critical to industrial
recommendations [8] which implies that only limited time
is available to re-train the model on newly available data.
Unfortunately, public recommendation data sets are too small
to provide training-time-to-accuracy benchmarks that can be
realistically employed for industrial applications. Compared to
industrial data sets, too few different examples are available
in MovieLens 20M for instance and the number of different
available items is orders of magnitude too small. In many
industrial settings, the recommendation model learns embed-
ding matrices with millions to billions of rows (users/items)
and hundreds of millions of columns (latent factors) whose
memory footprint dominates that of the rest of the model by
several orders of magnitude. During training, the latency and
bandwidth of the access to embedding matrices have a promi-
nent influence on the final throughput in examples/second.
Such computational difficulties associated with learning large
embedding matrices are worthwhile solving in benchmarks.
The multi-billion interaction size of the data set used for
training is also a major factor that affects industrial modeling
choices and infrastructure.

Synthetic data sets and Kronecker graphs: A recent
approach to creating synthetic recommendation data sets con-
sists in making parametric assumptions on user behavior by
instantiating a user model interacting with an online plat-
form [7], [31]. Unfortunately, such methods (even calibrated
to reproduce empirical facts in actual data sets) do not provide
strong guarantees that the resulting interaction data is similar
to the original. A challenging problem in this domain is to
build user models that can provide such guarantees in the
presence of Long Range Dependent dynamics [2], [33] with
irregular observations in time [3], which can be validated
using online experiments. In this work, instead of simulating
recommendations in a parametric user-centric way as in [7],
[31], we choose a non-parametric approach operating directly
in the space of user/item affinity. In order to synthesize a
large realistic dataset in a principled manner, we adapt the
Kronecker expansions which have previously been employed
to produce large realistic graphs in [22], [23]. In particular,
we show how randomized block-wise shuffling operations help
address limitations of naive methods which yield interaction

Item groups

User groups

User/item interaction Matrix R

Interaction patterns

Fig. 2: Postulated hierarchical and self-similar user/item inter-
action patterns in recommendation data sets.

matrices with a discernible block-wise repetitive structure.

III. FRACTAL EXPANSIONS OF USER/ITEM INTERACTION
DATA SETS

The present section delineates the insights orienting our
design decisions when expanding recommendation data sets.

1) Self-similarity in user/item interactions: Interactions be-
tween users and items follow a natural hierarchy in data
sets where items can be organized in topics, genres, and
categories [36]. There is for instance an item-level fractal
structure in MovieLens 20M with a tree-like structure of
genres, sub-genres, and directors. If users were clustered
according to their demographics and tastes, another hierarchy
would be formed [29]. The corresponding structured user/item
interaction matrix is illustrated in Figure 2. The hierarchical
nature of user/item interactions makes the recommendation
data set structurally self-similar (i.e. patterns that occur at more
granular scales resemble those affecting coarser scales [26]).

We choose to expand the user/item interaction matrix by ex-
trapolating this self-similar structure and simulating its growth
to yet another level of granularity: original items and users are
considered fictional topic and user groups in the expanded data
set. The large number of fictitious topics also creates a data set
closer to industrial applications with > 100K different topics
as in Table I. A key advantage of this fractal procedure is that it
may be entirely non-parametric and designed to preserve high
level properties of the original dataset. In particular, a fractal
expansion re-introduces the patterns originally observed in the
entire real dataset within each block of local interactions of the
synthetic user/item matrix. We now show that the Kronecker
operator enables such a construction.

2) Fractal expansion through Kronecker products: The
Kronecker product — denoted ⊗ — is a matrix operator with
an intrinsic self-similar structure:

A⊗B =

a11B . . . a1nB
...

. . .
...

am1B . . . amnB

 (1)

where A ∈ Rm,n, B ∈ Rp,q and A⊗B ∈ Rmp,nq .
An important challenge here is the size of the original matrix

we deal with: R ∈ R(138×103,27×103). A naive Kronecker
expansion R ⊗ R would synthesize a rating matrix with 19
billion users which is too large. Thus, although Kronecker
products seem like an ideal candidate for the mechanism at the
core of the self-similar synthesis of a larger recommendation
dataset, some modifications are needed to the algorithms
developed in [23].



3) Reduced Kronecker expansions: We choose to synthe-
size a user/item rating matrix

R̃ = R̂⊗R

where R̂ is a matrix derived from R but much smaller (for
instance R̂ ∈ R128,256). For reasons that will become apparent
as we explore some theoretical properties of Kronecker fractal
expansions, we want to construct a smaller derived matrix R̂
that shares similarities with R. In particular, we seek R̂ with a
similar row-wise sum distribution (user engagement distribu-
tion), column-wise distribution (item engagement distribution)
and singular value spectrum (signal to noise ratio distribution
in the matrix factorization).

4) Generalized Kronecker products: Generalized fractal
expansions can be defined by altering the standard Kronecker
product. We consider such extensions here as candidates to
engineer more interesting synthetic data sets. One drawback
though is that these extensions may not preserve analytic
tractability. As a generalization of ⊗ one can define a binary
matrix operator ⊗F with F : R×Rm,n×N→ Rp,q as follows:

A⊗F B =

 F (a11, B, ω11) . . . F (a1n, B, ω1n)
...

. . .
...

F (am1, B, ωm1) . . . F (amn, B, ωmn)

 (2)

where ω11, . . . , ωmn are random perturbations.
5) Stochastic Kronecker product and dropout for binary

rating matrices: With binary ratings, a standard Kronecker
product is not suitable as the ratings all take the same
value of 1 and therefore multiplications by elements of R̂
do not produce ratings that are all still binary. We instead
use the stochastic Kronecker graph approach from [23] and
employ the reduced matrix’s elements R̂ as dropout rates
over the matrix R. When computing the block i, j of the
expanded rating matrix, instead of using R̂i,jR, we consider
dropout(R, rate = R̂i,j) after having re-scaled R̂ so that all
its elements are in [0, 1]. For each element k, l of R, the
dropout function for a rate R̂i,j samples independently from
a Bernoulli distribution with parameter R̂i,j . If the sampled
number is 1, Rk,l, is kept unchanged, otherwise it is dropped
and set to 0. Such a block dropout operator enjoys statistical
properties that are similar to the Kronecker product [23] while
being readily employable on binary data-sets. After applying
sub-matrix shuffling which we introduce in the next paragraph,
the stochastic Kronecker product we devise can therefore be
written

A⊗randB =

 sh (dr(1− a11, B)) . . . sh (dr(1− a1n, B))
...

. . .
...

sh (dr(1− am1, B)) . . . sh (dr(1− amn, B))


(3)

where “sh” denotes the random row-wise and column-wise
shuffling operator and “dr” denotes the dropout operator whose
first argument is the dropout rate and whose second argument
is the matrix from which to zero out elements at random. We
now explain why we introduce intra-block shuffling within
each block of output matrix.

6) Randomized shuffling and Kronecker SVD: Another lim-
itation of standard Kronecker products is their block-wise
repetitive structure. Although the synthetic data set is still
hard to factorize as the product of two low rank matrices
because its singular values are still distributed similarly to
the original data set, it is now easy to factorize with a
Kronecker SVD [18] which takes advantage of the block-wise
repetitions in Eq (1). Therefore we shuffle rows and columns
of each block in Eq (1) independently at random (each sub-
matrix is shuffled differently). The shuffles break the block-
wise repetitive structure and prevents Kronecker SVD from
producing a trivial solution to the factorization problem. As a
result, the expansion technique we present appears as a reliable
first candidate to train Matrix Factorization models [29] and
DNN-based user/item similarity scoring models [14].

7) Preventing leaks from the test set into the training set:
For matrix factorization tasks, the usual procedure to build
disjoint training and test data sets for MovieLens 20M consists
in selecting some ratings and removing them from the training
set while adding them to the test set [14]. A naive adaptation
of the test data generation procedure to our extended data
set would select test items directly on the larger matrix R̃.
Unfortunately, as R̃ = R̂ ⊗ R, such a procedure would
implicitly share data between the training and test sets through
R̂ which incorporates information from the entire original data
set R. In order to generate training and test data without
leaking test data into the training set, we proceed as follows.

We consider two separate training and test sets selected from
the original data set R: Rtrain and Rtest. With R ∈ Rm,n, we
have Rtrain ∈ Rm,n and Rtest ∈ Rm,n. For the MovieLens
data set, where each rating of a given item by a specific user
is timestamped, a typical approach to defining training and
testing sets removes the last rating of each user from the train
set and adds it to the test set [14]. The smaller matrix R̂train
is now derived from Rtrain exclusively, without incorporating
any data from Rtest. We create the extended versions of the
train and test data sets separately as follows: R̃train = R̂train ⊗
Rtrain and R̃test = R̂train⊗Rtest. By construction, the procedure
prevents test data from leaking into the train data.

8) Consistent randomized operations across training and
testing sets: With a stochastic Kronecker ⊗rand featuring
dropout and block-wise shuffling, additional precautions need
to be taken. In order to guarantee that the randomized shuffles
of rows and columns are consistent between the training and
testing data, we flip the sign of the test elements in the rating
matrix to keep track of their belonging to the test set. We apply
all randomized operations to the resulting matrix comprising
elements in {−1, 0, 1}: R̃temp = R̂train ⊗rand (Rtrain −Rtest)
where Rtrain ∈ Rm,n and Rtest ∈ Rm,n. The positive elements
of Rtemp are attributed to R̃train and the negative elements
are attributed to R̃test after having flipped their sign ∀i ∈
{1, . . . ,mp} , j ∈ {1, . . . , nq},

R̃traini,j = R̃tempi,j if R̃tempi,j = 1 else 0,

R̃testi,j = −R̃tempi,j if R̃tempi,j = −1 else 0.



We now guarantee the consistency of randomized shuffles of
the sub-blocks in R̃train and R̃test.

IV. STATISTICAL PROPERTIES OF KRONECKER FRACTAL
EXPANSIONS

After having introduced Kronecker products to self-
similarly expand a recommendation dataset into a much larger
one, we now develop theoretical insights about how the trans-
form preserves crucial common properties with the original.

1) Salient empirical facts in MovieLens data: First, we
introduce the critical properties we want to preserve. As a
user/item interaction dataset on an online platform, one expects
MovieLens to feature common properties of recommendation
data sets such as power-law or fat-tailed distributions [36]
(here a power-law or fat-tailed distribution denotes f with
f(x) ∼x→+∞ αx−β with α > 0 and β > 0).

To characterize such a behavior in the MovieLens data set,
we take a look at the distribution of the total ratings along
the item axis and the user axis. In other words, we compute
row-wise and column-wise sums for the matrix R and observe
their distributions. The corresponding ranked distributions are
exposed in Figure 1 and do exhibit a clear power-law behavior
for rather popular items. However, we observe that tail items
have a higher popularity decay rate. Similarly, the engagement
decay rate increases for the group of less engaged users.

The other approximate power-law we find in Figure 1 lies
in the singular value spectrum of the MovieLens dataset. We
compute the top k singular values [15] of the MovieLens
rating matrix R by power iteration, which can scale to its
large (138K, 27K) dimension. The dominant singular values
of R and the corresponding singular vectors help approximate
R by R ' UΣV where Σ is diagonal of dimension (k, k),
U is column-orthogonal of dimension (m, k) and V is row-
orthogonal of dimension (k, n) — which yields the rank k
matrix closest to R in Frobenius norm.

Examining the distribution of the 2048 top singular values
of R in the MovieLens dataset (which has at most 27K non-
zero singular values) in Figure 1 highlights a clear power-law
behavior in the highest magnitude part of the spectrum of R.

As explained in the introduction, our requirements for the
transform applied to R are threefold: we want to preserve the
distributions of row-wise sums of R, column-wise sums of R
and singular value distribution of R. Additional requirements,
beyond first and second order high level statistics, will further
increase our confidence in the realism of the expanded syn-
thetic dataset.

2) Analytic tractability through standard Kronecker prod-
ucts: Although we use a randomized version of the Kronecker
product which does not offer the same level of analytic
tractability, the choice of such a transform is deeply anchored
in some of the theoretical properties of the standard Kronecker
product. We now expose how — in its standard deterministic
version — the fractal transform design we rely on preserves
the key statistical properties of the previous section.

Definition 1: Consider A ∈ Rm,n = (ai,j)i=1...m,j=1...n, we
denote the set

{∑n
j=1 ai,j

}
of row-wise sums of A by R(A),

the set {
∑m
i=1 ai,j} of column-wise sums of A by C(A), and

the set of non-zero singular values of A by S(A).
First we focus on conservation properties in terms of row-

wise and column-wise sums which correspond respectively to
marginalized user engagement and item popularity distribu-
tions. In the following, × denotes the Minkowski product of
two sets, i.e. A×B = {a× b | ∀a ∈ A,∀b ∈ B}.

Proposition 1: Consider A ∈ Rm,n and B ∈ Rp,q . Then
R(A⊗B) = R(A)×R(B) and C(A⊗B) = C(A)× C(B).

The proposition above is immediate to prove. The following
theorem is a well known property of Kronecker products
therefore we do not present its proof.

Theorem 1: Consider A ∈ Rm,n and B ∈ Rp,q . Then S(A⊗
B) = S(A)× S(B).

In practice, we use a randomized version of the Kronecker
product whose block-wise shuffles do not have an analytically
tractable effect on the high order statistics of the rating matrix.
Therefore, we rely in section V-4 on a statistical examination
of the properties of the extended synthetic data set we produce
with our randomized fractal operator to verify that our original
theoretical insights from the deterministic case are still valid.
In particular, we demonstrate that original high order statistics
of the new data set we produce preserve the original properties
of the binary MovieLens 20M.

3) Constructing a reduced R̂ matrix similar to R: We use
analytic insights from the deterministic standard Kronecker
product to dictate our design of R̂. We validate ex-post that
those insights apply to our generalized transform. Considering
that the quasi power-law properties of R imply — as in [23] —
that S(R)×S(R) has a similar distribution to S(R), we seek
a small R̂ whose high order statistical properties are similar
to those of R. As we want to generate a dataset with several
billion user/item interactions, millions of distinct users and
millions of distinct items, we are looking for a matrix R̂ with
a few hundred or thousand rows and columns. The reduced
matrix R̂ we seek is therefore orders of magnitude smaller than
R. In our experiments, it is noteworthy that naive uniform user
and item sampling strategies have not yielded smaller matrices
R̂ with similar properties to R in our experiments. Different
random projections [1], [10], [24] could more generally be
employed.

We now describe the technique we employed to produce a
reduced size matrix R̂ with first and second order properties
close to R which in turn led to constructing an expansion
matrix R̃ = R̂ ⊗ R similar to R. We want the dimensions of
R̂ to be (m′, n′) with m′ << m and n′ << n. Consider again
the approximate Singular Value Decomposition (SVD) [15] of
R with the k = min(m′, n′) principal singular values of R:

R ' UΣV (4)

where U ∈ Rn,k (resp. V ∈ Rk,m) has orthogonal columns
(resp. rows), and Σ ∈ Rk,k is diagonal with non-negative
terms. To reduce the number of rows and columns of R
while preserving its top k singular values a trivial solution
would consist in replacing U and V by a small random
orthogonal matrices with few rows and columns respectively.



MovieLens 20M 1B train set 1B test set
Interactions 20M 1.22B 12.7M

Users 138K 2.20M 2.20M
Items 27K 855K 855K

TABLE II: Synthetic expanded MovieLens: MovieLens 1B.

Unfortunately, such a method would only seemingly preserve
the spectral properties of R as the principal singular vectors
would be widely changed. Such properties are important: one
of the key advantages of employing Kronecker products in [23]
is the preservation of the network values, i.e. the distributions
of singular vector components of a graph’s adjacency matrix.

To obtain a matrix Ũ ∈ Rn′,k with fewer rows than U
but column-orthogonal and similar to U in the distribution
of its values we use the following procedure. We re-size U
down to n′ rows with n′ < n by down-scaling through local
averaging (using skimage.transform.resize in the scikit-image
library [34]). Let Ū ∈ Rn′,k be the corresponding resized
version of U . We then construct Ũ as the column orthogonal
matrix in Rn′,k closest in Frobenius norm to Ū . Therefore as
in [11] we compute

Ũ = Ū
(
ŪT Ū

)−1/2
. (5)

We apply a similar procedure to V to reduce its number of
columns which yields a row orthogonal matrix Ṽ ∈ Rk,m′

with m′ < m. The orthogonality of Ũ (column-wise) and Ṽ
(row-wise) guarantees that the singular value spectrum of

R̂ = ŨΣṼ (6)

consists exactly of the k = min(m′, n′) leading singular
values of R. Like R, R̂ is re-scaled to take values in [−1, 1].
The whole procedure is validated empirically in Figure 1.

V. EXPERIMENTS ON MOVIELENS 20M AND 1B

The MovieLens 20M data comprises 20M ratings given
by 138K users to 27K items. In the present section, we
demonstrate how the fractal Kronecker expansion technique
we devised and presented helps scale up this dataset to orders
of magnitude more users, items and interactions.

1) Pre-processing of MovieLens 20M: The first pre-
processing step we apply to MovieLens 20M is setting all
non missing rating values to 1. The second pre-processing step
filters out users who have fewer than 2 ratings with distinct
timestamps. The filter enables the splitting of MovieLens 20M
into a train set Rtrain consisting of all the ratings of each users
except the last one in chronological order. For each user, the
rating with the last timestamp is put in the test set Rtest. Such
preliminary steps are standard for ML tasks such as NCF [14].
After the pre-processing steps, we expand MovieLens 20M
with the randomized Kronecker product presented in 3.

2) Size of expanded data set: We construct a reduced rating
matrix R̂ of size (16, 32). The size of the synthetic data set
is detailed in Table II. It is noteworthy that our method also
enables practitioners and researchers to experiment with larger
and smaller data sets as well as changing their sparsity.

The high number of interactions and items enables the train-
ing of DNNs such as the NCF model [14] with a scale which is
now more representative of industrial settings. Moreover, the
increased data set size helps construct benchmarks for deep
learning frameworks and accelerators closer to production
settings in terms of user base size, item vocabulary size and
number of observations.

3) Empirical properties of reduced R̂ matrix: The objective
of the construction technique for R̂ was to produce a matrix
sharing key properties of R though smaller in size. To that end,
we aimed at constructing a matrix R̂ of dimension (16, 32)
with properties close to those of R in terms of column-wise
sum, row-wise sum and singular value spectrum distributions.
We now check that the construction procedure we devised does
produce a R̂ with the properties we expected. As the impact of
the re-sizing step is unclear analytically, we resort to numerical
experiments to validate our method.

In Figure 1, one can assess that the first and second
order properties of R and R̂ do match. In particular, the
higher magnitude column-wise and row-wise sum distribu-
tions follow a “power-law” behavior similar to that of the
original matrix. Similar observations can be made about the
singular value spectra of R̂ and R. There is therefore now a
reasonable likelihood that our adapted Kronecker expansion
— although somewhat differing from the method originally
presented in [23] — will enjoy the same benefits in terms
of enabling data set expansion while preserving high order
statistical properties. A major interrogation is whether block-
wise shuffling will change such properties or not. We answer
it with a thorough empirical analysis.

4) Empirical properties of the expanded data set R̃:
We now verify empirically that the expanded rating matrix
R̃ = R̂ ⊗ R does share common first and second order
properties with the original rating matrix R. The new data
size is two orders of magnitude larger in terms of number
of rows and columns and four orders of magnitude larger in
terms of number of non-zero terms. Notice here that because
of the dropout, the density of R̃ is about 20% that of R.

In Figure 1, one can confirm that the spectral properties
of the expanded data set as well as the user engagement
(row-wise sums) and item popularity (column-wise sums) are
similar to those of the original data set. Such observations
demonstrate that the theoretical insights from Proposition 1
and Theorem 1 are indeed informative of the high order statis-
tics of the synthetic data set we generate. Our ex-post empirical
study indicates that the resulting data set is representative — in
its fat-tailed data distribution and quasi “power-law” singular
value spectrum — of problems encountered in ML for CF.
Furthermore, the expanded data set reproduces some unique
properties of the original data, in particular the accelerating
decay of values in ranked row-wise and column-wise sums as
well as in the singular values spectrum. It is remarkable that
block-wise shuffles did not disrupt these properties.



A. Collaborative filtering on large synthetic data

As final step to assess the usefulness of our data set, we train
well known collaborative filtering baselines and show that the
challenges we face in production with recommendations at
scale are also found in the experiments we devise.

1) Matrix factorization on the synthetic data set: In our
first ML experiment, we apply the Matrix Factorization (MF)
technique [19] to the MovieLens 1B data set we generated. We
train a MF model with cross-entropy softmax loss, which is
common when learning a multi-label classification problem
as defined by our binary data sets. Negative sampling is
essential to reduce spurious recommendations while keeping
the training time within a few hours. In this experiment,
we use in-batch negative sampling, with batch size of 1024,
i.e. each batch has 1 positive item and 1023 negative items
for each user. In addition to negative sampling, we add to
the loss a regularization term known as gravity as proposed
in [20], which encourages the prediction for all user-item pairs
towards zero. To prevent the most popular items to overwhelm
the optimization, both components of the loss, cross-entropy
softmax and gravity, are weighted by item weights that are
proportional to 1/

√
fj , where fj is the frequency of item j

in the data. The weighted softmax used is similar to what is
described in [16], where the item frequencies are pre-computed
instead of estimated on the fly. It is noteworthy that the size
of the data set as well as the memory footprint of embedding
tables had us train with distributed Tensorflow over more than
40 machines. The number of factors used to represent each
user and each item — embedding dimension — is the most
important hyper-parameter for MF.
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Fig. 3: MF experiments on the original data set MovieLens
20M (left) and the synthetic MovieLens 1B (right): Preci-
sion@k on the test data set. Higher embedding dimensions
improve retrieval performance similarly in both data sets.

Figure 3 shows that similar improvements in retrieval per-
formance (Precision@k on the test set) appear in both the
original and the synthetic data set as we increase embedding
dimensions which indicates that key properties of the original
data set were indeed conferred to the larger data set by our
fractal expansion technique. Also, as the synthetic data set we
generate is sparser and entails another level of complexity in
user/item interaction patterns, it should be more challenging
to learn. Our experiments confirm that retrieval performance is
much lower with the synthetic MovieLens 1B than the original
MovieLens 20M. The MF experiment therefore shows that
the synthetic data set we created does present most of the

challenges of CF at scale while preserving key properties of
the original data for ML.

2) Neural Collaborative Filtering on the synthetic data set:
In our second experiment, we use the Deep Learning based
Neural Collaborative Filtering (NCF) model [14] and apply
it to the data set we generated. A major difficulty we have
faced when training NCF on MovieLens 1B is that the size of
the data set made training unreasonably slow unless hardware
accelerators (GPUs) were used. In practice, we used Google
Cloud VMs with 8 Nvidia V100 GPUs, SSD hard-drives, 72
CPUs and 465GB of RAM. Due to the requirements of per-
epoch negative sampling and data pre-processing, relatively
large amounts of compute and memory were necessary to
prepare data to send to the GPU in a timely manner. As is true
in the industrial setting, using multiple hardware accelerators
helped us increase our batch size (to 524288) which helped
us train our model to convergence in a few hours. In the NCF
implementation, negative sets are fixed at each epoch. We had
to proceed to a particular optimization of negative sampling
to make our training speed acceptable. More precisely, we
use aliased sampling [9] to have O(1) sampling consuming
2 pseudo-random-numbers per negative as opposed to O(N)
sampling consuming a single pseudo-random-number. Most
importantly, this approach was amenable to multi-threading.
The next significant systems bottleneck arose from global op-
erations across the entire data set. Shuffling-based operations,
in particular, became very expensive. With the optimizations
described and others, the previously described system demon-
strated per-epoch total training times of about 17 minutes.
We use ADAM to train the algorithm with a learning rate
of 0.0045, b1 = 0.25, b2 = 0.5, ε = 10−8, 64 dimensions for
the embeddings fed into the inner product layer and layers of
size 256, 256, 128, 64 for the MLP part of the network. The
results are presented in Figure 4.
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Fig. 4: Convergence of NCF on MovieLens 1B. We present
the performance on the test set in the form of the Hit-rate@10
and NDCG as in [14]. The new data set is sparser and retrieval
performance decreases as a result.

As in the original experiments [14], we monitor the increase
of the Hit-Rate@10 and NDCG on the test set as a function of
the number of epochs run on the training data. We observe that
NCF does perform well on the data set we generated which
indicates that the synthetic data set we present should be con-
sidered to benchmark NCF-like models and the systems em-
ployed to train them. As expected, the Hit-rate is lower (0.51
as opposed to 0.7) with our data set whose sparsity is five times
higher than MovieLens 20M. For a DNN as well, the fractal



expansion procedure we present synthesizes a production-scale
collaborative filtering problem with properties similar to the
original MovieLens 20M. Code for data generation and NCF
is located at https://github.com/mlperf/training.

VI. CONCLUSION

In conclusion, this paper presents an attempt at synthesizing
a realistic large-scale recommendation data sets without having
to make compromises in terms of user privacy. We use a small
size publicly available data set, MovieLens 20M, and expand it
to orders of magnitude more users, items and observed ratings.
We modify the original Kronecker Graph generation method
to enable a randomized expansion of the original data by
orders of magnitude that yields a synthetic data set matching
industrial recommendation data sets in scale: MovieLens 1B.
Our numerical experiments demonstrate the data set we create
has key properties to those of the original MovieLens 20M
binarized rating matrix in particular for MF and NCF. We hope
the wide availability of larger realistic data sets will enable
new developments in ML for recommenders.
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