
WarpFlow: Exploring Petabytes of Space-Time Data
Catalin Popescu

Google, Inc.
cpopescu@google.com

Deepak Merugu
Google, Inc.

deepakmerugu@gmail.com

Giao Nguyen
Google, Inc.

giao@google.com

Shiva Shivakumar
Google, Inc.

shiva@google.com

ABSTRACT
WarpFlow is a fast, interactive data querying and processing sys-
tem with a focus on petabyte-scale spatiotemporal datasets and
Tesseract queries. With the rapid growth in smartphones and mo-
bile navigation services, we now have an opportunity to radically
improve urban mobility and reduce friction in how people and
packages move globally every minute-mile, with data. WarpFlow
speeds up three key metrics for data engineers working on such
datasets – time-to-first-result, time-to-full-scale-result, and time-to-
trained-model for machine learning.

1 INTRODUCTION
Analytical data processing plays a central role in product devel-
opment, and designing and validating new products and features.
Over the past few years, we have seen a surge in demand for petas-
cale interactive analytical query engines (e.g., Dremel [34], F1 [28],
Shasta [27]), where developers execute a series of SQL queries over
datasets for iterative data exploration. Also, we have seen a tremen-
dous growth in petascale batch pipeline systems (e.g., MapReduce
[24], Flume [26], Spark [41]), where developers express map-reduce
and parallel-do style processing over datasets in batch mode.

In this paper, we focus on an important query pattern of ad hoc
Tesseract1 queries. These are“big multi-dimensional joins” on spa-
tiotemporal datasets, such as datasets from Google Maps, and the
fast-growing passenger ride-sharing, package delivery and logistics
services (e.g., Uber, Lyft, Didi, Grab, FedEx). For example, a billion
people around the world use Google Maps for its navigation and
traffic speed services [10], finding their way along 1 billion kilo-
meters each day [3]. To constantly improve the service on every
minute-mile, engineers answer questions such as: (1) which roads
have high speed variability and how many drivers are affected, (2)
how many commuters, in aggregate, have many travel modes, e.g.,
bike after taking public transit? (3) what are restaurant wait times
when they are busy?

For such queries, we need to address a few important challenges:
• How to analyze large, and often noisy spatiotemporal datasets?
Most of this data comes from billions of smartphones mov-
ing through urban environments. These devices compute
current location estimate by fusing GPS, WiFi, cellular signal
and other available sensors, with varying degrees of accu-
racy (often 3 – 30 meters away from the true position), based
on urban canyon effects, weather and indoor obstructions

1In geometry, Tesseract is the four-dimensional analog of a cube. It is popularized as a
spatiotemporal hyper-cube in the film Interstellar, and as the cosmic cube containing
the Space Stone with unlimited energy in the Avengers film series.

[32, 37, 42]. These location observations are then recorded
on the device and pushed to the cloud with an accuracy esti-
mate. Also, each navigation path is recorded as a time-series
of such noisy observations. A few key questions include: (a)
how to store and index such rich data (e.g., locations and
navigation paths), (b) how to address noise with filtering
and indexing techniques?

• How to speedup developer workflow while iterating on such
queries? Each typical developer workflow begins with a
new idea. The developer then tests the idea by querying the
datasets, usually with simplified queries on small samples of
the data. If the idea shows promise, they validate it with a
full-scale query on all the available data. Depending on the
outcome, they may repeat these steps several times to refine
or discard the original idea. Finally, the developer pushes the
refined idea towards production.
One hurdle in this development cycle is the lengthy iteration
time – long cycles (several hours to days) prevent a lot of
potential ideas from being tested and refined. This friction
arises from: (i) long commit-build-deploy cycles when using
compiled pipelines, and (ii) composing complex queries on
deeply nested, rich data structures (e.g., Protocol Buffers [4],
an efficient binary-encoded, open-source data format widely
used in the industry). To improve developer productivity, it
is important to speed up the time-to-first-result, time-to-full-
scale-result, and time-to-trained-model for machine learning.
On the other hand, from a distributed systems standpoint,
it is hard to simultaneously optimize for pipeline speed, re-
source cost, and reliability.

• How do we make a production cluster, hosting several large
datasets with multiple developers simultaneously running
pipelines, cost efficient by reducing the resource footprint?
This is a common problem especially for developers in pop-
ular clusters (e.g., AWS, Azure, Google Cloud) who scale up
(or down) their clusters for analytic workloads, because it
is inefficient to dedicate a full cluster of machines and local
storage. For example, consider a 20 TB dataset. We could use
a dedicated cluster with 20 TB of RAM and local storage to fit
the entire data in memory. However, it is about 5× cheaper
if we use a system with 2 TB of RAM, and about 40× cheaper
if we use a system with 200 GB of RAM coupled with net-
work storage [6]. Moreover, the operational overhead with
building and maintaining larger clusters is magnified as the
memory requirements increase for petabyte scale datasets.
As we see later, our system is built with these constraints in
mind and offers good performance while being cost efficient.
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In this paper, we discuss how WarpFlow addresses such chal-
lenges with below features:

• Supports fast, interactive data analytics to explore large,
noisy spatiotemporal datasets with a pipeline-based query
language using composite indices and spatiotemporal op-
erators. The underlying techniques are easy to deploy in
a cost-efficient manner on shared analytics clusters with
datasets available on networked file systems such as in AWS,
Microsoft Azure, Google Cloud [6, 9, 11].

• Supports two complementary execution modes – (i) an “in-
sane” interactive mode, with an always-on speed optimized
cluster and “best effort” machine failure tolerance, and (ii) a
batch mode for running large-scale queries with auto-scaling
of resources and auto-recovery for reliable executions. In
batch mode, WarpFlow automatically generates an equiv-
alent Flume pipeline and executes it. In practice, we see
development times are often 5 – 10× faster than writing and
building equivalent Flume pipelines from scratch, and helps
our data developers gain a big productivity boost.

• Accelerates machine learning workflows by providing inter-
faces for faster data selection and built-in utilities to generate
and process the training and test data, and enabling large-
scale model application and inference.

The rest of the paper is structured as follows. In Section 2, we
present related work and contrast our goals and assumptions. In
Section 3, we give an overview of WarpFlow and its design choices.
The detailed architecture of WarpFlow and its components is pre-
sented in Section 4. We present the application of WarpFlow to
machine learning use cases in Section 5. We present an example use
case and experimental results in Section 6, followed by conclusions
in Section 7.

2 RELATEDWORK
WarpFlow builds on years of prior work in relational and big data
systems, spatiotemporal data and indexing structures. In this sec-
tion, we will summarize the key common threads and differences.
To the best of our knowledge, this is the first system (and pub-
lic description) that scales in practice for hundreds of terabytes
to petabytes of rapidly growing spatiotemporal datasets. While
there are large spatial image databases that store petabytes of raster
images of the earth and the universe (e.g., Google Earth), they of
course have different challenges (e.g., storing large hi-resolution
images, and extracting signals).

First, systems such as PostgreSQL [14], MySQL [12] offer a host
of geospatial extensions (e.g., PostGIS [13]). To tackle larger datasets
on distributed clusters, recent analytical systems propose novel
extensions and specialized in-memory data structures (e.g., for paths
and trajectories) on Spark/Hadoop [41] clusters [23, 25, 36, 38–40].

Specifically, the techniques in [36, 38, 39] adopt Spark’s RDD
model [41] and extend it with a two-level indexing structure. This
helps prune RDD partitions but partitions containing matched data
need to be paged into memory for further filtering. These tech-
niques work well when (1) the data partition and indices fit in main
memory on a distributed cluster, (2) data overflows are paged into
local disks on the cluster, (3) the queries rely on the partition and
block indices to retrieve only relevant data partitions into available

memory. In such cases, the techniques work well to optimize CPU
costs and can safely ignore IO costs in a cluster. However, for our
pipelines, we deal with numerous large datasets on a shared cluster,
so developers can run pipelines on these datasets concurrently. We
need to optimize both CPU and IO costs making use of fine-grained
indexing to selectively access the relevant data records, without
first having to load the partitions. As we see later, our techniques
scale for multiple, large datasets on networked file systems, while
minimizing the resource footprint for cost efficiency.

Second, WarpFlow supports two execution environments for
pipelines. For long running pipelines that need to deal with ma-
chine restarts and pipeline retries, systems like MapReduce [24],
Flume [26] and Spark [41] adopt checkpoint logs that allow a system
to recover from any state. For fast, interactive and short-running
queries, systems like Dremel [34] drop this overhead, support an
always running cluster and push retries to the client applications.
WarpFlow supports the best of both worlds, by offering the devel-
oper two modes by relying on two separate execution engines –
one for long running queries and one for fast, interactive queries.

Third, how to express complex transformations on rich data has
been an area of active work, from SQL-like declarative formats to
full procedural languages (e.g., Scala, C++). For example, Shasta
[27] uses RVL, a SQL-like declarative language to simplify the
queries. In contrast, WarpFlow’s language (WFL) uses a functional
query language to express rich data transformations from filters,
aggregates, etc. to machine learning on tensors. To speed up the
iterations, WFL does not have a compilation step and interprets
the query dynamically at runtime. In addition, WFL is extensible
to natively support external C++ libraries such as TensorFlow [16].
This makes it easy to integrate domain-specific functionalities for
new types of large-scale data analysis. Using a common WarpFlow
runtime for data-intensive operations speeds up the overall process,
similar to Weld [35]. However, Weld integrates multiple libraries
without changing their APIs by using an optimized runtime, while
WarpFlow provides a compatible API to use libraries and their
functions. Like F1 [28],WarpFlow uses Protocol Buffers as first-class
types, making it easy to support rich, hierarchical data. Furthermore,
WarpFlow uses Dynamic Protocol Buffers [5], so that developers
can define and consume custom data structures on the fly within the
query. As we see later, this helps developers to iterate on pipelines
without expensive build-compile cycles.

3 OVERVIEW
AWarpFlow pipeline consists of a data source that generates the
flow of Protocol Buffers, followed by operators that transform the
Protocol Buffers, and the expressions to define these transforma-
tions. WarpFlow is fully responsible for maintaining the state of
the datasets including data sharding and placement, distributing
the pipeline, executing it across a large cluster of machines, and
load-balancing across multiple concurrent queries.

For example, consider how to evaluate the quality of a road speed
prediction model. To get a quick insight, we look at the routing
requests in San Francisco in the morning rush hour from 8 am –
9 am. We start with the roads dataset – a collection of roads along
with their identifiers and geometry, and use its indices to generate a
stream of Protocol Buffers corresponding to roads in San Francisco.
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sf = get_region('San Francisco'); 
 
# Apply speed predictions (TF model) @8am on SF Roads  
roads = fdb('Roads') 
  .find(loc IN sf) 
  .map(p => { 
    pred_speed = speed_tf_model.apply({ 
        'id': p.id, 'hour': 8}); 
    proto(id: p.id, distance: distance(p.polyline),  
          pred_speed: pred_speed) 
  }).collect().to_dict(id); 
 
# VectorSum(Predicted - Actual time)  
# for road segments (vector) in RouteRequests 
fdb('RouteRequests') 
  .find(start_loc IN sf AND end_loc IN sf AND 
        hour BETWEEN (8, 9)) 
  .map(p => { 
    segments = roads[p.route.id]; 
    pred_time = sum(segments.distance / 
                    segments.pred_speed); 
    proto(error: p.time - pred_time) 
  }) 
  .aggregate(group(p) 
    .avg(mean_error: p.error) 
    .std_dev(std: p.error)) 
  .collect(); 
 

Figure 1: WFL snippet for the sample query.

For each road segment, we apply our speed prediction model to get
the predicted speed for 8 am – 9 am, and compute the distance of
the road segment from its polyline. Next, we use the route requests
dataset, which is a collection of all routing requests along with
the request time, the suggested route and the actual travel time,
and use its indices to get all relevant route requests. We join the
results with the road segment information from the previous step,
and use the distance and the predicted speed of the road segments
along the suggested route to compute the predicted travel time.
The difference in the predicted travel time and the actual travel
time gives the error in our prediction. Finally, we aggregate these
measurements to get the mean and standard deviation of the errors
in travel time.

WarpFlow facilitates such common operations with a concise,
functional programming model. Figure 1 shows a WFL snippet for
the previous example; the red fields are repeated (vectors) and the
pink fields are TensorFlow objects. Notice (1) index-based selections
to selectively read only the relevant records, and (2) operators for
vectors, TensorFlow model applications, and geospatial utilities.
For example, the dictionary lookups using a vector to get the road
segments, the vector division to get travel times per segment, and
the geospatial utility for distance computation.

3.1 Design choices
Consider how to query and transform a Protocol Buffers dataset
into a new Protocol Buffers result set. Figure 2 presents a simplified
conceptual depiction of different data processing systems, along

with some of the relevant benefits they offer (e.g., interactivity,
end-to-end Protocol Buffers, Dynamic Protocol Buffers, etc.).

Input 
Pb

Output 
PbPb Pb

Dynamic tables - 
SQL

Dynamic protos - 
WFL

NestUnnest

Pb Pb

Compiled protos - Flume

Warp:Flume

Interactive

E2E protos

Interactive
E2E protos
Dynamic-

protos

Figure 2: A simplified comparison of different data process-
ing systems.

Data pipeline model. Data is usually modeled as relational or
hierarchical structures. Systems either: (a) retain Protocol Buffers
and manipulate them directly (e.g., MapReduce, Flume, Spark), or
(b) re-model data into relational tables (e.g., flatten repeated fields)
and manipulate with relational algebra (e.g., MySQL, Dremel, F1).

WarpFlow chooses (a): it retains Protocol Buffers at every stage
of the pipeline, for inputs, transforms, and outputs. Similar to Flume
and Spark, developers compose deep pipelines of maps, filters, and
aggregates on these hierarchical and nested structures.

Interactivity. Interactivity is a highly desirable feature for de-
velopers, often termed as REPL (read-evaluate-print-loop) in popu-
lar frameworks like Python and Scala [15]. Interactive data systems
enable developers to quickly compose/iterate and run queries, re-
ducing the time-to-first-result and speeding up the development
and debug cycle with instant feedback. Such systems are typically
interpreted in nature as opposed to being compiled, and have short
runtimes to execute full and incremental queries in a session.

WarpFlow offers a similar experience by making it easy for de-
velopers to (a) access and operate on the data, and (b) iteratively
build pipelines. Specifically, it supports:

• Always-on cluster for distributed execution of multiple ad
hoc queries in parallel. Composite indices over hierarchical
datasets and popular distributed join strategies [31] to help
developers fine-tune queries, such as broadcast joins, hash
joins and index-based joins.

• Query sessions to incrementally build and run queries with
partial context kept in the cluster while the user refines the
query. Also, full auto-complete support in query interfaces,
not just for the language but also for the structure of the
data, and the data values themselves.

• A strong toolkit of spatiotemporal functions to work with
rich space-time datasets, and utilities to allow querying over
a sample to quickly slice through huge datasets.

4 ARCHITECTURE
The WarpFlow system has three key components to handle the
data storage, task execution, and task definition functionalities,
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as shown in Figure 3. The data storage layer holds the Protocol
Buffers data sources in one of several common storage formats.
In addition, WarpFlow builds custom “FDb” indices, optimized for
indexing Protocol Buffers data. The task execution layer reads the
Protocol Buffers data from the storage layer and carries out the
query execution. WarpFlow supports two execution modes. The
pipelines run in an interactive, ad hoc manner using “Warp:AdHoc”,
or as a batch job on Flume using “Warp:Flume”. The specification
of the query and its translation to the execution workflow is car-
ried out by the task definition layer. WarpFlow uses a functional
query language, called “WarpFlow Language” (WFL), to express the
queries concisely.

WFL
WarpFlow definition 

(program)

Warp:AdHoc

CFS

FDb SSTable RecordIO ColumnIO

Task definition

Task execution

Storage

ad hoc query translate to Flume

Warp:Flume

Bigtable

Figure 3: WarpFlow architecture.

In this section, we describe each of the key components in detail.

4.1 Data storage and indexing
In the following sections, we describe the underlying structure and
layout of FDb, and the different index types that are available.

4.1.1 FDb: Indexing and storage format. FDb is a column-first
storage and search database for Protocol Buffers data. Like many
distributed data formats, FDb is a sharded storage format, sharding
both the data and the indices. Each FDb shard stores data values
organized by column sets (similar to column families in Bigtable
[21]) and index values mapped to document-ids within the shard.

The basic FDb layout is illustrated in Figure 4 showing a sample
Protocol Buffers record with fields name, rank and a sub-message
loc with fields lat and lng. The data layout has separate sections
for indices and data. The data section is further partitioned into col-
umn sets. A sample query, shown on the right in Figure 4, accesses
the necessary indices to narrow down the set of documents to read,
which are then read column-wise from the column sets.

FDb is built on a simple key-value storage abstraction and can be
implemented on any storage infrastructure that supports key-value
based storage and lookups e.g., LevelDb [1], SSTable [21], Bigtable,
and in-memory datastores. We use SSTables to store and serve our
ingested datasets as read-only FDbs. The sorted key property is used
to guarantee iteration-order during full table scans and lookups.
We implement read-write FDbs on Bigtable for streaming FDbs,
including for query profiling and data ingestion logs.

4.1.2 Index types. FDb supports indexing a variety of complex
value types. A single field in the Protocol Buffers (e.g., navigation
path) can have multiple indices of different types. In addition to ba-
sic inverted text and range indices for text and numeric values, FDb
supports geometry based indices e.g., locations, areas, segments,
etc. as described below.

location. Location indices are intended for data fields that rep-
resent punctual places on the Earth, typically identified by latitude
and longitude. Internally, we use an integer-representation of the
location’s Mercator projection [33] with a precision of several cen-
timeters. As such, locations to the north of 85° N and south of 85°
S are not indexable without some translation. The selection of lo-
cation index can be specified by a bounding box (with south-west
and north-east corners) or by a region (e.g., a polygonal area) to
fetch all the documents where the location field is within the given
region.

area. Area index is used for geospatial regions, usually repre-
sented by one or more polygons. We use area trees to represent
these indices. The selection of areas can be made efficiently, either
by a set of points (i.e., all areas that cover these points) or by a
region (i.e., all areas that intersect this region). In addition, these
indices are also used to index geometries other than regions by
converting them to representative areas. For example, a point is
converted to an area by expanding it into a circular region of a
given radius; a path is converted to an area by expanding it into a
strip of a given width. These areas are then indexed using an area
tree, as shown in Figure 5. This enables indexing richer geospatial
features such as navigation paths, parking and event zones.

Area trees are very similar to quad-trees [29]; the main difference
is that the space of each node is split into 64 (8 × 8) sub-nodes as
opposed to four (2×2) sub-nodes in a quad-tree. The 64-way split of
each node leads to an efficient implementation and maps naturally
to the gridding of the Earth in the spherical Mercator projection.
They can be combined (union, difference or intersection) in a fast,
efficient manner, and can be made as fine as needed for the desired
granularity (a single pixel can represent up to a couple of meters).
In addition to indexing purposes, they are used for representing
and processing geospatial areas in a query.

Indices and column sets are annotated on the Protocol Buffers
specification using field options. For any field or sub-field in the
message, we use options to annotate it with the index type (e.g.,
options index_text and index_tag to create text and tag indices).
We also define the mapping of fields to column sets. In addition, we
can define virtual fields for the purpose of indexing. These extra
fields are not materialized and are only used to create the index
structure.

4.1.3 Data de-noising. As mentioned earlier, spatiotemporal
data from devices often have poor location accuracy or occasional
bad network links. Our pipelines need to be resilient to noisy data,
and should filter and smooth the data. The presence of noise trans-
forms a precise location or a path into a probabilistic structure
indicating the likely location or path. WarpFlow provides methods
to construct and work with probabilistic representations of the spa-
tial data, and to project and snap them to a well-defined space. For
example, we can snap a noisy location to a known point-of-interest

4



Index Section

Data Section
column set 'default'

column set 'location'

...

text index: name

numeric index: rank

location index: loc

Source Protobuf

string name;

Fdb 'places' 

float rank;

message loc {
 int32 lat;
 int32 lng;
};

field: loc

field: name, rank

index using

loc(loc.lat,   
    loc.lng)

index tag

index value

fdb('places')
 .columns('location')

 .find(
    name == 'starbucks'
    AND
    rank > 0.5
    AND
    loc IN bay_area
  )
 

AN
D-
ed
 i
ds

Fetch data for 
.columns('location')

Flow of 
Protobufs

Flow specification (WFL)

AND

Figure 4: Data layout of a sample FDb showing various indices and column set data storage, along with an example query
showing index-based data selection.

Figure 5: Indexing a path using an area tree.

(POI), or snap a noisy navigation path with jittered waypoints to a
smooth route along road segments, as shown in Figure 6. Snapping
is often done by selecting the fuzzy regions of interest and applying
a machine-learned (ML) model using signals such as the popularity
of places and roads, similarity to other crowdsourced data, and
suggested routes from a routing engine (as we see later, WarpFlow
supports TensorFlow to train and apply ML models).

Area indices help us work with such noisy geospatial data and
snappings. Representative areas are a natural way to identify prob-
abilistic locations and paths. For example, a probabilistic location
can be represented by a mean location and a confidence radius (i.e.,
a circular region) depending on the strength of the noise. Similarly,
a probabilistic path can be represented by a curvilinear strip whose
thickness indicates the strength of the noise. Recall that this area is
not a bounding box of the points in a path, but an envelope around
the path so time ordering is preserved. We can then use this fuzzy
selection of data and intersect with filter conditions. As we see later,
these simple, fuzzy selections help us handle large datasets in a
cost-efficient fashion on shared cloud clusters.

Figure 6: A noisy trace (left) that is snapped to a road route
(right).

4.2 WarpFlow language (WFL)
WarpFlow uses a custom, functional programming language, called
WarpFlow language (WFL), to define query pipelines with hierarchi-
cal datasets. A common problem when working with deeply nested,
hierarchical data structures (e.g., Protocol Buffers) is how to (1) first
express the query pipelines, and (2) later, evolve the pipelines as un-
derlying structures and requirements change. To address this prob-
lem, WFL draws inspiration from modern, functional languages,
such as Scala [19] that draw on decades of software engineering best
practices for code structuring, maintenance, and evolution. WFL
adopts two key elements for succinct queries: (1) a pipeline-based
approach to transform data with sequentially chained operations,
and (2) hierarchical structures as primitive data types, so operators
work on vectors, tensors and geospatial structures.

The full language definition and its constructs are out of the
scope of this paper. Instead, we present a simplified overview of
the language in this section.
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4.2.1 Data types. Protocol Buffers objects in WFL have two
properties: (1) type: the data type of the object, which is one of
{bool, int, uint, float, double, string, message}. (2) cardinality: the
multiplicity of the object i.e., singular or repeated; singular and
repeated fields are treated as scalars and vectors respectively for
most operations.

In addition to the basic data types, WFL provides utilities such as
array, set, dict and geo-utilities (e.g., point, area, polygon, etc.)
to compose basic data types into pre-defined, higher-level objects.

4.2.2 Operators and expressions. Each stage in a WFL pipeline
generates a series of Protocol Buffers records with the same struc-
ture. We call this series a flow of Protocol Buffers. Flow provides
operators that transform the underlying Protocol Buffers. Most of
these operators accept a function expression as an argument, that
defines the transformation to be performed. Each operator, in turn,
generates a new flow of transformed Protocol Buffers. A typical
WFL pipeline with several chained operators has the following
syntax:
flow

.<flow_operator_1>(p => {body_1})

.<flow_operator_2>(p => {body_2})

.<flow_operator_3>(p => {body_3})

A transformation is defined using expressions composed of the
aforementioned data types, operators, and higher-order functions,
like in any programming language. The expression body does not
have a return statement; the final statement in the body becomes
its return value. Each flow operator may require a specific return
type, e.g., a filter operator expects a boolean return type and a
map operator expects a Protocol Buffers return type. The primary
flow operators and their functions are presented in Table 1.

Expressions compose data types using simple operators, e.g., +,
-, *, /, %, AND, OR, IN, BETWEEN. These operators are overloaded to
perform the corresponding operation depending on the type of
the operands. In addition to these simple operators, a collection of
utilities make it easier to define the transformations.

Furthermore, WFL seamlessly extends the support for these
operations to repeated data types. If one or more of the operands is
of a repeated data type, the operation is extended to every single
element within the operand. This greatly simplifies the expressions
when working with vectors, without having to iterate over them.

Finally, WFL offers a large collection of utilities to simplify and
helpwith common data analysis tasks. Besides basic toolkits to work
with strings, dates and timestamps, it provides advanced structures
such as HyperLogLog sketches for cardinality estimation of big
data [30], Bloom filters [20] for membership tests, and interval
trees [22] for windowing queries. It also has a geospatial toolkit for
common operations such as geocoding, reverse-geocoding, address
resolution, distance estimation, projections, routing, etc.

4.2.3 Extensibility. In addition to the built-in features and func-
tions, WFL is designed to be an extensible language. It allows cus-
tom function definitions within WFL. It also features a modular
function namespace for loading predefined WFL modules. Further-
more, we can easily extend the language by wrapping the APIs
for third-party C++ libraries and exposing them through WFL. We
use this approach to extend WFL to support TensorFlow [16] API,

Operator Function

Basic transformations

map Transform a Protocol Buffers record into another
Protocol Buffers record.

filter Filter records in the flow based on boolean con-
dition.

flatten Flatten repeated fields within Protocol Buffers
into multiple Protocol Buffers.

Reordering a flow

sort_asc,
sort_desc

Sort the flow (in ascending or descending order)
using an expression.

Resizing a flow

limit Limit the number of records in the flow.
distinct Remove duplicate records from the flow, based

on an expression.
aggregate Aggregate the records in the flow, possibly

grouping them by one or more fields or expres-
sions, using predefined aggregates (e.g., count,
sum, avg).

Merging flows

join Merge Protocol Buffers from two different flows
using a hash join.

sub_flow Join Protocol Buffers from the flow with a sub-
flow using index join.

Materializing a flow

collect Collect the Protocol Buffers records from the
flow into a variable.

save,
to_sstable,
to_recordio

Saves the Protocol Buffers from the flow to FDb,
SSTable or RecordIO [2].

Table 1: Primary flow operators.

enabling machine learning workflows with big data (see Section 5
for more details). This capability elevates the scope of WarpFlow
by providing access to the vast body of third-party work.

4.3 WarpFlow execution
WarpFlow pipelines can be executed as interactive, ad hoc jobs
with Warp:AdHoc, or as offline, batch jobs with Warp:Flume de-
pending on the execution requirements. Developers typically use
Warp:AdHoc for initial data explorations and quick feedback on
sampled datasets. The same WFL pipeline can later be executed
on full-scale datasets as a batch job on Flume using Warp:Flume.
In this section, we first describe Warp:AdHoc and its underlying
components. The logical model of data processing is maintained
when converting WFL pipelines to Flume jobs using Warp:Flume.

4.3.1 Warp:AdHoc. Warp:AdHoc is an interactive execution
system for WFL pipelines. A query specification from WFL is trans-
lated into a directed acyclic graph (DAG) representing the sequence
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of operations and the flow of Protocol Buffers objects from one
stage to the next. Warp:AdHoc performs some basic optimizations
and rewrites to produce an optimized DAG. The execution system
is responsible for running the job as specified by this DAG.

Warp:AdHoc

ServerServer

Mixer

Server

MixerSharderSharder

FDb Other 
sources

Python 
notebook

Web 
console

Other 
clients

RPC

Resharding

Reads

Aggregation

Catalog 
Manager

Structure 
Manager

Resource 
allocation

Figure 7: Warp:AdHoc architecture.

The high-level architecture of Warp:AdHoc is shown in Figure 7.
Developers work on clients such as an interactive Python notebook
(e.g., Jupyter [18], Colaboratory [8]), or a web-based console, which
interact with Warp:AdHoc via a remote interface. Through this
interface, clients communicate with a Mixer, which coordinates
query execution, accumulates and returns the results. The Mixer
distributes the execution to Servers and Sharders depending on the
query.

The system state ofWarp:AdHoc ismaintained by a fewmetadata
managers. Specifically, Structure manager maintains a global repos-
itory of Protocol Buffers structures defined statically or registered
at run-time. Catalog manager maintains pointers to all registered
FDbs, and maps them to Servers for query and load distribution.

4.3.2 Dataset structures. Although Warp:AdHoc can read and
transform data from a variety of sources, queries executed over
them are typically slower due to full-scan of data. FDb is the pre-
ferred input data source for Warp:AdHoc, where indices over one
or more columns can be used in find() to only read relevant data.

Warp:AdHoc needs to know the structure of the Protocol Buffers
representing the underlying data. For non-FDb data sources, these
are provided by the developer. For FDb sources these structures are
typically registered using the name of the Protocol Buffers with the
Structure manager, and are referred to directly by these names in
WFL pipelines. These structures can be added, updated, or deleted
from the Structure manager as necessary.

4.3.3 Dynamic Protocol Buffers. SQL-based systems like Dremel
and F1 enable fast, interactive REPL analysis by supporting dynamic
tables. Each SQL SELECT clause creates a new table type, and
multiple SELECTs can be combined into arbitrarily complex queries.
However, users do not need to define schemas for all these tables –
they are created dynamically by the system.

Similarly, WarpFlow uses Dynamic Protocol Buffers [5] to pro-
vide REPL analysis. WFL pipelines define multi-step data transfor-
mations, and the Protocol Buffers schema for each stage is created
dynamically by the system using Dynamic Protocol Buffers.

# Global namespace 
place = get_polygon(...) 
fdb('source') 
  .find(location IN place)   # Find namespace 
  .map(p => proto(...))      # Map namespace 
  .aggregate(...)            # Aggregate namespace 
 
Figure 8: A sample WFL query with different Protocol
Buffers structure after each stage.

For instance, in the sample WFL pipeline in Figure 8, the output
of each stage (e.g., map, aggregate) has a Protocol Buffers structure
that is different from that of the source, and the necessary Protocol
Buffers schemas are implicitly defined by the system.

In addition, a WFL pipeline has a global namespace and a tree of
local namespaces corresponding to pipeline stages and functions.
Each namespace has variables with static types inferred from as-
signments. Values in these namespaces can be used in Protocol
Buffers transformations, as shown in the find() clause in Figure
8. These namespaces are also represented by Dynamic Protocol
Buffers with fields corresponding to their defined variables.

In a relational data model, the data is usually normalized across
multiple tables with foreign-key relationships, reducing the schema
size of an individual table. In hierarchical datasets, the entire nested
data is typically stored together. Sometimes, the structure of this
data has a deep hierarchy that recursively loads additional struc-
tures, resulting in a schema tree with a few million nodes. Loading
the entire schema tree to read a few fields in the source data is not
only redundant but also has performance implications for interac-
tive features (e.g., autocompletion).

Instead, WarpFlow generates theminimal viable schema by prun-
ing the original Protocol Buffers structure tree to the smallest set of
nodes needed for the query at hand (e.g., tens of nodes as opposed
to millions of nodes). It then composes a new Dynamic Protocol
Buffers structure with the minimal viable schema which is used to
read the source data. This reduces the complexity of reading the
source data and improves the performance of interactive features.

4.3.4 Query planning. When aWFL query is submitted toWarp:AdHoc,
a query plan is formulated to determine pipeline distribution and
resource requirements, similar to distributed database query opti-
mizers [31]. Most stages in the pipeline are executed remotely on
the Servers, followed by an optional final aggregation on the Mixer.
Query planning involves determining stages of the pipeline that
are remotely executed, the actual shards of the original data source
that are required for the query, and the assignment of execution
machines to these shards. Depending on the query, the planning
phase also optimizes certain aspects of the execution. For example,
a query involving an aggregation by a data sharding key is fully
executed remotely without the need for a final aggregation on the
Mixer.

Query planning also determines the Protocol Buffers structures
at different stages in the pipeline. The structures for parts of the
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query that are executed remotely are distributed to the respective
Servers and Sharders.

remote(
  fdb(<db(s) to machine map>)
    .find(index)
    .map(p => proto(...))
    .aggregate_produce(...)
)
.aggregate_consume(...)   

fdb('source')
  .find(index)
  .map(p => proto(...))
  .aggregate(...)

Catalog Resolve

Machine Assign

Distribute & 
Optimize

Query planWFL pipeline

proto<B>

proto<A>

proto<C>

proto<D>

Figure 9: AWarp:AdHoc query plan showing the intermedi-
ate Protocol Buffers structures.

The query plan for a typical WFL query is shown in Figure 9.
The pipelines within remote(...) execute on individual Servers
reading data from the assigned FDb shards from a common file
system. The aggregate_consume(...) stage aggregates partial
results received from all the remote pipelines on the Mixer.

Data is transformed through different Protocol Buffers structures
as it passes through different stages in the pipelines. For example,
in Figure 9, proto<A> is the structure of the FDb source data while
proto<B>, proto<C> and proto<D> are the structures of the out-
put of map(), aggregate_produce() and aggregate_consume()
stages respectively.

4.3.5 Distributed execution. Warp:AdHoc executesWFL pipelines
using a distributed cluster of Servers and Sharders. EachWFL query
requires the necessary resources (execution servers) to be allocated
before its execution begins. These resources are requested from the
Catalog manager, after the query planning phase. If resources are
not immediately available then the query waits in a queue until
they are allocated. Eventually, the Catalog manager allocates the
Servers for execution, along with assigning a subset of FDb shards
to each Server for local reads and transformations.

The query execution starts by setting up the corresponding
pipeline stages on Servers, Sharders and the Mixer. Servers then
start reading from their assigned FDb shards, transform the data
as necessary, and return partial results to the Mixer. Sharders per-
form intermediate shuffles and joins as specified by the pipeline.
The Mixer pipeline aggregates the partial results and returns the
final results to the client. To reclaim the resources when a query is
blocked, a time limit is imposed at various stages and its execution
is re-attempted or aborted.

WarpFlow makes it easy to query enormous amounts of data,
for concurrent queries. It offers execution isolation – each query
gets its own dedicated micro-cluster of Servers and Sharders for the
duration of its execution. This ensures that queries do not interfere
with each other.

4.3.6 Warp:Flume. In addition to interactive execution,WarpFlow
can automatically translate WFL queries to Flume jobs for large-
scale, batch processing. Warp:Flume is the component of WarpFlow
that is responsible for this translation and execution.

Each stage of a WFL pipeline is internally implemented using
processors, such as find processor for find(), map processor
for map(), and so on. To enable the translation to Flume jobs,
each processor is wrapped into a Flume function. In addition to
these processors, we also implement specialized Flume data readers
that can work with FDb data sources and use index selection for
data fetching. The data processed by a pipeline stage is wrapped
into standard Flume data types such as flume::PCollection and
flume::PTable<K,V> [26], depending on the type of the processor.

Warp:AdHoc uses Dynamic Protocol Buffers to pass data be-
tween the stages. For Warp:Flume, we use two ways to pass the
data between the stages: (i) String encoding – convert all the Proto-
col Buffers to strings, pass the string data to the next stage, which
then deserializes them into Protocol Buffers; (ii) Protocol Buffers
encoding – we retain the data as Protocol Buffers and share the
pointers between the stages, along with custom coders to process
these Dynamic Protocol Buffers. From our experiments, we notice
that option (i) tends to be faster for simple pipelines with few stages
where the encoding and decoding overhead is minimal, but option
(ii) is faster for longer pipelines with heavy processing and multiple
stages. In general, we notice a 25% performance penalty when com-
pared with an equivalent, hand-written Flume job. Nevertheless,
with Warp:Flume we typically see development times are faster by
about 5 – 10×. We believe the speed up in the development time
more than compensates for the small overhead in runtimes.

5 MACHINE LEARNING
Machine learning (ML) brings novel ways to solve complex, hard-to-
model problems. With WarpFlow’s extensible data pipeline model,
we support TensorFlow [16] as another pipeline operator extension
for common use cases. A typical workflow of an ML developer has
the following main steps:

(1) Design a prototype ML model with an input feature set to
provide an output (e.g., estimations or classifications) to-
wards solving a problem.

(2) Collect labeled training, validation, and test data.
(3) Train the model, validate and evaluate it.
(4) Use the saved model to run large-scale inference or a large-

scale evaluation.
Usually, steps 1 – 3 are repeated in the process of iterative model

refinement and development. A lot of developer time is spent in
feature engineering and refining the model so it is best able to pro-
duce the desired outputs. Each iteration involves fetching training,
validation and test data that make up these features. In some cases,
we see wait times of a few hours just to extract such data from large
datasets.

Quick turn around times in these steps accelerate the develop-
ment and enable testing richer feature combinations. Towards this
end, WFL is extended to natively support TensorFlow APIs for oper-
ations related to basic tensor processing, model loading and model
inferences.

To be able to fetch the data and extract the features from it,
a set of basic tensor processing operations are provided through
TensorFlow utilities in WFL. This minimal set of operations enables
basic tensor processing and marshaling that is needed to compose
and generate features from a WFL query.
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After getting hold of the data and the features, the training is
performed independently, usually in Python. While training within
WarpFlow is possible, it is often convenient to use frameworks
that are specifically designed for accelerated distributed training
on specialized hardware [7]. WarpFlow helps the developers get to
the training faster through easy data extraction.

With the completion of the training phase, there are the following
use cases for model application:

• Trained models are typically evaluated on small test datasets,
after the training cycle. However, the model’s performance
often needs to be evaluated on much bigger subsets of the
data to understand the limitations that might be helpful in a
future iteration.

• Once a model’s performance has been reasonably tested,
the model can be used for its inference – predictions or
estimations of the desired quantities. A common use case
is to run the model offline on a large dataset and annotate
it with the inferences produced by the model. For example,
a model trained to identify traffic patterns on roads can be
applied offline on all the roads and annotate their profile with
predicted traffic patterns; this can later be used for real-time
traffic predictions and rerouting.

• As an alternative to offline application, the inferences of the
model can be used in a subsequent query that is computing
derived estimates i.e., the model is applied online and its
inferences are fed to the query.

To enable the above use cases, a set of TensorFlow utilities related
to model loading and application are added to WFL. For easier inter-
operability with other systems, these utilities are made compatible
with the standard SavedModel API [17].

6 EXPERIMENTS
A billion people around the world use Google Maps for its navi-
gation and traffic speed services, finding their way along 1 billion
kilometers each day. As part of this, engineers are constantly re-
fining signals for routing and traffic speed models. Consider one
such ad hoc query: “Which roads have highly variable traffic speeds
during weekday mornings?” In this section, we evaluate the perfor-
mance of WarpFlow under different criteria for such queries.

For this paper, we use the following dataset and experimental
setup to highlight a few tradeoffs.

• Google Maps maintains a large dataset of road segments
along with their features and geometry, for most parts of
the world. It also records traffic speed observations on these
road segments and maintains a time series of the speeds.
For these experiments, we use only the relevant subset of
columns (observations and speeds) for past 6 months (∼ 27
TB). For this dataset, we want to accumulate all the speed
observations per road segment during the morning rush
hours (8 – 9 am on weekdays), and compute the standard
deviation of the speeds, normalized with respect to its mean
– we call this the coefficient of variation.

• We setup a Warp:AdHoc execution environment on two dif-
ferent micro-clusters: (1) Cluster 1 with 300 servers with a
total equivalent of 965 cores of Intel Haswell Xeon (2.3GHz)
processors and 3.5 TB of RAM, and (2) Cluster 2 with 110

servers with a total equivalent of 118 cores and 330 GB of
RAM. Note that these clusters have about 13% and 1.2% RAM
respectively relative to the dataset size, and cost about 5× and
40× lower when compared to a cluster with 100% RAM ca-
pacity as required by other main-memory based techniques
discussed in Section 2.

We run below series of queries on this dataset to compute traffic
speed variations over different geospatial and time regions. Then
to visualize the speed variations on roads for query Q1, we join the
resulting data with the dataset of road geometry and render them
on a map. For example, Figure 10 shows the variations for roads in
San Francisco.

• Q1: San Francisco over a month
• Q2: San Francisco over 6 months
• Q3: San Francisco Bay Area (including Berkeley, South Bay,
Fremont, etc.) over a month

• Q4: San Francisco Bay Area over 6 months
• Q5: California over a month

Figure 10: Q1: Normalized traffic speed variation in SF.

Query CPU time Exec. time
Geospatial index 5.4 h 2.2m
Multiple indices 45m 17.6 s
10% sample 4m 12.0 s
1% sample 23 s 11.2 s

Table 2: Performance metrics for Q1 on Cluster 1 under dif-
ferent selection criteria.

In addition, we run these queries with different selection criteria,
described below. Table 2 shows the total CPU time and the execution
time for Q1 on Cluster 1.
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(a) IO time (b) CPU time (c) Execution time

Figure 11: Performance metrics for different queries on Cluster 1 & Cluster 2.

Geospatial index. Instead of scanning all the records and filtering
them, we use the geospatial indices to only select relevant road
segments and filter out observations that are outside the morning
rush hours on weekdays.

Multiple indices. In addition to the geospatial index, we use in-
dices on the time of day and day of week to read precisely the data
that is required for the query. This is the most common way of
querying with WarpFlow utilizing the full power of its indices.

10% sample. Instead of using the entire dataset, we use a 10% sam-
ple to get quick estimates at the cost of accuracy (in this case ∼5%
error). Sampling selects only a subset of shards to feed the query.
This results in a slightly faster execution, although not linearly
scaled since we are now using fewer Servers.

1% sample. Here we only use a 1% sample for an even quicker
but cruder estimate (in this case ∼20% error). Although the data
scan size goes down by about a factor of 10, the execution time is
very similar to using a 10% sample. This is because we gain little
from parallelism when using only 1% of the data shards.

Figure 12: Query data size

Figure 12 shows the data size for different queries. We show sev-
eral performance metrics on both the clusters and compare them for
these queries in Figure 11. These measurements are averaged over 5
individual runs. Even though the underlying dataset is much larger
compared to the total available memory, using geospatial and time
indices dramatically reduces the data scan size and consequently
IO and CPU costs. Notice that the number of records relevant to
the query increase from Q1 through Q5. The overall data scan size
along with IO time, CPU time and the total execution time scale
roughly in the same proportion.

In this performance setup, the total execution times for cluster
2 are only up to 20% slower with 8× reduced CPU capacity and
10× reduced RAM capacity, illustrating some of the IO and CPU
tradeoffs we discussed in Section 2. As discussed earlier, we can
deploy such micro-clusters in the cloud in a cost efficient fashion,
vs more expensive (5 – 40× more) dedicated clusters necessary for
techniques discussed in Section 2. We also observe some minor
variation in IO times (e.g., Q4 vs. Q5), a common occurrence in
distributed machine clusters with networked file systems [6, 9]. In
addition, the smaller cluster 2 has a much better efficiency with
minimal impact on the performance of the queries. IO and CPU
times are roughly similar when compared with cluster 1. Ideally,
they would have identical IO and CPU times in the absence of any
overhead, but the per-machine overhead slightly increases these
times. In fact, they are somewhat higher for cluster 1 as it has many
more machines and hence, a higher total overhead.

In practice, we see similar behavior in production over tens of
thousands of pipeline runs. Currently, WarpFlow runs on tens of
thousand of cores and about 10 TBs of RAM in a shared cluster, and
handles multiple datasets (tens of terabytes to petascale) stored in a
networked file system. We notice the following workflow working
well for developers.

• Developers typically begin their analysis with small explo-
rations on Warp:AdHoc to get intuition about (say) differ-
ent cities or small regions, and benefit from fast time-to-
first-result. The interactive execution environment on micro-
clusters works well because filtered data fits in the memory
(typically ∼ 10s – 100s of GB) even if the datasets are much
larger (10s of TB – PB).
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• Developers then train these data slices to iterate on learning
models and get intuition with TensorFlow operators, and get
fast time-to-trained-model.

• For further analyses over countries, they use batch execution
with Warp:Flume that can autoscale the resources, and use
both RAM and persistent disk storage optimized for a multi-
step, reliable execution. By using the same WFL query in a
batch execution environment, this results in a faster time-to-
full-scale-result as well.

7 CONCLUSIONS
WarpFlow is a fast, interactive querying system that speeds up
developer workflows by reducing the time from ideation to proto-
typing to validation. In this paper, we focus on Tesseract queries
on big and noisy spatiotemporal datasets. We discuss our indexing
structures on Protocol Buffers, FDb, optimized for fast data selec-
tion with extensive indexing and machine learning support. We
presented two execution engines: Warp:AdHoc – an ad hoc, interac-
tive version, andWarp:Flume – a batch processing execution engine
built on Flume. We discussed our developers’ experience in running
queries in a cost-efficient manner on micro-clusters of different
sizes. WarpFlow’s techniques work well in a shared cluster envi-
ronment, a practical requirement for large-scale data development.
With WFL and dual-execution modes, WarpFlow’s developers gain
a significant speedup in time-to-first-result, time-to-full-scale-result,
and time-to-trained-model.
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