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Abstract

The World Wide Web is witnessing an increase in the amount of structured content – vast heterogeneous
collections of structured data are on the rise due to the Deep Web, annotation schemes like Flickr, and
sites like Google Base. While this phenomenon is creating an opportunity for structured data man-
agement, dealing with heterogeneity on the web-scale presents many new challenges. In this paper we
articulate challenges based on our experience with addressing them at Google, and offer some principles
for addressing them in a general fashion.

1 Introduction

Since its inception, the World Wide Web has been dominated by unstructured content, and searching the web
has primarily been based on techniques from Information Retrieval. Recently, however, we are witnessing an
increase both in the amount of structured data on the web and in the diversity of the structures in which these
data are stored. The prime example of such data is the deep web, referring to content on the web that is stored in
databases and served by querying HTML forms. More recent examples of structure are a variety of annotation
schemes (e.g., Flickr [4], the ESP game [14], Google Co-op [6]) that enable people to add labels to content
(pages and images) on the web, and Google Base [7], a service that allows users to load structured data from
any domain they desire into a central repository.

Google is conducting multiple efforts whose common goal is to leverage structured data on the web for better
search and to help people create structure that aids search. This paper describes some of our initial observations
regarding the problem and some of the challenges entailed by them.

To begin, we look at what kinds of structure can be associated with data on the web. As is typical when
managing structured data, there is a trade-off between the investment in creating the structure and the benefit
obtained from having the structure. On the Web, the trade-off is a trickier one, because we are trying to appeal
to a much larger audience, both to create the structure and to benefit from it. We discuss how the different efforts
fall w.r.t. this trade-off.

Next, we consider how structured data is integrated into today’s web-search paradigm that is dominated by
keyword search. We argue that a critical aspect of any use of structured data on the Web is that it be seamlessly
integrated with standard web search. We discuss how our different efforts address this challenge.

Finally, we pinpoint (what we believe to be) the key reason that makes querying structured data on the web
so challenging. Specifically, on the web we model all domains of possible interest to users. We cannot make
any assumptions about the scope of the domains for which we have structured data, and because of that, creating
a schema is out of the question. We describe some of the challenges involved in providing access to data about
anything, and some of our initial steps addressing these challenges.
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2 Structured Data On the Web

In this section we describe three kinds of structured data that exist on the Web today. We then discuss the level
of structure for each kind of data and how it is currently integrated into Web search.

2.1 The Deep Web

The deep (or invisible) web refers to content that lies hidden behind queryable HTML forms. These are pages
that are dynamically created in response to HTML-form submissions, using structured data that lies in backend
databases. This content is considered invisible because search-engine crawlers rely on hyperlinks to discover
new content. There are very few links that point to deep-web pages and crawlers do not have the ability to fill
out arbitrary HTML forms. The deep web represents a major gap in the coverage of search engines: the content
on the deep web is believed to be possibly more than the current WWW, and typically is of very high-quality [1].

A simple count of the number of forms on the Web would be very misleading if our goal is to understand
how much deep-web content exists. For instance, there are numerous forms that appear on a large number of
web-pages, but direct the user to the same underlying data source. A significant number of forms on the web are
simply redirects of site-specific searches to a major search engine. Another large source of forms involves Web
2.0 applications, where users contribute data to online communities. Further, forms are also used for applications
such as logins, subscriptions, feedback, etc., none of which yield useful structured data. In [12] we offer some
evidence from our explorations at Google that predict the number of deep web sources (that do not fall into the
above categories) to be in the tens of millions.

The content on the deep web varies wildly. Many of the sources have information that is geographically
specific, such as locators for chain stores, businesses, and local services (e.g., doctors, lawyers, architects,
schools, tax offices). There are many sources that provide access to reports with statistics and analysis generated
by governmental and non-governmental organizations. Of course, many sources offer product search. However,
there is a long tail of sources that offer access to a variety of data, such as art collections, public records,
photo galleries, bus schedules, etc. In fact, deep web sites can be found under most categories of the ODP
directory [13]. Further, sources vary from those offering only keyword queries through a single text box, to
those with detailed forms with many select-menus and other refinement options.

2.2 Google Base

The second source of structured data on the web that we discuss, Google Base, is an attempt to enable content
owners to upload structured data into Google so it can be searched. The intention of Google Base is that data
can be about anything. In addition to the mundane (but popular) product data, it also contains data about clinical
trials, event announcements, exotic car parts, people profiles, etc. Google indexes this data and supports simple
but structured queries over it.

The data model for Google Base data is purposely kept very simple. Users describe the data they upload
into Google Base using an item type and attribute/value pairs. For example, a classified advertisement for a
used Honda Civic has the item type vehicle and attributes such as make = Honda, model = Civic, location = San
Francisco, CA, etc. While Google Base recommends popular item types and attribute names, users are free to
invent their own. Users, in fact, do often invent their own item types and labels, leading to a very heterogeneous
collection of data. The result is that Google Base is a very large, self-describing, semi-structured, heterogeneous
database. It is self-describing because each item has a corresponding schema (item type and attribute names).
It is semi-structured and heterogeneous because of the lack of restrictions on names and values.

Heterogeneity in Google Base occurs at the level of item types, attributes, and attribute values. Less than a
year since its launch, Google Base already contains well over 10,000 item types that together contribute almost
100,000 unique schemata (unique set of attributes names associated with some item). There are over 1000
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item types that have more than 10 items. In addition to the sheer number of item types, we observe two other
important aspects of Google Base data. First, the large number of item types form a specialization hierarchy.
For example, an item can alternately be described as a product, a car part, or a high performance car part. Users
choose such different item types naturally and this leads to a proliferation of item types. Second, in addition to
naturally occurring heterogeneity, we find that heterogeneity occurs in a different, almost malicious way, that
is typically not considered in discussions of data heterogeneity – users provide different item-type names or
attribute names deliberately in an attempt to improve the ranking of their items. We are thus witnessing a kind
of database design by the masses.

To get a feel for the diversity of data at the attribute-level, we looked at the items of type vehicle, and found
that there are over 50 attribute names that occur in 10 or more items. While this might seem to be a large
number, there is a smaller core set of attributes that occur in a large number of items. This includes common
attributes like make, model, location, color, and price. A commonly occurring attribute-level heterogeneity is
one of complex attributes. For example, color for some items includes both the internal color and the external
color of a vehicle, while for others there are separate attributes.

Finally, we note that Google Base data also displays significant heterogeneity at the level of attribute values.
For example, considering the different values for the attribute color of vehicles, we found that there are over
250 different colors with 5 or more items. In addition to more frequent colors like silver, white, and black, there
are cars with the colors polished pewter and light almond pearl metallic. An interesting heterogeneity challenge
arises in the extrapolation of domain specific similarities for attribute values, e.g., polished pewter is similar to
metallic silver, and incorporating these similarities into query processing. We note that the presence of structure
(colors of cars in this case) makes it possible to perform such reconciliation which would not be possible for
purely unstructured data.

2.3 Annotation Schemes

There is a third class of structured data on the web which is the result of a variety of annotation schemes.
Annotation schemes enable users to add tags describing underlying content (e.g., photos) to enable better search
over the content. The Flickr Service by Yahoo! is a prime example of an annotation service for photo collections.
von Ahn [14] took this idea to the next level by showing how mass collaboration can be used to create high-
quality annotations of photos.

Recently, Google created the Google Co-op service that enables users to create customized search engines
(see http://data.cs.washington.edu/coop/dbresearch/index.html for a search engine developed for the database
research community). To create a custom search engine, a user identifies a set of labels or categories (known
as facets in Google Co-op) that are of interest to the community at hand. For example, in the case of database
research, these facets include professor, project, publication, jobs. Web-pages that fit the various categories
are manually (or otherwise) annotated, e.g., we would annotate the homepage of a database faculty with facet
professor and pages that appear in DBLP with the facet publication. The important point to note is that the
annotations are very light-weight – we only annotate which facet the page belongs to and nothing else. These
annotations are upload in an XML format to Google Co-op. The annotations can be used to either query for
web-pages that specify a particular facet, or to refine the results returned for an earlier query. Facets can also be
automatically triggered, e.g., if we were to search for data integration publications, the publication facet will be
triggered, and the answers would include only the pages annotated as publications.1

2.4 A Spectrum of Structure Levels

Data on the web, and in particular the kinds of data we described above, vary significantly in its level of structure.
The trade-offs involved in structuring data are quite obvious: it takes an effort to create the structure (i.e.,

1There is a fallback to general web search if there are not results from te custom search engine.
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create schemata, fit the data into the schema, run a database system), but the benefit is more powerful querying
capabilities.

On the Web, this trade-off becomes even more critical. First, our goal is to enable a much broader set of
people to create structured data (e.g., in Google Base and with annotation schemes), and therefore the process
must be very easy. Second, our user base is incredibly diverse, and therefore querying needs to be easy, structured
data needs to be seamlessly integrated with unstructured data, and when structured data appears, it must be easy
to explain to the user how to interpret it or query it further. Third, the Web offers us some novel points on the
structure spectrum that are valuable to explore. We now examine each of the three cases mentioned above.

The deep web: The deep web represents the most structured data on the web. Although many forms offer search
over document collections, the majority of forms offer search into data that is stored in back-end databases and
the form queries get translated into queries on the database. Hence, the deep-web represents a point in the
spectrum where the content creators invested most effort.

Ironically, in many cases, the return on investment for deep-web content creators is low. In the early days
of the web, high quality collections of structured data were very few, and therefore they became well known
and thus were able to attract traffic. Today, however, there are too many high-quality sources, but since web-
crawlers do not crawl past forms, the content is invisible to the major web-search engines (and hence to many
users looking for the data). As a result, these sites get a fraction of the traffic that is relevant to them. 2

Google Base: Google Base had to take a much more flexible approach to structuring data. As mentioned before,
the idea is that any content provider can contribute structured data to Google Base, without having any expertise
in data management. There are a few aspects in which Google Base makes it easier to create structure. First, the
data model is kept very simple (objects fall into item types and have attributes). Second, content providers are
not forced into any schema. They can choose item types and attribute names from what Google offers, but can
invent their own. The same applies to values of attributes in the data. Third, the data can be as semi-structured as
the content provider wishes. Specifically, a feed to Google Base can provide as few or as many attributes. Much
of the information associated with a Google Base entry can be in unstructured form or even in a URL pointed to
by the Google Base entry. As we discuss later, this relaxed approach to structure raises challenges for ranking
algorithms.

Annotation schemes: Annotation schemes represent the other extreme of structured data on the web. They
require the users to provide very minimal structure (specifically, only the annotations). In a sense, it is as if we
attach to every piece of content an attribute isAbout and the annotations provide the values for that attribute.
Clearly, annotations can be incorrect and heterogeneous, i.e., use multiple words to say the same thing. However,
the minimal structure provided is already enough to offer improvements in search experience.

3 Integrating Structured and Unstructured Data

The reality of web search characteristics dictates the following principle to any project that tries to leverage
structured data in web search: querying structured data and presenting answers based on structured data must be
seamlessly integrated into traditional web search. This principle translates to the following constraints:

� Queries will be posed (at least initially) as keywords. Users will not pose complex queries of any form.
At best, users will pick refinements (by filling out a form) that might be presented along with the answers
to a keyword query.

� Queries will be posed from one main search destination, e.g., the main page of a search engine. Users
will find it hard to memorize the existence of specialized search engines, especially ones that they use
occasionally. The onus is hence on the general search engine to detect the correct user intention and
automatically activate specialized searches are re-direct to specialized sources.

2In some cases, sites have learned to materialize some of their content to enable easier access to web-crawlers.
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� Answers from structured data sources need to (as far as possible) appear along-side regular web-search
results. Ideally, they should not be distinguished from the other results. While the research community
might care about the distinction between structured and un-structured data, 3 the vast majority of search
users do no appreciate the distinction and only care if the results meet their requirement.

Hence, a significant challenge for each of the efforts mentioned above is to fully integrate into web search.
We now describe the approach that each of the projects take and the challenges they face in pursuing them.

Deep Web: The typical solution promoted by work on web-data integration is based on creating a virtual schema
for a particular domain and mappings from the fields of the forms in that domain to the attributes of the virtual
schema. At query time, a user fills out a form in the domain of interest and the query is reformulated as queries
over all (or a subset of) the forms in that domain. In fact, in specific domains (e.g., travel, jobs) this approach
is used to create vertical search engines. For general web search, however, the approach has several limitations
that render it inapplicable in our context.

The first limitation is that the number of domains on the web is large, and even precisely defining the
boundaries of a domain is often tricky (as we describe in the next section). Hence, it is infeasible to design
virtual schemata to provide broad web search on such content.

The second limitation is the amount of information carried in the source descriptions. Although creating
the mappings from web-form fields to the virtual schema attributes can be done at scale (e.g., using techniques
described in [3, 10, 11]), source descriptions need to be much more detailed in order to be of use here. Especially,
with the numbers of queries on a major search engine, it is absolutely critical that we send only relevant queries
to the deep-web sites; otherwise, they will crash. For example, for a car site, it is important to know the
geographical locations of the cars it is advertising, and the distribution of car makes in its database. Even with
this additional knowledge, the engine may impose excessive loads on certain web sites.

The third limitation is our reliance on structured queries. Since queries on the web are typically sets of
keywords, the first step in the reformulation will be to identify the relevant domain(s) of a query and then
mapping the keywords in the query to the fields of the virtual schema for that domain. This is a hard problem
that we refer to as query routing.

Finally, the virtual approach makes the search engine reliant on the performance of the deep-web sources,
which typically do not satisfy the latency requirements of a web-search engine.

The above disadvantages led us to consider a surfacing approach to deep-web content. In this approach,
deep-web content is surfaced by simulating form submissions, retrieving answer pages, and putting them into the
web index. The main advantage of the surfacing approach is the ability to re-use existing indexing technology;
no additional indexing structures are necessary. Further, a search is not dependent on the run-time characteristics
of the underlying sources because the form submissions can be simulated off-line and fetched by a crawler over
time. A deep-web source is accessed only when a user selects a web page that can be crawled from that source.
Similarly, the query-routing issue is mostly avoided because web search is performed on HTML pages as before.
In terms of schemata and source descriptions, the needs of the surfacing approach are lighter. Instead of creating
schemata for individual domains and providing detailed source descriptions, it is enough to identify some way
of crawling the data by filling values for a subset of the form fields (in a sense, finding some access path to the
data). Hence, this approach can be more easily applied to a much broader collection of domains.

Of course, surfacing has its disadvantages, the most significant one is that we lose the semantics associated
with the pages we are surfacing by ultimately putting HTML pages into the web index. Still, at least the pages
are in the index, and thus can be retrieved for many searches. Other disadvantages are that it is not always
possible to enumerate the data values that make sense for a particular form, and it is easy to create too many
form submissions that are not relevant to a particular source. For example, trying all possible car models and
zip codes at a used-car site can create about 32 million form submissions – a number significantly larger than

3In fact, even as database people investigate the issue deeper, it appears that the distinction is fuzzy to them as well.
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the number of cars for sale in the United States. Finally, not all deep-web sources can be surfaced: sites with
robots.txt as well as forms that use the POST method cannot be surfaced.

Google Base: Google Base faces a different integration challenge. Experience has shown that we cannot expect
users to come directly to base.google.com to pose queries targeted solely at Google Base. The vast majority
of people are unaware of Google Base and do not understand the distinction between it and the Web index.
Therefore, it is crucial to access Google Base in response to keyword queries posed on Google.com. This leads
to two main challenges:

� Query routing: given a keyword query, decide if there is data relevant in Google Base and map it to a set
of relevant item types in Google Base.

� Result ranking: to fully integrate Google Base results we need to rank results across properties. Specifi-
cally, for the query “Honda Civic Mountain View, CA”, there might be answers from multiple item types
in Google Base, from listings of Honda dealers in the bay area (stored in the Google Local database), and
from web documents that may be highly ranked w.r.t. the query.

In some cases, the answer offered by Google Base may be a specific entry (or set of entries) in Google Base.
But in most cases, the answer consists of a few example entries from Google Base and a form that enables the
user to refine the search results. Hence, an additional challenge Google Base needs to address is that of proposing
appropriate refinements. Google Base proposes a set of attributes with candidate values in select-menus. For
example, choosing vehicle as an item type leads to possible refinements based on the attributes make, model,
color, and location. The user can further continue to restrict search results by choosing specific values in the
select-menus for the attributes. With each successive user refinement, Google Base recomputes the set of further
candidate refinements.

Google Base proposes query refinements by computing histograms on attributes and their values during
query time. It chooses the attributes that best help the user refine the current query. For example, if the user is
interested in “Honda Civic” and the location is restricted to “Mountain View, CA”, then the select-menus values
for color change to reflect only the colors of Honda Civics available in the Mountain View area.

Annotation Schemes: The integration problems faced in the context of annotation schemes are somewhat
simpler. Typically, the annotations can be used to improve recall and ranking for resources that otherwise have
very little meta-data associated with them (e.g., photos, videos).

In the case of Google Co-op, customized search engines can specify query patterns that trigger specific
facets as well as provide hints for re-ranking search results. The annotations that any customized search engine
specifies are visible only within the context of that search engine. However, as we start seeing more custom
search engines, it would be desirable to point users to different engines that might be relevant.

4 A Database of Everything

The utility of structure-aware search engines has already been demonstrated to some extent by the success of
specialized search engines in specific domains (e.g., travel, weather and local services). Handling content in a
domain-specific way can potentially lead to better ranking and refinement of search results.

However, the challenges described in the earlier sections lead us to the crux of the problem of querying
structured data on the Web: data on the Web is about everything. If the domain of structured data on the web
were well defined, many of the issues we outlined above would disappear (as in the case of successful specialized
search engines).

One could argue that the problem is simply that there are many domains (perhaps a few hundred) and we
should simply model them one by one. However, the issue is much deeper. Data on the Web encompasses much
of human knowledge, and therefore it is not even possible to model all the possible domains. Furthermore, it is
not even clear what constitutes a single domain. Facets of human knowledge and information about the world
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are related in very complex ways, making it nearly impossible to decide where one domain ends and another
begins. The only broad attempt to model human knowledge, the Cyc Project [2], has been going on for about
two decades and has met with only limited success.

Even if it were possible to build a representation of all the domains that appear on the Web, the representation
would be inherently brittle and hard to maintain. It is hard enough to manage heterogeneity in a single domain,
imagine trying to do it at such scale. And if that was not bad enough, you need to maintain the representation in
over a hundred languages.

Currently, several solutions are being deployed for addressing the needs of each of the existing services. In
parallel with addressing these needs, we are developing some general concepts that will enable us to deal with
such challenges in a unified way.

The key idea we are pursuing is that of a system that integrates data from multiple sources but is designed
to handle uncertainty at its core. Specifically, uncertainty in such a system can have several sources:

� mapping keyword queries into structured queries on a structured data feed,
� mappings between the schemas of disparate data sources, and
� uncertainty about the actual data in the system, that may have been extracted from unstructured document

using automatic techniques.
In the contexts described above, such a system will enable us to let many structures (i.e., schemas) exist

but without the need to completely integrate them as required by today’s data integration systems. Instead of
necessarily creating mappings between data sources and a virtual schema, we will rely much more heavily
on schema clustering. Clustering lets us measure how close two schemas are to each other, without actually
having to map each of them to a virtual schema in a particular domain. As such, schemas may belong to many
clusters, thereby gracefully handling complex relationships between domains. Keyword queries will be mapped
to clusters of schemas, and at that point we will try to apply approximate schema mappings in order to leverage
data from multiple sources to answer queries. The system we envision is an instance of a dataspace support
platform [5, 9], where we structure the data in the system in a pay-as-you-go fashion. We offer some more detail
about such a system in [12].

5 Conclusions

There are staggering amounts of structured data on the Web today, and we must finally address the challenge
of leveraging such data and combining it with unstructured data. This paper described three main sources
of structured data, the deep web, Google Base and a variety of annotation schemes, and outlined the main
challenges involved in querying this data.

From the perspective of data management, we are used to thinking in terms of a dichotomy between struc-
tured data and unstructured data, and the Structure Chasm that lies between them [8]. Web-scale heterogeneity,
i.e., data in millions of disparate schemata, presents a unique point between the two ends of the chasm. Our goal
is to build a data management platform that can be applied to these collections of data, but to do so, we need to
change some of the assumptions we typically have when dealing with heterogeneous data. We believe that the
most significant of these challenges is building a data management system that can model all data, rather than
data that in a particular domain, described by a single schema.
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