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Abstract-The Aho-Corasick (AC) algorithm is a very flexible
and efficient but memory-hungry pattern matching algorithm
that can scan the existence of a query string among multiple test
strings looking at each character exactly once, making it one of
the main options for software-base intrusion detection systems
such as SNORT. We present the Split-AC algorithm, which is
a reconfigurable variation of the AC algorithm that exploits
domain-specific characteristics of Intrusion Detection to reduce
considerably the FSM memory requirements. SplitAC achieves an
overall reduction between 28-75% compared to the best proposed
implementation.

I. INTRODUCTION

The demand for high speed and always-on network access
around the world is continuously increasing, creating an anal-
ogous demand for increased network security. Firewalls, i.e.
security systems permitting or blocking packets based on their
header information, have been a standard security solution for
several years but are no longer adequate to cover the increased
security needs. Network Intrusion Detection Systems (IDS)
provide a powerful and versatile security tool by allowing us to
specify header characteristics of "suspicious" packets as well
as patterns contained in the payload that can constitute part
of an attack. However, both the effectiveness and the resource
requirements of a NIDS are largely dependent on the selected
pattern matching algorithm.

The Aho-Corasick (AC) [1] algorithm is a very powerful
but memory-hungry pattern matching algorithm whose char-
acteristics make it an excellent choice for NIDS. The main
contribution of this work is the "Split-AC" algorithm, which
is a variation of the AC algorithm optimized for reconfigurable
hardware implementation that requires between 28-75% less
memory than the state-of-the-art AC implementation.

Software-based NIDS running on general purpose proces-
sors are very powerful and versatile but suffer from perfor-
mance limitations. Proposed hardware-based NIDS can be
very fast but usually ignore packet header parameters, a fact

that causes them to perform searches when it is not necessary
due to header mismatches. A secondary contribution is a
hardware NIDS architecture which performs packet header
classification, matches one pattern per rule, fits on a single
FPGA chip and could cooperate with a software NIDS in order
to significantly improve overall performance. While we are not
the first to propose a complete system for intrusion detection
we believe it is important to address the system aspects of the
design in addition to the specifics of each sub-component.

This paper is organized in the following manner. Section II
presents the Aho-Corasick (AC) pattern matching algorithm
along with related work on memory efficient AC variations. In
Section III we present Split-AC, our memory efficient variation
of AC and the optimizations we used. Section IV provides a
brief description of the IDS rules we use and the manner in
which those rules are grouped into sets to improve memory
efficiency. Section V presents the hardware architecture for
Split-AC as well as for the overall IDS platform we have
developed. Section VI is dedicated to the Split-AC implemen-
tation results and the comparison to related work. Finally, in
section VII we present our conclusions as well as some ideas
for future work.

II. THE AHO-CORASICK ALGORITHM AND RELATED
WORK

The Aho-Corasick algorithm [1] was proposed in 1975
and remains, to this day, one of the most effective pattern
matching algorithms when matching patterns sets. Initially,
the AC algorithm combines all the patterns in a set into a
syntax tree which is then converted into a non-deterministic
automaton (NFA) and, finally, into a deterministic automaton
(DFA). The resulting fsm is then used to process the text one
character at a time, performing one state transition for every
text character. Whenever the fsm reaches designated "final"
states that correspond to the identification of a pattern a match
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Fig. 1. An Aho-Corasick syntax tree (left) and the derived DFA (right). Numbered circles represent states (thick border for final states) while the arrows
represent transitions for specific characters. For the sake of clarity, the fsm diagram omits transitions from each node leading back to the initial state, state 0,
for all characters not already present in transitions from that node.

is found. A simple example of the AC fsm which corresponds
to the patterns "bat", "batch" and "cat" is shown in figure 1.

The AC algorithm has the significant advantage that every
text character is examined only once, i.e. the lookup cost is
O(N) where N the length of the text, regardless of the number
of patterns or their length. Other pattern matching algorithms,
such as Boyer-Moore [2] or Wu-Manber [3], have an average
lookup cost of O(N/n), where n is the length of the shortest
pattern in the set. While these algorithms are significantly
faster for sets with long patterns, in IDS it is quite common to
have patterns which are only one or two characters in length,
in which case AC is most appropriate.
The major disadvantage of AC is that it requires large

amounts of memory in a straightforward implementation that
keeps a lookup table of 256 pointers to next states for every
fsm state. Recently, several more space-efficient variations of
the AC algorithm have been proposed.

To reduce AC space requirements, Tuck et al. [4] use a
bitmap and an array of transitions in each state instead of the
traditional lookup table. When processing a text character c,
bit c of the bitmap is checked: if the bit is set, we count the
number of set bits in positions 0 to c-I of the bitmap and
the resulting number is used to address the transition array
and find the next state. This reduces required space, but the
popcount operation required is slow. He also proposes use path
compression: for states having a dangling chain of states a
single, multi-character comparison and transition is performed
and the additional states in the chain are eliminated. However,
this method significantly increases complexity and can only be
applied to the Aho-Corasick NFA, not the DFA. The problem
with the NFA is that it is more complex than the DFA and can
perform up to 2N transitions for an N character text compared

to the single, deterministic transition of a DFA.
Tan and Sherwood [5] propose a different approach: the

initial fsm which performs 8-bit comparisons and has 256
possible transitions per state is broken down into 8 small fsms
which run in parallel and each is responsible for a different
character bit and has 2 possible transitions per state. The
tradeoff is that additional control logic is required to check
if all the small fsms have reached the same final state. Their
architecture proves to be very effective, needing as little as
3.2 Mbits for the entire Snort ruleset and achieving throughput
around 10 Gbps.

III. THE SPLIT-AC ALGORITHM

To optimize the AC implementation for IDS, we made
several domain specific observations: (i) most patterns use only
a small subset of the 256 possible characters, (ii) Some pattern
characters are frequent and appear in a transition almost in
every state while others appear infrequently, and (iii) if we
partition the single, big FSM into smaller ones, the resulting
FSMs have much smaller size (this actually bodes well with
the IDS rules that are anyway expressed in compatible groups),

Split-AC exploits these observations: we use character trans-
lation in order to compress the 8-bit character input value into
using fewer bits, thus reducing the state transition table size. To
exploit the second observation, we use a combination of RAM
and CAM. Frequently used transitions are kept in a regular
table, while infrequent are kept in a CAM, while "default"
transitions (i.e. return to the initial state) are merged into a
single entry.

Split-AC starts the Aho-Corasick deterministic fsm with S
states. We define as f (c) the occurrence frequency of character
c in transitions of this fsm. We also define the frequency
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threshold Tf. Characters with f (c) > Tf are called frequent.
Accordingly, transitions made on frequent characters are called
frequent transitions. Characters with 0 < f(c) < Tf are
infrequent characters and valid transitions made for these
characters are called infrequent transitions. Finally, characters
with a zero occurrence frequency are non-existent characters.

Let K be the total number of frequent characters. We
"compress" the input using a lookup table of 256 entries by
Flog2(K + 1)] bits, rounded up. The "+1" in this formula
is the additional "Not-in-This-Table" value we store for the
infrequent and non-existent characters.
The number of bits needed to represent the state of the fsm

is Fs= log2(S)]. For frequent character we use the traditional
state lookup table to find the next state of the fsm. This table
has 2(,+k) entries and is s bits wide, and is addressed by the
concatenation of the current state and the translated character
bits. Infrequent transitions are stored in a content addressable
memory that is searched with the same bits as the state lookup
table.
An outline of the Split-AC operation when scanning text is

the following:

1) The input character c is used to address the character
translation table, which produces the translated character
c'.

2) The state lookup table and the CAM are addressed
concurrently to find the next state. If c' is a "frequent"
character, the answer is offered by the state lookup table,
otherwise by the CAM.

3) Check if the next state is also a "final" state. If it is
"final", a pattern was located and the appropriate action
must be taken.

A. Split-AC Optimizations

The CAM that implements infrequent transitions is an
expensive resource, with cost roughly proportionate to the
number of tag bits. In order to reduce the CAM size, we also
compress the state bits.

This is possible by assigning sequential numbers to all fsm
states that have at least one infrequent transition (we call
these the "CAM states"). When the number CAM states is a
small portion of the overall number, the grouped states share a
common prefix of s -s' bits and have a individual suffix of s'
bits. When we perform this optimization, the CAM state bits
are partial, and may yield matches even when there should not
be any. We address this problem by comparing the remaining
s -s' bits in the data portion of the CAM and verifying the bits
(and the corresponding transition) later. Effectively the bits are
stored in the CAM but in the data instead of the tag portion,
saving cost. Finally, we gain additional tag bits by compressing
separately the input characters for the state lookup table and
the CAM at the cost of increased RAM bits for the translation.
The idea here is that usually fewer characters appear in the
CAM than in the state lookup table.

IV. IDS RULE SETS AND PARTITIONING

The Snort IDS [6], [7], [8], [9] is an open-source IDS which
is used as a point of reference for most IDS-related research.
Typical Snort rules look like this:

alert tcp 192.168.1.f0/24 any -> $EXTERNAL NET
100:200 (content: "foo"; sid:100;)

The first portion of the rule specifies the required packet
header parameters (protocol, source and destination IP-port) as
well as the action to be taken if the rule is activated (alert, pass
etc.). The second half of each rule specifies the rule options,
i.e. what attributes of the packet are considered suspicious.
Rule options can specify suspicious payload patterns (the
"content" keyword), as well as other additional parameters
(flags, IP protocol number etc.).
The Snort ruleset (version 2.4) contains more than 3.000

rules, out of which a large subset can be eliminated for every
packet using solely packet header information. To exploit this
fact, we group together rules into different sets according to
compatible packet header parameters. We use between 3 and
5 different header parameters to classify the rules, which are
(depending on the packet type):

. TCP/UDP: protocol, source/destination IP address,
source/destination ports.

. ICMP: protocol, source/destination IP address, ICMP
type.

. IP: protocol, source/destination IP address.
Rules which have identical header parameters are placed in

the same set. When rules apply to a range of protocols, they
are duplicated to all applicable groups.

This rule grouping method results in approximately 400 rule
sets. If we assign one Split-AC fsm to each rule set then some
of the resulting fsms will still have a large number of states
(up to 8K states) and still require large amounts of memory to
implement. To reduce space requirements we partition large
rule sets into smaller subsets which run concurrently and
allocate one fsm per subset.

To understand the potential of partitioning, consider a Split-
AC fsm with 512 states (9 state bits) and 128 different
frequent characters (7 translated character bits). The total
required memory for this fsm is 512 * 128 * 9 + 256 * 7 =
576K + 1.75K = 577.5 Kbits. If this large fsm is divided
into 8 smaller fsms with 64 states (6 state bits) and at most
64 frequent characters (6 character bits) each, the total required
memory becomes 8* (64*64*6+256*6) = 8* (24K+1.5K) =
204 Kbits or 65% less memory. The cost in this tradeoff is
increased control logic, since we now have 8 fsms running
concurrently instead of 1.

V. SPLIT-AC ARCHITECTURE

Figure 2 depicts the block diagram Split-AC architecture
for a single fsm. The two memory blocks along with the
CAM have registered outputs, and the optimized Split-AC
CAM requires some additional logic to control the multiplexor
signals and the CAM reset.
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Fig. 2. Optimized Split-AC architecture with compressed CAM states and the corresponding verification.

The architecture is divided into three pipeline stages. The
first stage handles the translation of the input character using
the character translation memory. At the second stage we have
a concurrent lookup in both the state lookup memory and the
infrequent transition CAM. During the third and final stage,
we decide whether the next state will be given from the state
memory or the CAM results as well as check if we have
reached a final stage.

The "Final" output signal is activated whenever the fsm
reaches a final state and contains information about the parent
rule set as well as the specific rule subset that this fsm
corresponds to, as well as the id of the final state that was
reached.

Figure 3 depicts the entire IDS hardware system, showing
how incoming packets are first checked for their header, then
categorized into groups that then activate the corresponding
Split-AC fsms to scan the payload of the packet. The main
components are:

. Header Classification: compares the header of the in-
coming packet to the parameters of every rule group and
activates the corresponding "enable" signals.

. Enable Encoder: Produces the "leading" rule group, i.e.
the one that will be reported on a match.

. FSM Group x: A collection of all subset fsms which
belong to rule group x.

* Priority Mux: large priority multiplexer which is created
using a pipelined, tree-like structure of 16-to-4 encoders
and 16-to-I multiplexers. If two or more fsms reach a
final state at the same cycle, this multiplexer will forward
the results of the fsm with priority. The results of the other

fsms will be lost.
. Position Counter: keeps track of the search location to

be reported when a match is determined.

VI. IMPLEMENTATION AND EVALUATION

Our work is based on the observation that we can adapt
the structure of the system to exploit the regularities of the
particular rule sets. Therefore, we target reconfigurable (i.e.
FPGA) platforms instead of ASICs. We used the Virtex4
FPGA family by Xilinx, and described our architecture using
VHDL.

To automatically generate the necessary VHDL code for
our design we modified "T-Gate", a simplified but highly opti-
mized SNORT implementation[lO]. T-Gate parses the SNORT
rule files, identifies groups and creates its internal structures
for rule processing. Starting from that point, we modified T-
Gate to produce the VHDL system description and memory
initialization files according to the selected rule files and the
user-defined parameters. The only hand-written VHDL was
for some simple components which are independent of the
parameters (for example a 16-to-4 encoder).

The two user-defined parameters are the desired maximum
number of states per fsm and the character occurrence fre-
quency threshold Tf that determines how aggressively we
employ the infrequent character CAM; a large threshold value
(near 1) means that we have few frequent and many infrequent
characters (i.e. larger CAMs). We used the unregistered ver-
sion 2.4 of the Snort ruleset and implemented hardware pattern
matching only for the first pattern specified in each rule.
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Fig. 4. Memory allocation for many small fsm memories into a single, dual-port FPGA block. By packing multiple independent state transition tables in
one memory, we achieve higher memory efficiency.

A. FPGA memory allocation

Initially, we want to bring attention to a problem we faced
when mapping the various fsms to an FPGA. The rule set
subdivision process can generate up to nearly 900 subsets,
each of which requires two different memories. Taking into
account that cutting edge Virtex4 FPGAs have a maximum
of 552 dual-port memory blocks, it is obvious that we cannot
map every fsm memory to a different block.
The solution to this problem is to allocate data from

mutually exclusive fsms into the same FPGA block. Two fsms
are mutually exclusive if they can never both be active for
the same packet. We also take advantage of the fact that the
blocks are dual-port by allocating non-exclusive fsm data into
different ports in the same FPGA block. In this manner and
at the expense of some additional control logic, we achieve a

memory utilization percentage between 43% and 94%, based

on the selected parameters. Figure 4 shows an example of how
many small fsm memories are placed in a single FPGA block.

B. FPGA implementation Results

Figure 5 shows the overall memory requirements when
implementing Split-AC in FPGA. We can see that for most
Tf values we require the minimum amount of memory when
the number of states per fsm is 128. This is due to the fact
that a small number of states leads to many subsets, which
are inherently not mutually exclusive and, thus, the process of
allocating fsm memories to different FPGA blocks becomes
significantly more difficult. If we had the capacity to use

memories of arbitrary size, the memory requirements would
decrease along with the number of states per fsm.

Figure 6 shows the total required CAM tag size, i.e. the
number of CAM entries times the number of tag bits. We
observe that for a 0.01 threshold we require minimal CAM
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are achieved at 128 states per FSM. Larger values for the Tf threshold reduce memory size at the expense of CAM size.
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TABLE I
POST PLACE & ROUTE RESULTS FOR THE IDS ARCHITECTURE USING THE SPLIT-AC ALGORITHM.

[Max States per FSM 32 128 128 128 128
Threshold Tf 0.01 0.01 0.05 0.5 0.99
Min. Period (nsec) 8.6 8.7 8.7 9.8 9.3
Max. Frequency (MHz) 116 114 114 101 107
Max. Throughput (Gbps) 0.927 0.917 0.913 0.811 0.860
# Logic Cells 16,980 12,341 23,629 59,983 60,061
# slice Flip-Flops 4,162 3,224 4,215 6,157 6,190
# Slices 8,970 6,602 12,492 31,821 31,860
# Memory Blocks (18 Kbit) 243 264 141 85 85

TABLE II
COMPARING THE MEMORY REQUIREMENTS OF SPLIT-AC AND BIT-SPLIT FSMS.

Split-AC #1 Split-AC #2 Split-AC #3
Bit-Split 32 states 128 states 128 states

0.01 Tf 0.05 Tf 0.99 Tf
Total Memory (Mbits) 3.2 4.27 2.48 1.5
# pattern characters 12,812 24,033 24,033 24,033
Bits/character 261 186 108 65

support, less than 1.5 Kbits, which increases to roughly 150
Kbits for larger threshold values.

In Table I we present the Post Place & Route results for
several configurations. Here we only included one configura-
tion with a tight FSM size parameter (32) and concentrate on
FSM size of 128 states, as it is the best tradeoff (Figures
5 and 6). We can see that the achieved frequency is not
very high due to the CAM that is implemented in FPGA
logic. The number of required logic cells ranges between
12,341 (for the memory-reliant configuration) and 60,061 (in
the CAM-reliant case). Note that these figures include the
entire header matching portion of the architecture as shown in
Figure 3, while the related works usually omit this portion of
the design. The operating frequency of our design is between
100-1OMHz, with lower frequencies corresponding to larger
CAM -and overall design- sizes. In Table I we also see that
increasing the Tf threshold reduces considerably the required
memory size. Even for small Tf values such as 0.05 that
correspond to small CAM sizes (few tens of Kbits) we see a
40% reduction in memory size. These design points are the
most promising, achieving reasonable memory sizes without
exploding the CAM size.

C. Comparison to Related Work
We compare our results with those of the bit-split fsms

presented in [5], which is currently the smallest AC-based
algorithm, and show the results in Table II. These results
show that Split-AC is significantly more compact. In the case
of configuration #3, which relies heavily on CAM, Split-AC
needs 75.1% fewer bits per pattern character than the bit-
split fsms do. Configuration (#2 achieves a 60% memory
size reduction using around 30Kbits of CAM. Even in the
most memory-heavy configuration (#1) that requires minimal
CAM support, Split-AC needs 28.8% fewer memory bits per
pattern character, showing the effectiveness of the "exception"

CAM and the rest of our compaction techniques. In terms of
throughput, the work of Tan and Sherwood is considerably
better approaching 10Gbps, compared to about 1 Gbps in our
work. Part of this difference is due to the difference between
ASIC technology used in [5], and FPGA used in our work.
A limiting factor in our work is the CAM needed for the
infrequent cases. Our work would greatly benefit from both
fast and compact CAMs, since in our work the relatively small
CAM structures are made with discrete gates.
Compared to other FPGA-based string matching approaches

such as [11], [12], [13], [14], [15], [16], [17] our approach
is slower in terms of throughput. The two reasons for this
difference is again the use of CAM structures, but also the
fact that we only process one character per cycle, while other
proposed approaches process up to 4 characters per cycle. A
compelling option to speed-up AC-based string search is to
utilize fast predictions for the state transitions[ 18], and default
in the relatively slow but compact state transitions only in the
cases of mispredictions.

VII. CONCLUSIONS

We have described and evaluated Split-AC, a memory-
efficient version of the Aho-Corasick algorithm. Split-AC
is shown to be the smallest, in terms of required memory,
variation of the Aho-Corasick algorithm compared to the state
of the art. We also sketched an IDS architecture that uses the
Split-AC algorithm and fits entirely on a single FPGA chip,
so as to implement a complete stand-alone DS.

Split-AC is small in terms of memory footprint but is not
the fastest alternative to string matching. A future course of
research could be to improve the Split-AC architecture in order
to make it faster or to extend it to process multiple character
per cycle, thus improving throughput. Other possibilities that
stem from the ideas in Split-AC would be to use character
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compression with other algorithms in order to reduce their
memory requirements.

Finally, intrusion detection is increasingly using regular
expressions to describe in a more compact and flexible fashion
the attacks ([19], [20], [21], [22]). The nature of AC FSM
is similar to the automata used for regular expressions, so
it is possible to combine the two approaches into a unified
architecture for string as well as regular expression matching.
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