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ABSTRACT

Mixture models form one of the most widely used classes
of generative models for describing structured and clustered
data. In this paper we develop a new approach for the anal-
ysis of hierarchical mixture models. More specifically, using
a text clustering problem as a motivation, we describe a nat-
ural generative process that creates a hierarchical mixture
model for the data. In this process, an adversary starts with
an arbitrary base distribution and then builds a topic hier-
archy via some evolutionary process, where he controls the
parameters of the process. We prove that under our assump-
tions, given a subset of topics that represent generalizations
of one another (such as baseball — sports — base), for
any document which was produced via some topic in this
hierarchy, we can efficiently determine the most specialized
topic in this subset, it still belongs to.

The quality of the classification is independent of the total
number of topics in the hierarchy and our algorithm does
not need to know the total number of topics in advance.
Our approach also yields an algorithm for clustering and
unsupervised topical tree reconstruction.

We validate our model by showing that properties pre-
dicted by our theoretical results carry over to real data. We
then apply our clustering algorithm to two different datasets:
(i) “20 newsgroups” [19] and (ii) a snapshot of abstracts of
arXiv [2] (15 categories, ~240,000 abstracts). In both cases
our algorithm performs extremely well.

Categories and Subject Descriptors: F.2.2: Nonnu-
merical Algorithms and Problems, H.1.0: Information Sys-
tems: Models and Principles

General Terms: Algorithms, theory

Keywords: Mixture Models, probabilistic analysis, hier-
archical clustering

1 Introduction

Mixture models form one of the most widely used classes
of generative models for describing structured and clustered
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data [18]. Various applications of mixture models include
problems in computer vision [27, 13, 24], text clustering [22,
4], collaborative filtering [12, 15, 4], and bioinformatics [14].
One of the common formulations of mixture models can be
described as follows. The data (e.g., texts, images, user
profiles, etc.) is a collection of independent samples (e.g.,
individual documents, image features, etc.), each created by
a sequence of independent draws from some hidden distribu-
tion over a feature space (terms, pixels, etc.). For example,
in the case of text, each document is modeled as a sequence
of independent trials from some underlying term distribu-
tion. More precisely, there is a set of topics, where each
topic is defined by a hidden distribution over the space of
all possible terms. A given document can be related to sev-
eral topics (e.g., discussing the role of religion in physical
sciences), and is modeled as a sample from a linear mix-
ture (hence the name) of corresponding topical distributions.
The actual mixing coefficients are defined by the document’s
quantitative relevance to each of the topics. A similar in-
terpretation is possible for collaborative filtering where each
user’s profile (e.g. the books he bought) is modeled as a se-
quence of independent trials from some hidden distributions
over the item space.

In this work we will be discussing mixture models in the
context of text, however the results apply in any other frame-
work.

Inspired by statistical approaches there has been a vast
amount of work on mixture models [18]. Most of it is based
on local search techniques, such as different flavors of EM[4,
17, 11]," and Naive-Bayes methods[8, 16].

Recently, Kleinberg and Sandler [15] have shown that
there is a combinatorial algorithm, that, given a sufficient
amount of unlabeled data, reconstructs the underlying term
distributions for each document (with a small error and with
high probability). Then, given the topical distributions, the
algorithm reconstructs accurately the relevances to each of
the topics for each document. In order to guarantee fixed
accuracy, the required length of a document depends only
on the total number of topics, and two special parameters
introduced in [15], but not on the total number of terms in
the vocabulary.

However, while providing a mathematically clean and ap-
pealing framework, plain mixture models are known to be
too simplistic [10] for real data with a large number of topics.

Tt should be noted, that in the case of gaussian mixtures,
and under some specific conditions, EM is known to converge
to a global optimum [6], however no results like that are
known for the models that we are interested in here.



Indeed, most, if not all, of the existing algorithms for mix-
ture models need to reconstruct the entire mixture model
and/or need to know the total number of topics in the sys-
tem in advance in order to perform classification. However,
even the number of topics is hard to learn in the context of
the Web or any other large unmoderated text collection. To
deal with this problem, hierarchical mixture models were
introduced (see [10, 26, 3] among others). The common
assumption behind hierarchical models is that topics form
some natural hierarchy based on the level of their specificity.
For instance, topics like “physics” and “mathematics” would
be under a more general topic “science.” The hierarchy it-
self might have been inferred from labeled data [26, 10], or
in the case of Latent Dirichlet Allocation [4], by assuming
a specific generative process called the Chinese Restaurant
Process[3, 25] and then applying EM to it. To the best of
our knowledge, none of the previous results would provide
measurable guarantees of the quality of the produced clas-
sification and would use flavors of local search techniques to
do final estimations of the parameters and/or the hierarchy.
In the present work we suggest a new model of the topic
hierarchy and prove that under this model we can provide
classification guarantees even if only a small part of hierar-
chy is known.

At a high level we assume the following evolutionary pro-
cess that builds the topic structure. There is a “proto-topic”
(which we also sometimes call the baseline topic or the root
topic) that is the root of the hierarchy tree. Each topic has
zero or more children. Each child topic distribution evolves
from parent distribution by altering the probabilities of oc-
currence of some (possibly all) terms. The exact process
by which we obtain children topics from a parent topic will
be described later. The very important assumption that we
make here is that given a parent topic, all children topics
are generated independently from each other. This assump-
tion is inspired by the following intuition: related topics
such as mathematics and physics share inherited bias for
generic science terms from their parent science topic, but
otherwise are independent. This independence property is
a key assumption that enables us to guarantee classification
accuracy without knowing the total number of topics and
without ever having to learn the full hierarchy.

Remark: A similar concept of evolution is widely used in
studying the origin of the species, and in particular for phy-
logenentic tree reconstruction[21]. There, the assumption is
that there is an evolutionary tree of all the species, where
each node contains some aggregate description of a partic-
ular species (e.g. number of legs, presence of specific gene,
etc), the root contains a description of a common ancestor
of all currently existing species, and the transition from the
parent is modeled via a mutation process. There has been
a lot of work done on phylogenetic trees including several
results that guarantee close to optimal reconstruction. We
refer to [1, 23, 7] for more details. Our problem is different
in several aspects. First, our attributes (terms) are defined
on a continuous domain and share the same normalization,
whereas in phylogenetic trees they could be drawn from dif-
ferent domains. Second, our samples (documents) do not
contain full information about the node they belong to, but
rather a small sample drawn from it (whereas a single ani-
mal sample would contain all or most of the properties for
a given species.) Finally, document distributions could be a
mixture of distributions from several topics (in the case of a

phylogenetic tree this would correspond to observing a mix
of a dog and a mouse). However it would be very interesting
to connect these different lines of research.

1.1 Our Contributions. There are several contribu-
tions of this paper. First, we introduce a new theoretical
model to describe topical hierarchies. Combined with its
empirical validation, this is an important step in the under-
standing of the topical structure of textual data.

Second, we prove that within this model one can com-
pute how a given document relates to a known topic (or
several topics that are generalizations of each other) with
very little knowledge of the rest of the hierarchy. We are
not aware of any other theoretical work that would analyze
the possibility of accurate predictions without knowing the
full topical structure. We also show that the accuracy is
independent of the total number of topics in the full hierar-
chy; this makes the approach particularly useful when the
available data contains a very large number of topics.

Third, we present an algorithm that can reconstruct a
topical hierarchy by analyzing unlabeled data. One other
important property of our algorithm is that it scales ex-
tremely well and most of the processing can be readily
parallelized. We evaluate our algorithm by clustering two
datasets: arXiv [2], and “20 newsgroups” [19], and in both
cases our algorithms perform extremely well.

Finally, we demonstrate that the theoretical properties
predicted by our analysis carry over to the real data, which
further supports the validity of our model.

1.2 Organization of the paper. In the next section we
introduce some background on Mixture Models and all the
necessary tools we need for analysis. Then, in Section 3
we formally describe our model, prove the main theoretical
results of the paper and describe our algorithms. Finally, in
Section 4 we present our experimental results.

2 Preliminaries

2.1 Concentration bounds. The main concentration
result we use is Hoeffding’s inequality, which is a generaliza-
tion of Chernoff’s bound [20].

LEMMA 2.1 (HOEFFDING’S INEQUALITY [9]). Suppose
{z;} is a sequence of independent random variables, such
that x; € [as,bi]. Then for any t > 0,
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where E > x;] denote the expected value of the sum of the
random variables.
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2.2 Mixture models, topic independence and gen-
eralized pseudoinverses. In this section we provide a for-
mal definition of mixture models and necessary results from
earlier work [15]. We start with a brief overview of genera-
tive mixture models.

(i) There is a set D that contains all possible terms in the
vocabulary. We let n = |D|.

(ii) There is a set 7 of k topics, where each topic 7
is defined by a probability distribution over the set



of terms. We denote the n X k matrix comprised of
all topical distributions by W. Thus W,; denotes the
probability of term wu in topic i.

(iii) Each document has hidden relevance to one or more
topics, and these topics are used to generate the con-
tent of the document. More specifically, a document d
has a hidden vector r € R% of non-negative relevances
that sum to one. Each word in the document is an
independent draw from the distribution defined by a
linear combination of topics Wr.

(iv) We represent a document by a count vector D of the
actual terms occurring in the document d. The goal
is to approximately reconstruct the relevance vector r
given D.

It has been shown previously[22, 15] that mixture models
allow efficient algorithms to find a document’s relevance to
each topic. The required length of a document needed to
guarantee a fixed accuracy of classification is independent
of the size of a vocabulary. However, in order to make this
guarantee the algorithms in [22, 15] require knowledge of the
number of topics in advance, and also need to recover all the
topics. At a high level the algorithm of [15] is as follows:

ALGORITHM 2.1

Input: Topic matriz W, document vector D.
Output: Vector of approrimate relevances to all the topics.

1 Compute a generalized pseudoinverse V of the topic
matriz W, by solving the following linear programming
problem:

minimize ¢ such that VW =1, and —c <V, < ¢

(1)
2 Compute the approximate relevance vector T = VD

If max; o, Vi is bounded, it was proven that for any ¢ > 0
and given a sufficiently long document we have ||T — r||oo <
€ with high probability. It was also shown that for an op-
timal pseudoinverse the maximal element could be upper
bounded in terms of the original topic matrix W:

max Vi, < l, where I' = min [PVxily

i r xeRF, a0 ||X[|1
It was proven in [15] that I' > 0 is necessary for any mixture
model to be fully learnable. We refer the reader to the orig-
inal paper [15] for an in-depth discussion and comparison
with other ways of obtaining pseudoinverses (such as using
Singular Value Decomposition). We conclude this part by a
simple concentration lemma.?

LEMMA 2.2. Let D be an arbitrary distribution over
terms, and let R € R™ be such that ||R||« < ¢. Let D
be a normalized count vector of a sample of size t from D
(e.g. D; = % if term i was sampled exactly once). Then for
any € > 0, we have:

Pr [|<RD> — (RD)| > s] < 2exp Pg}

2A weaker variant of this based on Chebyshev inequality
was proven in [15]

(SEMIOMNISCIENT ALGORITHM OF [15]).

Proof. 'We represent D as a sum of ¢ independent samples
D;, where D; is an indicator vector for the i-th term in the
document. Then, (RD) = 1 377_ (RD;) and it is easy to see

that E [(RDNJ} = (RD). Now we use Hoeffding’s inequality

(Lemma 2.1) and substituting (RD;) for z;, e for 7 and —c/t
and ¢/t for a; and b; respectively, we have:

Pr [(RD) - (RD)| > ¢] < 2exp [—’;—} 2)

3 Hierarchical Mixture Models

3.1 Model for topical hierarchy. In this section we
formally describe our model. It is important to emphasize
that we still use the regular mixture model as a generative
model for text. However, in addition to that we introduce a
hierarchical generative process on the topical distributions.
In other words, we assume that there are two underlying
generative processes happening: the first process generates
the underlying mixture model, and this model in turn defines
the parameters of the second generative process that creates
all the documents. We show that with very high probability
the produced mixture model will have “good” properties,
and then given a “good” model we can produce a proper
classification.

The topic generation is a multistep process driven by an
adversary — he chooses initial parameters at will and then
the random process starts by using the adversary’s param-
eters. At the intermediate steps the adversary can analyze
the current hierarchy and choose additional parameters. We
show that no matter how the adversary behaves we can still
provide guarantees.

The construction proceeds as follows. First the adversary
chooses the baseline topic T, which will be at the root of
our hierarchy tree; we don’t restrict the adversary regarding
how he chooses the base topic. Given the root of the tree,
the adversary starts building the rest of the tree. On every
topic he decides how many children it will have, and then
chooses the distributions for all immediate children topics at
once. Suppose topic T is a parent topic, and the adversary
is choosing the parameters of a child topic T’. For each
term ¢ in a child topic, he chooses a probability distribution
Dj satisfying some specific feasibility conditions. Then, the
random process samples a value & for each D] and sets
T! « T; + &!. After the change is applied, the vector 1"
is normalized by a factor o’ so that it represents a valid
distribution. In general, for a topic T<i), the change vector
that was applied to its parent to generate T is denoted by
A (we also sometimes refer to W is as a mutation vector)
and the normalization constant by a;.

At each step the adversary can expand any leaf in the
constructed hierarchy. The change vector £ satisfies the
following constraints:

(i) The resulting topic cannot contain any negative ele-
ments (as otherwise it would not be a distribution)
thus for any term ¢ , the change is bounded so that
&> T,

(ii) For any term we have E[£/] = 0. It is important to
note that we do not require the change to be symmet-
ric, and in fact it can be arbitrarily skewed toward in-



creasing probabilities as long as the expectation stays
Zero.

(iii) The difference between child and parent topics should
be large enough: E[||€’]|1] > A for some constant A,
where £ — is a resulting vector change to the entire
distribution.

(iv) Finally, changes cannot be concentrated on just a few
items. Therefore, if each & has range [A;, B;], we de-
fine

_ E[IE]]

|A — B2
and require slope[€’] > é7 where £2 is some constant,.
Note that from condition (i) we have A; > —T;.

slope[€’]

The first two conditions guarantee that the resulting vector
contains only positive values and that in expectation the
resulting norm stays one.

The third condition guarantees that ancestors differ
enough from the parents so that it is possible to differen-
tiate between them.

The last condition guarantees that changes are spread
among many items and deserves some additional explana-
tion. Note the two different norms used in the condition.?
This condition captures two properties. First, since we are
looking at the maximal possible change in any probability, it
guarantees absence of “low probability - very high impact”
events. Or, in other words, it says that there cannot be a
term that with small probability would dominate the entire
vocabulary; however it is perfectly feasible to have many
terms whose probability will multiply by a large factor.

Also note that by the condition (iii) the expected L1 norm
of a change is large and thus the condition (iv) essentially
requires the maximal possible change in the Euclidean norm
to be small. Since norms are monotone, this could poten-
tially lead to two conflicting conditions. However, if the
changes are distributed across many items (and that’s what
we observe in practice), the value of the Euclidean norm is
smaller than the L; norm by an Q(y/n) factor, and thus has
slope[€’] & Q(y/n), for a uniform change vector.

For example, starting with a uniform parent distribution,
the adversary might want to create a topic with support
on half of the terms. Then, choosing a probability distri-
bution that is i% with probability 1/2 would produce the
desired result. Note that all constraints above are satisfied
and E[||€]1] =1, E[||B — Al]2] = % Using a similar con-
struction and starting with a uniform parental distribution,
the adversary can produce any power-law distribution in a
child. However, the adversary does not have control over
whether the probability of any individual term will increase
or decrease—only over the general shape of the distribution.

The random topic generation process might appear coun-
terintuitive at first. However, one can argue that, if we did
not know any meaning behind any term, then changes in
probabilities for different topics would appear random and
uncorrelated (given the parent distribution) among different
child topics; this is exactly what our process models.

3 A somewhat similar measure has appeared before in [5], in
the context of continuous models where it was called “slope
ratio” (hence our name) and it was shown that this quantity
is one of the necessary parameters which measure “learnabil-
ity” of their model, it is interesting that it appears in our
context as well.

3.2 Analysis: Overview. Our analysis contains two
major parts. In Section 3.3 we prove intuitive albeit fairly
technical results. Namely, if we have a sequence of topics
such that one is obtained from another by introducing ran-
dom changes and re-normalizing the resulting topical vector,
then these topics will stay independent in linear algebraic
sense (as measured by the independence coefficient from the
previous section), with high probability, provided that the
length of the sequence is small compared to the number of
terms in the vocabulary. It can be shown that the linear
independence is necessary to be able to uniquely determine
the relevance of topics to a document. In the process of do-
ing that we also prove a few auxiliary lemmas which we will
reuse later.

Then, in Section 3.4 we analyze our perturbation scheme
and in particular we prove that if we consider a sequence of
topics lying on the path of the hierarchy starting from the
root, and consider it as a standalone mixture problem, then
applying it to a document produced by a topic from outside
of the path, it will get assigned to the closest node*

Finally in Section 3.5 we bring all the results together and
present out algorithms

3.3 Connecting probabilistic and linear indepen-
dence. We start with a simple lemma which provides con-
centration guarantees for a sum of a fixed and random vec-
tor.

LEMMA 3.1 (SUM OF A FIXED AND A RANDOM VECTOR).
Fix some ¢ and §. Suppose Z € R" is an arbitrary vector,
and consider a random vector € = (€1,...,Ey), such that all
& are independent random variables, such that E[&;] = 0,
each variable is bounded —B; < & < [, and the slope is
high:

slope[f] > 3+—— [1n ] (3)

£

then the following conditions are satisfied with probability at
least 1 —§:

@) |1Z+Ellx > (1 — &) max(]| 2|y, ELELL),
(i) |I€]h < ZE[IIE]],
(#i2) if sgn[Z] = sgn[Z + &] then ||Z +E||1 < (1 +¢)||Z]|1.

Proof. First of all we show that for all ¢ € [1,n] we have:

E[&
E[|Z; + & > max(|Z;], [2 ])
Indeed, we immediately have
E[|Z: + &l 2 E[|Z:i| + sgn[Zi]&:] = | Zi] (4)

where the first transition uses the triangle inequality, and the
second uses the linearity of expectation. Combining triangle
inequality in a different way and using the previous lower
bound we get:

B2+ &1 2 max(Z4,B (€] - 12D 2 B |151] . ©)

4Exactly the same result applies if a document is produced
by a mixture of topics — the weight assigned to each of the
node on the path would reflect the total relevance weight to
the topics closest to the given nodes.



Combining (4) and (5) we immediately have

E[||€
B ()12 +£]1] > max(|z), 211

)- (6)
To finish the proof we apply Hoeffding’s inequality to the
sum of the individual components of the L1 norm, to show
desired concentration around the expectation. Indeed, using
(6) we have:

Pr [|1Z + &llx — max(||Z]|s, 2] < —¢] <

2
Pr(|Z + €l —BIIZ+ &l <~ S exp—g=tn

(7)

choosing t = % we immediately have: :
2 2
e"(Efl€]:])
Pri||[Z+€&|1 < (1—-e)M] < ———— <
r[[|Z+ €l < (1 —e)M] < exp sy S

where M = max(||Z]|1, %), and in the last transition
we have used our slope constraint (3) in the last transition.

The part (ii) immediately follows from yet another appli-
cation of Hoeffding’s inequality.

For the part (iii) of the theorem, we just note that if
sgn[Z; + &) = sgn[Z;], then we have E[|Z; + &|] = E[|Z:]],
and so we can use both upper and lower bounds provided
by Hoeffding’s inequality and the result immediately follows.
|

Remark: Somewhat surprisingly, the factor % in the norm
[|€]]1 in the lemma above is tight (which would not be the
case if Z was random too). For example, let Z = (%, ce %),
and let
o —1/n with probability «,

v ﬁ with probability 1 — «

for some o > 1/2 then we have
E[||€]l1] = 2c

whereas

n

E[|Z+€|h] = (1 - a)(

=1

(%

a7

1
+ —
n
thus if & ~ 1, then E[||Z 4+ &||1] = % As n grows (and
« stays constant), we can apply concentration bounds, and
show that for any J, one can choose a and ng, so that Vn >
no [|Z4+E|hL <1+ 6)@ with probability at least 1/2.

An immediate corollary of the previous lemma, is that
the normalization coefficients for the topics, are in fact very
close to one.

COROLLARY 3.2
Consider T' with parent topic T, then if the distributions
of change vector £ satisfy the constraints (i)-(iv) of the
hierarchical process, and in particular for some e:

£

slope [S'} > In

g

Then with probability at least 1 — &, the normalization con-
stant o’ € [1 —e,1 +¢].

Proof. ~ The result immediately follows from Lemma 3.1,
since & +T >0 and T > 0, thus [|[T9 4+ ED||; € [1 £ ¢]
with probability at least 1 —§ W

(BOUNDED NORMALIZATION CONSTANTS).

Now, we prove a more technical lemma which connects the
notion of linear independence from [15, 22] with the notion
of probabilistic independence. In this lemma we assume that
we have a sequence of random vectors, and we prove that
with high probability they will have high independence.

LEMMA 3.3. Let Z be an arbitrary vector such that
[1Z][i =1, let EM,... €Y be a sequence of random vectors.
The values of €D might depend on £Y9), for j < i, however,
given the values of EY), the distribution of £? satisfies the
following constraints:

(1) E[£9] = (0,0,...,0), 2>E[Ig@]] > A
(2) The slope ratio of each random vector is high:
slope £W > (t+1)61/t(5In3t +In[Ad])  (8)

Fiz 0 <[ <t. Let W, denote a matrix comprised of columns
[Z,E(l),S(Q), RN E(Z)] then with probability 1 — § we have
W) A
I'(W;) = min > .
OV =208 Tl = 60+ 1)

Proof.  The proof goes by induction on [. The result for
the base [ = 0, is immediate because of the normalization
of Z. Suppose we have proved for [ — 1 that T(W,_1) > %
with probability at least 1 — =19 and would like to extend
to [. The proof of the induction hypothesis consists of three
parts, first we show that for an arbitrary fixed unit vector
p = (po, - .., p1), the probability

iplh > (1- 3555) 5 o)

is exponentially small, then we use the union bound to ex-
tend the result to sufficiently dense discrete subset of all
possible vectors p, and finally we will use the continuity of
a linear operator to extend it to all unit p € R+ to com-
plete the proof.

Consider an arbitrary normalized vector p € R, and
let X = poZ +prEP+, ..., +pi—1EYY, by our induction
hypothesis we have T'(W,_1) > % with probability 1— “716,
thus we have:

A
XM = A =p) - (10)
6l
We also have E [||pl5<l)\|1] > mA. But €Y is independent
of X, thus, applying Lemma 3.1 part (i) we have

Pr {HX +pED|1 > (1 - e) max {(1 - pl)%, ’%” > 1-6
(11)
1 sal
) and §o = TER
Now we compute a lower bound for the max in this equa-

where we choose € =

tion. If p; < ﬁ then we have:
A pA 1 A
PR Sl sl B NS [N S
e [(1 PG 2 } 20 12

and if p; > ﬁ then

e (1) .24 2 05 2 0 g 09



Combining (13) and (12) and substituting ¢ = ﬁ we
have:
(17€)maX((17pl)%7%) 2(17@)&1*%)%
= T30+ /el
therefore from (11) we have:
2 A
Pr|[|[X +pEPh > (1 - )= | >1-4
r || +m ||17( 3(l+1))6l = 0
Now consider a set P C R, such that for any p € R, ||p||» =
1, there exists p* € P, such that ||p —p*|l1 < 522 One

p0851ble choice is to take P such that it contains all possible

vectors of the form (54(1+A1)3 ey 54&“)3 for all integer i;,

such that ||p|l1 < 1. An immediate calculation gives that
54(l+1)3

this set would contain at most ( )! elements. Using

the fact that §p = )31, and a union bound, with proba-

t(4l
bility at least 1 — ;, we have that for all p € P,
2 A
>(1— )=
Wl = (=36

Finally, for any p, there exists p’ € P, such that ||p — p’||1 <
2 and thus we have:

Wipllh = IW(@ + (p—p))lh (14)
> W[l = IWilp — Pl (15)
> (Wil =3Il = ) (16)
2 A A
= U35 9)a " maroz 47
1 A A
> (1- m)a = (18)

6+ 1)

where the transition in (16) follows from the fact that all
columns in W, have norm at most 3 with high probability.
Thus given the induction hypothesis the TOW;) >

A
6(1+1)
with probability at least 1 — ;, combining it with the fact

that the induction hypothesis holds with probability at least

1-— (lftl)‘s, we immediately have that T'(W;) > 6(%1) with

probability at least 1 — 2. This finishes the proof of the

t
induction hypothesis, and in turn completes the proof of

the lemma. H

Now we fulfill the main promise of this section and prove
that topics along any path are independent in linear alge-
braic sense:

THEOREM 3.4. Suppose W = [T(O) .7T(171)} is a path
between the root and some mnode in the topic hierarchy, and
such that topic T® was obtained by applying a mutation
vector £V | satisfying the conditions (i)-(ii) of Lemma 3.3 .
Then with probability 1 —§, T(W) > &
Proof.  Recall T® is obtained from T¢~V by adding a
random change vector and re-normalizing:

T = oy (T 4 £W), (19)

where «; is a normalization coefficient introduced to main-
tain ||T||; = 1 . Using lemma 3.1, we immediately have
that «; < 2 with high probability. Now, consider any linear
combination of topics:

X =poTO+ ... +p_ 7"V (20)

and we need to show that if ||p||1 = 1, then || X]||1 is large.
To prove this we substitute (19) into (20) and regroup:

X =707 + 1M + .. 4y £V

where

Yi = Pi0i + Pi+1QiQir1 + ...+ Do -

Q=@ Zpa H Qq
(21)
where we define ap = 1. By the lemma 3.3 we have || X1 >
%H’yﬂl. Thus to prove the lemma, it suffices to show that
> il > 1/3 and the result would immediately follow. To
prove that, we rewrite equation (21) as
Yi = PiQ; + Vit1Qy,
but |vs| + |yir106] > |7 — vir1a4| and thus

[vi| + [viv106] > v — yir10a| = |picil,

dividing both sides by a;, summing over i and use Lemma
3.2, to show that a; > 0.5 we have:

l

l
3) Il 2 Z
=0

=0

| =1.

Therefore we have proved that ||v||1 > 1/3 and the lemma
follows. W

3.4 Hierarchical Models: Analysis. We start with a
simple definition, which quantifies a relationship between
document generated by any topic in the hierarchy, and an
arbitrary root based path in the hierarchy.

DEFINITION 1
Given some path in the hierarchy T(O), T<1), A T(l), and
a linear combination of topics (not necessarily on the path)
D =pT®) 4 4 ppyT®) . The projection of D on to a
path is a linear combination of topics D', such that

D' = p 7O 4, )

where w(b;) denotes the closest to T topic in the path.
Now we prove the key lemma of this section.

LEMMA 3.5. Let T, T ... TW be q path in the hi-
erarchy. Let R be some vector which was only chosen based
on TW, .,T(l>, but not any other topics, and such that
its mazimal element is bounded by some constant (3. Then
for any topic T, let T'*) be the closest topic to T'® and
suppose the path between them has length ¢ nodes, then we

have
{RTY — (RTYV)| < ce3 (22)

with high probability.®
topics, then

Furthermore, if M is a mizture of

[(RM) — (RM')| < mef3

where M’ is a projection of M on to the path T(O), ceey 7O
and m is the mazximal length of the path between any topic
in the mixture and a path.

°Tt is also possible to improve the factor of ¢ to 1/c in (22),
using martingales and increasing the length of the proof sig-
nificantly.

(PROJECTION OF A MIXTURE ON TO A PATH).



Proof. Let TY) be the closest node in the path to 7(®). The
proof is based on the observation that 7 is an ancestor of
T, Let T ... T be a path from T to T©). To
prove our lemma it is sufficient to prove that if 7" is a child
of T and R is independent of T” then

[(RT') — (RT)| < ¢f8

and apply triangle inequality.

Recall that 7" = o/ (T + £’), where o/ and £’ are respec-
tively the normalization constant and the mutation vector
from the generative process. Therefore we have:

|((RT") — (RT)] (1= a/)(RT") + o/ (RE")|

< (1-a)B+ o/ (REY, (23)

Now we just need to compute an upper bound for the right
hand side. For the first term, using Lemma 3.2, we have
|1 — o'| < ¢/2 with high probability. To bound the second
term note that &£/ are chosen independently of R, so we can
rewrite (RE') = 37| Ri&;, where all terms in the sum are
independent and have zero expectation, so we can apply
Hoeffding’s inequality:

2 2 5
! >& < & < £ < Z
Pr {(Ré’)_ 2] < 2exp <2HM'H2 < 2exp 2:3) =2

where M’ denotes the vector of absolute maximal values
that £ can take and we used &2 from the constraint (iv) on
the slope ratio of the hierarchical construction.

The generalization to a mixture of topics follows automat-
ically by applying the previous result to each of the term in
the linear combination and using the fact that the mixture
is normalized. W

Now we conclude this section by building a connection
between documents and topics in the hierarchy. Recall that
a document is a sample from a mixture of topic distributions.
The next corollary shows that we can use the document to
infer the relevance to each of the topics to an arbitrary path
in the hierarchy.

COROLLARY 3.6 (DOCUMENT RELEVANCE TO A PATH).
Consider a path starting from the root T(*) ... T qnd
the corresponding weight matriz W = [T(O), .. .,T(”] and
let V' be a pseudoinverse of W. Let a document is sampled
from a mixture

D= p1T(b1) N +pl/T<bl/)

(not necessarily overlapping with the topics in the path) and
let D be the term count vector of this document, then the
vector + = VD would approximate the coefficients of the
projection of D onto the path.

Proof.  The proof follows immediately from the previous
lemma and the lemma 2.2 H

3.5 Algorithms. In this section we present our algo-
rithms and make some additional remarks on the analy-
sis. There are three algorithms to be discussed here. First,
given a path in the hierarchy (such as machine learning —
computer science — science — base), we would like to
compute where in the hierarchy a given document belongs.
If, for example, a document is related to machine learning
and biology, when for the path above, we will learn that it is

related to both machine learning and science (as science
is the closest ancestor of biology that is in the path). Or,
alternatively, if a document is about soccer, it will be as-
signed to the baseline topic. From Corollary 3.6 it follows
that the relevances computed by using pseudoinverse are an
accurate approximation of the projection of the real mixture
onto the path.

Our second algorithm is concerned with reconstructing
the hierarchy given the term distributions for topics.® Fi-
nally, we present an algorithm that finds topics and builds a
topical hierarchy from unlabeled data. Here we use a mod-
ification of an algorithm from [22] that extracts topics from
the co-occurrence matrix.

Classification along the path. The algorithm is based on
the fact that that topics along the path are sufficiently in-
dependent, which implies that we can build a pseudoin-
verse matrix for those topics with bounded maximal ele-
ment. Corollary 3.6 can then be used to prove that the
produced relevances are a projection of the real relevances
on that path.

ALGORITHM 3.1 (COMPUTING DOCUMENT RELEVANCE).

Input: A path in the hierarchy T(O),T(“)7 ... ,T(i’“), a
document’s indicator vector D
Output: Relevance to each of the topics along the path

1. Let W = [TOT00)  T00)]

2. Compute the pseudoinverse matrix V' such that VW =
I, and maz;;|Vij| is minimized.

3. Returnt =V D

8a. To cluster: return the topic i which mazximizes 7;.

Reconstructing the topic hierarchy given the leaf top-
ical distributions. The main idea of this algorithm is the
following observation: suppose we have a base topic T© and
some leaf topic T¢). Let W = [T©; 7] and let V. = W,
From Lemma 3.5 it follows if a topic 7% is in different sub-
tree than T, then we would have

VT ~ vT© = ((1)) (24)

since T? is the closest node in the path to T7¥. However
if 79 is in the same subtree then we don’t have any guar-
antees for the value VT'(?. Indeed, our lemma says that the
value would be close to the value of the closest topic which
lies on the path between T and T®. However we don’t

know that topic. We conjecture,” that VT (g) where
a+ (6 =1 and their ratio is defined by the ratio of distances
(under some proximity measure) to the base topic and the

topic T©. This gives us a foundation for the algorithm: we
can approximate baseline topic by computing cumulative

SAn application for this algorithm would be if we have la-
beled data and would want to build automatic topic hierar-
chy.

"We can prove this for a special case of gaussian change
function.



term distributions across all the documents available. Then
for each topic 7" we compute all the topics which lie outside
of the subtree where T’ belongs to, and then we combine
all the leafs in the subtree to build a new root for the sub-
tree and iterate. A high level description of the algorithm is
below.

ALGORITHM 3.2  (ToPrIC HIERARCHY).
Input: A collection of topical distributions, a threshold value
T2>0
Output: A topic hierarchy

1. FEstimate baseline topic T© by computing average dis-
tributions across all topics.

2. For each leaf topic T'® consider weight matric W =
(T<C),T(O)) and compute generalized pseudoinverse V'
using linear programming described in Section 2.2

2a. For all other leaves topics TV, compute r = VTP
and assign T and T to the same subtree ifry > 1.

3. As a result of step [2], we get a disjoint family of topic
sets, each of them will form independent subtree.

4. Apply steps 1-8 recursively on each subset.

Reconstructing the topics from unlabeled data. In this
section we give an empirical algorithm on how to construct
the topics out of a large collection of unlabeled data. The
algorithm could be used for both leaf topic reconstruction
and hierarchy reconstruction, and produces classification as
a byproduct. Consider a co-occurrence matrix P;;, which for
every pair of terms i and j measures how often they occur
in the same document across the entire collection. Then
we normalize all the columns so that they represent valid
probability distributions. Then we approximate the root
distribution by the aggregate distribution of terms across all
documents. After that, we choose a column such that the L
distance between the column and the baseline distribution
T is maximal. We treat it as a topic and run Algorithm
3.1 to do binary classification between T® and the found
column. The promise is that all the documents which are
outside of the same tree will be assigned to the 7O topic,
and the documents which are in the same subtree topic will
get assigned to the found topic. After that we iterate the
entire algorithm on remaining data and/or we can further
iterate the algorithm on the constructed cluster to build
subtree.®

ALGORITHM 3.3 (RECONSTRUCTING THE TOPICS).
Input: Unlabeled Data
Output: Topical hierarchy and classification.

1. Build the co-occurrence matriz P from the data and
normalize (in L1 norm) its columns.

2. Estimate the baseline distribution T'© by computing
the term histogram across all documents.

8. Choose a column P; of the co-occurrence matriz which
maximizes the L1 distance to baseline topic.

8Due to space constraints, we omit a few important details
on how to deal with the fact some of the columns might not
be well approximated. We refer to the actual code which
is available upon request, for more details.

1 2 3 4 5 6 7 8 9 10

1.20 113 1.17 1.12 1.25 1.07 1.056 .91 .86 0
-32 -11 -12 -05 -37 -02 -26 .16 .18 1

11 12 13 14 15 16 17 18 19 20

46 1.15 1.03 1.03 1.09 106 1.056 .99 1.05 1.0
48 -17 -05 -08 -02 -02 -01 .04 -07 .02

Table 1: First row contains relevance of each of the 20
newsgroup to rec.sport.baseball (topic 10). The second
row contains the relevance to the baseline topic.

4. Use P; and T as two topics and perform the clus-
tering by using Algorithm 3.1:

4a Let W = [Pi;T(O)] compute the pseudoinverse
V=w
4b For each document d compute vd and assign doc-

uments which have high relevance to P; to the new
cluster.

4c Use all the documents assigned to a cluster to re-
fine the term distribution for the cluster

5. Remowve clustered documents from the collection and
iterate the algorithm until (1 —¢€) of all documents are
clustered

7. Apply the algorithm on the each cluster.

4 Experiments

We perform two kinds of experiments. First we validate our
model by performing some experiments on labeled data. In
the second part all our experiments are performed in fully
unsupervised manner, we reconstruct both the topics and
the hierarchy, and perform clustering and compare it with
the ground truth. .

4.1 Model validation and reconstructing hierarchy
from labeled data. In this section we perform a few exper-
iments on labeled data to reconstruct topic hierarchy given
topical distributions themselves. In particular for each topic
distribution we create the set of other topics which our al-
gorithm deem related to it.

We use 20 newsgroup[19] dataset which contain 20 follow-
ing newsgroups:

1. graphics, 2. os.ms-windows-misc,

3. ibm.hardware, 4. mac.hardware,

5. windows.x, 6. sci.electronics

7. misc.forsale, 8. rec.autos, 9. rec.motorcycles
10. rec.sport.baseball, 11. rec.sport.hockey

12. sci.crypt, 13. sci.med 14. sci.space

15. soc.religion.christian, 16. alt.atheism

17. religion.misc, 18. politics.guns

19. politics.mideast, 20. politics.misc

We use the numbering above consistently throughout the
rest of the paper.

Let ¢ be one of the topics (say rec.sport.hockey), let
W = [T<0); T<C)} and V = W1 is generalized pseudoinverse
matrix with minimal maximal element. Now, for each of
the topics (including rec.sport.baseball) we compute the



2-dimensional vector VT() and the results are presented in
Table 1. The most striking result in the table above is that
for a given topic T4 which is semantically unrelated to T(*,
the product VT(? is either very close to V x T(® = ((1))

(topics 6, 7 and 13-20), or has the form V(¥ = (7%)

for some positive a (topics 1-4). For semantically related
topics, such as topic 11 (rec.sport.baseball) we have rel-
evance (g:ig) and somewhat related 8 (rec.autos) and 9
(rec.motorcycles), we have ~ (g:é). It is interesting that
for most of the topics, the prediction from the theorem 3.5
carry out almost precisely.

The negative relevance phenomenon can be easily ex-
plained in the framework of the model. Recall that we
approximate the baseline topic distribution T by aver-
aging the term distribution across all the documents in the
data. However, if we have a bias for some topic (or many
related topics) in the collection, then our baseline distribu-
tion might become biased towards that topic. E.g. if a leaf
topic T = T 4 £ and T@D = 7O 4 £@ put instead
of finding the true T® we found

~ 1
T(O) — T(O) + g(c/‘(C)7 (25)

then topics ¢ and d are no longer probabilistically indepen-
dent from each other given T(»). Instead we have:

7@ — gfm _ %T@ L@ (26)

Let V be a pseudoinverse matrix of W = [T 7(9)] multi-
plying both parts of (26) by V' we immediately have:

v = (—1/2)+V§€( '~ (—1/2)

Tuning the constant in the bias formula (25) we get that

VT = (lj':‘), which is exactly what we observe in our

experiments. Furthermore, topics 1-4 in the table 1 that
exhibit this behavior are indeed a part of the largest topic
in the dataset (computer related documents).

Now we apply Algorithm 3.2 with the thresh-
old parameter 7 = 0.3. It produces 8 high
level topics which we roughly name as: all com-
puter related, sci.crypt, sci.space, sci.med, politics,
sports, motor vehicles and religion. Iteration on each
component produces a collection of individual topics with
the exception of ibm.hardware and mac.hardware and the
latter remain grouped and needed one more iteration to
split. Note that produced hierarchy is a perfectly reason-
able hierarchy on the newsgroups.

4.2 Clustering arXiv. In this section we perform un-
supervised clustering of arXiv dataset[2]. The snapshot has
approximately 250,000 abstracts on various areas of physics,
and also computer science and math. The first level of the
hierarchy produced by our algorithm is presented in Table 3.
Also the recall/precision table corresponding to the full hier-
archy is presented in Table 2. Note that the arXiv contains
many heavily overlapping topics, and it is not clear, that
there would be a consensus if we did classification manually.
For example, many abstracts assigned to quantum-ph and
cs (cluster 5), are about quantum computing, and it is prob-
ably not possible to differentiate them in a meaningful way.
Nevertheless, many topics do get separated cleanly with

all clusters majority
topic(size) R/P NC R/P NC
math-ph (2880) 0/0 0 [ 0/0 0O
hep-ph (37926) 79 /69 18 73 /)77 14
nucl-ex (1373) 46 / 44 2 21 /58 1
nucl-th (8467) 46 /61 3 | 46/61 3
gr-qc (10993) 56 /41 7 | 14/64 2
cond-mat (47536) | 87 / 69 10 80 /78 6
astro-ph (44702) | 90 /83 9 | 86/94 5
hep-lat (5813) 16/51 2 || 8/53 1
quant-ph (7273) 43 / 84 1 43 / 84 1
cs (3549) 64 /78 1 64 /78 1
hep-ex (4646) 51/80 4 | 47/89 3
hep-th (31603) 66 /64 14 | 54 /74 10
nlin (9750) 17 / 45 2 12 / 54 1
physics (6866) 7/ 42 1 0/0 0
math (23368) 81/82 2 | 81/82 2
total (246745) 70/70 76 63 /80 50

Table 2: Recall/precision tables for arXiv hierarchy.
When counting P/R, each cluster (e.g. all documents as-
signed to a single leaf node in the hierarchy) is assigned
to the most expressed topic in that cluster. In the col-
umn “all clusters” the P/R is counted over the union
of all clusters assigned to a particular topic. NC stands
for the total number of clusters assigned to a topic. The
second column contains recall/precision table where we
disqualify all the clusters where the largest topic is not
a majority.

high precision and recall (in particular astro-ph, hep-ph,
condensed matter, computer science and math). Another
interesting and exciting property of the algorithm is that
it successfully separated topics of very different sizes. The
most striking example is computer science (3K documents,
64% recall/78% precision in a single cluster), and one of the
largest topics astro-ph (45K documents, 58% recall, 93%
precision in the largest cluster, or 86%/94% if we combine
the 5 clusters where astrophysics is a majority). We also
note that for two topics math-ph and physics we did not
succeed finding clusters where they would form a majority
— which however, comes hardly as a surprise, as they don’t
have well defined boundaries (especially physics!) and span
across many areas of physics and mathematics.

4.3 Clustering of Newsgroups 20. We present the
first level topics of the newsgroup hierarchy that our al-
gorithm has reconstructed in table 4.3. Note that for reli-
gion/political newsgroups our algorithm produced high level
clusters which go across groups boundary, but yet make per-
fect sense: Cluster 8 contains mostly documents related to
wars (politics.mideast and politics.guns). Cluster 4 contains
mostly documents related to religion, and cluster 9 contains
medical and health related documents contains sci.med and
partly some politics.

5 Conclusions and Open Problems

We have proposed a new generative model to describe hi-
erarchical topic structure in discrete mixture models. Our
analysis provides a mathematical framework and enables ef-
ficient algorithms for text classifications and topic hierarchy
reconstruction. One of the key features of our approach,
is that it provides guarantees without the assumption that
the entire model is reconstructed. Now we outline a few



(size) major topics (recall)

1 (16K) | 85% math (59%)

2 (10K) | 99% astro-ph (24%)

3 (12K) | 75% hep-ph (24%), 18% hep-ex (48%),
4 (17K) | 91% cond-mat (34%),

5 (23K) 20% quant-ph (40%), 15% astro-ph (8%),
6 (19K) | 42% hep-ph (21%), 28% hep-th (17%),
7 (39K) | 63% cond-mat (50%), 12% nlin (51%)
8 (27K) 93% astro-ph (58%),

9 (25K) | 49% hep-th (39%), 24% hep-ph (16%)
10 (19K) | 51% hep-ph (26%), 28% nucl-th (66%)
11 (35K) | 30% hep-th (33%), 21% math (31.2%)
n/a(5K) | 21% astro-ph (2%), 18% hep-ph (2.5%)

Table 3: The clustering or arXiv that only uses the top
level topics. The first number before each topic is that
topic’s precision in that cluster, the number inside the
parentheses is the topic’s recall in the cluster. For each
cluster we show the most represented topic(s) in that
cluster. Note that some topics are so small that they
don’t appear in this top level hierarchy (like cs, which is
almost entirely in cluster 5, but only contributed 12%
of its size).

open questions and further directions for this framework.
We know how to classify documents along the path in the
tree. However the algorithm which reconstructs the path
(and the tree) is based on a conjecture that says that topics
on the path between root and leaf note behave in a continu-
ous manner, and this allows to differentiate between topics
which belong to the same subtree. It would be interesting
to prove this conjecture. Another related direction would
be to develop a connection between proposed model and
phylogenetic trees reconstruction problem. We believe that
out approach can provide a valuable tool for the analysis of
the origin of species. Another interesting direction is to use
our algorithm to build hierarchy on terms. In particular we
could apply the algorithm which reconstructs topic hierar-
chy to the co-occurrence matrix, and that would create an
hierarchy on terms. Exploring this, would be an interesting
and exciting direction.
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