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Abstract

Monitoring large-scale cloud networks is a complex task because their scale is prohibitively large, monitoring

budgets are limited, network topologies are not regular and the estimates produced are a function of traffic patterns.

In this work, we take a statistical approach to estimating a network metric, such as the latency of a set of paths,

with guarantees on the estimation error. We aim to do so in an intelligent and scalable manner, without observing

all existing traffic, and minimizing the estimation error at a fixed probing budget per unit of time. Our algorithms

produce a distribution of probes/samples across network paths which can be used in conjunction with existing probers

(or samplers). These algorithms are based on A- and E-optimal experimental designs in statistics, which guarantee a

bounded estimation error for any monitoring budget. Unfortunately, these designs are too computationally intensive

to be used in production at scale. We propose a scalable and near-optimal approximate implementations based on the

Frank-Wolfe algorithm. We validate our approaches with two metrics (latency and loss) in simulations on real network

topologies, and also using a production probing system in a real cloud network. We show major gains in reducing the

probing budget compared to both production and academic baselines, while maintaining low errors in estimates, even

with very low probing budgets.

1. Introduction

Monitoring is key to many management and traffic engineering tasks which enable high service availability. The

research community has enthusiastically on-boarded the challenge of designing scalable cloud network monitoring

systems (see, e.g. [20, 18, 32, 19, 34, 22, 16]), an effort which generally relies on the ability to (i) collect exhaustive

data in a timely manner, (ii) optimally store the data or a summary of it, and (iii) perform efficient computations

using the data, in order to accurately estimate network metrics. A large majority of these research papers focuses on

data center networks (to take advantage of their architectural properties), using sketches and optimal data structures

to increase scalability [20]. Unfortunately, monitoring data center networks separately is not sufficient to track cloud
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customers’ experience as customer traffic is generally not local to a single data center.

At the global cloud infrastructure scale, monitoring every link and endpoint in the network by measuring all

metrics on a real-time basis is impossible to achieve in production. First, the geographical and infrastructural scale of

these networks is prohibitively large and usually growing at a rapid pace. Secondly, routers and hosts in the network

often have limited memory and CPU resources. Within hosts, the goal is to preserve as many resources for revenue-

generating usage as possible. As a result, not only is it impossible to measure and monitor the network at all points

and at all times, there is no acceptable amount of CPU or memory that can be reserved for these tasks. Practically,

this translates to a ”using as little as possible” philosophy for monitoring tasks, generally enforced by router and

host-level maximum probing (or sampling) budgets.

We claim that for network monitoring, better does not necessarily mean more. We take an approach that consists

of judiciously collecting the best possible measurements for any monitoring budget. We formulate an optimization

problem whose constraints model global and local budget limitations, and whose solution is an optimal distribution

of probes over paths of interest in a network topology. Using this optimal distribution, one then generates probes and

collects measurements that are subsequently used for the estimation of network metrics with statistical guarantees.

We use networks paths as the primary structure of interest. A path can be viewed as a sequence of links (such as

hops between routers) joining two end points (i.e. hosts), or more abstractly as a feature vector with path characteris-

tics.

Problem. Given global and local probing budgets and the network topology (or other network “features”) as inputs,

we want to determine the optimal probing distribution across all network paths to accurately estimate a network metric

of interest across every path,

This work is only concerned with the process of optimally distributing a total probing budget among the network’s

paths (per unit time) before the probes are scheduled. We assume that the probing mechanism is a black-box, and we

do not deal with how probes are spaced (in time) on each path, such as Poisson or Uniform.

While for simplicity reasons, this paper deals with probing, our approach applies directly to sampling. However

sampling only applies to links with existing traffic, making it necessary to know the traffic matrix in order to optimize

the sampling rate).

This work finds its roots in network tomography [3] (the ability to infer network metrics - mainly loss and latency -

from probes sent in the network) and optimal monitor placement [4] (i.e. where to monitor and at what rate, in order to

perform accurate measurement of metrics with limited impact on network resources) in the early twenty-first century.

The closest related prior work is Chua et al. [6] where the authors present a method to select (approximately) the best

subset of network paths to measure given scale constraints. We use the algorithm proposed in [6] as a baseline for

comparison to our methodology. Relevant literature is reviewed in more detail in Section 7.

Proposed Solution. We formulate an optimization problem where we minimize the average or maximum estima-

tion error for a metric of interest, such as latency across all paths, subject to measurement constraints, such as probing
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budgets at each node in the network. The output is an optimal distribution of probes across the paths in the network,

per time unit.

We show that our framework is fairly generic. In Section 3.1, we introduce linear models and discuss their prop-

erties that allow us to estimate network latency with guarantees. We use a well-known property of linear regression,

known as the optimal design (Sections 3.2 and 3.3), where the optimal probing distribution over network’s paths can

be determined without any prior observations, simply as a function of the features of the paths. As it is not possible to

model all network metrics using linear models, we introduce generalized linear models (GLMs) in Section 4.5. This

model also allows us to apply the same principles of optimal design. In Section 8 and Appendix Appendix A, we also

discuss a general reduction for any non-linear model, which would take us beyond just latency and loss that are the

metrics studied in this paper.

While optimal designs provide solutions to the optimization problem with statistical guarantees, they are known to

be computationally challenging and they are not usable in production environments. In Section 4, we propose an ap-

proximate solution using the Frank-Wolfe algorithm [11], which is near-optimal and enables a scalable implementation

in very large networks.

We evaluate our approach using both simulations (with real network topologies) and probing in a real production

cloud network. We compare our probing strategy to two baselines: (i) QR algorithm proposed in Chua et al. [6], which

selects the “best” subset of paths using SVD and QR decomposition; and (ii) a Prod baseline which distributes probes

across all paths evenly (uniformly). We choose QR because it is the closest related prior work which selects only a

few important paths and Prod because it is a common choice in practice, as it can be implemented easily in resource-

constrained production networks. We show that our probing strategy produces more accurate metric estimates (using

latency and loss) than both the baselines for similar probing budgets (Sections 5 and 6). Most importantly, even with

very low budgets, the estimation error remains low, which makes our approach usable for many telemetry tasks.

Contributions Summary. The main contributions of this paper are (1) the design of probing distributions that

minimize the error of a performance metric for a given budget; (2) a near-optimal implementation that allows deploy-

ment in large-scale networks, and (3) a thorough evaluation through simulation and probing in a large real network,

which shows good performance even for small probing budgets. A key strength of our approach is that it produces an

optimal probing distribution without having observed any prior traffic on the network.

2. Setting

The problem of statistical inference can be viewed as follows. The goal is to estimate an unknown function

f∗ : X → R that maps d-dimensional features x ∈ X to real values y ∈ R, where X ⊆ Rd is a set of all d-

dimensional feature vectors. In the networking domain, one example of f∗ is the latency of a path in a network with

d edges. In this case, x is a vector of edge indicators in a path, y = f∗(x) is the expected latency of that path, and

X ⊆ {0, 1}d is the set of all paths.

3



We estimate f∗ from a dataset

D = {(xi, yi) : xi ∈ X , yi ∈ R, i ∈ [n]}

of n training examples, where xi is the feature vector of the i-th example and yi is a noisy realization of f∗(xi). Our

goal is to learn a best possible approximation to f∗ with guarantees. We focus on two kinds of guarantees. The first

is the worst case, where we want to approximate f∗ well for all x ∈ X . Then a natural metric to optimize is the

maximum squared error of function f ,

Lmax(f) = maxx∈X (f(x)− f∗(x))2 . (1)

In our latency prediction example, X is the set of all paths and Lmax(f) is the maximum squared error of estimated

path latencies using f .

We also consider the average case. Specifically, let P be a distribution over feature vectors in X . Then we may

want to optimize the average error over x ∼ P ,

Lavg(f) = Ex∼P
[
(f(x)− f∗(x))2

]
. (2)

In our latency prediction example, P is a distribution over all paths X and Lavg(f) is the mean squared error of

estimated path latencies using f , weighted by P .

General approach. Now we are ready to state our goal. For a fixed error metric, such as Lmax, and a budget

of n measurements, we want to collect a dataset D such that we can learn a good approximation f̂ to f∗ from D,

as measured by Lmax(f̂). Note that this optimization problem is inherently difficult, since f̂ is learned from the

measurements (yi)
n
i=1 in D, which are unknown before the dataset D is collected. Therefore, in the rest of this work,

we focus on a simpler optimization problem of determining the relative frequency (distribution) of feature vectors x

in D that would lead to a good approximation f̂ with guarantees, after f∗ is measured at those feature vectors. This

problem is known as the optimal experimental design [24, 1, 26].

Our approach is summarized in Algorithm 1. In line 2, we determine the probing distribution α = (αx)x∈X of

feature vectors, where αx is the probing probability of feature vector x. This is the main optimization problem studied

in this work. In lines 3-7, we collect a dataset of n measurements, where each x appears αxn times in expectation.

Finally, in line 8, we learn an approximation f̂ to f∗ from dataset D.

3. Optimal Designs

To optimize errors (1) and (2), we focus on a class of functions f : X → R where |f(x)− f∗(x)| is bounded by an

expression that only depends on features (xi)
n
i=1, and not on measurements (yi)

n
i=1. One such class are linear models

(Section 3.1). In Sections 3.2 and 3.3, we derive probing distributions α that optimize the errors (1) and (2) in linear

models. This is the optimization problem in line 2 of Algorithm 1.

We discuss local budget constraints in Section 3.4. One of our goals is to ensure generality and feasibility in a

large and global modern network. We consider these and a generalization to non-linear models in Section 4.
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Algorithm 1 Estimating f̂ from probes.
1: Inputs: Budget of n measurements

2: Determine probing distribution α = (αx)x∈X

3: D ← ∅

4: for i = 1, . . . , n do

5: Set xi ← x with probability αx

6: Probe xi and observe yi

7: D ← D + (xi, yi)

8: Learn f̂ from the collected dataset D

9: Outputs: Learned function f̂

3.1. Linear Models

In linear models, the unknown value f∗(x) is linear in x and given by f∗(x) = x>θ∗, where x ∈ Rd is a known

feature vector and θ∗ ∈ Rd is an unknown parameter vector. The unknown θ∗ is estimated from noisy observations

y = f∗(x) + ε = x>θ∗ + ε , ε ∼ N (0, σ2) ,

which are obtained by adding Gaussian noise to the true value f∗(x). We assume that all examples in dataset D are

generated this way. Specifically, yi = x>i θ∗ + εi for all i ∈ [n], where εi ∼ N (0, σ2) are drawn independently.

A popular way of estimating θ∗ is by minimizing the sum of squares θ̂ = arg min θ
∑n
i=1(yi−x>i θ)2, the so-called

least squares regression. When
∑n
i=1 xix

>
i is invertible, this problem has a unique closed-form solution

θ̂ = G−1
n∑
i=1

yixi , G =

n∑
i=1

xix
>
i .

The above matrix G is known as the sample covariance matrix [14]. It is known that θ̂ follows a multivariate normal

distribution with mean E[θ̂] = θ∗ and covariance Cov(θ̂) = σ2G−1, for any fixed (xi)
n
i=1.

Given a new example with feature vector x, the true value f∗(x) = x>θ∗ is estimated by f̂(x) = x>θ̂. Since

θ̂ ∼ N (θ∗, σ
2G−1), it can be shown [14] that f̂(x) is also normally distributed,

f̂(x) ∼ N (f∗(x), σ2x>G−1x) . (3)

From tail inequalities for Gaussian random variables [10], it follows that

(f̂(x)− f∗(x))2 ≤ 2σ2log(1/δ)x>G−1x (4)

holds with probability at least 1− δ. Therefore, the problem of designing a good approximation f̂ to f∗, with a high-

probability bound on (f̂(x)− f∗(x))2, reduces to designing a good sample covariance matrix G, with an upper bound
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on x>G−1x. Note that x>G−1x does not depend on the measurements yi in D; it only depends on the features xi.

Because of that, we can derive desirable probing distributions α that depend only on X .

Although linear models are simple, they are useful for modeling a canonical networking problem of predicting

latency. In particular, since the latency of a path is the sum of latencies on edges of that path, the latency is a linear

function. That is, let θ∗ ∈ Rd be a vector of mean latencies of d edges, where θ∗(e) is the mean latency of edge e. Let

x ∈ {0, 1}d be a vector of edge indicators in a path. Then f∗(x) = x>θ∗ is the mean latency of path x.

3.2. E-Optimal Design

This section discusses our first approach to optimizing G. The description of this and later methods requires some

notation and definitions from linear algebra, which we introduce next. For any symmetric matrix M ∈ Rd×d, we

denote by λi(M) the i-th largest eigenvalue of M . We let λmax(M) = λ1(M) and λmin(M) = λd(M). The trace

of M is the sum of its eigenvalues, tr (M) =
∑d
i=1 λi(M). We say that M is positive semi-definite (PSD), and we

denote it by M � 0, if x>Mx ≥ 0 for all x ∈ Rd.

Now we are ready to introduce our first approach. Minimization of the maximum error in (1) reduces to optimizing

G as follows. Suppose, without loss of generality, that X in (1) is a unit sphere, X = {x : ‖x‖2 = 1}. Then

Lmax(f̂) ∝ max
x∈X

x>G−1x = λmax(G−1) = λ−1
min(G) .

The first step is from the definition of Lmax in (1) and (4), where we omit the constant factor of 2σ2 log(1/δ). The

first equality is the definition of the maximum eigenvalue, and the second equality is a result in linear algebra, that the

maximum eigenvalue of a PSD matrix M is the reciprocal of the minimum eigenvalue of M−1 [28].

Therefore, minimization of (1) amounts to maximizing the minimum eigenvalue of the sample covariance matrix

G. This is known as the E-optimal design and can be formulated as a semi-definite program (SDP) [31]

max τ (5)

s.t.
∑
x∈X

αxxx
> � τId ,

∑
x∈X

αx ≤ 1 , ∀x ∈ X : αx ≥ 0 .

This SDP has two types of variables. The variable τ is the minimum eigenvalue of the sample covariance matrix and

it is maximized. The variable αx denotes the probing probability of feature vector x (line 2 of Algorithm 1).

3.3. A-Optimal Design

Minimization of the average error in (2) reduces to optimizing the sample covariance matrix G as follows. Let X

be the unit sphere in Section 3.2 andP be a uniform distribution over it. LetUΛU> = G−1 be the eigendecomposition
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of G−1, which is PSD by definition. Then

Lavg(f̂) ∝ Ex∼P
[
x>G−1x

]
= Ex∼P

[
x>UΛU>x

]
= Ex∼P

[
x>Λx

]
∝

d∑
i=1

λi(G
−1) = tr

(
G−1

)
.

The first step is from the definition of Lavg in (2) and (4), where we omit the constant factor of 2σ2 log(1/δ). The

second equality holds since U only rotates x and X is a sphere. The next step follows from X being a sphere.

Therefore, minimization of (2) amounts to minimizing the sum of the eigenvalues of G−1, which is equal to its

trace. This is known as the A-optimal design and can be formulated as the following SDP [31]

min

d∑
i=1

τi (6)

s.t. ∀i ∈ [d] :


∑
x∈X

αxxx
> ei

e>i τi

 � 0 ,

∑
x∈X

αx ≤ 1 , ∀x ∈ X : αx ≥ 0 ,

where ei is the i-th element of the standard d-dimensional Euclidean basis. This SDP has two types of variables. The

variable τi represents the i-th eigenvalue of the inverse sample covariance matrix. The sum of these variables
∑d
i=1 τi

is tr
(
G−1

)
and it is minimized. The variable αx is the probing probability of feature vector x (line 2 of Algorithm 1).

3.4. Local Budget Constraints

Both optimal designs (5) and (6) output a probing distribution α = (αx)x∈X subject to a single global constraint∑
x∈X αx = 1. In practice, local constraints are common. For instance, we may want to enforce that most paths

do not start in a single source node, simply because such a probing strategy cannot be implemented due to resource

availability constraints. Such constraints can be enforced as follows. Let src(x) be the source node of path x and

S = {src(x) : x ∈ X} be the set of all sources. Then

∀s ∈ S :
∑
x∈X

1{src(x) = s}αx ≤ b

is a set of linear constraints in α that limit the probing probability from any source s to at most b. Because the

constraints are linear in α, they can be easily incorporated into (5) and (6) without changing the hardness of these

problems. We experiment with local budget constraints in Section 5.5.

4. Practical Implementation

The experimental designs in Section 3 are theoretically sound and well understood. Unfortunately, it is imprac-

tical to solve them exactly as SDPs. We report our initial experience with this approach, as well as approximating
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it, in Section 4.1. To address this issue, we propose a general practical solution that combines the strengths of linear

programming and gradient descent in Section 4.2. We instantiate this solution in E- and A-optimal designs in Sec-

tions 4.3 and 4.4, respectively; and evaluate it comprehensively in Sections 5 and 6. Finally, we also show how to

extend optimal designs to generalized linear models in Section 4.5. We discuss more general non-linear models in

Appendix Appendix A.

4.1. Initial Experience

Exact solutions to the SDPs in (5) and (6) are computationally costly [2]. The issue is that they are generally solved

using interior-point methods [7], which are slow in practice and scaling them up is a problem-specific art. As a result,

the design of practical and general algorithms for large-scale SDPs remains an open research problem.

Initially, we tried to solve the E-optimal SDP in (5) exactly. In this paragraph, we summarize our findings on

synthetic problems in Section 5, which we call topologies A-C. We defer detailed descriptions of these problems to

Section 5. For now, the only relevant information is the scale of the SDPs. In topologies A / B / C, the number of

features d (edges) is 251 / 197 / 440; and the number of variables (paths) is |X | = 500 which is a small subset of those

that we use in the experiments in Section 5. To solve these SDPs, we used CVXPY [8], a publicly available library

for convex programming, on a 32 core workstation with 128 GB RAM. The run times for topologies A / B / C were

4 400, 1 800 and 31 700 seconds, respectively. The A-optimal SDP in (6) crashed due to running out of memory for

all topologies. These are clearly not practical solutions.

Our first attempt at solving (5) approximately was based on the fact that enforcing A ∈ Rd×d to be PSD equates

to satisfying infinitely many constraints x>Ax > 0, for any x ∈ Rd, which were linear in our parameterization of

A. We used this fact to design an approximate cutting plane algorithm, which generated x and solved a sequence

of LPs. This approach reduced the run time by two orders of magnitude when the number of added constraints was

small. However, we also observed a significant drop in the quality of the solutions. The quality of the solutions

increased with more constraints, but so did the computational cost. In general, this approach was hard to scale because

the added LP constraints were not sparse, which is necessary for efficient LP solutions. For more details, refer to

Appendix Appendix B.

The above attempt can be viewed as solving (5) and (6) exactly on an outer polytope of the feasible sets. Due to the

drop the solution quality, we considered an opposite approach next. Roughly speaking, we do not change the feasible

set and solve our SDPs approximately using the Frank-Wolfe algorithm [11]. This resulted in near optimal solutions

and orders-of-magnitude reduction in run time, as shown in Section 5.3. We summarize the run time differences of all

experiments in this paper together in Appendix Appendix C.

4.2. Frank-Wolfe Algorithm

The Frank-Wolfe algorithm [11] is a popular algorithm for constrained optimization problems of the form

min
α∈A

f(α) , (7)
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where f is the optimized function, A ∈ Rd is a convex feasible region defined by linear constraints, and α ∈ A is the

optimized parameter vector. The algorithm solves (7) iteratively as a sequence of linear programs (LPs)

g(α) = arg min
α̃∈A

α̃>∇f(α) , (8)

where∇f(α) is the gradient of f at α.

The algorithm works as follows. The input to iteration i is a feasible solution α(i) ∈ A. Based on this solution, the

objective in (7) is approximated by a linear function at α(i) and the corresponding problem is solved as α′ = g(α(i)).

Then the Frank-Wolfe algorithm solves a line search problem

α(i+1) = arg min
c∈[0,1]

f(cα(i) + (1− c)α′) ,

where α(i+1) is the next feasible solution. Roughy speaking, this procedure can be viewed as gradient descent on f

where α(i+1) is guaranteed to be feasible. This is a major advantage over gradient descent [2], which may require a

projection to A. The Frank-Wolfe algorithm converges when f and A are convex.

The Frank-Wolfe algorithm strikes an elegant balance in our setting. On one hand, the LP in (8) can represent the

linear constraints in (5) and (6). On the other hand, the hard problem of eigenvalue optimization is solved by gradient

descent. In what follows, we apply this approach to A- and E-optimal designs.

4.3. Frank-Wolfe E-Optimal Design

The E-optimal design in Section 3.2 maximizes the minimum eigenvalue of the sample covariance matrix,

max
α∈∆

λmin(Gα) , (9)

where Gα =
∑
x∈X αxxx

> is a sample covariance matrix parameterized by probing distribution α ∈ ∆ and ∆ is the

set of all distributions over X . Then from the definitions of λmin and Gα, we have that

λmin(Gα) = min
v∈Rd:‖v‖2=1

v>

(∑
x∈X

αxxx
>

)
v

= min
v∈Rd:‖v‖2=1

∑
x∈X
‖v>x‖22 αx .

Since
∑
x∈X ‖v>x‖22 αx is linear in α for any v, we have that λmin(Gα) is concave in α. Thus −λmin(Gα) is convex

in α and we can solve (9) by the Frank-Wolfe algorithm (Section 4.2).

To instantiate the algorithm, we let

A = ∆ , f(α) = −λmin(Gα) .

Since λmin(Gα) is linear in α,

∇f(α) = −∇λmin(Gα) = −
(
‖v>minx‖22

)
x∈X ,
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where vmin is the eigenvector associated with λmin(Gα).

The time to compute the gradient ∇f(α) is linear in |X |, the number of partial derivatives. Since this is the most

computationally-demanding part of our implementation of the Frank-Wolfe algorithm, its run time is nearly linear in

|X | and the number of iterations. Thus, the approach scales to large problems.

4.4. Frank-Wolfe A-Optimal Design

The A-optimal design in Section 3.3 minimizes the trace of the inverse sample covariance matrix,

min
α∈∆

tr
(
G−1
α

)
, (10)

where Gα and ∆ are defined as in Section 4.3. Since (10) is convex in α [2], we can solve it by the Frank-Wolfe

algorithm (Section 4.2).

To instantiate the algorithm, we let

A = ∆ , f(α) = tr
(
G−1
α

)
.

For any invertible matrix M ∈ Rd×d, we have that [25]

∂tr
(
M−1

)
= tr

(
∂M−1

)
= −tr

(
M−1(∂M)M−1

)
.

Now we apply this identity to M = Gα and note that the partial derivative of Gα with respect to αx is ∂Gα/∂αx =

xx>. This yields

∇f(α) = −
(
tr
(
G−1
α xx>G−1

α

))
x∈X .

4.5. Generalized Linear Models

Generalized linear models (GLMs) [21] extend linear models to non-linear functions, in a way that inherits their

attractive statistical and computational properties. Specifically, in the GLM, the measurement y ∈ R at feature vector

x ∈ X has an exponential-family distribution with mean f∗(x) = µ(x>θ∗), where µ is the mean function and θ∗ ∈ Rd

are model parameters [21]. For any mean function µ, it is well known that the matrix of second derivatives of the GLM

loss at solution θ∗, also called the Hessian, is

H =

n∑
i=1

µ̇(x>i θ∗)xix
>
i , (11)

where µ̇ is the derivative of the mean function µ. This Hessian plays the same role as the sample covariance matrix G

in (4) [5]. Hence, up to the factor of µ̇(x>i θ∗), the optimal designs in Sections 3.2 and 3.3 optimize the maximum and

average errors (Section 2) in GLMs.

We use Poisson regression, an instance of GLMs, in Section 5.4 to estimate packet losses. In this problem,

f∗(x) = exp[x>θ∗] is the probability that the packet is not dropped on path x ∈ X and θ∗ ∈ Rd is a vector of

log-probabilities that packets are not dropped on individual path edges.
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5. Synthetic Experiments

In this section, we evaluate the quality of the estimates produced by the Frank-Wolfe probing distributions. All

experiments are on simulated data. We first introduce (Section 5.1) the nomenclature required to understand the

setup, experiments, results, and evaluations. Next we describe the common experimental setup in detail (Section 5.2)

followed by the specifics of latency experiments and results (Section 5.3), and the packet loss experiments and results

(Section 5.4). Finally, we study the impact of local probe budgets on our methods (Section 5.5).

5.1. General Setup

Network Graph. A network topology is converted to a network graph comprised of nodes and edges. The nodes in

this graph are points of presence (POPs), which are a collection of routing and networking equipment. The edges are

the physical links between the POPs. All sources and destinations in a POP are coalesced into a single POP node. This

is a simplification of the network topologies that we want to study and far smaller than major cloud infrastructures.

However, it is representative of the connectivity encountered in these networks, which is sufficient for demonstrating

the strengths of our approaches. We denote the number of edges in the network by d and perform our experiments

using the following 3 network topologies:

• Topology A: 101 nodes, 251 edges, 5 050 paths.

• Topology B: 82 nodes, 196 edges, 3 321 paths.

• Topology C: 192 nodes, 439 edges, 15 428 paths.

Note that these three topologies have very similar normalized edge (average for A/B/C: 3.71/3.6/4.37) and node de-

grees (average for A/B/C: 4.97/4.78/4.57), making it difficult to interpret the impact of these graph properties on the

performance of the methods studied in this paper. The normalized average edge degree is defined as the average edge

degree (average number of paths an edge appears on) divided by the ratio of total number of paths over total number

of edges. The average node degree is defined as the average number of edges of the node.

Metrics of Interest. We experiment with two metrics: latency and packet loss. For latency, we estimate the time of

a packet to traverse a path in a network. For packet loss, we estimate the probability of a packet being dropped at any

point on a path. The shades areas in our plots represent standard error of the estimates.

Budget Constraints. We assume a global budget of n probes per unit time. Since the quality of metric estimates

improves with more probes (Sections 5.3 and 5.4), all compared methods probe exactly n times. We experiment with

local budget constraints in Section 5.5.

Baseline I (QR). The algorithm presented in [6] is a natural baseline for comparison because [6] tries to solve a similar

problem, choosing the best subset of paths to probe. This algorithm works as follows. First, we compute the singular

value decomposition (SVD) of the path-edge matrix M , M = UΣV >, where U and V are orthonormal matrices.
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Next we choose the first k = rank(M) columns of U , denoted by Uk, and apply the pivoting QR decomposition to

it. The first k chosen rows of Uk represent important rows of M , paths that explain most information contained in M .

The budget is then spread evenly across these k chosen paths.

Baseline II (Prod). Prod spreads the budget of n measurements evenly across all paths. It is a natural point of

comparison because it also produces a probing distribution without prior knowledge of the traffic on the network. The

shortcoming of Prod is that it over-probes links that appear in many paths and under-probes those that appear in a

few. For additive metrics, such as latency, each link in the network can be viewed as a model parameter. Therefore,

the accuracy of estimated model parameters using Prod probing can vary a lot. Our methods are designed to precisely

address this issue, and compute the probing distribution to optimize the accuracy of learned model parameters.

We remind the reader that the time spacing of probes on a path is outside the scope of this paper.

Evaluation Criteria. We use the maximum error in (1) and average error in (2) in all experiments in this section. The

maximum error is the highest error over a set of paths. The average error is measured on the same paths and reflects

the average performance. For the maximum error in (1), the set of paths is X . Therefore, this error corresponds to

the most mispredicted path latency/loss probability. For the average error in (2), P is a distribution over paths X . We

design P such that we can evaluate the quality of learned models uniformly over all of their parameters. In particular,

P is defined by the following generative process. First, we choose an edge, uniformly at random. Then we choose

any path with that edge, uniformly at random. This choice guarantees that any edge appears in a sampled path from P

with probability at least 1/d. That is, for any i ∈ [d], Px∼P (x(i) = 1) ≥ 1/d, where x(i) is the i-th entry of vector x.

Trade-offs. Our approach trades off measurement accuracy and probing budget, as it is not always feasible in large

scale networks to measure with the maximum accuracy. We do that with theoretical guarantees. Therefore, when

compared to the baselines, we look for achieving a fixed level of accuracy with lower budget or achieving a higher

accuracy with a fixed budget. Naturally, the higher the probing budget, the higher the accuracy, for both our approach

and the baselines.

5.2. Evaluation Methodology

The set of paths X contains all the shortest paths in the network. For each metric of interest, we have a vector

of ground truth model parameters θ∗ ∈ Rd and we conduct an experiment that compares four probing distributions,

essentially calculating one vector of estimated model parameters θ̂ ∈ Rd for each. The first probing distribution from

the E-optimal design (Section 3.2), solved using the Frank-Wolfe algorithm (Section 4.3). We call it E-optimal. The

second probing distribution is from the A-optimal design (Section 3.3), also solved using the Frank-Wolfe algorithm

(Section 4.4). We call it A-optimal. In both methods, the number of Frank-Wolfe iterations is 300, which is sufficient

to obtain near-optimal solutions in all of our experiments. The last two methods are the QR and Prod baselines.

All methods operate under a total budget of n measurements, with n varying from 3, 000 to 30, 000. The choice

of n in our experiments may seem low. In practice, probing budgets vary and can be significantly higher. Our chosen
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Figure 1: Latency estimation errors in three network topologies. The average errors are in the first column and the maximum errors are in the

second.

budgets allow us to study the estimation error in situations where the budget is more scarce, which is typically when it

is most important to know the measurement error.

For each probing distribution and budget n, we report the average of 300 independent runs of the following end-

to-end experiment:

1. Compute a probing distribution α = (αx)x∈X (line 2 in Algorithm 1). For E-optimal and A-optimal, we

solve (9) and (10), respectively; for QR, we set αx = 1/k if path x is among the chosen paths by QR and zero

otherwise; and for Prod, we set αx = 1/ |X | for each path x ∈ X .

2. Collect dataset D by probing paths X according to α (lines 4-7 in Algorithm 1). The noisy observations yi for

feature vectors xi are generated as described in Sections 5.3 and 5.4.

3. Estimate model parameters θ̂ ∈ Rd from D (line 8 in Algorithm 1), using least-squares regression (Section 3.1)

for latency and Poisson regression (Section 4.5) for packet loss.

4. Use θ̂ and θ∗ to compute the maximum (1) and average (2) errors.

5.3. Latency Experiments

Generating Noisy Latency Observations. Let `∗(e) be the mean latency of edge e in seconds. We calculate `(e) as

the physical distance between the nodes of edge e divided by the speed of light in fiber, which is approximately one
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Figure 2: Predicted errors in (4), in the descending order of the per-path errors for each method. The x-axis is on the logarithmic scale to highlight

highest predicted errors, which contribute the most to the actual errors.

third of the speed of light in vacuum. The edge latency varies from 0.001s to 0.025s (topology A), 0.036s (topology

B), 0.011s (topology C).

We formulate our estimation problem as follows. The mean latency of edge e is θ∗(e) = `(e) and θ∗ ∈ Rd is the

vector of mean latencies of all edges. The mean latency of path x is f∗(x) = x>θ∗, where x ∈ {0, 1}d is a vector

of edge indicators. The noisy latency observation of path x is y = x>θ∗ + ε, where ε ∼ N (0, σ2) is independent

Gaussian noise. The noise ε is a measurement noise and we set σ = 0.01, based on prior experience with latency

variance.

Results. All latency estimation errors are reported in Figure 1. We observe four major trends. First, for all methods,

the errors decrease as budget n increases. This is expected, since the quality of latency estimates improves with the

number of probes. Second, the rate of the error decrease, from n = 3 000 to n = 30 000, is about 10 fold. This follows

from how the squared error relates to the sample covariance matrixG in (4). In particular, for any probing distribution,

10 times more probes yield 10 times higher eigenvalues of G and thus, 10 times lower eigenvalues of G−1; which

then provide a 10 times lower error bound in (4). Third, the reported errors are acceptable, even for small probing

budgets. For instance, in all network topologies, the average squared error of A-optimal with budget n = 30 000 is

around 10−6. This means that the absolute path latency is mispredicted by 10−3 on average, which is at least an order

of magnitude less than the range of the latencies in our networks.

A fourth observed trend is that A-optimal consistently dominates E-optimal and E-optimal consistently domi-

nates the baselines (QR and Prod). That is, E-optimal has a lower error than QR and Prod for all budgets and attains

any fixed error with a lower budget than either of them. We observe this trend for both the average and maximum

errors, and over all network topologies. A-optimal dominates E-optimal in a similar fashion. Perhaps surprisingly,

E-optimal performs worse than A-optimal in minimizing the maximum error. We hypothesize that this is because

the path with the maximum potential error, the maximum eigenvector of G−1, is not among paths X . Last, given all

topologies have very similar node and edge degree, it is not possible to study the impact of these network topological

properties on the methods presented in this paper.

Our next step is to better understand why A-optimal performs so well and why QR performs so poorly. To do so,

we use the error bound in (4). For a given method and path, the error bound is the maximum high-probability error
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for latency prediction of that path by that method. A lower predicted error should correlate with a higher accuracy

of latency estimates. Therefore, if one method is more accurate than another, we would expect most of its predicted

errors to be lower. To visualize this, we show the predicted errors of all paths for each method in Figure 2, in the

descending order of the per-path errors. We observe that the A-optimal predicted errors are lower overall than those

of E-optimal, which are lower overall than those of Prod. The predicted errors of QR are the highest, which indicates

poor performance. This is consistent with the actual errors in Figure 1. We conclude that the optimization of (4),

which is done in both E-optimal and A-optimal, leads to better performance.

Finally, we comment on the average run times of computing the Frank-Wolfe E-optimal designs: 66s (topology

A), 57s (topology B), and 53s (topology C). This is at least two orders of magnitude lower than if we computed

them exactly (Section 4.1): 4 400s (topology A), 1 800s (topology B), and 31 700s (topology C). The Frank-Wolfe

A-optimal designs are computed in 140s (topology A), 121s (topology B), and 219s (topology C). We summarize the

run time differences from all experiments in this paper in Appendix Appendix C.

5.4. Packet Loss Experiments

Generating Noisy Loss Observations. We denote by θ∗(e) the log-probability that the packet is not dropped on edge

e and by θ∗ ∈ Rd all edge log-probabilities. So exp[θ∗(e)] is the probability that the packet is not dropped on edge e.

Using the mean latency of edge e in Section 5.3, `(e), we define θ∗(e) as

θ∗(e) = − `(e)

10 maxe∈[d] `(e)
.

This means that longer edges are more likely to lose packets. This is simply a modeling choice to generate edges

with variable losses. By definition, θ∗(e) ∈ [−0.1, 0] and thus exp[θ∗(e)] ∈ [0.9, 1]. So the probability of dropping a

packet on any edge is at most 0.1.

As in Section 5.3, x is a vector of edge indicators in a path. Thus f∗(x) = exp[x>θ∗] is the probability that

the packet is not dropped on path x, under the assumption that the events of dropping packets on path edges are

independent. The noisy packet-loss observation of path x is y ∼ Ber(f∗(x)), an indicator that the packet is not

dropped with mean f∗(x). Note that estimation of θ∗ can be solved by Poisson regression, an instance of GLMs

(Section 4.5). The rest of the experimental setup is the same as in Section 5.3.

Results. Packet-loss estimation errors are reported in Figure 3. These results are consistent with those described

earlier for latency (see Figure 1). In particular, we observe that the errors decrease as budget n increases and that

the rate of this decrease is inversely proportional to the budget. That is, from budget n = 3 000 to n = 30 000, the

decrease is also about 10 fold. Such a good result is surprising, since E-optimal and A-optimal minimize the average

and maximum errors in GLMs only loosely, as discussed in Section 4.5. We also observe that the reported errors are

acceptable. For instance, in all network topologies, the average squared error of A-optimal with budget n = 30 000

is below 5× 10−4. This means that the absolute path loss is mispredicted by 2× 10−2 on average, which is nearly an

order of magnitude lower than the maximum packet loss on an edge, which is 0.1 by our modeling assumptions.
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Figure 3: Packet-loss estimation errors in three network topologies. The average errors are in the first column and the maximum errors are in the

second.

We also observe that E-optimal and A-optimal consistently dominate both QR and Prod. In particular, they have

lower errors than these baselines for all budgets and attain any fixed error with a lower budget than either of them. We

observe this trend for both the average and maximum errors, and over all network topologies. The differences between

E-optimal and A-optimal are less pronounced than in Figure 1, although clearly A-optimal never performs much

worse than E-optimal.

5.5. Local Budget Experiments

The goal of this section is to evaluate local budget constraints described in Section 3.4. We consider the most

common constraint in network monitoring, that none of the nodes in the network is a source or destination of “too

many” probes. This constraint can be incorporated in our optimal designs as follows. Let V be the set of all nodes in

the network and src(x) be the source of path x. Then, for each v ∈ V , the constraint is∑
x∈X

1{src(x) = v}αx ≤
∑
x∈X 1{src(x) = v}

|X |
+ b ,

where b ≥ 0 is an excess local budget over uniform probing distribution and
∑
x∈X 1{src(x) = v} / |X | is the fraction

of paths starting in node v. The destination constraints are defined analogously.

We experiment on topology A with three local budgets b ∈ {0.1, 0.01, 0.001}. The latency estimation results

are reported in Figure 4. We expect that lower local budgets would result in worse optimal designs, because both

E-optimal and A-optimal are more constrained in how they can probe. We observe this with the maximum error at
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Figure 4: Latency estimation errors in topology A for various local budgets. The average errors are in the first column and the maximum errors are

in the second.

n = 30 000, which increases from 10−5 (b = 0.1) to 3 × 10−5 (b = 0.001). We also observe slight changes in the

average error, which increases from slightly below 10−6 (b = 0.1) to slightly above 10−6 (b = 0.001).

In Figure 5, we show the predicted errors for latency and various local budgets. This plot is similar to Figure 2.

When the local budget is low (b = 0.001), the probing distributions in E-optimal and A-optimal cannot differ much

from Prod, and some paths have high predicted errors of 0.1. This leads to lower accuracy. On the other hand, when

the local budget is high (b = 0.1), the probes can be distributed more intelligently and this results in the highest

predicted errors of mere 0.02, similarly to no local budget constraints (topology A in Figure 2).

We conclude that our approach can easily incorporate local budget constraints. Perhaps surprisingly, even when

the local budget is b = 0.01 (which means that no more than 1% of the probed paths can start or end at any given

node) the corresponding E-optimal and A-optimal solutions offer similar performance as with global budget only.

6. Real-World Experiments

In Section 5, the ground truth and its observations were generated from well-behaved functions with desirable

properties. For instance, the mean latency of a path in Section 5.3 is a linear function of its edge latencies, and the

latency of that path is observed with Gaussian noise. Real latencies and packet losses are not always well-behaved.

We conduct a set of larger-scale real-world experiments, with actual observed latencies and packet losses. We also use

this section to show that our Frank-Wolfe solutions can be used in practice.
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Figure 5: Predicted errors in (4), in the descending order of the per-path errors for each method. The x-axis is on the logarithmic scale to highlight

highest predicted errors, which contribute the most to the actual errors. The plots are for topology A and various local budgets.

6.1. Network Topology

All experiments in this section are conducted on a single network topology, which is a random subset of a pro-

duction network that belongs to a global cloud services provider. We cannot reveal the percentage of the network

that our topology represents. However, our experimental network is sufficient in size and realistic in complexity: 306

nodes, 762 edges, and 39 316 paths. This network is larger than any of the networks in Section 5 and brings additional

evidence that our approach can be applied at scale in a cloud network.

6.2. Experimental Setup

Our setup mimics a real-world scenario where the probing distribution is recomputed once per unit time, such as

one or five minutes. Then the probes are sent and they generate observations for each path. Finally, these observations

are used to estimate the latency or packet loss of each path in the network, whether or not that path is probed. As in

the synthetic experiments, we compare our optimal designs to the QR and Prod baselines.

6.3. Ground Truth

The main challenge in evaluating a real world setting is that the ground truth, the actual latency or packet loss of

a path, is never perfectly known. However, in order to compare different methods, we need some notion of it. In this

work, we determine the ground truth as follows. First, we fix a short period of (unit) time. We experiment with one and

five minute periods. We refer to the 1-minute experiment as topology M1 and to the 5-minute experiment as topology

M5. Next, over that fixed time period, we send 50 to 100 probes along all paths in the subset of the network chosen.

In total, this translates to over 4 million probes. Then we determine the mean latency and packet loss of a path as the

empirical average of its observations generated by the probes. For a given path x, these correspond to the ground truth

latency and packet loss f∗(x) in Sections 5.3 and 5.4, respectively.

Our choice of short time periods is not arbitrary: it allows us to determine the ground truth accurately. Over

longer time periods, the metrics of interest, especially packet loss, would smooth out and not accurately represent near

real-time and highly variable values.
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Figure 6: Latency estimation errors in large-scale networks M1 and M5.

6.4. Emulating Observations

As described earlier, we send 50 to 100 probes along all paths in the network over a short period of time and collect

observations. Then we emulate the behavior of our methods on these observations. As an example, suppose that we

have 100 observations of paths x1, x2, and x3; and the emulated A-optimal decides on a distribution of probes such

that 6, 9, and 0 probes (per unit time) are assigned to each of these paths. Then the observations are obtained by

sampling 6 random observations from the set of 100 collected observations for path x1 and 9 from those for path x2.

6.5. Results

Latency and packet loss estimation results are reported in Figures 6 and 7. These results are consistent with the

trends observed in the synthetic experiments (Sections 5.3 and 5.4). Specifically, the errors decrease as budget n

increases, and E-optimal and A-optimal consistently dominate both the baselines (QR and Prod). For latency, in all

network topologies, the average squared error of A-optimal with budget n = 30 000 is around 4× 10−6. This means

that the absolute path latency is mispredicted by 2 × 10−3 on average. For packet loss, the average squared error of

A-optimal with budget n = 30 000 is below 2 × 10−4, which means that the absolute path loss is mispredicted by

10−2 on average. Both absolute errors are one order of magnitude lower than the estimated quantities, which means

that our predictions are reasonably accurate.

The error differences among E-optimal, A-optimal, QR, and Prod are less pronounced than in Section 5. One

reason is that the ground truth is not idealized. As an example, the path latency is not necessarily linear in its fea-

tures, which contributes to an additional error that could only be eliminated by a better estimation model than linear

regression.

6.6. Run Times

The costs of computing E-optimal and A-optimal are 346 and 961 seconds, respectively. This is six times higher

than in the synthetic experiments, for a topology that is six times larger. This is expected, as the computation cost of

our Frank-Wolfe solutions is linear to the number of paths1. While this may seem too long at first, we consider it to

1The run time differences of all experiments in this paper are summarized in Appendix Appendix C.
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Figure 7: Packet-loss estimation errors in large-scale networks M1 and M5.

be practical. In particular, since our network routes are usually stable over 10 minute intervals, we do not expect to

recompute the probing distributions more frequently than that.

7. Related Work

Monitoring systems for large scale networks is a rich area. Our focus here is on systems that can scale to the size

of the main cloud infrastructures (not only to one Data Center) and that can provide multiple network performance

metrics with a known accuracy at all time, whatever the resources available to the telemetry systems are. We are going

to address large scale telemetry systems first, and then discuss our approach and methodology.

Most recently published systems attempt to monitor the network infrastructure at full coverage (e.g. [20, 18, 32,

19, 34, 22, 16? ]). These systems are generally designed for data centers and they make the assumptions that they

operate with a fixed amount of resource (memory, CPU) in network nodes and/or end hosts. In practice, we claim that

due to hardware diversity and operational practices (in most cloud networks, telemetry operates under a maximum

budget in CPU time or probing/sampling frequency), these assumptions cannot be verified and full coverage cannot

be achieved, jeopardizing the quality of the estimated metrics. This explains why we adopt a statistical approach in

which network performance metrics can be estimated with a known accuracy, whatever the available resources and

monitoring budget are. Compared to the approaches cited above, we do not make any assumption on minimum CPU

or memory in the nodes in the network. We can operate with any probing/sampling budget, which could lead to low

(but known) accuracy of our estimations. In this landscape, NetBouncer [29] is adopting a statistical approach for

failure inference (it does not support any other metric). It relies on specific hardware to be deployed in switches (to

support IP in IP tunneling) and is limited to Data Center monitoring. The approach we propose in this work uses a

different optimization technique and can estimate multiple performance metrics with a know accuracy.

Our work also pertains to the area of network tomography [3, 12, 17, 13, 23]. Tomography has focused historically

on the theoretical (e.g. [9, 33]) and practical feasibility [? ] of loss and latency measurements. Very often though,

tomography papers deal with loss estimation and/or do not focus on optimal probing but on high quality inference.

There are exceptions discussed below ; none of the papers we are aware of are dealing with the general framework

approach as we define it, building a scalable implementation and evaluating it experimentally. In [30], the optimal

sampling problem is discussed using an EM algorithm. Our statistical framework is more general as (i) it allows
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the estimation of network performance metrics with measurable accuracy and (ii) it only uses the network topology

without requiring any traffic observations. In [15], the authors use A- and D-optimal designs to compute probing

distributions to estimate loss and delay variation. The problem statement and the methodology share similarities with

our work. However, the two papers have different objectives. More importantly, [15] does not design a scalable

implementation, which is the key to make these techniques applicable in practice, and as a consequence performance

evaluation is limited to numerical simulations.

Our work is also related to optimal monitor placement [4]. The objectives of [4] are quite similar to ours, as the

authors try to select where and how frequently to sample traffic in network nodes in order to minimize monitoring

resource consumption, and adapt to the traffic dynamics (that it takes as an input to the optimization algorithm). The

method is quite different though (gradient projection for constrained optimization), and while we optimize the probing

rate to estimate network performance metrics on all network links, they optimize the sampling rate in network nodes

to estimate the performance of a specific set of Origin-Destination (OD) pairs. The method in [4] takes the network

topology and the routing matrix (i.e. which OD pair take with path) as input; it returns a set of monitors and their

sampling rates that are optimal with respect to the set of OD pairs to measure. Measurement accuracy is not estimated.

A closely related work is that of Chua et al. [6], where the QR decomposition of the traffic matrix is used to extract

a set of important paths. Roughly speaking, if the mean latency of these paths was known, we could estimate the

latency of any other path in the network. This method is not designed for noisy measurements and we compare to it in

Sections 5 and 6.

We also did not find any previous work discussing the trade-off between probing/sampling budget and performance

metric measurement accuracy, and its application to monitoring very large cloud networks.

8. Conclusions

Starting from the claim that monitoring traffic exhaustively is both not necessary and not feasible, we propose a

statistical approach to monitoring (using probes or sampling) large-scale network infrastructure, which has provable

guarantees on the quality of estimates under the constraint of a limited probing budget. We show through simulation

and experimentation on real network topologies (supporting global cloud services) and for two metrics (latency and

loss) that our approach estimates the metrics with low error, even in the case of small probing budgets. We claim

that our approach can be used in any production network to measure most network performance metrics in a scalable

way (as long as the metric estimation problem can be expressed as a regression problem). Our results show that the

computation time of optimal strategies is not an obstacle to operational deployment. Our approach does not make

any assumption on switch/router hardware capabilities. It can operate in two modes: target budget or target measure

accuracy. We also show that we outperform two baselines:(i) a best path subset selection algorithm proposed in [6]

and (ii) a simple strategy that probes evenly across all paths. Our approach and results can be easily extended to traffic

sampling as long as the traffic matrix is available. Although our initial results are promising, we still have a long path
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toward deploying our system in production networks.

First, existing monitoring systems support various tasks, from traffic engineering (managing the traffic based on

policies) to security (detection of various attacks) and service availability (detection of unexpected events and failures).

We showed that our framework is well suited for optimizing probing for network link loss and latency estimation. In

future work, we will evaluate our framework on other telemetry tasks, such as estimating available bandwidth, flow

size distribution, or top flows. We believe such extension is straightforward as long as the estimation problem can be

formulated as regression (Sections 3.1 and 4.5). In addition, in Appendix Appendix A, we propose learning of a non-

linear embedding that would transform potentially any estimation problem into regression, with appropriate features.

Then we would be able to apply A- and E-optimal designs on the new learned features.

Second, the current work only deals with distributing a probing budget among the paths of interest in a network.

In other words, it answers the question “where to probe and how much” before the actual probing is performed and

is therefore independent of the mechanism according to which the number of probes are carried out per unit of time.

Examples of such mechanisms (which we treat as black-box in this work) in the literature include uniform sampling

and Poisson sampling [27], where inter-probe send times have the uniform or Poisson distribution, respectively. As a

result, it is straightforward to combine our framework with any such probing mechanism in a 2-stage pipeline: (i) one

first computes the number of probes that will be sent along each path, and (ii) the probing mechanism sends the probes

and collects the measurements.

Third, the topologies we have studied represent subsets of the original cloud infrastructure topology. We can-

not disclose details on the full size and corresponding computing time. However, we will rely on some ”sharding”

techniques to divide the full infrastructure topology (data center included as we probe from hosts) into geographical

entities. This is not a problem though as it is the way Cloud services are structured.

Our current objective is to build an operational probing/sampling service that takes the following inputs: a topol-

ogy, a path level (i.e. OD pairs) traffic matrix with packet count, a telemetry function (e.g. median latency, flow

size distribution, link failures), and either a probing/sampling budget or a target statistical accuracy for the metric to

compute. It will deliver an optimal sampling/probing strategy to perform in hosts.

We believe controlling the accuracy of the performance estimation is the only way to monitor at scale and at low

time granularity in today’s hyper-scale networks.
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Appendix

Appendix A. Non-Linear Models

To extend our ideas to arbitrary non-linear models, we propose learning a non-linear mapping of features into a

lower r-dimensional space, so that we get a linear regression problem in the new space. That is, we learn g : Rd → Rr

such that f∗(x) ≈ g(x)>θ∗.

The function g is learned as follows. Let m be the number of tasks and Dj be the dataset corresponding to task

j ∈ [m]. In networking, the task j can be viewed as an inference problem on day j, which is accompanied by its

training set Dj . We learn g by solving

min
g

min
θ1,...,θm

m∑
j=1

∑
(x,y)∈Dj

(g(x)>θj − y)2 , (A.1)

where θj ∈ Rr are optimized model parameter for task j.

The key structure in above loss function is that function g is shared among the tasks. Therefore, its minimization

leads to learning a common embedding g, essentially a compression of features x, that is useful for solving all tasks

using linear regression. The above optimization problem can be solved using a multi-headed neural network, where g

is the body of the network and head j outputs g(x)>θj , the predicted value at feature vector x for task j.

Appendix B. Scaling Optimal Designs

Appendix B.1. Intuition

The SDPs 5 and 6 can be solved via an interior point algorithm [7]. Interior-point methods are however slow in

practice and scaling the solution of an SDP is a problem-specific art. Enforcing PSD-ness of a square matrixA ∈ Rd×d

amounts to enforcing infinitely many constraints xTAx > 0 (one per direction x ∈ Rd). An equivalent condition for

a square matrix A ∈ Rd×d to be PSD is the positivity of all its eigenvalues: λi(A) > 0, i ∈ [d].

Interestingly, the PSD constraints xTAx > 0 that show up in both E-optimal and A-optimal design optimization

problems are linear in α and τ (i.e. of the form cTαα + cTτ τ > 0 for some cα ∈ Rn and cτ ∈ Rd. We leverage this

fact and come up with an approximate cutting plane algorithm for E-optimal and A-optimal design, where we solve

a sequence of linear programs (LP)s as opposed to an SDP (see Algorithm 3). The main idea is that we no longer try

to enforce A � 0, or equivalently xTAx > 0 for all x, but rather only satisfy it for a finite subset of directions x. We

choose 4 different types of directions x: (i) the canonical unit vectors ei ∈ Rd, (ii) the d(d− 1)/2 vectors ei± ej , (iii)

a number of random sparse directions generated in a Monte Carlo fashion and (iv) the eigenvectors corresponding to

the k (where k is a tunable parameter) most negative eigenvalues of A, in a greedy fashion.

Directions (i) and (ii) above are necessary A to be PSD, whereas directions (iv) are the ones along which the

constraint xTAx > 0 is violated the most. Indeed, xTAx = xTλx = λ|x‖22 < 0. Finally, directions (iii) aim to
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broaden the subspace where PSD-ness holds. They need to be sparse, since sparsity of constraints is a key factor for a

linear program to scale.

Appendix B.2. A cutting plane algorithm for E-optimal allocation

We now formally describe the cutting plane algorithm for solving 5 approximately. We define the matrixA ∈ Rd×d

as the A =
∑
x∈X αxxx

> − τId.

First, we add the simplex constraint
∑n
i=1 αi ≤ 1 (constraint set R1). Second, we add the d cuts in the directions

of the unit vectors: eTi Aei > 0, i = 1, 2, . . . , d (constraint setR2). Third, we add the d ·(d−1)/2 cuts in the directions

ei± ej , i = 1, 2, . . . , d, j = i+ 1, . . . d (constraint set R2). Fourth, we generate a total of M cuts in random directions

sampled from a standard multivariate normal distribution, r
>

j Arj > 0, rj ∼ N (0, I), j = 1, 2, . . . ,M (constraint set

R4). We find that M = 100 works well in practice.

After an initial LP solve with the constraints R = R1 ∪ R2 ∪ R3 ∪ R4, we iteratively solve a new LP while the

matrix A is not positive definite or we run out of iterations, T . For each of these iterations, we augment the constraint

setR greedily by adding cuts in the eigenvectors that correspond to theK most negative eigenvalues ofA and perform

a new LP solve. We used T = 75 iterations and K = 5 cuts in our implementation.

State of the art LP solvers can solve linear programs with millions of parameters and hundreds of thousands of

constraints as long as the constraints are sparse. The eigenvectors however tend to be dense and this is the reason why

the cutting plane algorithm cannot scale further the solution of E-optimal allocation.

Appendix B.3. A cutting plane algorithm for A-optimal allocation

We now formally describe the cutting plane algorithm for solving 6 approximately. The algorithm is very similar

to the algorithm in the previous section, with the main difference that we know have a total of d matrices Ai ∈ Rd×d

that we want to be approximately positive definite.

We define the matrix Ai ∈ Rd×d as the block matrix:

Ai =


∑
x∈X

αxxx
> ei

e>i τi

 , i = 1, 2, . . . , d.

Appendix B.4. Performance

For the network topology C for example, solving the E-optimal SDP takes 18hrs, whereas the A-optimal SDP

cannot run due to memory limits. The cutting plane algorithm runs in approximately 1200 seconds for the E-optimal

design and 2220 seconds for the A-optimal design, respectively, at the expense of only 1.8% loss in accuracy. This

first successful attempt at scaling the E-optimal and A-optimal design problems led us to the conclusion that the PSD

constraints need only approximately be satisfied. For E-optimal design, we observed that the cutting plane algorithm

achieved the results above with just 60% of the eigenvalues of M being positive. For A-optimal design, the cutting

plane algorithm reached the above results with an average of 61% of positive eigenvalues, where the average is over

the d block matrices Ai.
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Algorithm 2 Iterative Cutting Plane Linear Programming for E-Optimal Allocation.
1: function CP-EOPT(X , T , M , K)

2: R1 ← {
∑n
i=1 αi ≤ 1}

3: A =
∑n
i=1 aixix

T
i − τ · Id

4: R2 ← {eTi Aei > 0, i = 1, 2, . . . d}

5: R3 ← {zTijAzij > 0, zij = ei ± ej , i = 1, 2, . . . ,m, j = i+ 1, i+ 2, . . . , d}

6: R4 ← R4 ∪ {r
>

j Arj > 0, rj ∼ N (0, I), j = 1, 2, . . . ,M}

7: R← R1 ∪R2 ∪R3

8: O ← max τ

9: t← 0

10: psd← False

11: while (iter < I) ∧ (¬psd) do

12: (α, τ)← LP (O,R) . LP Solve.

13: A =
∑n
i=1 aixix

T
i − τ · Id

14: (Λ, Z)← eig(A)

15: if (Λ[1] > 0) then

16: psd← True

17: else

18: for k = 1 to K do

19: if Λ[k] < 0 then . Λ sorted in ascending order.

20: z ← Z[i]

21: C ← R ∪ {zTMz > 0}

22: t← t+ 1

23: return α, τ
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Algorithm 3 Cutting Plane Algorithm for A-Optimal Allocation.
1: function CP-AOPT(X , T , M , K)

2: R1 ← {
∑n
i=1 αi ≤ 1}

3: R2 ← {}

4: R3 ← {}

5: R4 ← {}

6: for i = 1 to d do

7: Ai =


∑
x∈X

αxxx
> ei

e>i τi


8: R2 ← R2 ∪ {e

>

j Aiej > 0, j = 1, 2, . . . d}

9: R3 ← R3 ∪ {z
>

jkAizjk > 0, zjk = ej ± ek, j = 1, 2, . . . , d, k = j + 1, j + 2, . . . , d}

10: R4 ← R4 ∪ {r
>

j Airj > 0, rj ∼ N (0, I), j = 1, 2, . . . ,M}

11: R← R1 ∪R2 ∪R3 ∪R4

12: O ← min
∑d
i=1 τi

13: t← 0

14: psd← False

15: while (t < T ) ∧ (¬psd) do

16: (α, τ)← LP (O,R) . LP Solve.

17: for i = 1 to d do

18: Ai =


∑
x∈X

αxxx
> ei

e>i τi


19: (Λi, Zi) = eig(Ai)

20: if Λi[1] > 0 then

21: psd← psd ∧ True

22: else

23: for k = 1 to K do

24: if Λi[k] < 0 then . Λi sorted in ascending order.

25: z ← Zi[k]

26: R = R ∪ {zTAiz > 0}

27: t = t+ 1

28: return α, τ

29



Appendix C. Runtime Profile across Experiments

There are three types of experiments described in this work: Initial Experiments in Section 4.1, Synthetic Experi-

ments in Section 5, and Real-world Experiments in Section 6.

Initial Experiments and Synthetic Experiments use the same topologies A / B / C but different algorithms (exact vs

approximate SDP algorithms). In the Initial Experiments, the E-optimal is computed using an interior point algorithm

in 4 400 / 1 800 / 31 700 seconds; in the Synthetic Experiments, the E-optimal is computed using the Frank-Wolfe

algorithm in 66 / 57 / 53 seconds–this is at least two orders of magnitude lower. A-optimal in the Initial Experiment

does not reach completion due to running out of memory for all topologies. Therefore, we don’t compare the A-

optimal run times between Initial Experiments and Synthetic Experiments. The detailed difference between these

two algorithms and the trade-off between the increased loss in accuracy and decreased run times can be found in

Appendix Appendix B.

The Synthetic Experiments and the Real-world Experiments use the same Frank-Wolfe algorithm but different

typologies. In the Synthetic Experiment, for topologies A / B / C, the E-optimal allocation is computed in 66 , 57 ,

53 seconds, the A-optimal is computed in 140, 121, and 219 seconds; In the Real-World Experiments, the E-optimal

allocation is computed in 346 seconds and the A-optimal is computed in 961 seconds. While this six times higher than

the average result of Synthetic Experiments, the complexity is the same because the number of paths is also six times

larger.
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