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ABSTRACT

This paper presents the dynamics of multiple reinforcement learn-
ing agents from an Evolutionary Game Theoretic (EGT) perspec-
tive. We provide a Replicator Dynamics model for traditional mul-
tiagent Q-learning, and we extend these differential equations to
account for lenient learners: agents that forgive possible mistakes
of their teammates that resulted in lower rewards. We use this ex-
tended formal model to visualize the basins of attraction of both
traditional and lenient multiagent Q-learners in two benchmark co-
ordination problems. The results indicate that lenience provides
learners with more accurate estimates for the utility of their ac-
tions, resulting in higher likelihood of convergence to the globally
optimal solution. In addition, our research supports the strength of
EGT as a backbone for multiagent reinforcement learning.

1. INTRODUCTION

Reinforcement Learning (RL) is an established and profound
theoretical framework for learning in single-agent systems. As long
as the environment an agent experiences is stationary, and the agent
can experiment enough, RL guarantees convergence to the optimal
strategy [10, 11, 15].

Learning in MAS however, is a more complex and cumbersome
task, which does not offer the same theoretical grounding as the
single agent case. Reasons for this are plentiful: the environment
in which the agents operate is typically very dynamic in nature and
hard to predict, other agents are operating (and learning) in this
environment as well, the reinforcement an agent receives depends
on the actions taken by the other agents, and not all information
is observable. All these different features make it very hard to en-
gineer learning algorithms capable of finding optimal solutions in
different situations.

One of the fundamental problems of MARL is the lack of a the-
oretical framework as for the single agent case. Due to the lack of
such a theory, we employ an evolutionary game theoretic perspec-
tive. More precisely, our work is based on a derived formal link
between the replicator dynamics equations of EGT and Q-learning,
as derived in [12, 13]. The authors of these publications have illus-
trated that there are a number of benefits to exploiting this link: one,
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it provides a selection-mutation perspective of the learning process,
two, the model predicts desired parameters to achieve Nash equilib-
riums with high utility, three, the intuitions behind a specific learn-
ing algorithm can be theoretically analysed and supported by using
the basins of attraction.

In this work, we show how these equations can be used as a
framework to analyze a new multiagent Q-learning algorithm, and
at the same time to graphically illustrate the theoretical basins of at-
traction to certain equilibria in the solution space. More precisely,
the equations are modified to reflect the concept of lenience intro-
duced in [8]. Lenience occurs when an agent ignores the lower
utilities that it observes. The Lenient Multiagent Q-learning al-
gorithm (LMQ) allows agents to exhibit a time-dependent level of
lenience towards their teammates. It is based on the following idea:
if an agent receives rewards r,ry, ..., 1y when choosing action a; at
various times during the early stages of learning, the agent ignores
most of these rewards and only updates the utility of a; based on the
maximum of ry,r;,...,r;. The reason for this is that those rewards
were obtained while the other learning agent selected (or, better
said, explored) some actions by, ..., by, most of which it will ignore
in the future due to their lower utilities. As both agents become
more selective at choosing their actions, it is expected that they will
each tend to primarily select a single action (the best one). At this
point, each agent should update the utility of that action based on
every reward it observes. This will lower the optimistic estimation
of the utility for that action until it equals the mean reward obtained
by the agents for that joint reward. If this mean reward becomes
lower than the estimated utility of other actions, the agent will start
to explore these other actions instead. We say that the agents ex-
hibit a time-dependent level of lenience towards their teammates.

Our findings show that typical convergence problems to subopti-
mal solutions are mainly caused by learners having poor estimates
for the quality (utility) of their actions. Lenient learners on the
other hand account for more accurate estimates, and perform more
efficiently in general. Our approach also clearly illustrates how one
can use EGT as a tool to design a new RL algorithm, and how to
analyze its strengths.

The remainder of this paper is structured as follows. In Section 2
we elaborate on the necessary background to understand further de-
velopments of this paper. More precisely, we introduce the Replica-
tor Dynamics and Q-learning, and formally derive the link between
both. In Section 3 we extend the EGT model with the concept of
lenience and show how it can be computed. Section 4 addresses the
experimental setup and discusses the results. Section 5 concludes
the paper.

180



2. BACKGROUND

In this section, we describe the necessary background to under-
stand the remainder of the paper. More precisely, we briefly intro-
duce EGT and elaborate on its Replicator Dynamics. We continue
by explaining Q-learning, a value-function based approach to rein-
forcement learning, in which Qualities over state-action pairs are
learned. We end this section with the derivation of the formal rela-
tionship between Q-learning and EGT, necessary to understand the
extensions in Section 3.

2.1 Evolutionary Game Theory

Originally, Evolutionary Game Theory was proposed by John
Maynard-Smith, when he relaxed the (too) strong premises behind
Game Theory (GT) and applied it to biology [6, 7]. More precisely,
Classical GT is a normative theory, in the sense that it expects
agents to be perfectly rational and behave accordingly [9, 14, 17].
It is also the mathematical study of interactive decision making in
the sense that the agents involved in the decisions take into account
their own choices and those of others. Choices are determined by
stable preferences concerning the outcomes of agents’ possible de-
cisions, and, also by strategic interactions involving agents that take
into account the relation between their own choices and the deci-
sions of other agents. Agents in the classical setting have a per-
fect knowledge of the environment and the payoff tables, and try
to maximize their individual payoff. However, under these new bi-
ological circumstances, considered by Maynard-Smith, it becomes
impossible to judge what choices are the most rational ones. The
question now becomes how an agent can learn to optimize its be-
haviour and maximize its return. This learning process matches
the concept of evolution in Biology as will be shown in subsequent
sections.

There are two key concepts in EGT, one, evolutionary stable
strategies (ESS), and two, the replicator dynamics (RD). ESS is
actually a refinement of the Nash equilibrium concept from clas-
sical GT. We will not discuss it further in this paper. The RD are
a system of differential equations describing how a population of
different strategies evolves through time. An abstraction of an evo-
lutionary process usually combines two basic elements: selection
and mutation. Selection favors some varieties over others, while
mutation provides variety in the population. The most basic form
of the RD only highlights the role of selection, i.e., how are the
better strategies in a population selected.

The general form of a replicator dynamic is the following:

% — [(AX); — x-Ax]x; 0

In equation (1), x; represents the density of strategy i in the pop-
ulation, and A is the payoff matrix that describes the different pay-
off values that each individual replicator receives when interacting
with other replicators in the population. The state of the popula-
tion (x) can be described as a probability vector X = (x1,x2,...,X7)
which expresses the different densities of all the different types of
replicators in the population. Hence (Ax); is the payoff that repli-

cator i receives in a population with state x and x-Ax describes
dx;

the average payoff in the population. The growth rate §:: of the
population share using strategy i equals the difference between the
strategy’s current payoff and the average payoff in the population.
For further information we refer the reader to [2, 3, 17].

In this paper, however, we are concerned with formal models
of multiple agents that learn concurrently. For simplicity, we re-
strict the discussion to only two such learning agents. As a result,
we need two systems of differential equations, one for each agent.
This setup corresponds to a RD for asymmetric games. If B is the

payoff matrix that describes the payoff values received by the sec-
ond agent, and if A = B', then equation (1) would emerge again to
characterize the dynamics of the second learner.

This translates into the following replicator equations for the two
populations:

dpl- — PRp— . .
= L(Ad)i—p-Ad]p; ()
d_qi — PR— . .
a ((Bp)i —q-Bplgi (3)

As can be seen in equation (2) and (3), the growth rate of the
types in each population is additionally determined by the compo-
sition of the other population, in contrast to the single learner case
described by equation (1).

2.2 Q-learning

The learners we consider in this paper employ a specific re-
inforcement learning algorithm known as Q-learning [16]. Q-
learning is particularly useful in multiagent domains where re-
inforcement information (expressed as penalties or rewards) is
stochastic and is observed after a sequence of actions has been
performed. Q-learning associates a utility Q with each (s,a) pair,
where s is a state of the environment, and a is an action that the
agent can perform when in state s. The agent updates the Q values
at each time step based on the reinforcement it has received. The
update formula is

O(st,ar) — Qs,a1) + <r1+1 +ymaxQ(sir1,a) - Q(Shar)>

“
where the agent has just been in state s;, has performed action a;,
has observed reward r;, and it has transitioned to the new (cur-
rent) state s,y 1; « is the learning rate, and Yy is a discount factor
for incorporating future rewards into the utility estimate. Action
selection is usually based on a stochastic process; popular choices
include the e-greedy exploration (select the best action with prob-
ability 1 — &, or a random action otherwise) and the Boltzmann ex-
ploration (the selection process further depends on a “temperature”
parameter). As previously mentioned, Q-learning has certain guar-
antees of convergence under theoretical conditions, which include
performing each action an infinite number of times in each state, as
well as proper settings for the learning rate [10, 15].

Multiagent Q-learning represents a straightforward extension of
Q-learning to domains involving multiple agents [1]. Here, each
agent is given its own Q-value function for (state,action) pairs. All
agents choose their actions independently and concurrently, per-
form them in parallel, and all observe the same reward associated
with the joint action. In contrast to single-agent Q-learning, the
information an agent observes depends on the actions chosen by
other agents. The reward information is then used by each agent to
update its Q-values. Agents usually cannot perceive which actions
their teammates have chosen.

Straightforward applications of multiagent Q-learning have re-
vealed problematic convergence problems to suboptimal solu-
tions (for example, in [1]). This significantly contrasts the well-
understood convergence guarantees of Q-learning in single-agent
domains. In this paper, we present an RD model for multiagent Q-
learning, and we use it to show that the convergence to suboptimal
solutions is caused by learners having poor estimates for the quality
(utility) of their actions. We also extend this model to account for
accurate utility estimates, and we demonstrate the benefits of these
changes to the performance of the algorithm.

To simplify the theoretical analysis, we assume that agents
choose actions by using the Boltzmann selection: an action ay is
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chosen with probability

B Q(":k)
T ®)

0(s.q;
e T
where 7 is a temperature parameter used to balance exploration and
exploitation (the agent tends to select actions associated with higher
utilities when 7 is low).

P(ay) =

2.3 A Formal model of Q-learning Dynamics

In this section we concisely present the formal relation between
Q-learning and the RD from EGT. The reader who is interested in
the complete derivation of the model is referred to [12, 13]. Basi-
cally, the derivation boils down to constructing a continuous time
limit of the Q-learning model, where Q-values are interpreted as
Boltzmann probabilities for the action selection. For simplicity,
we only consider games between two agents, and we assume that
the game is stateless: the reward that the agents receive depends
solely on the actions they have currently performed in the envi-
ronment. We admit upfront that such scenarios are unrealistic for
practical purposes, but they are complex enough to emphasize spe-
cific challenges for multiagent reinforcement learning algorithms.
For this reason, several previous empirical investigations of these
techniques have employed such domains (for example, in [1, 4, 5]).

Each agent has a probability vector over its action set, more
precisely xp,...,x, over action set ay,...,a, for the first agent and
Y1,--sYm OVer by, ..., by, for the second agent. We rewrite Equation
5 as follows:

04; (k)

where x;(k) is the probability of playing strategy i at time step k
and 7 is the temperature.
Now we can find an expression for, x;(k+ 1).

Qa; (k+1) Qaj (k)
xi(k+1) e T et
(k - 04, (k) Qa; (k+1)
x’( ) et Z/e%
AQq; (k)
f— € i
- AQa; (K)
> jxj(k)e™=
From which follows,
A0q; (k)
e T
X,‘(k-‘rl) = x,-(k) 300,
> jxj(k)e K
If we consider the difference equation for x; we have,
% AQq; (k)
xi(k)e =
xi(k+1)—x;(k) = : 204, —xi(k)
> jxj(k)e B
AQq; (k) Z (k) AQaj (k)
e"t —) xj(k)e =
= xl(k)( ! A0a; (k)
2o jxj(k)e =

For the continuous time version we suppose that the amount of
time that passes between two repetitions of the game is given by
0 with 0 < § < 1. The variable x;(k8) describes the x-values at

time k6 = t. Under these assumptions, we have,

xi(k6 +8) — x; (k) xi(k6)
S = 20a; (5) X
0% xj(kd)e ™+
AQq; (k8) AQq (k3)

(e 7 = xj(kd)e =)
J

We are interested in the limit with § — 0. We find the state of the
limit process at some time ¢ > 0 (which we keep fixed) by taking
the limit of x;(k8) with 8 — 0 and k6 — 1.

g B0 )
—0 —0 “j
5 (k8)e
204, (9) 404, (k9)
tim (¢ 2tk
§-0 & 8

The first limit,
. xi(k0)

> (k8)e
equals x;(¢) or short x;, because the exponent term becomes 1
(AQq, (kS) becomes zero) and 3~ ; x;(kS) equals 1(sum of all prob-
abilities equals 1). Therefore,

AQq; (k8) AQa; (k&)
J — xj(kd)e =
hmw — Xinim(e 72/ J( )

5—0 O 50 O 8

7

The second limit is undefined (we have a % situation), which allows
us to use the rule of the ’hdspital. The second term now equals (for
short 7»),

_dQy(1) 1494, (1)
L= Tdt —ij(t) Tdt

The total limit now becomes,

dx;

<1 .dQ dQq

dr _ ai i

Xi r( dt Z dt %) ©®

We now have derived the continuous time model of the Q-

learning process. As you can see in equation (6) we need an ex-

. do, . . . .
pression for %7;([) We can derive the differential equation for the

Q-function by performing the following steps.
The Q-learning update rule for the first agent can be written as
follows,

Qa; (k+1) = Qg (k) + 0(rg; (k+1) +ymax 0 — g, (k))
which implies,
AQq, (k) = a(rg, (k+ 1)+ }/rrzaxQ — Q4 (k)

This expression is the difference equation for the Q-function. If
we make this equation infinitesimal, going from discrete steps to a
continuous version, we suppose that the amount of time that passes
between two repetitions of updates of the Q-values is given by &

with 0 < § < 1. The variable Q,,(k8) describes the Q-values at
time k8. Now, we get,

AQq; (k) = a(rg; (k+1)8) + yrr;axQ —Qq;(k8))((k+1)6 — k&)
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which is the same as writing,
AQy,; (k) = o(rg((k+1)8) + yn%quQ — Qg (k6))6

We are interested in the limit 8 — 0. We find the state of the limit
process at some time ¢ > 0 (which we keep fixed) by taking the
limit of Qg (k&) with § — 0 and k6 — ¢. If we now bring 0 to the
left side, and take the limit for § — 0, we have

dQy
dt

= a(ry, +ymaxQ - Qa) @

Now, we can substitute equation (7) in equation (6), yielding,

dx;

1
d
x_z - ;O((ra‘. N ijra/ =0 + Z Q"/xj)
J i
because ijj = 1, this expression becomes,
x o
dt _ . . —
Ti - ;(ra,'fzx]rul‘kzx](gaj Qul))
J J
0a;
Given that f(—f equals : g; , it follows that
Xj o
aijln(x—{) =7 ij(Qa,- —04)
i ! i
which gives us,
dx; o X
a _ 4 _ . In(ZL
X_i = 7 (ra; Zj:xjraj)+(xzj:len(Xi )

Now let us put this equation in the context of the two concurrent
learning agents. For clarity, we use u; instead of r,, to indicate the
expected reward that the first agent expects for performing action
i, and we use w j to indicate the expected reward that the second
agent expects for performing action j. Remember that the payoff
matrix for the second agent is simply the transposed payoff matrix
used by the first agent.

We have that u; = Y, ay is the expected reward that would be
observed by the first agent, given the other agent’s current probabil-
ities of selecting among its actions (and similarly w; = >, ax jxp).
The RD model above has therefore the simpler form,

W=y auy ®
k

wio= D ax (€)
k

dx;

dt o Xk

L = —|u- ¢ a In— 10

5 p (u, ;xkuk)—l— zk:xk nXi (10)

d"

% _«a ) Yk

A= = wi =D e | @ wn= (1)

Yj T k k Yj

3. FORMAL MODELS OF LENIENT
Q-LEARNERS

The RD model described in Section 2.3 updates the utility of an
action based on the expected reward for that action in combination
with all possible actions that the teammate might select. This is a
conservative setting, and as a result the agent might be biased to-
ward selecting actions that receive good rewards on average. We

argue that this may not be the best approach in a cooperative sce-
nario. Consider the following example involving two agents A and
B that learn to play soccer together, and suppose that A has posses-
sion of the ball. One action b; that B might perform in this case is
to get itself unmarked (such that it can receive the ball from A) and
in an advantageous situation (maybe closer to the opponents’ goal,
from where it could score). A second action b, is to adopt a de-
fensive position! to defend in case A decides to attempt to score in
its own goal, or if A passes the ball to the opponent and does little
to defend afterwards. A significant problem that learner B might
face is that A could do a lot of these mistakes, especially at early
stages of learning; and a consequence of these mistakes might be
that B observes that the expected reward that it receives upon per-
forming by is lower than the one it receives for b>. The result of
this estimation of expected reward is that agents might tend to pre-
fer very conservative actions that work well with a large variety of
actions for the teammate, but which may also result in suboptimal
(and usually undesirable) joint actions for the team of agents.

One solution to remedy this problem is to allow agents to show
lenience towards their teammates: the agents can ignore lower re-
wards observed upon performing their actions, and only update the
utilities of actions based on the higher rewards. This can be sim-
ply achieved if the learners compare the observed reward with the
estimated utility for an action, and update the utility only if it is
lower than the reward. In some sense, such an approach changes the
learning focus from performing as well as possible in the context of
the current (most likely mediocre) teammate, to performing as well
as possible in the context of improved behaviors for its teammate
(as the teammate is expected to have as learning progresses).

The advantages of such an approach were demonstrated empir-
ically in [8]. The authors propose a time-dependent degree of le-
nience: the agents start by ignoring more of the lower reward that
they observe, but as learning progresses, agents tend to explore cer-
tain “better” actions and also to ignore fewer lower rewards. Panait
et al. present empirical evidence that several multiagent learning
paradigms can significantly benefit from agents being lenient to one
another.

Here, we concentrate on the mathematical foundations of a sim-
pler approach to lenient learners: each agent collects the rewards
it receives for performing actions. Upon observing N rewards for
an action, only the maximum of these N rewards is used to update
the utility associated with that action. The set of observed rewards
for that action is cleared, and the learning process continues. In
other words, the agents employ a fixed degree of lenience (which
is determined by N) to their teammates. The more lower rewards
the agents ignore (the higher N is), the more lenient the agents can
be said to be. Although this approach does not model Panait et
al’s algorithms, we believe its formal analysis has two major con-
tributions. First, it provides a valuable addition to our set of tools
to study such multiagent learning algorithms, and also strengthens
Evolutionary Game Theory as a primary framework for such analy-
sis. Second, it adds to our understanding of what are the causes for
multiagent learning algorithms drifting away from globally optimal
solutions.

Next, we extend the RD model from Section 2.3 such that each
learner uses only the maximum of N rewards (it ignores the lower
N — 1 rewards) to improve its utility estimate. The following the-
orem establishes a key result for the formal model of lenient Q-
learners.

'A more extreme variation could be for B to proactively attempt
to take possession of the ball away from its teammate, in order to
prevent it from making a possible mistake.
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THEOREM 1. Let a;j be the payoff for joint action (i, j),
(P}) je1..n be the probability that the teammate selects action j. The
expected maximum payoff for i over N pairwise combinations with
actions ji ... jn chosen with replacement according to (p;) je1..n is
s (Sensce )~ (Skewca )

j=14ij Zki":k*”u r k:ay<a;; Pk k:ay<a;; Pk :

PROOF. The expected maximum reward of i over N pairwise
combinations can be expressed as a weighted sum of all possible
rewards a;; that i can receive with different actions j for the team-
mate. The weight of each term a;; equals the probability that a;;
is the maximum reward observed over N trials. This probability
can be computed based on the difference between the probability
of receiving N rewards that are no higher than g;;, which equals

N
(Zk:a;kga,/ pk) , minus the probability of receiving N rewards

N
that are strictly lower than g;;, which equals (Zk:a,-k <a;; pk> . Ob-

serve that an action i might receive the same reward in combination
with different actions of the teammate, and as a result, there is an

extra weight Zpif that computes the probability of observing
kaj=a;j

the reward g;; in combination with action j of the teammate, out of

all the other actions the teammate might have selected and would

have resulted in the same reward. [

We infer an RD model for lenient Q-learners by combining the
RD model for traditional Q-learners in equations (8) — (11) with
the result in Theorem 1. The result is a set of four equations:

N N
m_aijyj (Zk:a,kga,/yk) 7(Zk:a;k<a‘/yk)

wio= ) €12)

j=1 Zk:a,k:a,»,» Yk
N N

’Z’ aijXi (Zk:ukjga,-j xk) - (Zk:ukj<a,-j xk)

wj = 13)
J AN

=1 2 kcayy=a
dx;
dr o Xk

= —|u- X | Fay xln— 14

dy;

o
L’_ = T<Wj—2ykwk>+aZYkln§—k_ 15)
k k J

Note that the two equations describing the update rule for the
two learners have not changed. What has changed, however, is the
expected reward that is used to update the utilities of actions (equa-
tions (12) and (13)). As expected, observe that the two RD models
described by equations (8) — (11) and (12) — (15) are equivalent for
N =1 (when the agents do not ignore any lower reward). For this
reason, we use the setting N = 1 as a benchmark representing the
formal model for traditional Q-learners.

4. ANALYSIS: BASINS OF ATTRACTION

This section demonstrates the advantages of improving the learn-
ers’ estimates for the quality of their actions. To this end, we
visualize the basins of attraction to suboptimal and optimal Nash
equilibria for the extended RD model of lenient Q-learners. As
noted before, our experiments also involve traditional multiagent
Q-learning approaches for the N = 1 setting.

We use the formal RD model to study the behavior of lenient
learners in two multiagent coordination games: Climb and Penalty.
Climb has two Nash equilibria, the optimum (1, 1) and the subop-
timum (2,2), and it is strongly deceptive. Penalty has three Nash

equilibria: (1,1), (2,2), and (3,3). Of them, (2,2) is suboptimal,
but is more forgiving if one or the other population deviates from
the Nash equilibrium. The problem domains are similar to the ones
introduced in [1] and used in previous investigations of multiagent
Q-learning [4, 5]. The joint payoff matrices for these coordination
games are defined as:

11 —-10 0 10 0 —10
Climb: | —=10 7 6 Penalty : o 2 0
0 0 5 —-10 0 10

Observe that these simple domains preserve challenges associ-
ated with multiagent learning, as in the example at the beginning of
Section 3. Consider the simple situation where agents are equally
likely to choose either of their three actions in the Penalty domain.
A traditional Q-learner will estimate a zero expected reward for ac-
tions 1 and 3, while the expected reward for action 2 is 0.66. Thus,
traditional Q-learners might often have higher utility estimates for
actions corresponding to suboptimal solutions, resulting in an un-
fortunate convergence to inferior Nash equilibria.

The visualization works as follows. First, we project the space
of initial configurations of the multiagent Q-learning system (the
probabilities for agents’ selecting each of their actions) along the
edges of a square: the vertical edge represents a projection of the
initial configurations for the first learner, and the initial configura-
tions for the second learner are projected on the horizonal axis. We
iterate the RD model starting from each pair of initial configura-
tions for the two agents. Observe that the RD model is completely
deterministic and it only depends on the current state of the mul-
tiagent system. As a consequence, the RD model is expected to
converge upon iteration to a Nash equilibrium in the payoff matrix.
We use different colors to encode to which equilibrium the system
has converged: black dots represent initial configurations that re-
sulted in convergence to the suboptimal Nash equilibrium, while
white and grey dots represent initial configurations that made the
system converge to the global optimum. Of course, better multia-
gent Q-learning system will have fewer black dots.

Observe that the space of initial configurations for each learner is
the simplex A% = { (p1, 2, p3) € 0,1 | 2, pi = 1} The pro-
jection of A3 to one dimension starts by dividing it into six equal-
area triangles, as in Figure 1 (left). Initial configurations in ar-
eas 1 —2 have p; > max (p2, p3), and similarly areas 3—4 and 5-6
have p, > max (py,p3) and p3 > max (pi, p2), respectively. The
areas are projected in increasing order (all initial configurations
in area 1 are projected first, and so on). Inside each area, initial
configurations are ordered lexicographically in the direction of the
arrow. More specifically, in regions 1-2, the sorting is done pri-
marily on p, and secondarily on p;; for 3—4, p; and p3; for 5-6,
p3 and p;. Even-numbered regions are sorted ascending and odd-
numbered regions are sorted descending. The objective of all these
procedures is to group together regions of the space of initial con-
figurations that are expected to converge to the same Nash equi-
librium. We sample 216 initial configurations in the simplex: the
six areas in Figure 1(left) are each divided into six triangles, and
each of them is further divided into six more triangles. The center
of each resulting triangle corresponds to an initial configuration.
We add random noise distributed uniformly between —0.00005 and
0.00005 to reduce certain artifacts due to identical settings for the
two agents. The sampling also does not cover initial configurations
on the edges or vertexes of the simplex, but the probability that an
evolutionary algorithm starts from those initial configurations is 0
anyway.

The right image in Figure 1 is an example of the resulting pro-

184 The Sixth Intl. Joint Conf. on Autonomous Agents and Multi-Agent Systems (AAMAS 07)



(1,0,0)

(0,1,0)

Figure 1: The projection of A% x A3 to [0, 1}2
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. (left): The projection divides the simplex A? into six equal-area triangles; arrows shows

the direction for sorting points in each area. (right): Visualization of the cartesian product of two simplexes.

jection of (A%)2 onto 2-D. Thanks to the sorting described above,
certain regions reflect majority-1, majority-2, and majority-3 re-
gions; and borders between those regions are the mixture of the
two regions. Dark lines in the figure show locations that have high
ratios of 1s, 2s, or 3s in one or the other configuration.

The rectangle in Figure 1(right) contains 216> = 46656 dots:
each visualization of the basins of attraction will be computed
based on 46656 runs of the RD model. Given that the RD model
provides differential equations, we approximate the next state of
the concurrent learning system by assuming the variations in the
derivative are small over short periods of time 6:

dx;
X o= xi+9—dtl
dyj
o=y, J
Vi = wtog

We set 0 = 0.001, the learning rate o = 0.1, and the exploration
parameter T = 0.01. We iterate the RD model 100000 times, or
until both agents have a probability exceeding 1 — 10710 to select
one of their actions over the other two.

The basins of attraction for the optimal (1, 1) (both play their first
strategy) and suboptimal (2,2) (both play their second strategy)
equilibria in the Climb domain are visualized in Figure 2. Given
that the new RD model reduces to the one described in [12] when
N =1, the basin of attraction in the top-left graph indicates that a
lot of trajectories for straightforward extensions of Q-learning to
multiagent domains will often converge to the suboptimal solution.
As the learners ignore more of the lower rewards, they improve
their estimates for the quality of their actions, and are thus more
likely to converge to the global optimum. The same behavior can
be observed in the Penalty domain, as illustrated in Figure 3.

We visualize the impact of improved utility estimates due to in-
creasing levels of lenience for each learner. Figure 2 shows the
basins of attraction in the Climb coordination game. The images
show that the difficulty of the problem domain decreases as each
population is provided with more accurate estimates for the utilities
of actions. When updating utilities based on all rewards (the orig-
inal RD model), it appears that the multiagent Q-learning search
will find the optima if at least one of the agents starts with a high
probability of selecting action 1. Even in this case, the system is
most likely to converge to the global optimum if the probability of
selecting action 2s is relatively low. As each agent gets a better es-

timate of action utility (via using the maximum of more observed
rewards), the basin of attraction for the suboptimal equilibria re-
duces to areas where at least one of the initial agents has a high
probability of selecting actions 2 or 3: the higher N (the lenient the
agents are), the larger the initial probability required to still con-
verge to the sub-optimum.

Figure 3 presents the basins of attraction in the Penalty game.
Observe that the two global optima cover most of the space even
when a single collaborator is used; the suboptimal equilibria cov-
ers mainly areas where at least one of the agents starts with a high
probability of selecting action 2, and the other agent has equal prob-
abilities of selecting actions 1 and 3 — this increases the percent-
age of miscoordinations. As N increases, the basin of attraction for
the suboptimal Nash equilibrium reduces to only areas where both
agents start with extremely high initial probabilities of selecting
action 2. The visualization of the basins of attraction suggests that
Penalty is a much easier coordination game than Climb. Note also
a thin diagonal line in the top-left graph of Figure 3. Interestingly,
this is due to the fact that if the probability of one agent selecting
action 1 is about equal to the probability of the other agent select-
ing action 3, there are frequent miscoordinations that impact on the
expected reward for these actions as estimated by the learners, and
the system converges to the suboptimal Nash equilibrium.

5. CONCLUSIONS AND FUTURE WORK

This paper presented an extended formal model for a new class
of multiagent learning algorithms, namely those involving lenient
agents that ignore low rewards that they observe upon performing
actions in the environment. We also detailed a visualization tech-
nique to illustrate the basins of attraction to different optimal and
suboptimal Nash equilibria, and exemplified how intuitive graphs
might reveal valuable information about the properties of multia-
gent learning algorithms that was lacking in the summarizations of
empirical results. The paper provided theoretical support for pre-
vious reports that lenience helps learners achieve higher rates of
convergence to optimal solutions, and also strengthened the use of
Evolutionary Game Theory to study the properties of multiagent
reinforcement learning algorithms.

There are nonetheless many avenues to continue the research
presented in this paper. We plan to extend our models to help ana-
lyze the properties of multiagent learning algorithms in stochastic
environments, as well as in more realistic scenarios involving states
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Figure 2: Basins of attraction in the Climb problem domain for multiagent Q-learning that updates the utility of an action based on
the maximum of 1, 3, 5 and 7 of the rewards received when selecting that action. White and black mark the basins of attraction for

the (1,1) and (2,2) equilibria.

and partial observability. We also aim to combine these models to
the related EGT models for cooperative coevolutionary algorithms
(see [18]), in order to analyze the similarities and differences that
these multiagent learning algorithms share in common. We hope to
use these models to further explore theoretical and practical solu-
tions to multiagent learning.
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