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Abstract

Given observed data and a collection of pa-
rameterized candidate models, a 1 —a con-
fidence region in parameter space provides
useful insight as to those models which are
a good fit to the data, all while keeping the
probability of incorrect exclusion below «.
With complex models, optimally precise pro-
cedures (those with small expected size) are,
in practice, difficult to derive; one solution
is the Minimax Expected-Size (MES) con-
fidence procedure. The key computational
problem of MES is computing a minimax
equilibria to a certain zero-sum game. We
show that this game is convex with bilin-
ear payoffs, allowing us to apply any con-
vex game solver, including linear program-
ming. Exploiting the sparsity of the ma-
trix, along with using fast linear program-
ming software, allows us to compute approx-
imate minimax expected-size confidence re-
gions orders of magnitude faster than previ-
ously published methods. We test these ap-
proaches by estimating parameters for a cos-
mological model.

1. Introduction

Learning often requires the ability to compare hypo-
thetical models with observed data to assess the mod-
els’ validity. When the model is a function of several
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unknown parameters, we are interested in computing
combinations of parameter values which fit the ob-
served data well. While we could compute maximum
likelihood estimates for the parameters, here we con-
sider computing confidence intervals (or regions, when
we take the parameters as an ensemble), as they pro-
vide more than just a point estimate for the parameter;
confidence regions give us a range of parameter values
which yield acceptable model fits to the data. They
are especially useful for statistical inference in fields
such as astronomy, biology, and geophyiscs, as multi-
parameter models are common in these disciplines.

While there are many methods for computing 1—«
confidence regions, it is natural to prefer methods
that produce small confidence regions. Conceptually,
frequentist confidence procedures are defined before
seeing any data. Hence, a frequentist procedure for
computing the minimally-sized confidence region must
minimize the size of the derived region for any possi-
ble realization of the data and any possible parameter
setting. In general, it is impossible to find a minimally-
sized region over all possible realizations of the data for
a given parameter 0; however, the expected size of a re-
gion can be ascertained for any . Evans et al. (2005)
show that the 1—« confidence procedure which mini-
mizes the maximum (worst-case) expected size of the
confidence region is the inversion of a family of level «
tests of simple nulls versus a single simple alternative;
in this paper we will assume that “size” refers to Eu-
clidean volume. Schafer and Stark (2006) describe an
algorithm for approximately deriving these confidence
regions using Monte Carlo sampling.

In this work we extend the work of Schafer and
Stark (2003; 2006) in three ways. First we show
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that the Monte Carlo method for computing minimax
expected-size (MES) confidence regions can be com-
pactly represented as a convex game. Second, we note
that the associated game matrix has many values very
close to zero. Exploiting this approximate sparsity re-
sults in both memory and computational savings. Fi-
nally, the convex game representation lends itself to a
variety of solution techniques, notably fictitious play
and linear program solvers. By utilizing these solvers,
we are able to speed up the computation of MES con-
fidence regions by at least two orders of magnitude,
as demonstrated by our application of the MES con-
fidence procedure to an astronomical data set. There
are two ways in which this speedup is critical. First,
it allows for the solution of larger games, allowing for
more accurate approximations using additional Monte
Carlo samples. Second, it allows for the testing of a
larger collection of models, which leads to better reso-
lution of the confidence region boundary.

1.1. A Motivating Problem from Astronomy

Throughout this paper we consider the task of com-
puting the MES confidence region for cosmological pa-
rameters, using the Supernova Legacy Survey (SNLS)
data set (Astier, P., et al., 2006). The SNLS data set
contains observations of type Ia supernovae, recording
both the distance modulus (the observed luminosity
minus the intrinsic luminosity), p and redshift, z, for
each supernova. The processes governing type Ia su-
pernovae are well known, and hence so are their in-
trinsic luminosities (e.g. Morrison et al. (1995)). As-
suming a homogeneous, isotropic and flat universe, the
Robertson-Walker metric (Robertson, 1936) predicts

ce(l+2)

d /z dt
L= "7 )
Hy, 0 \/QM(l +1)3 + Qp

(1)

where the luminosity distance dj, is given by
= 5logyo(dr) + 25, (2)

where c is the speed of light, Hy is the Hubble constant
(the recession speed of local galaxies), and Qyr and Qp
are the fraction of matter and dark energy in the uni-
verse, respectively. Comparing the distance moduli
models predicted by combining Equations 1 and 2 to
the SNLS data allows us to make inferences about the
true values of the parameters 8 = (Hg, O, 24). Con-
straining these cosmological parameters is the focus
of much recent effort in the astronomical community
as these parameters describe the composition, age and
eventual fate of the universe.

While we focus on the SNLS data set throughout this
work, we stress that the ideas and techniques devel-

sequel) are a natural generalization of matrix games.

oped here can be applied to computing MES confi-
dence regions in many situations. Before introducing
the MES procedure, we discuss necessary background
from game theory as well as the advantages of the MES
procedure over other confidence procedures.

1.2. Matrix Games and Convex Games

A zero-sum matrix (normal-form) game is played by
two players, player row with strategies R = {1,...,m}
and player column with strategies C' = {1,...,n}. A
m X n matrix A specifies the payoffs. If row plays
strategy i € R and column plays j € C, the payment
from column to row is the (i, j)th entry of A, denoted
ai;. The players select their strategies simultaneously,
without knowledge of the other player’s choice.

We wuse A(-) to denote the probability sim-
plex over a finite set; for example A(R) =
{ye R™| > " y; =1 and y; > 0}. A mixed strategy
is an element y € A(R) for the row player or z € A(C)
for the column player, corresponding to a distribution
over the rows or columns, respectively. If the players
select mixed strategies y and z, the expected payoff
V(y,z) from column to row is given by the bilinear
form yT Az. A solution to the game is a minimax equi-
librium (y*,z*), a pair of strategies such that neither
player has an incentive to play differently given that
the other player selects their strategy from the pair.
The minimax theorem states that if the players are al-
lowed to select mixed strategies, there is no advantage
to playing second:

TAz= min max
zeA(C)yeA(R)

max min

T
Az. (3
YEA(R) zeA(C) y Az (3)

Thus, solving either the min max or max min optimiza-
tion problem from (3) results in a minimax equilibrium
for the game. This problem can easily be converted to
a linear program and solved via standard techniques.

An e-approximate minimax equilibrium for a matrix
game is a pair of strategies (y’, z’) where neither player
can gain more than e value by switching to some other
strategy. That is,

V(y',z') > Viy,z') — 4
(y7Z)_yglAa(§2) (y,z') — ¢ (4)
V(y',z) < min V(y, . 5
(y Z)fzemAl(%) (y',z) +e (5)

If € = 0, we have an exact minimax equilibrium.

Convex Games Two-player zero-sum bilinear-

payoff convex games (simply “convex games” for the
1

!Our convex games are non-cooperative, and are unre-
lated to the super-modular coalitional games often called
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Convex games allow arbitrary convex sets Y and Z in
place of the probability simplexes A(R) and A(C) for
matrix games. A convex game is specified by a tuple
(Y,Z,A) where Y C R™ and Z C R" are the strat-
egy sets for the two players, and A is a m X n payoff
matrix. The first player (who we will call y) selects an
action y € Y, the second player (called z) simultane-
ously chooses z € Z, and the payoff from player y to
player z is given by V(y,z) = y? Az. The concepts of
equilibria and e-approximate equilibria naturally gen-
eralize to convex games, and it can be shown that the
minimax theorem still holds (McMahan, 2006).2

While convex games are a simple generalization of
matrix games, the ability to represent arbitrary con-
vex strategy sets lets us take advantage of structure
in many types of games, often yielding exponentially
smaller representations. Notable examples include
cost-paired Markov decision process games, extensive-
form games (including poker), and the problem of com-
puting an optimal oblivious routing (McMahan, 2006).
Moreover, the key computational problem for our sta-
tistical approach can be formulated as a convex game.

Fictitious play (FP) is a classic algorithm for solv-
ing zero-sum matrix games, and generalizes to convex
games. The FP algorithm simulates play of the game;
on each iteration both players select the action which
is a best response to the average of the opponent’s
past actions. Standard, or synchronous, fictitious play
(SFP) executes the updates independently in parallel
for each player. Asynchronous fictitious play (AFP)
does updates first for (say) y, and then for z, using
the new average strategy computed for y. As demon-
strated in Section 4, AFP can be significantly faster.

A polyhedron is a convex set defined by a finite num-
ber of linear equality and inequality constraints. We
say a convex game is polyhedral if Y and Z are poly-
hedra. Polyhedral convex games can be solved in
polynomial time via linear programming, as shown
by (Koller et al., 1994) in the context of extensive-form
games. In this work, we use the CPLEX 10.0 commer-
cial optimization package to solve the linear program,
which proves to be very effective. However, for very
high dimensional and extremely sparse convex games
like poker, the single or double oracle algorithms of
(McMahan & Gordon, 2007) can be orders of mag-
nitude faster than standard linear programming ap-
proaches. We ran preliminary experiments with these
algorithms; for generating approximate solutions, we
were sometimes able to significantly outperform FP.
However, the run times for a reasonable approximation

convex games in the cooperative game theory literature.
2Some mild technical assumptions are required.

using these algorithms were such that directly solving
the linear program with CPLEX was preferable. For
this reason, we do not report further on these results.

1.3. Confidence Regions

A confidence procedure maps the observed data into
a subset of the set of all possible model parameter
settings. We say that a confidence procedure has cov-
erage probability 1—« if, regardless of the truth 6*,
the probability that confidence region includes 6* is
at least 1 —«a. Optimal confidence procedures are
generally only known for simple parametric models.
With the complex models used in most scientific ap-
plications, general procedures for forming confidence
regions are desirable. Such procedures include x>
tests (e.g. Wasserman (2004)), confidence balls (Gen-
ovese, C. et al., 2004; Bryan, B., et al., 2005), and
Markov Chain Monte Carlo (MCMC) (e.g. Wasser-
man (2004)). However, such procedures often have
low power, and hence low precision.

Often, x? tests are used to compute 1—a confidence
regions, due to their simplicity both in implementation
and interpretation. In their simplest form, one defines
parameter ranges to be searched and then exhaustively
iterates over this space, computing test models, as-
sessing the fit of the data to the model, typically in
the form of the sums of squared difference between
the observed and expected data values. This is then
compared to the X2n distribution to determine the
significance level of the proposed parameter vectors.
However, it is well known that such an approach is
conservative (Wasserman, 2004).

Alternatively, Genovese, C. et al. (2004) propose the
idea of confidence balls, constructed by first fitting the
observed data non-parametrically and then comparing
a proposed model to this non-parametric fit. Intu-
itively, confidence balls correct for the power loss of
X2 tests by mimicking the underlying function with
the non-parametric fit, thereby reducing the noise in-
herent in the data. However, computing the radius of
the confidence ball is non-trivial, as it relies on both
the fit to the data as well as the observational error.

Bayesian approaches are also possible. One can use
MCMC (using the Metropolis Hasting algorithm or
Gibbs Sampling) to approximate the posterior and use
this posterior to derive 1—a credible regions for the pa-
rameters. However, there is no guarantee that credible
regions derived from a posterior will contain the true
value of the parameter in at least 1—« fraction of the
instances in which the technique is applied. This prob-
lem becomes particularly acute in high-dimensional
and non-parametric models, where 1 —a credible in-
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tervals may trap the true value of the parameter close
to zero percent of the time (Wasserman, 2004).

The MES confidence procedure allows us to efficiently
find confidence regions that have both optimal preci-
sion and correct coverage. Here, we compute MES con-
fidence regions for the SNLS data; Schafer and Stark
(2003; 2006) show examples of synthetic and real data
sets where MES out-performs alternative techniques.

2. MES Confidence Regions

Let © C R? denote the set of possible model parameter
settings, and let 6 and 6 be arbitrary values of ©. For
each 6 € O, there is a distribution Py on the space of
possible observations X C R™. Let X be a random
variable and = be a generic observation of X. Assume
each distribution Py has a density f(x|6) relative to
Lebesgue measure. We are interested in constructing
a confidence region for the true value of the parameter,
denoted 0*, based on the observation that X = z and
the a priori constraint that 6* € ©.

Consider testing the hypothesis that 0* = 0 at level
for some arbitrary § € ©. The associated acceptance
region for the test, A(0~) C X, is the set of values for
which the test will not reject the hypothesis 8* = 6.
Since we are interested in tests with significance level
a, we require P;(X € A(f)) > 1 — a.

The power of the test is the probability that the test
rejects the hypothesis that 6* = 6. Define the power
function as

B(8,0) =1 — Py(X € A6)).

The test has significance level «, so ﬁ(é, é) < a. We
are interested in small (i.e., precise) confidence regions,
and we see below that this leads us to choose A(f) to
maximize ﬂ(@,é) over all 8 subject to ﬁ(é, é) <a.

The above can be repeated for all § € O, and the result

is a family of acceptance regions A(f). These can be
inverted into a confidence procedure by defining a rule

= |1, ifze A9)
d(6,z) = { 0, ifx ¢ A(f)

Thus, we can either discuss the choice of A(6) for all

6, or the choice of d; in what follows it will be more

natural to think of selecting d. We can use the rule

d to construct a 1—a« confidence region, Cy(x), for 6*

based on the observed data x:

Ca(z)={cO:dbz)=1}.
Ideally, Cy(x) would be small, since a small confi-

dence set implies high precision in the estimate. De-
fine v(Cy(x)) to be the size of Cy(z) using a measure

v. In this paper we will assume v is a Euclidean mea-
sure over the parameter space, although other choices
could be justified. Choosing d to minimize v(Cy(z))
for fixed data x is trivial: simply define d@,z) =0
for all 8. This is equivalent to “data snooping” and
is not statistically valid. Instead, we seek to choose
d to make the expected size of the confidence region
(Eg[v(Cq(X))]) small for all possible truths 6 € ©.

Unfortunately, it is not usually true that a single d
simultaneously minimizes Eg[v(Cq(X))] over all 6. In-
stead, we consider minimizing the weighted average

S(r,d) = /@ Ey[1(Ca(X))|(d6). (6)

with the weighting provided by a probability measure
7 defined on ©. Pratt’s theorem (Pratt, 1961) gives

Ey[v(Ca(X))] = /@ (1 3(6.6)) v(df).

This link between expected size and power allows us to
apply the classic Neyman-Pearson lemma (Neyman &
Pearson, 1933) to find the d that minimizes Equation
6: set d(f,z) =1 if and only if Ty (6, z) < cg where

= M (7)
f(x10)
and cj is a cutoff chosen large enough to ensure d has

1—a coverage. Call this confidence procedure d,. We
now address the question of how to choose 7.

Tﬁ(é,m)

2.1. The Convex Game

The selection of the measure 7 is subjective, but there
is a particular choice which can be justified using sta-
tistical decision theory. Let mg be the 7 that maximizes
S(m,dz). The key result (Evans et al., 2005) is that
dn, minimizes the maximum expected size over 6 € O.
In other words, for any possible truth 6 € O,

Eg[v(Ca,,(X))] < S(mo, dry)

while for all 7’ (and hence d), there is some ¢ € ©
such that

Egp [v(Ca, (X))] = (70, dry )

This is analogous to the minimax equilibrium of the
convex game constructed next.

In general, calculating mq is intractable. However, we
can approximate it using finite sampling. Note that

/@ B [v(Ca(X))]r(do)
- /@ /X V(Ca(x)) f(2]0) dx 7(d6)

_ /@/X/ed(é,x)f@cw) v(df) dz 7(d6).
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Figure 1. The payoff matrix A is a concatenation of J sub-
matrices, where each sub-matrix corresponds to a single
sample point. Rows of the sub-matrices correspond to the
same [ prior points, while the columns correspond to K
different simulations of the sub-matrix sample j.

We will approximate the integrals in the previous
equation with finite samples. For instance,

I
AMM%MMWM%ZFMNMMWMM
1=1

where 6,,05,...,0; are chosen uniformly from ©.
Next, we approximate the integral V(dé) as the
sum over values 51, ég, cee 0, sampled uniformly from
©. Finally, for each 9~j, a sample of K data val-
ues is simulated from distribution P(;j and labeled
Zj1,T42, .., T K; these are used in a Monte Carlo ap-
proximation to the integral against f(z|d;). Thus,

/@ES[V(CJ(X))]W(CZQ) (8)
I T f<|e>> |
NMZZZMmeWmWW

where z;1, T 2,...,ZjK ~ P(;j. Finally, Equation 8 can
be written compactly as

L p
[ ECax~ sermad @
where
d’ = [d{vdgvvd§]
d? = [d(éj,le),d(éj,l'jQ)a--~7d(0~j7ij)]
al = [7(01),7(02), ..., m(0r)]

and the matrix A has elements given by

116
0,y = T inl0) (10)

f(;1105)
where £ = (j—1)K+k. A can be viewed as the con-
catenation of J I x K matrices, as shown in Figure 1.

Equation 9 denotes a convex game. The first player,
y, has strategy set

Y =A({0; |1<i<TI}),

that is, a vector m = y € Y is simply a probability dis-
tribution over the finite set of samples 6;. The second
player, z, has more complex constraints. Each sub-
vector of d, d;, must define a decision rule which gives
(approximate) probability 1—« to accepting éj into the
confidence region when 6* = 5]-. This is guaranteed by
requiring that the entries of d; sum to K (1 — ). We
can fully represent the set of allowed d; as the poly-
hedra D; using the linear constraints

1dj:K(1—a)
(Vk) 0<dj <1

where 1 is the vector of all 1s. Also accounting for the
normalizing 1/JK, we define the convex strategy set

Z:{mf—a)

Thus, we have the convex game G = (Y, Z, A). The
“nature” player, y, chooses a vector y corresponding
to 7, and the “statistician” player, z, chooses z cor-
responding to d. For fixed (= y), the statistician
knows the ideal strategy formed by finding d, and us-
ing it to find the entries of d (and hence z). More-
over, the statistician assumes that nature plays a best
response to d; that is, nature maximizes Equation 9
with respect to d. This is equivalent to assuming na-
ture chooses my. The statistician’s minimax strategy
is hence dy,.

(di,...,d;) e R7K | d; eDj}.

Bounds on the value of G are bounds on the maximum
expected size of the confidence region. An approxi-
mate equilibria is useful, as it gives a bound on the
value of the game. The result is a strategy for na-
ture m which may not be exactly minimax optimal,
but still will greatly reduce the maximum expected
size of the confidence region relative to standard ap-
proaches. This value of 7 is then used in the under-
lying hypothesis tests (Equation 7). As each test has
level «, the derived confidence regions will have 1—a«
coverage probability, even with the discrete sampling
approximations.

2.2. Constructing the Estimate

Given a solution to G, we wish to approximate the
confidence region Cy, (z) utilizing our observed data
2. While more detail is provided in Schafer and Stark
(2006), the result of solving the above matrix game
yields a collection of parameter values 61,60s,...,0;
for which the cutoffs cg, are well-approximated. It is

trivial to calculate dy, (6, ) for each j. The accepted
parameter values form the confidence region. Provided
J is sufficiently large, the accepted parameter values
will resolve the confidence region boundary.
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In the SNLS application, X has the multivariate nor-
mal distribution with mean m(6*) and known vari-
ance, where m = {my(6*), ma(6*),...,mp(6*)} is the
vector of predicted distance moduli of the D supernova
using model m with the parameter 6* (Equations 1 &
2). Thus we have, for instance,

N T (za = ma(6:))?

£(:|6;) has a similar form. Moreover, 2rq = ma(6;) +
o4€q where 4 ~ N(0, 1) for all D supernova. Hence,

f@l6) _ [1§~| 2 ((wa—ma8))®
Falf;) p{Zzlsd < o > }

d=1
(11)

3. Solving the Convex MES Game

In this section, we describe how to exploit approximate
sparsity and other properties of the game G in order
to speed up the equilibria computation.

All matrix entries (defined by Equation 10) will be
greater than zero, but many values will be very close
to zero because the parameter space O results in the
majority of the model pairs being largely dis-similar.
We can exploit this property to approximately solve
G much more quickly. The size of the linear pro-
gram we solve is dominated by the non-zero entries
in A. For fictitious play, computation is dominated
by computing the products y” A and Az. Once these
products have been computed, simple algorithms im-
plement the best response oracles with running times
approximately linear in the number of non-zeros of the
resulting vectors. Thus, using a sparser matrix signif-
icantly helps both algorithms. We construct a new
matrix A by taking all entries a;y < ¢; and setting
them to zero in A. Approximately solving the ap-
proximated game G = (Y, Z, A) gives an approximate
minimax equilibria for the original game G:

Theorem 1. Let G = (Y,Z,A) be a confidence re-
gion game. Let A be a matriz such that 0 < a; —
aie < € for all entries (i,1), and let (y,Z) be an €q4-
approximate minimazx equilibria to the convex game
(Y,Z,A). Then, (¥,2) is an (e, + €,)-approzimate
equilibria for the original game (Y, Z, A).

Sketch of proof: The key is (Vy € Y,Vz € Z), |y|1 =
|z|y = 1, and so 0 < yTAz — yT Az < ¢. The theo-
rem then follows from an application of the definition
of approximate minimax equilibrium in A, and then
manipulation of the resulting inequalities. O

When we approximately solve G we introduce ap-
proximation error in two ways: both by finding
an ey-approximate solution and by solving an ;-
approximate game. Depending on the problem and the
algorithm at hand, we can trade off these two sources
of error for a fixed total error ¢ = ¢; + €,. We fixed
e = 1 x 107 for the experiments we report, which
results in a matrix that is 96% sparse; but even us-
ing ¢, = 1 x 10732 (on the order of machine precision)
results in a sparsity of 85%. 3

Efficiently building the game matrix While, we
could use Equation 11 to compute the values of the

game matrix, recall that ;g = mq(0;) + €qoq, where
gq ~ N(0,1). Thus, we can rewrite Equation 11 as

D D .2
Ay = €X VEGK — -
o{ens)

where [ = (j — 1)K +k and v is a vector with elements
(ma(6;) —ma(0;))/oa). The vector v dependents only
on i and j, the index of the row, and the sub-matrix.
We only need to compute this term for each éj in each
sub-matrix once. Moreover, €4 is the same for all en-
tries of a particular column. Thus, by computing the
max elements of €4 and v, we can bound the maxi-
mum magnitude of a; for all i. Comparing this bound
with the log of the zero cutoff value defined in Sec-
tion 3, we can determine whether we can set a;¢ to zero
without further computation. We find that by prun-
ing those entries with maximal values less than the
log of the zero cutoff value speeds up the matrix build
process in proportion to the sparsity; for the SNLS

problem we observe a factor of 5 speedup.

Generalized dominance Player z’s strategy set is
highly constrained, and this makes it possible to prove
that many of player y’s pure strategies (rows of A)
cannot appear in a minimax solution. Let y(i) € Y be
the pure strategy that always plays row i € {1,...,T}.
If there exists a row j # ¢ such that

Vze€Z) y() Az >y(i)TAz,  (12)

then there exists a minimax solution that never plays
row i. We say j dominates ¢ if Equation 12 holds. If j
dominates ¢, for any strategy y that sometimes plays
i, the strategy y;—; that plays j every time y plays i
must do at least as well against all opponent strategies.
Checking Equation 12 over all pairs of strategies would
be prohibitive. Instead, we find

y(i)" Az,

Ib = max min
1<i<I z€Z

3Some convex games have much greater sparsity. For
example, a payoff matrix for the poker game Rhode Island
Hold’em is 99.994% sparse.
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Figure 2. 2D projections of the derived MES confidence region for three cosmological parameters (Ho, Qum, and 24 ) based
on the the Supernova Legacy Survey data set. Points in black denote models that could not be rejected by the MES
confidence procedure at the 95% confidence level, while points in grey depict those that cannot be excluded by a x? test
at the 95% confidence level. The figure shows that MES has significantly more power than the x? test.

which can be computed by preforming I best-response
calculations. Then, for each i we check whether

y(i)'Az < b (13)

max

zE€EZ
We can evaluate this expression by performing I
“worst-response” calculations, which takes time ap-
proximately linear in the number of non-zeros in A.
If Equation 13 holds for some row 4, then that row
is dominated and can be removed. Running on dif-
ferent instances of the our example domain, we were
able to eliminate from 20% to 60% of the rows in A in
this manner. However, the overhead of computing this
dominance approximately canceled out the speedup in
the solution to the linear program. Nevertheless, this
technique can be used as a preprocessing step for any
convex game algorithm and we expect that on some
domains improvements could be substantial. Further,
more thorough direct checking of Equation 12 with
respect to a small, diverse set of “good” strategies—
perhaps the bundle maintained by the single oracle
algorithm of (McMahan et al., 2003)—could have sub-
stantial benefit.

4. Experimental Results

Using the procedure detailed in Section 2, we have
computed MES confidence regions for the SNLS data
set, restricting © to the set of parameters with 40 <
Hy <140,0 < Qp < 1.1 and 0 < Qp < 1.4 that result
in models with x? values less than 200. The 2 cut in-
troduces a small (2 x 10~!#) probability of eliminating
the true value 6*; we can correct for this cut using a
Bonferroni correction ensuring that our derived confi-
dence region maintains the desired 1—« coverage. This
restriction is natural as it limits the MES procedure to
considering parameter vectors that are at least mini-
mally supported by the data. While we could perform
the MES procedure without the y? restriction, the

MES procedure would be forced to compute the min-
imax expected size over even those parameter values
which are extremely unlikely given the data, resulting
in an extremely conservative estimate. Figure 2 shows
MES and x? confidence regions; the MES procedure
has significantly more power.

The experiments reported in Schafer and Stark (2006)
used SFP on the dense game matrix A; we use this
approach as a baseline against which to compare our
methods. We observed that the initial strategies cho-
sen for FP are somewhat important; we initialize both
players to the uniform strategy.* Since FP is an itera-
tive algorithm, we can imagine stopping the algorithm
as soon as a specified error ratio has been met. For this
work we consider relative error, which we define to be
the error of the MES confidence region (the difference
between the upper and lower bounds on the value of
the convex game) relative to the lower bound on the
optimal size of the MES region. Figure 3 displays the
average speedups, derived over 10 trials, obtained for 3
algorithms over SFP when solving for MES confidence
regions. The exact speedup depends on the random
samples drawn. We used a fixed ¢, = 1 x 10~* for all
experiments (except for the baseline, which used the
dense matrix). CPLEX took 61 seconds to solve this
game. For CPLEX] ¢, = 0 and so the total error in-
troduced was due to €. This absolute additive error
of 0.0001 resulted in a solution with a relative error
of 0.4%; for the FP implementations, we ran four ex-
periments with relative total error stopping criteria of

20%, 10%, 5%, and 1%. Since the error due to ¢, was

“When the column player is initialized to the best re-
sponse to a uniform strategy for the row player, the initial
bounds on the game value are good, but it takes many
iterations before the bounds improve. Starting with the
uniform distribution produces worse bounds initially, but
better improvements quickly overcome the initial advan-
tage of the best response initialization.
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Figure 3. Convex game solution speedups obtained by the respective algorithms over synchronous fictitious play (SFP)
using a dense matrix representation. The game matrix was composed of I = 500 rows and JK = 1000 x 200 columns.
Fictitious play (FP) is an iterative algorithm and can be terminated as soon as a certain relative error threshold has been
met, while CPLEX solves the convex game exactly, up to the additive error ¢; induced by the sparse representation. Thus,
the relative speedup of CPLEX over FP algorithms increases as the relative error decreases, as CPLEX’s solve time is
fixed while FP requires additional time to achieve lower relative errors. All of the bars for CPLEX correspond to a fixed

run time of 61 seconds; SFP took 8.8 hours to solve the same game to a relative error of 1%.

fixed for all of these runs, smaller total relative errors
are achieved by running more iterations of FP. Thus,
for all of the sets of columns in the figure, CPLEX
is producing a higher-quality solution than FP. For
example, the right hand set of results shows CPLEX
generating a solution with relative error 0.4% over 500
times faster than FP generates a solution with relative
error 1%; using CPLEX to solve the linear program be-
comes advantageous if we desire to find solutions with
relative error rates less than ~ 10%.

5. Conclusions

We have shown that MES confidence region methods
can be formulated as a compact convex game with a
sparse game matrix, allowing it to be solved by a vari-
ety of convex game and linear program solvers. Using
this representation, we can solve the convex game for
a real-world astronomy problem over 500 times faster
than previously proposed methods. We stress, how-
ever, that the algorithms presented here can be applied
to any suitable data set.
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